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Background: Accuracy and reproducibility are vital in science and presents a significant
challenge in the emerging discipline of data science, especially when the data are
scientifically complex and massive in size. Further complicating matters, in the field of
genomic-based science high-throughput sequencing technologies generate considerable
amounts of data that needs to be stored, manipulated, and analyzed using a plethora of
software tools. Researchers are rarely able to reproduce published genomic studies.

Results: Presented is a novel approach which facilitates accuracy and reproducibility for
large genomic research data sets. All data needed is loaded into a portable local database,
which serves as an interface for well-known software frameworks. These include python-
based Jupyter Notebooks and the use of RStudio projects and R markdown. All software
is encapsulated using Docker containers and managed by Git, simplifying software
configuration management.

Conclusion: Accuracy and reproducibility in science is of a paramount importance. For
the biomedical sciences, advances in high throughput technologies, molecular biology and
quantitative methods are providing unprecedented insights into disease mechanisms.
With these insights come the associated challenge of scientific data that is complex and
massive in size. This makes collaboration, verification, validation, and reproducibility of
findings difficult. To address these challenges the NGS post-pipeline accuracy and
reproducibility system (NPARS) was developed. NPARS is a robust software
infrastructure and methodology that can encapsulate data, code, and reporting for
large genomic studies. This paper demonstrates the successful use of NPARS on
large and complex genomic data sets across different computational platforms.
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INTRODUCTION

The intersection of data science, analytics, and precision medicine are now having an increasingly
important role in the formation and delivery of health care, especially in cancer where the treatment
regimens are complex and becoming more individualized (Ginsburg and Phillips, 2018). The
National Research Council defined precision medicine as the ability to guide health care toward
the most effective treatment for a given patient, improving quality and reducing the need for

Edited by:
Huixiao Hong,

United States Food and Drug
Administration, United States

Reviewed by:
Jung Hun Oh,

Memorial Sloan Kettering Cancer
Center, United States

Sheeba Samuel,
Friedrich Schiller University Jena,

Germany

*Correspondence:
Donald J. Johann Jr
djjohann@uams.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Medicine and Public Health,

a section of the journal
Frontiers in Big Data

Received: 14 June 2021
Accepted: 07 September 2021
Published: 27 September 2021

Citation:
Ma L, Peterson EA, Shin IJ, Muesse J,
Marino K, Steliga MA and Johann DJ
(2021) NPARS—A Novel Approach to
Address Accuracy and Reproducibility

in Genomic Data Science.
Front. Big Data 4:725095.

doi: 10.3389/fdata.2021.725095

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 7250951

BRIEF RESEARCH REPORT
published: 27 September 2021

doi: 10.3389/fdata.2021.725095

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.725095&domain=pdf&date_stamp=2021-09-27
https://www.frontiersin.org/articles/10.3389/fdata.2021.725095/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.725095/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.725095/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.725095/full
http://creativecommons.org/licenses/by/4.0/
mailto:djjohann@uams.edu
https://doi.org/10.3389/fdata.2021.725095
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.725095


unnecessary diagnostic testing and therapies (National Research
Council, 2011). Our understanding of the genomic basis of
disease (cancer) is being transformed by the combination of
next generation sequencing (NGS) and state-of-the-art
computational data analysis, which are empowering the entry
of innovative molecular assays into the clinic, and further
enabling precision medicine (Berger and Mardis, 2018).
Precision medicine is data science driven (Ginsburg and
Phillips, 2018).

Data science is a nascent, cross-disciplinary field that can be
viewed as an amalgamation of classic disciplines. These include,
but are not limited to: statistics, applied mathematics, and
computer science, and importantly is focused on finding non-
obvious and useful patterns from large datasets (Kelleher and
Tierney, 2018). Data science seeks to find patterns and
discriminators in order to support actionable decision making
(Cao, 2017a; He and Lin, 2020). How can an insight be
actionable? Except for domain-specific factors, the predictive
power of an insight makes itself actionable (Dhar, 2013). A
central tenet in science that distinctly extends into data science
is accuracy, which is the quality or state of being correct or
precise. It is also defined as simply the ratio of correctly predicted
observations to the total observations, and is utilized to measure
predictive power.

Data science is enabling new and different understandings and
reshaping several traditional fields (e.g., microbiology and
microbiome, supply chain management, astronomy) into
heavily data-driven disciplines (Borne, 2010; Hazen et al.,
2014; Bolyen et al., 2019). The term “Data Science” is
becoming increasingly associated with data sets massive in
size, but there are additional challenges in this rapidly
evolving field. Some factors considered to contribute to the
challenges include: 1) data complexity, which refers to
complicated data circumstances and characteristics, including
the quality of data, largeness of scale, high dimensionality, and
extreme imbalance; 2) the development of effective algorithms
and, common task infrastructures and learning paradigms
needed to handle various aspects of data; 3) the appropriate
design of experiments; 4) proper translation mechanisms in order
to present and visualize analytical results; 5) domain complexities,
which refers to expert knowledge, hypotheses, meta-knowledge,
etc., in the particular subject matter field (Cao, 2017b).

There is a known reproducibility problem in science. This was
investigated and quantified by a survey conducted by the journal
Nature involving over 1,500 scientists (Baker, 2016). The survey
results reported that over 70% of researchers have tried and failed
to reproduce another scientist’s results and, more than half have
failed to reproduce their own experiments. The survey also
uncovered ambiguity concerning the exact definition of
reproducibility and, this definition may be different depending
on the scientific field.

In data science, reproducibility is generally defined as the
ability to re-compute data analytic results, with an observed
dataset and requisite information regarding the analysis tools
(Peng, 2015). Given reproducibility, independent researchers can
build up evidence for or in contradiction to a scientific hypothesis
(Peng, 2011; Aarts et al., 2015). Some studies have suggested a

large number of practical rules or methods for enhancing
reproducibility in research (Sandve et al., 2013; Rupprecht
et al., 2020). Nonetheless, in several fields, non-reproducibility
is still an obstacle towards the better understanding of datasets,
further blocking the path to new scientific discoveries (Mobley
et al., 2013; Iqbal et al., 2016; Goodman et al., 2018; Wen et al.,
2018). In addition, the current situation has forced us to face an
awkward truth, that is, while our ability to generate data has
grown dramatically, our ability to thoroughly understand data
outputs has not developed at the same rate (Peng, 2015). Only if
an analytical result is reproducible, can its accuracy be
determined. The accuracy itself is based on evaluating the
average performance of a series of analytical results from the
same dataset. Then can we say such an analytical result is valid
and has analytical validity. In other words, analytic validity can
tell us how well the predictive power of an insight can be.
Accuracy and reproducibility are cornerstones of analytical
validity.

As more realize the implications and challenges presented by
reproducibility in the field of biology, outstanding bioinformatics
tools have been developed for improving the situation. To
conquer the heterogeneities in bioinformatics tools, Bioconda
(Grüning et al., 2018a) integrates more than 3,000 Conda tools.
Docker based Dugong (Menegidio et al., 2018) automates the
installation of more than 3,500 bioinformatics tools. Pachyderm
(Novella et al., 2019) has been developed for managing
complicated analyses including multiple stages and multiple
tools. For specific studies, reproducible pipelines have been
introduced: PiGx (Wurmus et al., 2018) has been created for
reproducible genomics analysis, whereas, QIIME 2 (Bolyen et al.,
2019) has been released for reproducible, interactive, scalable, and
extensible microbiome data science. Finally, many researchers
have utilized the web-based platform Galaxy (Jalili et al., 2020) to
facilitate collaborative and reproducible (Grüning et al., 2018b)
biomedical analyses.

In genomic data science, to address reproducibility, improve
scientific accuracy, and enhance collaboration, we present a
robust software infrastructure and methodology that can
encapsulate data, code, and reporting for large genomic
studies. Our system is specifically focused on post-NGS
pipeline (downstream) analysis, since it is at this juncture
where collaborative endeavors arise focused on gleaning
biological insights into studies employing one or more large
and complex omics data sets. While the aforementioned tools
each offer some methods for tackling the collaborative and
reproducibility problems associated with pipeline software,
none offer all the features and flexibility in our area of
inquiry; post-pipeline (downstream) analysis collaboration and
reproducibility. As an example, Galaxy is able to provide
collaboration and reproducibility of downstream analyses,
however, its ability to execute arbitrary code via a
programming language of the researcher’s choice—if
possible—can be quite burdensome.

Our system is named NGS Post-pipeline Accuracy and
Reproducibility System (NPARS) and its core technologies are
graphically illustrated in Figure 1. NPARS is different from other
approaches. Specifically, it is the first to focus on the challenges
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associated with the accuracy, reproducibility, as well as, providing
a more convenient manner of collaboration with colleagues. This
is achieved by the ability of NPARS to encapsulate large and
complex genomic datasets into a portable database container,
which may then be analyzed by well-established APIs (Python/
Jupyter Notebook, R/Rmd). The infrastructure first loads all data
needed for subsequent analyses into a local lightweight (SQLite,
2021) database. The data is then captured within the database
along with salient metadata into a schema, which can then be
accessed via well-known open-source application programming
interfaces. These include the use of Jupyter Notebooks (Python)
(Kluyver et al., 2016; Python Software Foundation, 2021),
RProjects and RMarkdown (R) (Allaire et al., 2021; R-Project,
2021) with an aim to generate self-documenting source code, and
results in portable formats. All software may be managed using
Docker (Merkel, 2014) containers and Git (Git, 2021) (version
control), simplifying configuration management.

METHODS

Synthetic Data
Synthetic data was used in this study. All synthetic data was
derived from actual human tumor tissue data sets (e.g., FastQ

files). RNA-seq synthetic data was produced by RSEM (Li and
Dewey, 2011). DNA-based synthetic data was produced through
aggregation and averaging from a pool of human tumor samples.
All FastQ files were initially created from BCL files using
bcl2fastq2 v2.18.0.12 (bcl2fastq2 and bcl2fastq, 2021) and
when needed or indicated, adapter trimming was performed
during the conversion. FastQC v0.11.4 (FastQC, 2021) was
used to assess the quality of all FastQ files.

RNA Sequencing Pipeline
Transcriptome Reconstruction and Gene-Level Count
Qualification
STAR v2.5.3a (Dobin et al., 2013) was used to align each sample’s
paired-end reads to the Ensembl Homo Sapiens reference
genome build GRCh37.75, using STAR’s “2-pass” method.
Quality control and assessment of resulting BAM files was
performed using QualiMap v2.2.1 (García-Alcalde et al., 2012)
and STAR output metrics. Picard v2.0.1 (Picard, 2021) was used
to add read group information. The marking of duplicate reads
and sorting of aligned files was also performed using Sambamba
v0.6.5 (Tarasov et al., 2015).

Each sample’s BAM file was initially processed using StringTie
v1.3.3b (Pertea et al., 2015), along with Ensembl gene annotations
to guide transcriptome reconstruction with novel transcript

FIGURE 1 | Software technologies used for the NGS Post-pipeline Accuracy and Reproducibility System (NPARS) infrastructure creation. The six core
technologies used are shown. (A) Study results from a genomics pipeline or repository are extracted and prepared for insertion into a SQLite database. (B) SQLite stores
all genomic study outputs along with salient study metadata. (C) Git provides version control of the Dockerfiles (Docker image specification, i.e., analysis environment)
and analysis source code. (D) Docker wraps the development environmental information into a container, simplifying software configuration management and, the
initialization of a reproducible analysis environment. (E) RStudio, provides an integrated development environment for the R programming language and R Projects that
are utilized, which provide an efficient way to organize software development activities. (F)RMarkdown generates self-documenting analytical reports into HTML files. (G)
Jupyter Notebooks, are utilized as a development and visualization environment for Python-based projects and reports.
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discovery enabled. Each patient’s samples (i.e., study cohort)
transcriptome was merged using StringTie’s merge mode.
Finally, the cohort’s BAM files were processed using the newly
created merged transcriptome. The StringTie option to output
“Ballgown-ready” files was enabled.

Ballgown-ready files containing transcript coverage data was
“rolled-up” to the gene-level and the R v4.0.3 (R-Project, 2021)
library IsoformSwitchAnalyzeR v1.13.05 (Vitting-Seerup and
Sandelin, 2019) was used to disambiguate novel findings
from StringTie output. Unnormalized count data was
extracted from IsoformSwitchAnalyzeR and used for
downstream analysis.

RNA Expressed Mutation Calling and Gene Fusion
Detection
RNA variants were called using the Broad Institute’s GATK Best
Practices for RNA-seq variant calling (Calling Variants in
RNAseq, 2021). These steps include the following: STAR was
used to align reads to the Ensembl Homo Sapiens reference
genome (build GRCh37.75), using the recommended “2-pass”
approach. Duplicates were marked and the aligned reads sorted
with Sambamba. Next, the tool SplitNCigarReads [GATK v3.9
(McKenna et al., 2010; DePristo et al., 2011)] was used to split
reads into exon segments, clip reads which overhang intronic
regions, and assign a default MAPQ score of 60 to all reads.
Variants were called using the HaplotypeCaller tool (GATK).
Gene fusions were detected by passing FastQ files directory to
STAR-Fusion v1.4.0 (Haas et al., 2019).

DNA Sequencing Pipeline
Targeted Mutational Panel
FastQ files were submitted to the QIAGEN Data Analysis Center
(QIAGEN, 2021) in a tumor/normal configuration and processed
using the smCounter2 (Xu et al., 2018) pipeline. The
aforementioned pipeline generates aligned reads in BAM
format and variants detected in VCF format. Quality control
and assessment of resulting BAM files was performed using
QualiMap.

Low-Pass Whole Genome Copy Number Variation
Each sample’s FastQ paired-end files were aligned to the Ensembl
Homo Sapiens reference genome (build GRCh37.75) using BWA
v0.7.12 (Li and Durbin, 2009). Quality control and assessment of
BAM files was performed with QualiMap. BAM files were post-
processed to mark duplicates and sort aligned reads (Sambamba).
Copy number data was computational inferred using the R library
ichorCNA v0.2.0 (Adalsteinsson et al., 2017).

Post-pipeline Reproducible Data Science
Software Infrastructure
NPARS was implemented using the following software packages:
Python v2.7.5/3.7.1; Jupyter Notebooks v6.3.0; IPython v7.22.0
(Pérez and Granger, 2007); R v4.1.0; RStudio v1.4.1717 (RStudio,
2020); RMarkdown v.2.7; SQLite v3.35; Docker v20.10.3; and Git
v2.26.2 (Git, 2021).

RESULTS

NPARS Overview and Workflow
Figure 2 illustrates an overview and workflow for NPARS.
First, the data associated with the study of interest is identified.
This may be performed from either a central database/
repository or directly from pipeline output files as shown in
subfigure (A). Next, custom Python scripts are used to
perform extraction and transform operations on the pipeline
outputs and associated metadata (B). The result is to produce a
set of standardized/structured output files, i.e., well-formatted
comma-separated files (C). A Python script (D) imports the
structured output files into the local SQLite database
containing a well-defined schema to hold the data. The
SQLite database (E), is a light-weighted and easily
portable database, and is utilized to store the study’s data
and metadata in a well-organized manner. Well known and
regarded APIs (RProject and R-Markdown, Jupyter notebooks)
are utilized to interface (F) to the SQLite database for analysis
type activities.

Docker images are utilized to “spin-up” containers, which
contain installations of an analysis environment (G). For
example, a Docker image containing an R/RStudio
environment was created, which includes the necessary
libraries (e.g., RMarkdown, DESeq2, etc.) to perform
exploratory data analysis (EDA) and differential gene
expression on a given study of interest. Python utilizing
Jupyter Notebooks is another example analysis environment.
Other analysis environments can be easily “Dockerized”, or
encapsulate the analysis environment within a Docker image
in order to offer the desired functionality. NPARS can also be run
without Docker.

Docker image specifications are checked into a Git repository
in the Dockerfile format, to allow images to be easily shared and
to provide version control of the analysis environments and their
dependencies. This greatly aids the ultimate goal of NPARS,
which is reproducible output (H). Version controlled analysis
source code, can interface directly with a SQLite database via
well-defined, open-source interfaces provided by the software
framework of choice. For example, the R library RSQLite
(RSQLite, 2021) may be used to directly query the data to be
analyzed from the SQLite database. Finally, given the SQLite
database along with access to the Git repository containing the
Docker specification and source code, any collaborator may
generate a reproducible, complete analysis environment, as
well as, analysis results from self-documenting RMarkdown or
Jupyter Notebooks.

Database Schema
The SQLite database utilized by the NPARS is displayed in
Figure 3 and contains several groups of major tables. The
entity relationship model illustrates the metadata and
genomics study data within the context of the database
schema. The Study Meta Data table (subfigure A) provides an
essential repository of metadata, as well as means of central
connection to the other database tables via a combination of
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FIGURE 2 | NPARS Overview and Workflow. (A) Genomic pipeline output for a particular study of interest is identified. This output can be stored in a database(s)
and/or in output files. (B) A Python script extracts the identified study results and transforms them into well-defined structured output files. (C) The structured output files
contain all data and metadata to be imported into the SQLite database. (D) A Python script imports the structured output files into the local SQLite database, which
already has a well-defined schema to hold the data. (E) The SQLite database stores the scientific study data and metadata in a well-organized manner. (F) The only
interface between the user and the data, is through the particular SQLite API for that development environment. For example, R provides the RSQLite library that provides
access to the data. (G) Each analysis environment is an abstraction (container) within a Docker container and the source code for it is checked into Git. Self-documenting
coding technologies such as R/RMarkdown and Python/Jupyter Notebooks, are used to perform the desired analyses. (H) Reproducible reports/analyses are
generated, that are both portable and reproducible.

FIGURE 3 | Entity Relationship (ER) Model for the SQLite database utilized in NPARS. Metadata and genomics study data are shown within the context of the
database schema. (A) Study metadata table (“Study Meta Data”), provides a central repository of metadata, andmeans of connection to the rest of the tables via primary
and foreign keys. (B) DNA mutations table [“DNA Mutations (Panel)”] contains mutational data from a targeted DNA NGS panel. (C) Three tables store copy number
variation (CNV) data (“CNV Segmented”), where each CNV segment is a range of chromosome bases of similar copy number value. Each CNV segment is
associated with possibly many genes within it (“CNV Genes”), and with possibly many cytobands (“CNV Band”). (D) The four tables which hold RNA-based study data:
isoform count (“RNA Isoform Count”), gene fusions (“RNA Gene Fusion”), gene count (“RNA Gene Count”) and, expressed mutations (“RNA Expressed Mutations”).
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primary and secondary keys. The DNA Mutations table (B)
contains NGS mutational data from a targeted panel.

The remaining tables house six different types of genomic data
results. Tables that contain the copy number variation data derived
from DNA using an ultra-low-pass whole genome sequencing
approach are shown in purple (C). As part of the ultra-low-pass
approach, copy number data is segmented into chromosomal
regions of similar copy number status (CNV Segmented) and,
each segment/locus is annotated via one-to-many relationships
with associated genes, (CNV Genes) and, associated cytobands
(CNV Band). Genomic study results include a variety of RNA-
based results, which are shown in light blue (D). These include
isoform count data (RNA Isoform Count), gene fusion data (RNA
Gene Fusion), gene count data (RNA Gene Count) which is
essentially “rolled up” isoform count data and, expressed
mutations data (RNA Expressed Mutations).

Data Analyses
NPARS can generate a wide variety of plots and tables for the
purposes of EDA and/or other user-specific analyses, such as
finding differentially expressed genes (DEGs). Here we
disseminate some examples of reproducible analyses results that
were performed on the samples (a total of 21 different NGS
experiments yielding large and complex multi-omic datasets),
which were described in the Methods section. EDA is an
approach for analyzing datasets, summarizing, and showing
their main statistical properties in graphics or other data
visualization algorithms (Tukey, 1977). Supplementary Figure
S1, displays a few examples used in NPARS for RNA-seq data.
Subfigure A shows violin and box plots displaying the distribution
of read counts for the replicates of three classes of samples colored
blue, green andmaroon. In this example each sample class contains
three replicates. Next a principal component analysis plot (B) of
the samples begins to explore the data. The three tissue types used
in this study are circled and color coded. The two principal
components explain 72% of the variation. (C) A hierarchical
clustering analysis (HCA) with heatmap of mean normalized
counts, showing the top 20 most variable genes on the y-axis,
and the three tissue types along with their three replicates colored
and listed along the x-axis. It is known that tissue types T2 and T3
are biologically similar. Tissue type T1 is known to be biologically
different from T2 and T3, and this is reflected in the dendrogram.

In addition to traditional EDA plots, the R library RCircos
v.1.2.1 (Zhang et al., 2013) was used in NPARS to visualize
multiple NGS studies in a single plot (Supplementary Figure
S2). From the outermost ring inward this figure is composed of: i.
human chromosomal ideogram, ii.DNA panel mutations (tumor
vs. germline), iii. RNA expressed mutations from the full
transcriptome, iv. whole genome DNA copy number
variations (tumor vs. germline) colored according to the
legend symbols that denote amplification, normal, or deletion,
v. RNA gene expression (TPM) and, vi. RNA gene fusions.

Differential gene expression (DGE) analysis takes normalized
RNA-based read count data and performs a statistical analysis, to
find quantitative changes in expression levels between different
experimental groups. A DGE analysis report is generated by
NPARS, and an abbreviated example output is shown in

Supplementary Tables S1, 2. This information was produced
as part of a RSQLite query. The novel gene findings report
(Supplementary Table S1) is discussed. Subtable A shows
columns for the following: i. predicted novel gene (ID), ii.
locus, iii. gene name corresponding to the nearest annotated
gene iv. log2 fold change (case over control), v. p-value, and vi.
adjusted p-value. Subtable B displays: i. predicted novel gene
(ID), ii. Case sample mean normalized count (via replicates), iii.
Case sample standard deviation (replicates), iv. control sample
mean normalized count (replicates) and, v. control sample
standard deviation (replicates).

Supplementary Table S2 illustrates an abbreviated example
report for annotated gene findings. Subtable A shows columns for
the following: i. annotated gene (ID), ii. gene symbol, iii. locus, iv.
strand information, v. log2 fold change (case over control), vi.
p-value and, vii. adjusted p-value. SubtableB shows columns for the
following: i. annotated gene (ID), ii. Case sample mean normalized
count (via replicates), iii. Case sample standard deviation
(replicates), iv. control sample mean normalized count
(replicates) and, v. control sample standard deviation (replicates).

An example of an abbreviated copy number variation (CNV)
report derived from an ultra-low-pass whole genome (tumor/
germline) NGS approach and processed by the ichor package, was
generated by NPARS and is displayed in Supplementary Table
S3. The table is produced as part of a RSQLite query and shows
columns for the following: i. gene symbol, ii. annotated gene (ID)
per Ensembl, iii. Chromosome number, iv. Chromosomal
segment start position, v. chromosomal segment end position,
vi. median logR, where logR � log2 (T1/Germline), vii. subclone
status, meaning is the amplication or deletion event part of a
subclone per the ichor package viii. copy number, ix. copy
number type and, x. cytoband. This report shows a small
example of salient CNV findings from a small selection of genes.

A Python/Jupyter Notebook utilizing a library from scikit-
learn (Pedregosa et al., 2011) was used to generate the clustergram
plot in Supplementary Figure S3 by NPARS. This approach is
used as part of finding the optimal number of clusters for a
K-Means analysis. RNA-seq data normalized across three sample
types using DESeq2 were used in this example. The x-axis
displays the number of clusters (k) during an iteration of
k-means clustering analysis, and the y-axis displays the PCA
weighted mean of the clusters. Each point (red dot) represents the
center of a cluster and, the size of each point represents the
amount of information contained in each cluster. The thickness
of lines (blue) connecting points represent observations
potentially moving between clusters. In this example per the
clustergram plot the optimal number of clusters should be 2 or 3.

To further investigate the optimal number of clusters for
K-Means, silhouette coefficient plots (Zhou and Gao, 2014)
were performed using the Python/Jupyter Notebook code
employing scikit-learn and shown in Supplementary Figure
S4. Shown are a series of silhouette plots, which graphically
evaluate a variety k-means cluster configurations (2 through 7)
along with corresponding silhouette coefficients and threshold
value (dotted red vertical line). The value of a silhouette
coefficient (x-axis) ranges from -1 to 1, the higher the value
indicates greater cohesion within the cluster and greater
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separation between clusters. A negative value indicates a possible
improper cluster assignment and, a zero value indicates the object
assignment is between clusters. The higher the coefficient value,
the more separated and clearly identifiable is the particular
cluster. The thickness of each cluster silhouette (y-axis,
associated with the cluster label) indicates the cluster size. (A)
Silhouette analysis for k-means clustering on sample data with 2
clusters. (B) Silhouette analysis for k-means clustering on sample
data with 3 clusters. In this case the new cluster (cluster label 2)
has a zero coefficient value meaning it is not significant. (C)
Silhouette analysis for k-means clustering on sample data with 4
clusters. This plot shows cluster labels 2 and 3 are not significant.
(D) Silhouette analysis for k-means clustering on sample data
with 5 clusters. (E) Silhouette analysis for k-means clustering on
sample data with 6 clusters. (F) Silhouette analysis for k-means
clustering on sample data with 7 clusters. According to the plots,
the optimal cluster number should be 2. A confluence of evidence
based on this evaluation and the previous (clustergram) is
indicating the optimal k-means cluster value may be 2.
Datasets used to generate the plots are the same simulated
data which were used to generate the clustergram plot
(Supplementary Figure S3). A Jupyter/Python Notebook was
used to perform this analysis.

Based on the prior results from the clustergram and silhouette
coefficient plots, k-means was run twice, once with two clusters, and
then three clusters. Supplementary Figure S5 contains results
obtained from the Python/Jupyter Notebook code for this analysis,
with k-means and two clusters (A), and three clusters (B). The
same RNA-seq data processed by DESeq2 was used. The plot
shapes indicate the cluster membership labels: 0, 1, 2 and, the
colors represent the tissue types, T1 (Tissue 1, blue), T2 (Tissue 2,
orange), T3 (Tissue 3, green). A small red circle is used to highlight
the primary difference between the two plots, namely, a new cluster
is formed from T1. Analyzing plots A and B, it appears that two
clusters may more efficiently group the data versus three clusters
and, supports the results of the silhouette plots (Supplementary
Figure S4) and, is also in agreement with the clustergram plot
(Supplementary Figure S3).

DISCUSSION

The next evolution in oncology research and cancer care are being
driven by data science (Yu and Kibbe, 2021). So, it is of paramount
importance to address current accuracy and reproducibility issues.
In the field of genomic data science, accuracy and reproducibility
remains a considerable challenge due to the sheer size, complexity,
and dynamic nature plus relative inventiveness of the quantitative
biology approaches. The accuracy and reproducibility challenge
does not just block the path to new scientific discoveries, more
importantly, it may lead to a scenario where critical findings used
for medical decision making are found to be incorrect (Huang and
Gottardo, 2013). NPARS has been developed to meet the unmet
need of improving accuracy and reproducibility in genomic data
science. Currently, a limitation of our system is the requirement of
the user to put their data into a standardized format for import into
NPARS. These steps are not automated.

An accuracy and reproducibility test of NPARS was performed
by running the R/RMarkdown and Python Jupyter Notebook
code with the SQLite database on two different systems, 1)
Windows 10-based system and, 2) system utilizing the Ubuntu
Linux distribution. The results demonstrated the use of NPARS
on two different systems produced identical outputs and this is
summarized in Table 1. Here, the term “Passed” means the
observed and expected outputs were identical on the respective
systems. The R/RMarkdown outputs were first compared. The
RCircos graphic (Supplementary Figure S2), which summarizes
and integrates seven genomics studies into a single graphical plot
was visually inspected from the Windows and Linux systems and
found to be identical. Supplementary Tables S1A,B, 2A,B, 3
were also identical. All EDA graphics from Supplementary
Figure S2 were compared by visual inspection and found to
be identical. For the analyses performed by Python/Jupyter
Notebook, the clustergram (Supplementary Figure S3),
silhouette coefficient plots (Supplementary Figure S4) and
k-means graphics (Supplementary Figure S5) were
regenerated on each system, compared by close visual
inspection and found to be identical.

TABLE 1 | NPARS Accuracy and Reproducibility Testing Summary.

Analysis test System #1,
Windows 10

System #2, Linux/Ubuntu Comparative results (system
#1 vs. System

#2)

RCircos, Supplementary Figure S2 Passed Passed Identical
DESeq2 Novel Genes, Supplementary Table S1 Passed Passed Identical
DeSeq2 Annotated Genes, Supplementary Table S2 Passed Passed Identical
Copy Number Analysis, Supplementary Table S3 Passed Passed Identical
Violin Plots, Supplementary Figure S1 Passed Passed Identical
Box Plots, Supplementary Figure S1 Passed Passed Identical
PCA Plot, Supplementary Figure S1 Passed Passed Identical
HCA Plot, Supplementary Figure S1 Passed Passed Identical
Clustergram, Supplementary Figure S3 Passed Passed Identical
Silhouette Coefficient Plots, Supplementary Figure S4 Passed Passed Identical
K-means Plots, Supplementary Figure S5 Passed Passed Identical

The first column, “Analysis Test” lists the name of each test along with corresponding supplemental figure or table information. The columns “System #1, Windows-10” and “System #2,
Linux/Ubuntu” lists the results of each test run on these respective systems. The column titled “Comparative Results (System #1 vs. System #2) reports the comparative results outcome.
The term “Passed” means the observed and expected outputs were the same on the respective systems.
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The innovative and evolving landscape of oncology research
and cancer care are dependent on accurate, reproducible, and
robust data science. High-throughput instrumentation are
generating increasingly massive and complex genomic data sets,
and continue to create opportunities and challenges in the
dynamic field of genomic data science. This makes
collaboration, verification, validation, and reproducibility of
findings difficult. To address these challenges NPARS was
developed. NPARS is the first system to focus on NGS
downstream analysis accuracy, reproducibility, and enhancing
collaboration, by effectively capturing large and complex
genomic datasets into a portable database container and
exposing it to well-established APIs. In this paper we have
profiled and demonstrated NPARS, which is a robust software
infrastructure and methodology that can encapsulate both data,
code, and reporting for large genomic studies. This study
demonstrates the successful use of NPARS on large and
complex genomic data sets across different computational
platforms and begins to address the prevailing challenges of
accuracy and reproducibility in genomic data science.
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