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Brain organoids are derived from induced pluripotent stem cells and embryonic stem
cells under three-dimensional culture condition. The generation of an organoid requires
the self-assembly of stem cells, progenitor cells, and multiple types of differentiated
cells. Organoids display structures that resemble defined brain regions and simulate
specific changes of neurological disorders; thus, organoids have become an excellent
model for investigating brain development and neurological diseases. In the present
review, we have summarized recent advances of the methods of culturing brain
organoids and the applications of brain organoids in investigating neurodevelopmental
and neurodegenerative diseases.
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INTRODUCTION

The current knowledge of the human brain is mostly based on post-mortem corpse brain
specimens, mainly due to ethical issues. Animal models, including non-human primates, have
several discrepancies compared to the human brain. These deficiencies have posed great challenges
for studying the development of the human central nervous system (CNS) and related diseases
(Adams et al., 2019). The advent and the rapid progress of stem cell technology, including human
embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), have provided
new insights of human brain development and neurological diseases (Thomson et al., 1998;
Takahashi and Yamanaka, 2006; Takahashi et al., 2007).

On the basis of stem cell technology, the emergence of three-dimensional (3-D) organoids
has attracted great attention in regenerative medicine. Brain organoid is a type of organoid that
reproduces specific brain structures and has been used to simulate different human brain regions,
including the midbrain (Jo et al., 2016; Monzel et al., 2017), hippocampus (Sakaguchi et al.,
2015), pituitary gland (Ozone et al., 2016), hypothalamus (Qian et al., 2016), and cerebellum
(Muguruma et al., 2015). Thus, brain organoids become an excellent model for investigating brain
development and the mechanisms of related diseases (Lancaster and Knoblich, 2014b; Kelava and
Lancaster, 2016; Kretzschmar and Clevers, 2016; Di Lullo and Kriegstein, 2017; Benito-Kwiecinski
and Lancaster, 2019). Very recently, with the advances of gene editing, single cell sequencing,
and other cutting-edge technologies, new vitality has been injected into the field and has brought
unprecedented possibilities for modeling neurological diseases in vitro.
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In this review, we first summarized the new advances in
culture techniques and generation protocols of brain organoids.
We then highlighted the applications of brain organoids in
investigating human brain development, neurological diseases,
and cerebral toxicity exposure.

METHODOLOGICAL PROGRESS IN THE
CULTURE OF BRAIN ORGANOIDS

To generate brain organoids, embryoid bodies (EBs) derived
from human pluripotent stem cells (hPSCs) are generally
embedded into an extracellular matrix (such as Matrigel) and
then cultivated in a rotating bioreactor to promote tissue
amplification and neural differentiation (Kadoshima et al., 2013;
Qian et al., 2016). Some studies have also generated human
cortical spheroids and organoids from pluripotent stem cells
using a 3D culture system without embedding into extracellular
matrices, and the neurons produced also display functional
maturity and synaptogenesis (Pasca et al., 2015; Xiang et al.,
2017). During culture, small molecules and growth factors are
usually supplemented and promote hPSCs to form specific
structures of the different brain regions (Qian et al., 2019). As the
starting cell population, neural progenitors (Xu R. et al., 2019)
and neuroepithelial stem cells (Monzel et al., 2017) are also used
to generate organoids.

Prolonged Culture Time
Short time-cultured brain organoids mainly contain astrocytes,
neurons, and neural stem/progenitor cells but usually lack mature
oligodendrocytes and functional mature neurons. With longer
culturing time, calcium activity can be detected after culturing
for 50 days, and more cells display calcium activity (Pasca et al.,
2015; Qian et al., 2016; Li et al., 2017). Spontaneous excitatory
post-synaptic currents can also be detected in organoids cultured
for 4 months (Li et al., 2017). The expression of the markers for
mature astrocytes and neurons, synapses, and dendritic spines
can be observed from organoids cultured for 6 months or longer
(Quadrato et al., 2017). Long-term culturing not only promotes
the maturation of neurons but also enhances the growth and
differentiation of glial cells. It has been reported that brain
organoids cultured for 229 days in vitro are filled with abundant
glial cells positive for GFAP and GLT1 (Renner et al., 2017).
Thus, long-term cultivation promotes the maturation of brain
organoids and better captures the development of the human
brain (Figure 1).

Sliced Brain Organoid Culture
Organotypic slice culturing has greatly improved the oxygen
supply of organoid tissues and reduced the formation of hypoxic
cores. In 2019, Lancaster’s group has adopted air–liquid interface
culture techniques, which improve the survival rate of neurons
and the growth of axons and promotes the formation of circuits
and the output of functional neurons (Giandomenico et al.,
2019). More recently, it has been found that sliced neocortical
organoid system can promote the continuous neurogenesis and
dilation of the cortical plate; the cortical plate has distinct upper

and deep cortical layers, which captures the neocortex in late
human pregnancy and eliminates the restriction of growth and
diffusion of brain organoids to some extent (Qian et al., 2020).
These results indicate that brain organoids sliced culture can be
used to study human-specific advanced cortical development and
disease-related mechanisms (Figure 1).

Culture on Microfluidic Chips
Microfluidic and engineering techniques have made great
contributions to improving the repeatability and the uniformity
of brain organoid cultures. The specificity performance of
these technologies is that they can simplify the course of
organoid cultures and provide better geometric constraints and
environmental control (Ao et al., 2020). Microfluidic chips
simplify the manufacturing process of brain organoids, and
micro-pillar array devices have been used for in situ formation
of plentiful brain organoids (Zhu et al., 2017). Brain organoids
on-a-chip system exhibits definite neuronal differentiation,
regionalization, and cortical tissue, which summarize the key
features of early development of the human brain (Wang et al.,
2018). This system has been applied to mimic brain wrinkling
and to explore the effects of physical forces on the development of
organoids (Karzbrun et al., 2018). Recently, a novel microfluidic
platform with several unique advantages has been established (Ao
et al., 2020). The device has combined in situ air–liquid interface
culture to establish an integrated workflow and to support a one-
stop assembly and culture platform for brain organoids (Ao et al.,
2020). With the continuous advances and improvement of bio-
engineering technology, brain organoid cultures can become a
low-cost, short-time, and mass-culturable technology.

Vascularized Brain Organoids
Brain organoids generated by traditional methods usually lack
microvasculature, which is considered to be detrimental to
organoids. Under long-term culture conditions, the absence of
the vascular system restricts oxygen and nutrient transporting
to the innermost parts of brain organoids, therefore inducing
apoptosis and cell death in the inner zones (Lancaster and
Knoblich, 2014a; Yin et al., 2016; Heide et al., 2018). Furthermore,
the lack of functional vasculature affects the differentiation and
maturation of neuronal/glial progenitor cells (Shen et al., 2004).
Vascularized human cortical organoids (vhCOs) are generated
through ectopic expressing human ETS variant 2 (ETV2).
Moreover, 20% of cells infected with ETV2 in hCO is optimal
to form vhCOs. On day 30 of culture, CD31+ endothelial
tubes appear, and a more complex network of CD31+ vessel
structure is observed on day 70 (Shen et al., 2004). In addition,
vhCO also has more obvious blood–brain barrier characteristics,
manifested by the unique expression of tight junction markers
(such as α-ZOI), astrocyte and pericyte proteins, and transporters
(Cakir et al., 2019).

Very recently, another co-culture system of hPSCs and human
umbilical vein endothelial cells has been used to generate
vascularized organoids, which display a well-developed tubular
vascular structure (Shi et al., 2020). Vascularized organoids
show reduced apoptosis and hypoxia of cells and more
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FIGURE 1 | Recent methodological advances in brain organoids. Multiple methods have been used to improve the maturation of brain organoids.

synaptic connections and establish vascular connections after
transplantation in vivo (Cakir et al., 2019; Shi et al., 2020).

Specialized Brain Organoids
With the advances of technologies, more types of cells,
including oligodendrocytes (OLs) and interneurons, have been
used to generate organoids. OLs are essential for brain
development, including myelinating and electrically insulating
neuronal axons for impulse propagation, as well as to provide
nutrition and metabolic support to neurons. However, single-cell
sequencing results indicate that regular cortical organoids lack
oligodendrocyte progenitor cells (Quadrato and Arlotta, 2017;
Sloan et al., 2017).

To overcome these issues, Madhavan et al. (2018) have
exposed developed organoids to oligodendrocyte growth factors
to induce oligodendrocyte progenitors and myelinating OLs
in cortical spheroids. Promyelinating drugs can promote
oligodendrocyte production and myelination and recapitulate
the phenotypes of myelination defect diseases (Madhavan et al.,
2018). Kim et al. (2019b) have applied the OLIG2-green
fluorescent protein (GFP) stem cell reporter line to generate
forebrain organoids, and the production of OLs can be monitored
by GFP signal. With their protocol, the maturation of OLs is

accelerated and can be observed as early as 9 weeks after organoid
formation (Kim et al., 2019b). Paşca’s group has developed
another protocol to culture organoids, which produce OLs,
astrocytes, and neurons (Marton et al., 2019). Their protocol
applies a set of small molecules and growth factors and can be
used to study the development of OLs, myelination, and the
interaction with other major cell types in the central nervous
system (Marton et al., 2019).

Interneurons play a key role in regulating the activity of
cortical networks. Xiang et al. (2017) have generated organoids
to recapitulate the development of human medial ganglionic
eminence (MGE). These organoids contain functional cortical
interneurons, neuronal networks, and key ventral brain domains,
which are similar with the developing MGE and cortex
(Xiang et al., 2017).

APPLICATIONS OF BRAIN ORGANOIDS
AS DISEASE MODELS

Previous studies have shown that brain organoids can
recapitulate some key features of the human brain, including
cellular distribution and organization, physiological structure,
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electrical activities, and neuronal networks (Lancaster et al., 2013;
Pasca et al., 2015; Qian et al., 2016). Therefore, brain organoids
have become a unique model to explore the mechanisms of
neurological disorders (Figure 2).

Neurodevelopmental Disorders
Primary Microcephaly
Primary microcephaly, also known as true microcephaly or
autosomal recessive primary microcephaly, is mainly caused by
genes that regulate the assembly of centrosomes and cilium
caused by autosomal recessive mutations including MCPH1,
ASPM, WDR62, CDK5RAP2, CPAP, and CENPJ. Currently,
specific congenital microcephaly brain organoids carrying
mutations of CDK5RAP2, CPAP, ASPM, and WDR62 have been
established, respectively (Lancaster et al., 2013; Li et al., 2017;
Quadrato and Arlotta, 2017; Zhang et al., 2019).

Lancaster et al. (2013) have established a cerebral organoid
model of primary microcephaly. A patient’s somatic cells with
heterozygous truncation mutations of CDK5RAP2 have been
reprogrammed to iPSCs. After having been transferred to
neural induction, the neuroepithelial tissue generated from
the patient iPSCs is smaller than that of the control group.
The generated cerebral organoids contain fewer radial glial
stem cells (RGs) and more neurons, suggesting that the

loss of CDK5RAP2 leads to premature neural differentiation
at the expense of progenitor cells (Lancaster et al., 2013).
Centrosomal-P4.1-associated protein (CPAP protein) is related
to microcephaly, and its mutation can cause Seckel syndrome
and microcephaly. Brain organoids derived from a Seckel
syndrome patient with CPAP mutation display a smaller size
and premature neuronal differentiation (Gabriel et al., 2016).
Furthermore, Seckel organoids show increased number and
length of cilium compared to those of the control organoids,
suggesting a delayed breakdown of cilium (Gabriel et al., 2016).
These findings reflect the role of cilium in the maintenance
of neural progenitor cells (NPCs) and indicate that CPAP
is a negative regulator of cilium length. WDR62 mutant
iPSCs-generated organoids show delayed cilia decomposition,
lengthening and cell cycle progression, reduced proliferation,
and premature differentiation of NPCs (Zhang et al., 2019). The
mechanism study shows that WDR62 interacts with CEP170
and promotes CEP170 to locate in the matrix of primary
cilia, where CEP170 recruits the microtubule depolymerization
factor KIF2A to decompose cilium (Zhang et al., 2019).
These findings provide new insights into the pathogenesis of
primary microcephaly.

ASPM mutant microcephaly organoids display less
neuroepithelial tissues, fewer ventricular radial glial cells

FIGURE 2 | Application of brain organoids as disease models. Brain organoids have been used to model neurodevelopmental and degenerative diseases.
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and outer radial glial cells (oRGs), and poor lamination (Li
et al., 2017). Reduced maturation and electrical activity are
observed in the ASPM mutant organoids, which is related to
congenital mental retardation in patients with ASPM mutations.
Wang L. et al. (2020) have conducted related verifications
with whole-exome sequencing and uncovered microcephaly-
related mutations of NARS1 in more than 5,000 people with
neurodevelopmental disorders. They have generated cortical
brain organoids with NARS1 mutations and found that patient-
derived organoids display a smaller size, decreased proliferation,
and cell cycle defects of RGs (Wang L. et al., 2020).

Acquired Microcephaly
In addition to the primary microcephaly caused by chromosomal
mutations, external environment, infection, and other factors
can also cause secondary microcephaly. The most studied is
microcephaly caused by the infection of Zika virus (ZIKV). ZIKV
particles can bind to cell membranes, localize in mitochondria
and cellular vesicles, and lead to cell death and inhibit the
formation of neurospheres (Garcez et al., 2016). Qian et al.
(2016) have developed a forebrain organoid and modeled ZIKV
exposure at different stages of pregnancy. The infection of ZIKV
at the early stage of organoids (day 14) significantly decreases
the thickness and the size of the VZ zone, while the size of the
lumen of the ventricular structure significantly increased (Qian
et al., 2016), which are very similar with the clinical phenotypes
of central ventricular dilatation in fetus brain infected with ZIKV
(Driggers et al., 2016).

Lissencephaly
Miller Dieker syndrome (MDS) is the most serious form of
classical lissencephaly, which is characterized by reduced brain
size, craniofacial deformities, mental retardation, and seizures.
Brain organoids derived from MDS patients show increased
apoptosis and reduced vertical divisions (Bershteyn et al., 2017;
Iefremova et al., 2017). The defects of radial migration of
neurons, cell autonomy, and delayed oRG cell-specific cytokinesis
are also observed (Bershteyn et al., 2017; Iefremova et al.,
2017). These mitotic defects of oRG may be involved in the
pathogenesis of human lissencephaly. The forebrain organoids
derived from MDS patients also display a shift from symmetrical
to asymmetrical cell division of ventricular radial glial cells
(vRGCs) (Iefremova et al., 2017). Furthermore, they have also
observed severe changes in the organization of the ventricular
niche in MDS organoids, including the low compactness of vRGC
tissues and the disorderly positioning of cells retracted from
the apical membrane (Iefremova et al., 2017). These phenotypes
can be rescued by regulating the N-cadherin/β-catenin pathway,
suggesting an important function of Wnt signaling in MDS.

Autism Spectrum Disorders
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder and induced by diverse pathogenic factors, such as
genetic mutation, epigenetic modifications, and environmental
factors. Cortical organoids derived from ASD patients display
preferred differentiation toward GABAergic neurons, but no
changes of glutamatergic neurons, resulting in the imbalance

of glutamate/GABA neuron, which is resulting from the altered
expression of FOXG1 (Mariani et al., 2015). A multiomics
study shows that iPSC-derived cortical organoids show a similar
transcriptome and epigenome pattern with isogeneic fetal brain
tissue, especially between 5 and 16 post-conceptional weeks
(Amiri et al., 2018). This study has also revealed 49,640 active
enhancers important for cortical neuron specification (Amiri
et al., 2018), and differentially expressed genes are highly related
with the Wnt/β-catenin signaling pathway (Wang et al., 2017).
CHD8 is an ASD-related gene, and cerebral organoids derived
from iPSCs with CHD8 gene mutation show that CHD8 regulates
other ASD-related genes such as TCF4 and AUTS2.

Macrocephaly/autism disorder represents a subset of ASD,
and the loss of function of RAB39B mutation can cause
macrocephaly, ASD, and epilepsy (Giannandrea et al., 2010).
RAB39B mutant cerebral organoids have a larger volume than the
normal control and display impaired differentiation and excessive
proliferation of NPCs. Mechanistically, RAB39B deletion induces
the over-activation of PI3K-AKT-mTOR signaling, and the
inhibition of PI3K-AKT-mTOR signaling can rescue the
phenotypes (Giannandrea et al., 2010).

Periventricular Heterotopia
The development of the neocortex in mammals is a highly
coordinated process that depends on the precise generation,
migration, and maturation of neurons. Periventricular
heterotopia is one of the most common forms of cortical
developmental malformations and is closely related to DCHS1
and FAT4 (Cardoso et al., 2009). The somatic cells of patients
carrying mutations of DCHS1 or FAT4 were used to construct
iPSCs and brain organoids. The morphology of the processes
of NPCs appears to be neatly arranged and straight in normal
organoids. However, neuronal processes are often destroyed and
exhibit a distorted morphology in FAT4-mutant or KO organoids
(Klaus et al., 2019).

Neonatal Hypoxic Injury
Neonatal hypoxic injury (NHI) is the most common reason
for neonatal death and disability. Survivors usually suffer with
cerebral palsy, epilepsy, and cognitive impairment (Mwaniki
et al., 2012). Brain organoids of NHI have been established and
used to examine the effects of different oxygen concentrations.
The results show that hypoxia inhibits the expression of
genetic markers (e.g., FOXG1, DCX1, CLIP2) for forebrain, OLs,
glial cells, and the migrating cortical neurons, which could
be alleviated by minocycline. Furthermore, minocycline also
restrained apoptosis induced by hypoxia in brain organoids
(Boisvert et al., 2019).

Down Syndrome
Down syndrome (DS) is the most common genetic cause of
learning difficulties and is the most common form of dementia
in people under 50 years old. Factors causing DS dementia are
mainly divided into two major types: neurodevelopmental and
neurodegenerative factors.

As a common neurodevelopmental disorder, the imbalance
of excitatory and inhibitory neurotransmission predominantly
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contributes to the cognitive deficits of DS. DS organoids produce
abundant OLIG2+ NPCs and a variety of CR+ and SST+

GABAergic neurons (Xu R. et al., 2019). Of note is the fact
that there are some discrepancies between 2D and 3D cultures:
OLIG2+ NPCs can generate different subtypes of neuron in 3D
culture, while only CR+ neurons can be obtained in 2D culture
(Xu R. et al., 2019). These findings suggest that OLIG2 is a
potential target for DS in the clinic.

DS patients also display some phenotypes observed in AD
patients. Gonzalez et al. (2018) have found that organoids
derived from DS patients and familial AD (fAD) patients
can spontaneously exhibit amyloid plaque deposition and Tau
hyperphosphorylation, which are more significant than fAD.
Furthermore, around 30% of DS patients have delayed onset of
dementia, and the triplication of BACE2 may be the underlying
mechanism (Wiseman et al., 2015). In line with these findings,
the trisomic level of BACE2 protects T21-hiPSC organoids from
early AD-like amyloid plaque pathology. Their results suggest the
physiological role of BACE2 as a suppressor for AD, and BACE2
can serve as a therapeutic target (Alic et al., 2020).

Neurodegenerative Disorders
Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common neurodegenerative
disease and is characterized by cognitive decline, behavioral
impairment, and progressive deterioration of physical functions.
Choi et al. (2014) have established a 3D culture system with
human neural stem cell via overexpressing APP and PSEN1
and successfully observed the aggregation of amyloid beta and
tau pathology, suggesting the advantage of 3D culture (Kim
et al., 2015). Continuous and spontaneous Aβ aggregation
is observed in human neural organoids derived from fAD
patients. At the later stage of culturing, fAD organoids show
a significantly high immunoreactivity of pTau compared to the
control group. β- and γ-secretase inhibitors reduce the pathologic
changes induced by amyloid β and Tau phosphorylation in fAD
organoids (Raja et al., 2016). Therefore, brain organoids could
be a versatile tool for screening therapeutic compounds for
neurodegenerative diseases.

Another recent study shows that 3D brain-like tissues
infected with herpes virus can directly produce a new model
of AD, which can simulate the formation of amyloid plaques,
gliosis, neuroinflammation, and impaired functionality in the
pathological process of AD (Cairns et al., 2020).

Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurodegenerative disease after Alzheimer’s disease and is
characterized by the loss of dopaminergic neurons in the
substantia nigra, of which typical motor symptoms include
bradykinesia, muscle stiffness, resting tremor, and postural and
gait disorders. The current cellular and animal models of PD
have some limitations to mimic the phenotypes of PD. For
example, animals with genetic mutations including LRRK2
mutations cannot clearly show evidence of progressive midbrain
dopamine neuron loss or Lewy body formation (Chesselet et al.,
2008; Kim et al., 2019a).

Human midbrain-specific organoids derived from sporadic
PD patients with LRRK2-G2019S mutation contain midbrain
dopaminergic neurons (mDAN), but the number and the
complexity of mDAN in LRRK2 organoids are decreased than
those of the control group, which is consistent with the phenotype
of PD patients (Kordower et al., 2013). Kim et al. (2019a) have
introduced the heterozygous LRRK2-G2019S point mutation
into hiPSC using CRISPR-Cas9 technology and generated the
isogeneic midbrain organoids (MOs). They found that, in
the mutant MO, the neurite length of dopaminergic neurons
was shortened, and the expression of corresponding markers
including TH, AADC, VMAT2, and DAT was also reduced
(Kim et al., 2019a). Moreover, other PD-related pathological
signatures such as increased aggregation and abnormal clearance
of α-synuclein are also found in MOs. The gene expression
profiling data show that the mutant MOs have many similarities
with that of a PD patient’s brain tissue. They find that TXNIP
is specifically upregulated in mutant Mos, and the inhibition of
TXNIP can suppress the phenotype induced by LRRK2 in MOs,
so TXNIP may be related to LRRK2-related sporadic PD patients
(Kim et al., 2019a). All these findings provide important insights
into the pathophysiology of PD development.

In addition to sporadic PD, MOs derived from idiopathic
PD patients show an altered expression of LIM homeobox
transcription factor alpha (early) and tyrosine hydroxylase (late)
markers (Chlebanowska et al., 2020). Several key genes relating
to idiopathic forms of PD, such as neuronal marker genes TH,
PTX3, LMX1A, and FOXA2, have been identified (Chlebanowska
et al., 2020). Recently, Kwak et al. (2020) have developed a
new type of midbrain-like organoids, which have stable and
homogeneous structures and can produce mDANs, as well as
other neuronal subtypes and glial cells. These results suggest
that MOs can serve as an excellent model for both sporadic
and familiar PD.

Brain Tumor
Glioblastoma (GBM) is the most malignant form of glioma,
accounting for 54% of all gliomas (da Hora et al., 2019). Cerebral
organoids have been used to model primary human GBM in vitro.
Organoids were co-cultured with glioma stem cells (GSCs) to
obtain a cerebral organoid glioma (GLICO) model. Organoids
co-cultured with glioma stem cells show that GSCs metastasize
to the inner zones of organoids and deeply infiltrated and
proliferated in host tissues, forming tumors closely related to
patients with GBM (Linkous et al., 2019), suggesting that the
GLICO model reflects well the malignant characteristics of GBM.

Medulloblastoma (MB), which occurs predominantly in the
cerebellum, is one of the most common and aggressive malignant
brain tumors in children and induce a high rate of mortality
(Rutkowski et al., 2010). Group 3 MB is one of the most
aggressive MB subgroups, which is characterized by c-MYC up-
regulation. The results from 3 MB cerebellar organoid show
that OTX2/c-MYC is a new driving gene required for 3 MB
tumorigenesis. The treatment of EZH2 inhibitor tazemetostat
can inhibit OTX2/c-MYC tumorigenesis in organoids (Ballabio
et al., 2020). Therefore, human cerebellar organoids can be
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effectively used to explore the roles of genetic mechanisms in
glioma patients.

Infectious Diseases of the CNS
Neurotropic Virus Infections
As mentioned above, ZIKV is a neurotropic virus that
preferentially infects human NPCs. The development of brain
organoids has greatly promoted the study of neurotropic viruses
and provided an alternative method for animal and 2D cell
culture models of ZIKV infection (Antonucci and Gehrke,
2019). One study shows that enoxacin exposure can prevent
ZIKV infection and avoid the microcephalic phenotype in
brain organoids. This study also discovered the physiological
importance of RNAi-mediated antiviral immunity in the early
stages of human brain development, revealing new strategies to
enhance RNAi’s resistance to human congenital viral infection
(Xu Y. P. et al., 2019).

In addition to screening drugs for the prevention and
treatment of ZIKV infection, the neurotoxicity of ZIKV has
been used to explore its potential efficacy and mechanism as
an oncolytic virus to GBM. The findings show that ZIKV
preferentially targets GSCs in GBM cortical organoids, showing
effective antitumor effects over time. In preclinical studies,
the application of GBM organoids enhances selective tumor
targeting and may provide positive implications for oncolytic
virus therapies (Zhu et al., 2020).

Cerebral Malaria
Malaria is a parasitic disease caused by Plasmodium. Cerebral
malaria is one of the clinical manifestations of malaria and
usually accompanied by severe neurological complications
(Nanfack et al., 2017). Malaria causes hemolysis and produces
a by-product called heme, which promotes the apoptosis
and spontaneous differentiation of iPSCs and induces the
changes of brain injury-related biomarkers, such as the
increased expression of CXCL-10, CXCR3, and BDNF and
the decreased expression of ERBB4 in organoids. They find
that neuregulin-1 had neuroprotective effects on heme-
treated organoids (Harbuzariu et al., 2019). Thus, this
brain organoid model can be used to study the effects
of hemolysis (not limited to malaria infection) on fetal
brain development.

Mental Illness
Schizophrenia
Schizophrenia is one of the most intractable diseases in brain
health, with complex genetic/environmental causes, molecular
neuropathology, and neurodevelopmental origins. Due to the
functional and structural differences of brain regions in rodents
and human being, it is challenging to observe the phenotypes of
mental illness in rodents (Wang M. et al., 2020).

Forebrain organoids derived from schizophrenia patients
with DISC1 mutations show the altered proliferation of
radial glial cells (Ye et al., 2017). The interaction between
DISC1 and NDEL1 plays an important role in maintaining
the neural stem cell population during the development of
the human forebrain (Ye et al., 2017). Cerebral organoids

with an isogenic DISC1 mutation show the over-activation
of the WNT signaling pathway (Srikanth et al., 2018).
Morphological analysis shows that DISC1 organoids show
a chaotic structural morphology and impaired proliferation,
which can be rescued by WNT antagonism (Srikanth et al.,
2018). Brain organoids derived from schizophrenia iPSCs show
decreased proliferation and neuronal development and reduced
expression of FGFR1 protein in cortical cells, accompanied
by the loss of nFGFR1 signaling (Stachowiak et al., 2017).
Blocking and depleting FGFR1 with the antagonist PD173074
in the control organoids can cause cortical growth arrest
similar to schizophrenia. In turn, it also shows that rebuilding
FGFR1 in developing cortical neurons can inhibit developmental
abnormalities (Stachowiak et al., 2017).

TOXIN EXPOSURE OF THE CNS

In addition to modeling neuronal development and neurological
disorders, brain organoids can be used to evaluate the effects of
acute and chronic toxin exposure.

Prenatal Exposure
Prenatal Nicotine Exposure
Previous studies have shown that nicotine exposure during
pregnancy may be associated with neurodevelopmental
impairment and behavioral disorders in children. Wang et al.
(2018) have used a brain organoid-on-a-chip system to simulate
the nervous system exposed to prenatal nicotine. Their findings
show that nicotine exposure can cause premature differentiation
and apoptosis of neurons in brain organoids, also inhibiting
neurite outgrowth and the structural development of the cortex,
which is manifested as the decreased expression of forebrain
markers (PAX6 and FOXG1). Their study indicates that brain
organoids can be a useful model to study the effects of toxin on
neuronal development.

Prenatal Methamphetamine Abuse
Methamphetamine (METH) is an addictive stimulant that
causes temporary intense excitement. METH addicts may
experience symptoms such as decreased hippocampal volume
and memory loss (Chang et al., 2007; Du et al., 2015).
To determine the effects of prenatal METH abuse on the
human brain, 10-month-old brain organoids are exposed to
METH for 1 week, followed by scRNA-seq analysis. The
results show that METH can significantly alter the expression
of neuroinflammatory and cytokine-related genes and affect
the proliferation, differentiation, and cell death of NSCs
(Dang et al., 2020).

Prenatal Cannabis Exposure
In addition to METH, the effects of prenatal cannabis
exposure on brain development were studied with human
brain organoids. They demonstrated that prolonged exposure
to tetrahydrocannabinol could alter the neonatal brain VZ/SVZ
ratio, downregulate the cannabinoid receptor type 1 receptors,
and inhibit neurite outgrowth and spontaneous neuronal activity
(Ao et al., 2020).
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FUTURE CHALLENGES OF BRAIN
ORGANOIDS

It is a breaking advance to culture human “brain” in a lab
dish and visualize it daily. Brain organoids bona fide provide an
excellent model for us to understand the development, aging, and
evolvement of the human brain, and dramatic progress has been
made in brain organoids during the past decade. Up to today,
brain organoids have been used in exploring mechanisms for
neurological diseases, drug screening, etc.

Although brain organoids display a significant advantage
relative to conventional 2D culture, researchers do realize a
few issues in the field. First, to generate and culture brain
organoids is technically challenging and requires multiple
reagents. It will be even more challenging to harvest healthy
organoids if cultured for a longer time. Second, there are
some variations between organoids even from the same
chamber. This variation will definitely affect the results
that compare the size and the volume between the control
and patient-derived organoids. Therefore, it is necessary to
improve the culture methods and increase the reproducibility.
Third, the dynamic cellular composition, structure, maturity,
crosstalk between types of cells, etc., occur during brain
development and aging. It is still a great challenge to mimic

well the complexity of the human brain with organoids in
a spatiotemporal pattern. Brain organoids for some brain
structures such as the hippocampus and the cerebellum have
not been generated yet. Furthermore, organoids generated for
neurodegenerative diseases including AD only very partially
simulate the pathological features of AD. To resolve these issues,
we would expect technical advances.
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