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Time-lapse imaging of cell colonies in microfluidic chambers provides time series of 
bioimages, i.e., biomovies. They show the behavior of cells over time under controlled 
conditions. One of the main remaining bottlenecks in this area of research is the analysis 
of experimental data and the extraction of cell growth characteristics, such as lineage 
information. The extraction of the cell line by human observers is time-consuming and 
error-prone. Previously proposed methods often fail because of their reliance on the 
accurate detection of a single cell, which is not possible for high density, high diversity 
of cell shapes and numbers, and high-resolution images with high noise. Our task is to 
characterize subpopulations in biomovies. In order to shift the analysis of the data from 
individual cell level to cellular groups with similar fluorescence or even subpopulations, 
we propose to represent the cells by two new abstractions: the particle and the patch. 
We use a three-step framework: preprocessing, particle tracking, and construction of the 
patch lineage. First, preprocessing improves the signal-to-noise ratio and spatially aligns 
the biomovie frames. Second, cell sampling is performed by assuming particles, which 
represent a part of a cell, cell or group of contiguous cells in space. Particle analysis 
includes the following: particle tracking, trajectory linking, filtering, and color information, 
respectively. Particle tracking consists of following the spatiotemporal position of a 
particle and gives rise to coherent particle trajectories over time. Typical tracking prob-
lems may occur (e.g., appearance or disappearance of cells, spurious artifacts). They 
are effectively processed using trajectory linking and filtering. Third, the construction of 
the patch lineage consists in joining particle trajectories that share common attributes  
(i.e., proximity and fluorescence intensity) and feature common ancestry. This step is 
based on patch finding, patching trajectory propagation, patch splitting, and patch merg-
ing. The main idea is to group together the trajectories of particles in order to gain spatial 
coherence. The final result of CYCASP is the complete graph of the patch lineage. Finally, 
the graph encodes the temporal and spatial coherence of the development of cellular 
colonies. We present results showing a computation time of less than 5 min for biomovies 
and simulated films. The method, presented here, allowed for the separation of colonies 
into subpopulations and allowed us to interpret the growth of colonies in a timely manner.

Keywords: bioimaging, bioimage informatics, cell lineage, bacteria, microfluidics, synthetic biology, image 
processing
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Figure 1 | Input data for biomovie D1, with exposure set to 100%. (a) Original image frame in RGB color space overlaying the luminance channel (phase contrast 
image) at the first time point. We observe a set of particular and square-like polygons. They are an intrinsic part of the microfluidic chamber, in which bacteria grows. 
(B) Time 31.5 h. (c) Time 57.5 h, the final frame. (D) The dissociated red channel for the final frame. (e) Green channel. (F) Blue channel.
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1. inTrODucTiOn

A bacterial cell colony is a group of bacteria grown from a single 
parent cell on a culture or medium. The capture of colony growth 
is possible thanks to time-lapse imaging, in particular high-res-
olution microscopy. Temporal and spatial changes are recorded 
to provide detailed information on the growth of cell colonies. 
Ultimately, the analysis of these records leads to characterization 
of cellular behavior at different scales of biological organization 
(i.e. cell, subpopulation, and colony). These spatiotemporal 
records comprise a sequence of digital microscopy images, 
referred to in this article as “biomovies”. The combination of 
such biomovies with genetically modified reporter gene fusions 
allows the detection of changes in gene expression by changes 
in cell fluorescence, as can be seen in other works pertaining to 
antibiotic resistance (Sun et al., 2011; Mohan et al., 2013).

In the context of this work, we examine biomovies that show 
the growth of the Sinorhizobium meliloti bacterium. The result-
ing biomovies help us to study its gene regulation and pheno-
typic heterogeneity under stressful conditions (Charoenpanich 
et al., 2015; Schlüter et al., 2015a). Our goal is to gain a better 
understanding of the patterns emerging within the colony, by 
locally finding subpopulations of cells with similar fluorescence 
patterns over time and space. Fluorescence intensities were 
measured according to Schlüter et  al. (2015a) and are hence 
comparable across frames. A complete experiment consists of 

multiple conditions, each of which is recorded as an individual 
biomovie.

The general paradigm for the analysis of such data is centered 
on the extraction of information from the cell lineage of all vis-
ible cells, for example in the studies by Schneider et al. (2012)and 
Helfrich et al. (2015), which ultimately leads to its visualization, 
as described in the study by Pretorius et al. (2016). A cell line-
age is a sequence of cells that have developed from a common 
ancestor. This extraction step includes the segmentation of single 
cells, their tracking, and the lineage construction. Segmentation 
refers to spatial coherence and involves delineating individual 
cells in each frame. Tracking refers to temporal coherence and 
involves the monitoring of cells throughout a biomovie. Lineage 
construction is meant to identify cell division events, also referred 
to as the correspondence problem to trace cellular ancestry (see 
Figure S1 in Supplementary Material). However, the extraction of 
cell lineages from microfluidic biomovies such as the one shown 
in Figure 1 is a challenge due to the high cell count (~300), con-
siderable variation in cell size and shape, high cell density and a 
strong noise, and low temporal resolution (1 frame/30 min). The 
time-lapse studies presented herein are based on high-resolution 
microscopy with the 2,000 nm limit, where the pixel size is less 
than the optical resolution. When colonies have high cell density, 
even rod-shaped and anisotropic bacterial cells may appear to 
have different shapes due to contact between cells. The inade-
quacy of automatic methods for data with such characteristics led 
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TaBle 1 | Related work is cataloged according to cell type and colony properties.

colony properties/ 
related work

cell count cell shape diversity cell density noise resolution (nm/px) species

Prokaryotic Klein et al. (2012) Moderate (~100) Low Low Low NS B. megaterium
Mekterović et al. (2014) Low (~30) High High Low Moderate (129) M. smegmatis
Grunberger et al. (2015)a,b Low (~50) Moderate Moderate Low Low–moderate (< 120) C. glutamicum

Eukaryotic Kanade et al. (2011)b High (>200) Low Low High Moderate (130) B. taurus
Bao et al. (2006) High (350) Low Low Moderate Moderate (100) C. elegans
Li et al. (2008)b Very high (>500) High High High Moderate (130) H. sapiens

Both Wang et al. (2005) Low Low Low Low NS E. coli and H. sapiens

aLarger colonies did not have their lineage constructed.
bApproach or framework is not available.
NS, not stated in the publication.
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experts in the field to a manual annotation process. It is extremely 
time-consuming, arduous, and error-prone in terms of low intra- 
and inter-observer agreement. Our collaborators need a period 
of about two to three working days to annotate a biomovie and 
create a bacterial cell lineage. Furthermore, the comparison of 
data sets/biomovies between different experiments justifies the 
need for better computational support and automatic lineage 
extraction approaches.

Related work for the computational analysis of biomovies is 
summarized in Table 1. None of these approaches have been suc-
cessful in extracting lineage information from the data considered 
here (i.e., biomovies). The inability to process these biomovies 
was attributed to high values for different data properties. The five 
data properties are as follows: cell count, cell shape diversity, cell 
density, noise, and lateral resolution (60 nm/px). In addition, the 
large time separation between images (i.e., temporal resolution) 
presents one of the greatest challenges in cell tracking.

Our view postulates that the shortcomings of previous meth-
ods are due to the general paradigm of analysis (i.e., single-cell 
oriented). As described earlier, these methods rely on an initial 
segmentation step before continuing with tracking and lineage 
construction. The closest relevant effort was reported in the study 
by Grunberger et al. (2015). However, instead of computing single 
cell lineages for large and medium-size experiments, the cell area 
of interest is quantified by calculating its logarithm.

In this work, our primary objective is to characterize different 
cell behaviors within a colony that are consistent in space and 
time (i.e., coherent subpopulations). As a task, the search for bac-
terial subpopulations is linked to many biological questions, such 
as bacterial pathogenesis (David, 2013) or the study of metabolic 
interactions (Rosenthal et  al., 2017). Addressing one of these 
problems from a different biological scale could provide a differ-
ent perspective or even speed up data curation and interpretation. 
In this work, analysis of bacterial subpopulations may relate either 
to the subset of the data (i.e., a biomovie) that was generated in 
a single experimental condition or to cellular attributes shared 
between all data (i.e., different biomovies) collected as part of the 
full experiment.

In light of the above-mentioned data properties, we propose 
an alternative to the single-cell oriented paradigm that combines 
spatial and temporal coherence. We are considering two new data 
abstractions that allow us to characterize cell subpopulations in 

biomovies. We are introducing a flexible modular framework to 
investigate changes in (C)olon(Y) growth and (C)ell (A)ttributes 
in (SP)atiotemporal experiments (CYCASP). This framework 
is designed to manage the dynamics of rapid growth and the 
diversity of bacterial forms using two new abstractions, which we 
call the particle and the patch. In this section, we give the general 
motivation behind these abstractions, with the formal definitions 
of particle and patches that follow in the Methods section.

A particle is a geometric abstraction that results from tak-
ing into account the fact that the neighborhood around a pixel 
falls into a cell by checking for signal characteristics such as 
signal inten sity, edge orientation, fluorescence signals, or texture.  
A particle trajectory is assembled by tracking a particle over 
time, exploiting temporal coherence to filter out interfering 
or spurious signals that do not persist over multiple frames. 
A patch is the aggregation of spatially contiguous particles that 
feature similar signal characteristics. A patch trajectory reflects 
the evolution of patches over several frames. Therefore, it is the 
aggregation of similar particle trajectories and represents cell 
subpopulations with similar fluorescence profiles. Finally, a 
patch lineage encapsulates the splitting and joining of all patch 
trajectories that descend from a common ancestor. Although 
a cell lineage is clearly a tree rooted from an ancestor cell that 
divides into its descendants as the colony grows, a patch lineage is 
in fact a directed acyclic graph (DAG). Smaller patches of similar 
fluorescence that are spatially separated in an earlier frame may 
eventually merge together into one larger patch in a later frame. 
This occurs as cells continue to divide and react to their environ-
ment: Biomovies with larger colonies (>100 individuals) can 
contain multiple patch lineages from multiple ancestor cells.

Due to the high values for the fives properties and the low 
temporal resolution, it is not possible to segment and track indi-
vidual cells. Our approach opts for groups of particle trajectories 
in order to obtain a better granularity of the colony’s growth. It 
allows us to process both identification and tracking of bacterial 
subpopulations. Contrary to a minimum of 2  days of manual 
analyses previously required of our collaborators, our reference 
results show that CYCASP can automatically extract patch 
lineages from biomovies in less than 5  min for biological data 
sets of more than 100 frames and 300 cells. We also discuss the 
parameters needed to properly track particles through space and 
time and aggregate them into patches. The CYCASP framework 
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for extracting coherent lineages for entire cell colonies is available 
free of charge at https://github.com/ghattab/cycasp.

2. MaTerials

Four biomovies and five simulated movies are used in this 
paper. The simulation system that created the simulated mov-
ies is reported in the supporting information. Table S1 in 
Supplementary Material contains a detailed description of 
biomovies and simulated movies. The bioimaging system that 
created the biological data is described below.

The four biomovies D1–D4 were acquired by coupling phase 
contrast microscopy and total internal reflection fluorescence 
(TIRF) microscopy with a frequency every 30  min (temporal 
resolution) using a TIRF laser at a lateral resolution of 60 nm/px. 
Given this low temporal resolution and the exponential bacterial 
growth, biomovies D1–D4 are particularly complex. The output 
is four 1,004 × 1,002 px images per channel (luminance and RGB) 
in uncompressed TIF format. All microcolonies grew on a flat 
plane between two membranes that fit onto the microwell plate of 
the microfluidic device. This membrane prevents bacterial cells 
from overlapping. Two experiments E1 and E2 were carried out 
to record four data sets (D1, D2 from E1 and D3, D4 from E2). 
In the first experiment (E1), the heterogeneity of a particular 
promoter is monitored (Schlüter et al., 2015b). This promoter is 
responsible for the expression state of the galactoglucan biosyn-
thesis gene group. To express this exopolysaccharide, two copies 
are used: one fused with cerulean and one with mVenus coding 
regions, representing in turn the state of this gene group. For 
this experiment two biomovies result: D1 and D2. In the second 
experiment (E2), the objective is to understand the behavior of 
colonies and other phenomena such as the detection of quorum 
sensing (McIntosh and Bettenworth, 2017). The activity of a 
promoter representing the cell’s quorum status is monitored. This 
promoter is merged with the mVenus coding region, in addition 
to monitoring the state of activity of one of the above-mentioned 
promoters, which is merged with the cerulean coding region. 
In each experiment, the constitutive T5 promoter fused to the 
mCherry coding region was used as a marker to label viable and 
metabolic active cells. This results into two other biomovies: D3 
and D4.

In both experiments, each cell in the isogenic bacterial 
population under investigation is fluorescing differently in the 
RGB channels. Fluorescence changes reflect changes in the state 
of cells. They are mediated by promoter–reporter gene fusions 
and are triggered by various factors. These include stochastic 
effects, adaptation to environmental conditions such as diffusible 
signals, nutrient availability, or other unknown factors. For E1, 
bacterial cells exhibit an active (constitutive) fluorescence in the 
red channel (i.e., expressing the mCherry protein). However, 
this is the case with the green channel for E2. Once a bacterium 
undergoes changes in the expression of the monitored genes, the 
fluorescence profile changes from red exclusively to yellow-green. 
Theoretically, no fluorescence indicates that the cell is likely dead 
or in a persistent state with very low metabolic activity. Practically, 
even a cell line with stable expression might not show fluores-
cence for a plethora of reasons. This particular shortcoming is 

managed by the presented framework (see Particle trajectory 
linking section: time interval for (dis-)appearing particles). In 
both experiments, spatial information is crucial for identifying 
and locating nearby regions with similar intensity patterns.

In order to have a test data set with a structure similar to that of 
the experimental data D1–D4, we are extending a previously pro-
posed cell simulation software for the computation of simulated 
cell colony movies (DS1–DS5) (Wiesmann et al., 2013). Simulated 
movies can be downloaded from the study of Wiesmann et al. 
(2017). The bacterial cell shapes are modeled as ellipses with a 
texture computed by a sigmoid function. In addition, cell posi-
tions are determined on a frame-by-frame basis by an energy 
minimization approach. Appendix S2 provides more details on 
the construction of simulated movies. In this manuscript, we refer 
to each image of the biomovie with It where t is the time index 
(in hours).

In reference to our approach, the first author conducted a 
manual annotation for different frames of each biomovie and 
compared the number of annotated cells to the number of 
particles (see Figure S15 in Supplementary Material). The task of 
manual annotation was carried out using the professional annota-
tion software BIIGLE 2.0 (Langenkämper et al., 2017). Due to the 
difficulty of the task, only one frame was annotated five times, 
as seen in Figure S16 in Supplementary Material. We report the 
results in the beginning of the Results section.

3. MeThODs

The CYCASP method processes a biomovie and a simulated 
movie in three consecutive steps: preprocessing, particle analysis, 
and patch trajectory computation. Figure S2 in Supplementary 
Material provides an overview of this framework.

3.1. Preprocessing
A pipeline of standard image processing steps is applied to the 
RGB channels of each frame It to reduce noise, enhance the 
object-to-background contrast, and spatially align the images 
(Hattab et al., 2017). The output is a binary image It

^  for each time 
point. We use the RGB images since they are relatively less noisy 
than the phase contrast images. Pipeline details are provided in 
supporting Appendix S2.

3.2. Particle analysis
In the second step described below, particles are detected and 
assembled into temporally coherent particle trajectories. The 
motivation consists mainly of characterizing changes in cellular 
attributes over time and finding consistent particle positions over 
time. We justify our focus on the temporal coherence of particles 
due to the low temporal resolution and uncertainty of cellular 
positions. Our approach allows particles to appear and disappear. 
In addition, the parameterization of the patch lineage algorithm 
allows us to obtain less or more stringent differences in fluo-
rescence signals. Therefore, the main weight is on the temporal 
dimension. Our goal is to have enough particles to ensure that 
there are no false negatives (i.e., each cell is represented by at least 
one particle). False positives are detected and filtered using the 
parameter windows described below.
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Figure 2 | Binary images annotated with computed particle positions (shown as red circles). (a) Original biomovie D1 binary image. (B) Simulated movie binary 
image. (c) Original biomovie crop of D1 showing 1–2 particles detected within each cell. A particle diameter value of d = 9 px yields no false negatives, and some 
false positives that will be eliminated in subsequent processing that exploits temporal coherence. (D) Simulated movie crop showing ~2 particles detected per cell, 
with a particle diameter d = 17 px.
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3.2.1. Particle Detection
Although there are different avenues, such as the use of nanoparti-
cles to facilitate cell tracking in automated time-lapse microscopy 
(Najafzadeh et al., 2016; Singh et al., 2017), this framework is the 
first to use “virtual” particles instead of individual cells to bypass 
the segmentation problem. Fundamentally, a nanoparticle is 
investigated as a carrier for intracellular tracking and drug deliv-
ery. When employed as a single fluorescent nanoparticle, it is often 
localized and followed in living cells using an imaging modality 
(Gardini et al., 2015). In contrast, the “virtual” particle is defined at 
the image space. In this case, the particle detection uses a Gaussian 
blob operator (Crocker and Grier, 1996; Allan et al., 2015) for each 
binary image at each time point for cells with a given expected 
diameter d (here set to d = 11 px, see illustration in Figure 2).

Each detected particle can be inscribed within a cell or group 
of contiguous cells. To treat anisotropic bacterial forms, we 
suggest calculating d based on the size of bacterial cells in the 
image space, where l = average bacterial length and w = average 
bacterial width (and d is odd):

 

d
max l w min l w max l w min l w l w

=
, , , , ∗ , − , ≠floor

floo

( ( ) ( ) ( ( ) ( )))1
2

if

rr( )w w, ∗










1
2

else
 

(1)

Diameter size has an important effect on precision. If a user 
underestimates the particle diameter, the precision suffers. 
Therefore, it is preferable to overestimate the diameter, although 
larger diameters come at some cost in performance (Allan et al., 
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2015). Moreover, too small a diameter often tends to skew the 
location of a particle toward the pixel edges.

Often, a particle has visually distinct qualities, features, or 
attributes. They range from the spatial position of a particle to the 
integrated color information in the RGB domain. These features 
are introduced once particles are tracked over time.

3.2.2. Particle Trajectories
A particle trajectory is assembled by following a particle in 
time, exploiting temporal coherence. This filters out spurious 
signals that do not persist over multiple frames. The life cycle 
of a particle, that is, the changes induced over time, ranges 
from creation, bifurcation, continuation, and dissipation to 
amalgamation (Ji et al., 2003). Particle tracking is used between 
consecutive frames, throughout the biomovie, on particles 
found with the Crocker and Grier’s algorithm (Crocker and 
Grier, 1996). The Python implementation of the algorithm 
is used: trackpy (Allan et al., 2015). All particle positions are 
evaluated across space and time using trajectory linking and 
filtering, respectively.

3.2.2.1. Particle Trajectory Linking
To link particle positions (x, y)t into particle trajectories {Jk}, we 
use the KDTree neighbor-finding strategy is employed (default 
method of trackpy) with the two parameter windows of 
distance and time. The distance radius σmax = d − 2 px deter-
mines the maximum distance each particle is allowed to move 
from the initial position between consecutive images. The size  
of the time interval Wmax = floor (15% frame count) determines 
the maximum number of consecutive images to be taken into 
account for (dis-)appearing particles. Particle trajectories {Jk} 
are defined as:

 { } { }J x yk t p= , ,( )  (2)

with 1 ≤ k ≤ K where K = number of particle trajectories and 
p = particle index. Particle trajectories are disjunct: if (x, y)t,p ∈ 
Jk then

 ( ) .x y J k kt p k, ∉ ∀ ≠, ′′  (3)

3.2.2.2. Particle Trajectory Filtering
Spurious trajectories are filtered out according to a time window 
Wmin = floor (10% frame count). If (x, y)t,p ∈ Jk with t = tmax < Wmin 
then Jk is omitted. Otherwise, the algorithm finds no spurious 
trajectories and continues onto the next computation.

3.2.2.3. Particle Trajectory Color Information
A particle trajectory is reassociated with its underlying color 
information by extracting fluorescence values from the RGB 
channels at the given particle positions. RGB values are referred 
to with (rx,y, gx,y, bx,y)t,p and are normalized linearly based on the 
minimum and maximum values in each channel and across all 
images. The resulting RGB values are within the bounded range 
[0, 255], normalized to decrease low fluorescence and intensify 
high fluorescence signals. We maintain that the minimum value 
corresponds to either noise artifacts or spurious trajectories 
(dying cells that may prove difficult to follow). In this way, we 
filter out completely black particles.

3.3. Patch lineages
To move from a particle level to a level of subpopulations, particle 
trajectories {Jk} are processed in order to first identify patches, 
i.e., neighboring groups of particles with similar fluorescence 
behavior and then to compute trajectories for these patches.

3.3.1. Algorithm Overview
The first step is achieved by evaluating heuristically defined 
constraints on feature vectors vt,p of particles (x, y)t,p. The second 
step requires a split-and-merge procedure applied to the patch 
trajectories {Jk}, as shown in Figure 3.

The first step is computed at the last time point, i.e., the 
biomovie’s last frame, and then the patch information is propa-
gated upstream to earlier time points, rewinding to t =  0. The 
motivation for starting the computation from the last time point 
is biological: the maximum number of cells appears at the end 
of the growth sequence. The second step begins with the split 
procedure, which can be interpreted as intrapatch verification. 
This is also done at every time point from last to first. Positions 
are checked at every time point for all particles associated with a 
patch using the same patch finding approach as the first step. In 
the case of divergence, particles are split into a new patch. The 
final step ends with the merge procedure, i.e., the second step. 
The merge procedure performs an interpatch verification, from  
the first to the last time point, to determine whether every pos-
sible patch pair should merge or remain separate. The resulting 
patch trajectories reflect spatial and temporal coherence.

3.3.2. Patch Finding
A patch at time point t is the aggregation of spatially contiguous 
particle trajectories that feature similar signal characteristics; 
that is, cell subpopulations with similar fluorescence patterns. To 
create patches from particles, in an image It, we define a decision 
function Φ(vt,p, vt,p′) for the similarity in signal characteristics in 
the feature space of particles p and p′. With the feature vector 
vt,p, defined as vt,p = (xt,p, yt,p, rt,p, gt,p, bt,p). Φ could either be one 
Minkowski metric or a scalar product, joining together multiple 
particles into a coherent patch. For instance, in some cases, only 
one color channel might be considered (see Patch lineage graphs).

We are considering features from different domains, i.e., space 
(x, y) and color (r, g, b). The decision function Φ(p, p′) = {1, 0} 
is defined as a Boolean evaluation of different user thresholds, 
such as:

 Φ Φ Π( ) ( ) ( )p p t p t p j j t p t p, ′ = , = , = ⋅ ⋅ ⋅, , ′ , , ′v v v vφ φ φ φ φ1 2 3 4  (4)
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( )
(( ) ( ))

v v
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Figure 3 | A graphical description illustrating the patch lineage construction 
algorithm, where each row shows a temporally coherent particle trajectory 
that is close to those above and below it in feature space. The dots represent 
particle positions at each time point and their coloring of white/gray/black 
represents differences found in feature space provided the user-specified 
thresholds. The slice of space-time that is the focus of computation in each 
subfigure is highlighted by gray boxes with dashed outlines. (a) Biomovies 
have a naturally occurring temporal direction, represented as a dashed arrow 
ending at time t. The trajectories have a different number of particles, 
showing that particles can appear at any time point. (B) Particle trajectories 
are grouped into patches at the last time point. (c) The trajectory information 
is propagated upstream in a run from the last to the first time point. (D) The 
split propagation proceeds from the last to the first time point. (e) The merge 
propagation runs from first to the last time point, mirroring biological growth. 
(F) The resulting patch lineage contains 5 patches.
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with user thresholds for space (i.e., distance) td and color tr, tg, tb, 
respectively. In principle, other functions can be defined to the 
user’s requirements.

The graphical example in Figure 3 shows particle trajectories 
projected onto rows where time runs from left to right. Particles 

are colored white, gray, or black to illustrate differences in the 
feature space, i.e., particle of the same gray value have similar 
features (Φ(vt,p, vt,ṕ ) = 1). The patch lineage computation begins 
with an initial patch finding propagation at the last time point, 
as shown in Figure 3A. Particles that meet the feature thresholds 
are grouped into four patches labeled with distinct patch IDs in 
Figure 3B, where patch 3 contains two neighboring and similar 
particles of the same black color.

3.3.3. Patch Trajectory Propagation
After a patch is found in the previous step, the decision is propa-
gated upstream by employing the temporal coherence of particle 
trajectories Jk to patch trajectories Tj. The algorithm marches 
backwards from time tmax→t0, inspecting each particle trajectory 
that appears in the frame, and either propagating the patch ID 
from downstream for existing particle trajectories or assigning a 
new patch ID when a new particle trajectory is first encountered 
that has not yet been assigned to a patch. Figure 3C shows the 
result, where the patch trajectory in the second row that has no 
particle trajectory visible in the last time point has been assigned 
the patch ID 0.

3.3.4. Patch Trajectory Splitting
A second propagation, which also runs from tmax to t0, verifies 
at any given time point whether to split a patch into several 
patches because the fluorescence behavior is not uniform for all 
the particles in the patch. That is, if the user specified distance 
and color thresholds are surpassed. Depending on the size of a 
patch, a split may correspond to an emerging behavior within 
a subpopulation. Figure 3D shows an example where patch 3 is 
split when a feature change is noticed at the second to last time 
point, and the particle trajectory is assigned a new patch ID 5. For 
computational efficiency, we maintain at all times the concave hull 
of each patch, stored in the format of a list of bounding particles, 
using a Delaunay tessellation.

3.3.5. Patch Trajectory Merging
In this third propagation, patch trajectories are compared itera-
tively over time but now in the forward direction from the first time 
point t0 to tmax. The direction of this final computation deliberately 
corresponds to the biology of patch growth, where previously 
separated regions touch due to the growth of new cells. The merge 
computation requires checking for intersections between all pairs 
of patches that exist at each time point. We accelerate it with a 
rapid initial intersection test between the oriented bounding 
rectangles to exclude pairs of patches that do not have geometric 
overlaps. We only evaluate the full set of bounding particles in 
cases of intersections, which can range from a single contact 
to the complete inclusion of one patch in another. Separating 
the splitting and merging procedures into separate sequential 
propagations follows a chunking strategy. In addition, it is not 
necessary to carefully adjust splits to avoid “over-segmentation” 
into too small patch trajectories, as these are taken into account in 
this subsequent merge propagation. Figure 3E shows an example 
of how particle trajectories that are absent at the last time point 
are treated. The second particle trajectory received the patch ID 0 
in the propagation phase. It is now joined with the third trajectory 
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as patch 2 because it falls within the merge window threshold δt. 
The final set of five patches is listed by their patch ID in Figure 3F. 
The set of patch trajectories is defined as {Tj} with 0 ≤ j ≤ N, the 
number of patch trajectories N.

3.4. computational Performance
The computational efficiency of our framework is based on the 
processing of a much smaller number of image objects at each 
step in a much more detailed way. Once preprocessing is com-
plete, particle detection is initiated: a number of m particles are 
extracted very efficiently using only spatial coherence. Particle 
linking follows, k particle trajectories are constructed to exploit 
temporal coherence. Finally, patch lineages are constructed: 
j patch trajectories are computed using a multi-propagation 
algorithm with bidirectional propagations. The three quantities 
generally obey m  > >  k  > >  j, typically multiple particles are 
detected within each cell, so the number of particles m is greater 
than the cell count c per at least a factor of 2. In the Results sec-
tion, we report computational performance by calculating the 
average elapsed time of 100 runs of the preprocessing step and 
the particle step, respectively.

3.5. Parameter space
Appropriate user thresholds td, tr, tg, and tb have been determined 
for the feature vectors through empirical exploration. First, we 
examined the basic descriptive statistics of the biomovies in the 
geometric and color distance channels: the colony diameter in 
pixels, and for each color channel the minimum and maximum 
values, as well as the standard deviation. We then proceeded to 
the test phase by completely eliminating homogeneous chan-
nels to reduce the noise and using a sensitivity analysis for each 
feature threshold. This selective approach has allowed us to test 
the robustness of the results and to better understand the rela-
tionships between certain thresholds and a desired outcome. An 
example of an illustration is shown in Figure 4.

To avoid false negatives, i.e., cells not represented by any parti-
cle, we suggest using more particles than the number of cells, by at 
least a factor of 2. This is possible by setting the particle diameter 
d smaller than the minimum cell diameter (see Methods: Particle 
detection). There are two parameters that influence the linking 
of particle positions into trajectories: the distance radius σmax and 
the time linking interval Wmax. The greater the distance radius is, 
the more particles are evaluated by the neighbor-finding strategy 
(see Particle detection). In addition, the larger the size of the time 
linking interval is, the greater the memory for particle positions 
in that time interval. As indicated in Methods: Particle trajec-
tories, we have chosen reasonable values to limit computational 
expense. For trajectory filtering (time), it is reasonable to set the 
default filtering window based on the number of frames. Since 
short trajectories do not necessarily correspond to spurious ones, 
it is preferable to change the filtering window on a case-by-case 
basis. For example, under certain experimental conditions, cells 
may have a short life span.

4. iMPleMenTaTiOn

We implemented the CYCASP modular algorithm in Python. 
Specific packages were used, ranging from computer vision to 

tracking. The above-mentioned preprocessing step uses OpenCV 
(Bradski, 2000). The particle tracking step uses Trackpy (Allan 
et al., 2015), the tracking algorithm that provides functionality 
including static and motion analyses, particle position prediction 
and plotting tools. Mandatory packages are listed on https://
github.com/ghattab/cycasp.

5. resulTs

As reported in the Materials section, we report below the results 
of the manual annotation. Observable cells were annotated per 
experiment and across the following frame numbers: 25, 35, 
50, 75 and 10, 20, 30, 40 of biomovies (D1, D2) and (D3, D4), 
respectively (Figure S15 in Supplementary Material). To compare 
the number of annotated cells to the number of found particles 
(i.e., particle detection step), we calculated the ratio of found 
particles to annotated cells r. Although the particle detection 
step contains many parameters, they are set to the same values in 
each experiment and produce an identical trend (Figure S15 in 
Supplementary Material). In addition, when calculating regres-
sion models, we found that the particle concept demonstrated 
consistent robustness and trends for the E1 and E2 experiments 
with an average ratio of 1.8 and 2.4, respectively. Provided this 
ratio, we can estimate the number of cells, in biomovies D1 to D4.

Moreover, to test the intraobserver reliability, we selected time 
point 12.5 h or t12.5 of biomovie D2 and annotated the cells five 
times. We observed a variable number of cells or annotations 
from a minimum of 249 to a maximum of 300 (Figure S16 in 
Supplementary Material). The manual annotation results in a 
reliable intra-observer agreement with a mean μ  =  267 and a 
standard deviation σ = 21.65.

We now present the results of applying CYCASP to four origi-
nal data (D1–D4) and five simulated (DS1–DS5) movie data sets. 
The biological data sets present high values for the 5 properties 
targeted by this work: cell count, cell shape diversity, cell density, 
image noise, and image resolution. Table S1 in Supplementary 
Material provides all the details.

5.1. Preprocessing
Figure  2A shows the result of the preprocessing to improve 
the cell to background contrast in the RGB images shown in 
Figures  1C–F (frame I115 of D1). Figure S3, in Supporting 
Information, shows the results after each step of the preprocess-
ing pipeline for the final frame of biomovie D1. The final binary 
images, after preprocessing the other biomovies and simulated 
movies, are shown in Figures S4–S8 in Supplementary Material.

5.1.1. Computational Performance
The processing time corresponds to the number of frames in the 
biomovie, from a minimum of 6  s for the 25-frame simulated 
movie DS1 to a maximum of 53 s for the largest biomovie 115 
frames biomovie D2. Figure S13 in Supplementary Material 
provides the performance details for all tested data sets.

5.2. Particle analysis
We now evaluate the results of our particle analysis and the graphs 
of the patch lineage (in the next paragraph). This is accomplished 
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Figure 4 | Example of parameter tuning to emphasize different channels, for time point 16.5 h of biomovie D3. The binary images in the bottom row are annotated 
with 9-px dots showing particle locations, colored according to their patch IDs. The particle analysis thresholds in the previous computational step were set to 9 px 
particle diameter, a 5 px distance and 10-frame window for particle linking and a 3-frame window for time filtering. (a–c) Separate views of red, green, and blue 
channels show the high structural variation between each channel. (D–F) Three different combinations of settings yield patch structures that capture different 
combinations of channel features, with thresholds for geometrical distance (d), and channel specific differences in (r, g, and b). (g–h) Two examples of sensitivity 
analysis for individual channel thresholds (G: green, H: red), where the other channels are ignored by setting appropriate thresholds (thresholds are set to very high 
values: geometric distance values near the total image size, and color values near the maximum of 255). (g) The threshold of 80 for green depicts a homogeneous 
and constant signal across that channel, yielding a single main patch. (h) The threshold of 50 for red emphasizes the binary nature of that signal, yielding two major 
patches. In both (g) and (h), the observed patches are exempt of spatial contiguity due to excluding the spatial dimension.
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at a technical level, in terms of success in capturing spatial coher-
ence, temporal coherence, and computational performance. 
Next, we will discuss the biological interpretation of the results.

5.2.1. Spatial Coherence
The particle approach used by CYCASP successfully captures 
the spatial coherence of cell subpopulations. Figures  5 and 2 

show computed particle locations annotated as red circles on 
the RGB and the binary images, respectively. These particles 
capture the protruding structure for the original and simulated 
data sets, where appropriate choices for particle diameter d yield 
an average of two particles per cell. Figure S9 in Supplementary 
Material illustrates how particles account for cell growth in 
biomovie D1: the elongation triggers an intermediate particle, 
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Figure 5 | Particle detection for biomovie D1 across cell division events, with detected particle locations annotated as red circles on original images (a–B) and 
white circles on binary images (c,D). The particle paradigm copes with cell division despite high levels of noise, and the direct contacts between cells: when the cell 
elongates, a new particle is created in the center when the width between the previous particles surpasses the distance threshold.
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and then cell division produces additional particles that track 
the new cells (independently of the strong noise and the cells 
in direct contact).

5.2.2. Temporal Coherence
Our use of particle tracking to link particles into trajectories 
eliminates spurious phenomena while capturing temporal 
coherence within the biomovie. Figure S10 in Supplementary 
Material compares the two different time intervals of 5 frames 
(A) and 3 frames (B) for biomovie D3 where 38 versus 31 par-
ticles are filtered, respectively. These results are characteristics 
of our sensitivity analysis, which shows that the algorithm is 
robust to small changes in this parameter, even if setting larger 
time windows results in fewer particle trajectories. Figure S11 in 
Supplementary Material shows particle linking over 25 frames 
from a single simulated movie, where 383 particle positions 
were detected, resulting in 63 unique trajectories after link-
ing, reducing this number to 34 unique trajectories after time 
filtering.

5.2.3. Computational Performance
Nine data sets are shown in Figure S12 in Supplementary 
Material. The smallest data took between 25 and 39  s, and the 
largest between 1 min 30 s and 6 min. The average processing time 
roughly corresponds to the density of the biomovie’s cells, more 
so than simply the number of frames. The longest computation 
of 6 min was that of the particular case: a very densely populated 
colony (DS4 with ~1,700 cells). We chose a particle diameter of 
7 px, with a minimum cell diameter of 17 px, which allowed us to 
identify and track 7,661 particles. We then chose a small temporal 
filtering window of 5 frames. After the time filtering step, 95% 
of 7,661 particles were removed. This example demonstrates the 
need to adjust the user settable parameters appropriately for the 
biomovie data set on a case-by-case basis.

5.2.4. Summary
The particle detection and particle trajectory construction step 
successfully captures the spatial and temporal information in the 
binary image sequence without having to compute an explicit 
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Figure 6 | Biomovie D3 with RGB channels of image points 14.5, 15.5, and 16.5 h, and their corresponding patch structure, respectively. Enhanced exposures for 
red: 60% and blue: 90%. The S. meliloti bacterial cells are bio-engineered to fluoresce in a particular way, where each channel encodes a certain trait, or behavior. 
The red (a–c) and blue channels (D–F) show certain behavior in response to changes of conditions; here the bacterial cells are of wild type, and exposed to high 
concentrations of phosphate, influencing bacterial communication. The green channel is omitted due to its homogenous fluorescence. The patch structure is found 
using the following thresholds: geometric distance 100 px, and specific channel differences of red: 20, green: 50, and blue: 50. Main images show 7-px dots at 
computed particle locations. (g–i) The split/merge computation has been run, and particles are colored by their patch ID.
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image segmentation at the level of individual cells. Our approach 
is computationally efficient and requires no manual intervention. 
It resists to transient interactions between neighboring cells that 
could lead to poor segmentation results in individual cell detec-
tion attempts.

5.3. Patch lineage graphs
Adjusting the thresholds of our approach allows us to focus 
individually on the spatial and/or temporal coherence of fea-
tures. Figure 4 shows some interesting combinations determined 
through empirical experimentation, where the complex structure 
of biomovie D3 is revealed with high variation across the three 

channels (top row: A–C) of red, green, and blue. This variation is 
captured in three alternative patch lineages annotated atop binary 
images (Figures  4D–F). It also shows two examples from our 
sensitivity analysis benchmarks (Figures 4G,H), where only one 
channel is investigated while the others are ignored, for example, 
for the red channel: vt,p =  (rt,p), i.e., close to the image size for 
geometric distance and near the maximum of 255 for color chan-
nels. Figure 6 and Figure S14 in Supplementary Material further 
illustrate the implications of complex spatial and multichannel 
structure of biomovies. They depict patch assignments before 
and after the split/merge phase of the computation for biomovie 
D3. By comparing the patch structure to the fluorescence pattern 
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Figure 7 | Biomovie D4 with RGB channels of image points 14.5, 15.5, and 16.5 h, and their corresponding patch structure, respectively. Enhanced exposures for 
red: 60% and blue channels: 90%. As seen in Figure 3, the biomovie showcases bio-engineered S. meliloti bacterial cells fluorescing in a particular way: The red 
(a–c) and blue channels (D–F) show certain behavior in response to changes of conditions; here the bacterial cells are of wild type, and exposed to high 
concentrations of phosphate, influencing bacterial communication. The green channel is omitted due to its homogenous fluorescence. The patch structure is found 
using the following thresholds: geometric distance 100 px, and specific channel differences of red: 20, green: 50, and blue: 50. Main images show 7-px dots at 
computed particle locations. (g–i) The split/merge computation has been run, and particles are colored by their patch ID.
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in the RGB images, Figures 6 and 7 show consistent spatial and 
temporal assignments. This can be seen by looking at location 
and color of the patches in (L) relative to the spatial distribution 
and the variation of the fluorescence signal through the image 
space in (C). This signal varies from weak to moderate to high 
fluorescence, as seen in the center and through the colony. 
Temporal coherence refers to the consistency of the patches’ color 
throughout time. It is present in both D3 and D4, but the results 
of the D4 biomovie in Figure 7 depict not only a color consistency 
but also a spatially structured organization of patches in (J–L). We 
have also carefully validated the algorithm on the DS5 simulated 

movie. This verification is designed to allow the naked eye to 
check the correct patch structure. Supporting Figure 8 shows a 
sequence highlighting the behavior of the split/merge phases of 
the algorithm for this biomovie.

5.3.1. Computational Performance
Our benchmarks show that the time required to create patch 
trajectories and patch lineage graphs primarily varies mainly 
depending on user-adjustable thresholds for geometric and color 
channel distances that define patch boundaries. The use of feature 
thresholds that favor aggregation into fewer patches allows faster 
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Figure 8 | Sequence illustrating the split/merge computation with simulated movie DS5, designed to allow patches to be verifiable by the naked eye from the RGB 
image. Simulated movie DS5 is available from the study by Wiesmann et al. (2017). Images are cropped to a 787 × 482 px subset. (a–c) Binary images are annotated 
with colored circles, 16 px wide. The color encodes the patch ID. The geometric distance threshold for patch construction is set stringently to 100 px. (a) At time 10 h, 
before split/merge computation, showing four current patches. The bottom right quadrant has two neighboring cells with differently colored particles showing current 
assignments to different patches. (B) After split/merge computation, the particles are indeed the same color, showing that the patches have been merged as the 
patches are within the threshold distance to each other and have similar fluorescence. (c) At time 11.5 h, both the top left patch and the bottom right patch have new 
cells, and after the split/merge procedure is run for this time point they have correctly been assigned to the correct patch. (D) RGB image at time 11.5 h.

13

Hattab et al. Method for the Study of Time-lapse Image Data

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2018 | Volume 6 | Article 17

computation. On the contrary, adjusting these thresholds to cre-
ate a fine-grained structure of many patches increases the time 
spent computing splits and merges.

5.3.2. Summary
We are demonstrating an application of CYCASP for colony-scale 
extraction of lineages of over 300 cells with automatic methods 
for the first time. Our patch lineage construction algorithm 
aggregates and simplifies the spatial-temporal changes that occur 
in a biomovie into a unified data structure, with a small number 
of parameters that can be set to control the level of detail rep-
resented. The multi-propagation algorithm works both forwards 
and backwards over time. It takes advantage of knowledge on 
the last time point of a biomovie to reap deeper benefits from 
temporal coherence than previously proposed methods.

5.4. Biological interpretation
In E2, we were able to identify different subpopulations1 under 
similar conditions in D3 and D4. High phosphate concentrations 

1 The cells of the same subpopulation could be dispersed throughout the colony. 
Please note that this term is used in a special context to designate the cell patches 
detected by our algorithm that can represent cell subpopulations in a classical 
sense. With appropriate user thresholds, its usage is valid for our approach.

in the medium interfere with cellular communication by repress-
ing quorum sensing signaling, resulting in modified fluorescence 
signals. In this state of stress, we have found subpopulations that 
adapted to such levels by setting user thresholds to favor varia-
tion in the red channel. In biomovies D3 and D4, splitting and 
merging of patches revealed regions that showed changes in the 
activity of the reporter genes, which indicated a switch in cell 
state. In Figure 6, the patch structure represents a clear delinea-
tion of three main patches at time point 16.5 h. This suggests that 
the colony has developed into coherent subpopulations, which 
may either be the result of a stochastic event or an adaptive event 
to changes in the medium.

To study the D4 biomovie and find similarities or differ-
ences in colony growth, we used the same thresholds for the 
algorithm. Compared to Figure 6, we observe more patches in 
Figure 7, where subpopulations developed into different local 
regions of the colony. This suggests a more important disrup-
tion of bacterial colony growth, but triggered other cells to enter 
the quorum sensing state. For both biomovies, we observed a 
homogenous activity of the mVenus gene reporter in the green 
channel where the yellow fluorescence is distributed homogene-
ously between the bacterial cells. This indicates that the older the 
colony, the higher the quorum sensing signal. As can be seen 
in the blue channel (mCerulean), the heterogeneous activity of 
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the exopolysaccharide gene reporter is captured by the results 
of the patch lineage.

In addition, based on the number of particles at time point 
16.5 h and throughout biomovie D4, the colony grew faster than 
expected. For D3 and D4, we found at time point 16.5:253 versus 
356 particles, and 5,679 versus 8,207 particles, respectively. This 
suggests that the D4 colony grew 1.4 times faster than the D3 
colony. By setting the same thresholds for the two biomovies 
and promoting variation in the red channel, we have seen that 
both colonies are also able to adapt to changes in the environ-
ment. It is reflected by the spatial coherence or the structure of 
the patches found in Figures 6L and 7L. Temporal coherence 
is demonstrated by the consistency of patch color over time in 
Figures 6J–L and 7J–L. Moreover, compared to D3, the results 
of the D4 biomovie patch lineage show a structured spatial 
organization of the patches over the different time points (J–L). 
However, they present a rather fragmented view of the colony, 
suggesting that the growth of a dozen or so subpopulations 
occurred in the early stages of colony growth. We hypothesize 
that these subpopulations are the result of stochastic events that 
distinguish this biomovie. Using the patch concept, we find 
subpopulations, find differences between data sets, and follow 
the diversity and how quickly colonies grew in biomovies. The 
same methodology has been successfully applied to D1 and 
D2, which is also reflected in their analysis. They highlight the 
biological heterogeneity of population growth, where the two 
resulting colonies present distinct and non-uniform fluores-
cence signals, resulting in an even greater number of patches. 
A detailed discussion of these data sets is beyond the scope of 
this paper.

The concept of the patch lineage graph is biologically moti-
vated: automatically computed graphs are intended to help 
microbiologists understand how and when changes in cell state 
occur in microbial populations. The patches, i.e., contiguous 
regions bounded by similar fluorescence patterns, provide 
insight into the development of bacterial cell colonies. In 
addition, the particle abstraction that we have proposed allows 
us to successfully treat cell division and exponential bacterial 
growth.

The simulated movies used in this article have been designed 
as minimal working examples that serve as understandable 
examples for testing and illustrating the CYCASP algorithm. 
They contain objects that mimic cell morphology and, to some 
extent, cell behavior. Biomovies demonstrate the response of 
bacterial colonies to experimental disruptions relative to normal 
development for both experiments (D1, D2) and (D3, D4).

6. DiscussiOn

The CYCASP framework addresses the fivefold challenge of 
high cell count, high cell density, high cell shape diversity, 
strong noise, and high resolution by using the abstractions of 
particles, patches, and the DAG patch lineage. Our results are the 
first automatic solution to the problem of efficient comparative 
analysis of an arbitrary number of biomovies. Since a complete 
manual annotation of a biomovie can last one to two full working 

days, a computer-based approach that evaluates particles and 
patches instead of single cells can provide at least one valuable 
and additional view of the data. It can even provide an alternative 
to overcome the bottleneck of analysis. Our proposed abstrac-
tions succeed in exploiting and qualitatively integrating spatial 
and temporal coherence without explicit segmentation at the 
cellular level. It has been shown that the particle and patch have 
succeeded on biological data sets (i.e., biomovies) and simulated 
movies.

We have shown the effectiveness of the particle abstraction 
in handling complex biomovies targeted in this paper, where 
there is a daunting combination of high cell density, exponential 
growth, and a low temporal resolution. For other experimental 
setups (e.g., Petri dish) and different resolutions, CYCASP is gen-
eralizable but would require fine-tuning of parameters to handle 
specific scenarios (e.g., overlapping cells, where Wmax should be 
set to compensate for the loss of particles).

Our framework is the first attempt to study subpopulations 
at the biological level of organization of cell groups that share 
a common ancestry. We call them patches that have similar 
behavior. From a certain point of view, our approach relates to 
the clustering problem definition. Indeed, it relies on some kind 
of clustering process, where particles are grouped into patches 
according to different criteria: (a) particle trajectories into patch 
trajectories using tracking information, (b) similarity in fluores-
cence characteristics, and (c) spatial closeness. This implies that 
members of one patch are more similar to each other regarding 
space and fluorescence features compared to other patches, other 
members of other patches are as well. Therefore, on a high level, 
we achieve a grouping of particles which is a clustering. Yet on 
a low level, we would not call it a clustering algorithm so not 
to cause confusion. Moreover, clustering usually refers to joining 
or grouping entities according to some similarity or distance 
measure defined in the feature space of the similarities (which 
covers vector quantization, agglomerative, and divisive clustering 
methods).

Our results show that patches and patch trajectories are an 
intuitive, flexible, and powerful concept. They reflect differ-
ent cellular behaviors for subpopulations that split off from 
each other at certain times and merge together in others. Our 
modular and automatic patch lineage algorithm has succeeded 
in constructing patch trajectories on all time points of the bio-
movie. With appropriate parameter settings, these trajectories 
can be assembled into a patch lineage DAG that captures the 
high-level behavior of interest. As we mentioned in the Methods 
section, the computational efficiency of our framework hinges 
on processing far fewer image objects in far more depth at each 
stage. However, in light of the properties of the above-mentioned  
data, particle identification is much more effective than the 
detec tion of individual cells. Our collaborators directed the 
manual analysis and reconstructed very low level views of the 
ancestral relations between the cells. Their underlying motiva-
tion was to better understand the high level behavior of a colony. 
We maintain that our framework allows us to achieve this goal. 
The innovation with CYCASP is to support this level of analysis 
directly and automatically.
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CYCASP succeeds where previous automatic methods 
fail because we avoid the bottleneck of having to perform a 
segmentation for each individual cell. In addition, a patch 
lineage DAG has a much simpler structure than a cell lineage 
tree because it has far fewer branches. This simplified abstrac-
tion is designed to help our collaborators directly understand 
and reason about the behavior of entire cell colonies at the 
biologically relevant level of cell subpopulations with similar 
behavior, rather than infer it from the overwhelmingly complex 
branching structure of individual cell lineages. Moreover, in 
other knowledge domains such as stem cell research, interest 
shifts to subpopulations where researchers are unable to distin-
guish between an early stochastic event and the existence of a 
predetermined subset of cells that are in some way primed for 
cellular reprogramming (Smith et al., 2010). This change in the 
general paradigm is motivated by the realization that is impos-
sible to trace the origin of a subset of a colony or particular cells 
that detach from other colonies. In return, the methodology 
presented could address these biological issues. This article 
sets the stage for an easier way to analyze biomovies starring 
nanoscale organisms.
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