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The early warning models for coal and gas outburst have become increasingly more
important and have gained more attention in the mining industry in an effort to further
improve mine safety. In the warning process, however, the theoretical models do not
always work in a timely manner largely due to the delayed capture of the real time
parameters. Based on the evolving mechanism of gas outburst, the gas emission is
considered a dominant factor in this work because its data is attainable in real time and
clearly characterizes the entire outburst process. In order to characterize and distinguish
the variation of the gas emission during an outburst and normal mining activity, a total of
four statistical methods were employed to quantify the variation of gas emission: the
moving average, the deviation ratio, the dispersion ratio, and the fluctuation ratio. Also, the
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are also
included to demonstrate the accuracy of the deep learning model for predicting the
variation of gas emission. Developed from these six indicators, the multi-factor fuzzy
comprehensive evaluation model forms the outburst early warning system by calculating
the combined index of the difference among the indicators. The accuracy of the early
warning system is examined in the case study of the “3.25” gas outburst hazard in Shigang
Coal Mine. The results show advantages of the comprehensive evaluation model
established from the six characteristic indicators when predicting an outburst.
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INTRODUCTION

In 2020, China’s coal consumption accounted for 56.8% of the domestic primary energy consumption
(National Bureau of Statistics China, 2021). Before the carbon peak expected in 2030, coal energy will
remain an important part of China’s energy consumption. There are many disaster factors in the
process of coal mining. Among those, gas disasters are the “first killer” (Wang, 2018). After decades of
research and hazard control in this field, for the first time, no major coalmine gas accident occurred in
2020 (a major gas accident refers more than 10 dead in an accident) (Wu et al., 2021). However, recent
gas outburst accidents have been on the rise and have occurred more frequently in China. They include
the gas outburst at Shanxi Shigang Coal Industry Company on March 25, 2021, the gas outburst in
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Dongfeng Coal Mine, Guizhou, April 9, 2021, the gas outburst at
Sanbao Coal Mine, Guizhou, April 26, 2021, the gas outburst in the
Sixth Mine of Henan Hebi Coal and Electricity Co., Ltd. on June 4,
2021, and the gas outburst in the shaft at Didaoshenghe CoalMine,
Heilongjiang, June 5, 2021.

Due to the continuous occurrence of these gas outburst
accidents, scholars have paid more attention to the
characteristics of gas accidents to find a method to predict
them. The spatial-temporal distribution of the outburst
accidents in China was further analyzed by using the statistical
method (Wang E. Y. et al., 2020; Zhang et al., 2021). Some experts
and scholars introduced the various disaster factors of gas
outbursts into algorithms and models including the extreme
learning machines (Han et al., 2019), the random forests
(Long et al., 2021), the machine learning (Pu et al., 2019), the
Neural Network (Xu and Cheng, 2021), the Grey Correlation
Analysis (Yang and Zhou, 2021), etc. The correlation between the
various factors to the gas disasters were analyzed to realize the
disaster prediction. Some scholars used the engineering
technology and geophysical methods to predict the dynamic
disaster hazard, including the drill cuttings index method (Qi
et al., 2021), the initial velocity of gas emission from drilling holes,
the R index method (Wu, 2021), the acoustic emission method
(Wang et al., 2018), the micro-seismic method (Song et al., 2021;
Chen et al., 2022), the electromagnetic radiation method (Wang
H. et al., 2020), etc. Based on the gas monitoring data, some other
scholars utilized the data driven prediction algorithms, such as
data mining (Long et al., 2020), the Gaussian process model (Li
et al., 2021), the deep learning (Wang E. Y. et al., 2020) and the
multi-parameter fusion (Du et al., 2021) for predicting the coal
mine gas concentration. However, some influencing factors,
including the real time seam gas content and gas pressure,
cannot be obtained. The use of the drill cuttings method and
the electromagnetic radiation method are easily affected by
human activities and the underground geological environment.
Therefore, the prediction results may show a certain degree of
delay and also relatively larger errors.

In order to improve the accuracy of the gas outburst early
warning model and to facilitate the real time on-site decision-
making, the influencing factors in the model must be obtained in
real time in the first place. Based on the evolving mechanism of gas
outburst, the gas emission can be obtained in real time and also
clearly characterizes the entire outburst process, which should be
considered as a main factor. This paper employed four statistical
methods including the moving average, the deviation ratio, the
dispersion ratio, and the fluctuation ratio to quantify the variation
of the gas emission. The Root Mean Square Error (RMSE) and the
Mean Absolute Percentage Error (MAPE) were included in the
model to demonstrate the accuracy of the deep learning model for
predicting the variation of the gas emission. The outburst early
warning system was then formed by calculating the combined
index of the difference among the indicators. Based on the data of
the real outburst accidents, the early warning results of this model
were compared with the results of previous models. The research
results showed important practical significance in improving the
outburst early warning accuracy and ensuring the safety of
production during the tunneling process.

CHARACTERISTIC ANALYSIS OF MAIN
FACTORS IN THE PROCESS OF COAL AND
GAS OUTBURST
Main Controlling Factors
Coal and gas outburst is an extremely complex coal-rock dynamic
disaster that often occurs during the mining process in coalmines.
It is a strong and complex dynamic process of gas-containing coal
and rock fluids that instantly evolve in time and space. The
outburst generates dynamic effects, which include releasing
powerful energy, damaging mining equipment, and causing
casualties. Secondary disasters such as gas explosions are not
unusual, which seriously threatens the safety in the mine
production (Wang W. et al., 2020). At present, experts and
scholars generally believe that the coal and gas outburst is the
result of the combined effects of stress, gas, and the physical and
mechanical properties of the coal seam (Zhu et al., 2018). Coal
and gas outburst is the dynamic evolving process of the coal seam
including the energy accumulation, development, destruction
and release. It can be divided into four phases including the
evolution, formation, development and the termination (Luo
et al., 2018). The evolution model of the coal and gas outburst
is shown in Figure 1.

Evolution Phase
In-situ stress is the dominant cause of an outburst. After the start
of the mining operations, the load in the mining field is
transferred to the coal wall, and the in-situ stress gradient of
the coal wall increases and concentrates, raising the gas pressure.
In addition, changes in the ground stress affect the internal
structure of the coal seam, alter the preservation and
movement of gas (Qin et al., 2021), and provide energy to the
occurrence of the coal and rock dynamic disasters. At this stage,
various outburst signs including the muffled thunder, the
fluctuation of the gas concentration and the abnormal gas
emission would appear in coal and rock masses.,

Formation Phase
The combined action of the in-situ stress and gas leads to the
fracture and instability of the coal mass, promoting the
development of an outburst. The pressure of the gas increases
by several to over ten times. The coal mass expands and deforms
when adsorbing the gas. A large amount of the adsorbed gas enters
the desorption process and participates in the outburst. Gas
expansion energy is the main energy source for a gas outburst
(Lichtenberger, 2006). The elastic potential energy, the gas internal
energy, and the gravitational potential energy of the unstable coal
and rock masses break the unstable coal mass and throw it out in
the space, forming small outburst holes (Hu et al., 2008).

Development Phase
When the external pressure drops suddenly, the higher pressure
in the coal mass causes rapid gas release and resultant facture of
coal mass. The gas storm with high gas pressure gradient moves
the fractured coal mass (Wang, 2020). The development of the
outburst depends on the physical and mechanical properties of
the coal. A smooth outburst hole promotes the development of
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the outburst, while resistance in the hole prevents the outburst
from developing.

Termination Phase
The pressure gradient of the ground stress and gas would sharply
drop when the outburst energy gradually decays to a degree that
hardly damages the coal mass or the outburst holes are blocked.
Furthermore, the gas outburst would stop when the conditions
for continuous damage and instability are not met.

In the evolution process of coal and gas outbursts,
underground mining activities can destroy the original
equilibrium of stress in the coal seam. In-situ stress affects the
gas movement in the deep coal mass by controlling the porosity
and permeability in the coal mass. The seam gas content
surrounding the excavation face affects the distribution and
gradient of the gas pressure. It also determines the gas
emission quantity. The dynamic changing characteristics of the
gas emission are affected and controlled by various factors such as
the coal and rock mass stress, the gas pressure, the coal and rock
permeability. All these factors contribute to the deformation and
fracture of the coal mass. The pattern change is basically
consistent with the hazard of the gas outburst.

In summary, the gas emission participates in the entire process
of the coal and gas outburst. The parameter values can be
calculated by the gas concentration, the wind speed, and the
cross-sectional area of the tunnel. More importantly, the values
can be obtained in a real time manner, as described in Eq. 1.
Therefore, this parameter was selected as the main factor for in-
depth analysis.

Qs � 60CvsS (1)
Where Qs is the value of gas emission quantity in the tunnel, in
m3/min; C denotes the gas concentration, in percentage; vs
denotes the wind speed, in m/s; S is the cross-sectional area at
the testing location in the tailgate, in m2.

According to Eq. 1, the gas emission is a function of the gas
concentration, the wind speed, and the roadway cross-sectional
area. By selecting the gas sensor data, the wind speed and the
cross-sectional area of the tailgate, the analysis of the precursory
characteristic law of gas outburst was carried out.

Choosing the Indicators for Coal and Gas
Outburst Based on Statistics
In order to accurately analyze the variation characteristics of gas
emission, this paper employed the moving average, the deviation
ratio, the dispersion ratio, and the fluctuation ratio as the
characteristic indicators for the dynamic change of the gas
emission quantity.

Moving Average
The moving average is a series of averages on the gas emission
quantity of different subsets in the full observing time period. It
reflects the change trend of the gas emission quantity over time,
indicating the dynamic engineering disturbance in the mining
activity process, and the change of the gas emission quantity in a

certain period of time (increasing, horizontal and declining). The
trend is stable, which means it will continue for a period of time
once established and will remain stable until external factors force
it to change.

�Cn � 1
n − 1

∑n−1
i�1 Ci (2)

Where �Cn is the nth average of gas emission quantity, n is the
number of subset in the full period, Ci denotes the ith gas
emission quantity recorded.

Deviation Ratio
Deviation ratio is the value by which the real-time gas emission
quantity deviates from the moving average in a period of time. It
reflects the change pattern of gas emission quantity affected by
the seam gas content, the gas pressure, the coal seam permeability
coefficient, and other factors during that time.

A(n) � Ct − �Cn

�Cn
(3)

Where Ct denotes gas emission quantity at time t, �Cn denotes nth
average of gas emission quantity.

Dispersion Ratio
The dispersion rate reflects the dispersion degree of the gas
emission data series, that is, the degree to which each value
deviates from the mean value. Dispersion of the gas emission
quantity in a certain subset of time period indicates the extent of
the change of the gas emission.

μ � 1
m
∑m

t�1Ct

D(m) � 1
m − 1

∑m

t�1(Ct − μ)2
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (4)

Where Ct denotes gas emission quantity at time t, m is the
number of the subset of time period.

Fluctuation Ratio
The fluctuation ratio can describe the vibration amplitude of the
sequence expressed by the amplitude variation ratio ROSC. This
ratio means the relative rate of change between the gas emission
quantity at the initial moment and the gas emission quantity at
the end moment of a certain time interval Meanwhile, it reveals
change times in the sequence as reflected by the frequency of
change ROFC, meaning change times in the gas emission quantity
within a certain time interval. The combination of these two
aspects describes the actual situation of the gas emission quantity
changes.

ROSC(n) � [(CTmax − CTmin)/CTmax] (5)
Where ROSC(n) denotes the ratio of the max concentration
changes in time period n, CTmax, CTmin denote the maximum
and minimum values of gas emission quantity during that time
period individually.
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ROFC � f(C(t−n)−t) (6)
Where C(t−n)−t denotes gas emission quantity from time t-n to
time t, f() denotes the change times.

In a variety of coal mining and tunneling technology
conditions, the gas emission from the normal coal mining face
and tunneling face periodically fluctuates within a certain range.
The moving average of the gas emission is a horizontal line that
changes steadily. The curves of deviation ratio, the dispersion
ratio, and the fluctuation ratio of gas emission quantity are
relatively stable. When the gas emission quantity sharply
increases or decreases, the moving average, deviation ratio,
dispersion ratio, and fluctuation ratio of gas emission quantity
exhibit abnormal changes.

Choosing the Indicators for Coal and Gas
Outburst Based on Deep Learning
The Principle of Bidirectional LSTM Neural Network
Recurrent Neural Network (RNN) is a simple loop that repeats in
the form of a chain. The schematic diagram of the structure is
shown in Figure 2.

The RNN returns the output of the hidden layer to the input
forming a cycle. When training RNN, as the input sequence
samples increase, the partial derivative weight matrix of the loss
function tends to zero or infinity, resulting in varnishing gradient
problem or exploding gradient problem, which makes the RNN
uncapable of dealing with the long-term dependence problem

effectively. Long short-termmemory (LSTM) is an optimized and
improved recurrent neural network model that controls the
proportion of information that needs to be retained or
forgotten in the cell state Ct in the neural unit by adding three
different “gate” structures (i.e., the input gate, the forget gate, and
the output gate). The gate structure enables the LSTM with the
long-term learning capabilities and solves the varnishing gradient
problem and exploding gradient problem that RNN cannot solve.

Compared with RNN, LSTM shows certain advantages in
dealing with the long-term dependence problems. However, it
can only predict the state of the next moment based on the
temporal information of the previous moment. In some
problems, the output of the current moment is not only
related to the state at the previous moment. It may also relate
to the state in the future and as a result, there are still deficiencies
in the actual application of the LSTM.

The bidirectional LSTM neural network (Bi-LSTM) can use
past and future data information for learning. In other words, it
can use the information from the upper memory as well as the
lower memory to predict reservoir physical parameters, which
remedies the LSTM’s shortcomings. Figure 3 is the schematic
diagram showing the input layer, the forward layer, the backward
layer, and the output layer from bottom to top. Of the two LSTM
network layers with opposite information transfer directions, the
forward LSTM layer can obtain the timing information of the

FIGURE 1 | Evolution model of the coal and gas outburst.

FIGURE 2 | Principle of RNN algorithm model.

FIGURE 3 | Principle of bidirectional LSTM algorithm model.
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previous moment, and the backward LSTM layer can obtain the
timing information of the future moment. Consequently, the
model can fully obtain the information of upper and lower
memory from both the front and back directions to predict
the current state and the model’s performance is therefore
improved.

The Bi-LSTM model has 8 weights used in cycles at each
moment: the weights of the input layer to the forward and
backward hidden layers (w1, w4); the weights of the forward
hidden layers (w2, w3); the weights of the backward hidden layers
(w6, w7); the weight of the forward and backward hidden layers to
the output layer (w5, w8). The formulas for the forward hidden
layer h‘t, the backward hidden layer ht and the output layer ot are
listed as follows:

h‘t � f(w1xt + w2C
‘
t−1 + w3h

‘
t−1) (7)

ht � f(w4xt + w6Ct−1 + w7ht−1) (8)
ot � g(w5h

‘
t + w8ht) (9)

During the training of the network model, problems such as
the insufficient training data sets, the sample uniformity, the
excessive noise interference in the training data, or the model over

complexity may arise, resulting in over-fitting. Aiming at the
over-fitting problem of the bidirectional LSTM model in
predicting with waveform data, the dropout mechanism is
introduced to restrict the sparsity in the random region of
the model (Cai et al., 2021). The dropout mechanism
randomly discards a certain fraction of neural units from the
network temporarily. The entire model training process is
equivalent to training many different networks. The update
of weights will not rely heavily on some features, and the
network can be forced to learn more robust features. It not
only prevents over-fitting, but also makes the model more
generalized, thus improving the efficiency and accuracy of
model training.

Choosing the Outburst Indicators Based on Deep
Learning
RMSE and MAPE are used as indicators to measure the
prediction accuracy of the model. RMSE and MAPE reflect the
deviation between the predicted gas emission quantity and the
actual quantity. A smaller value indicates better prediction
accuracy, and vice versa. MAPE is more robust to outliers of
the two, reflecting the overall prediction effectiveness of the
model. Conversely, RMSE, emphasizes the influence of outliers
on the prediction effectiveness of the model. Employing both can
better evaluate the accuracy of the model’s prediction.

The calculation formulas are:

RMSE �

���������������
1
n
∑n

i�1(Ci − C
‘

i)2

√√
(10)

MAPE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣∣∣∣∣Ci − C
‘

i

Ci

∣∣∣∣∣∣∣∣∣∣∣∣ (11)

Where Ci denotes actual gas emission quantity, C
‘

i denotes
predicted gas emission quantity, and n denotes the size of the
sample.

DEVELOPMENT OF EARLY WARNING
SYSTEM FOR COAL AND GAS OUTBURST

The coal and gas outburst early warning index system is
established from the dynamic characteristics of the gas
emission quantity and the gas emission quantity prediction
model based on the RNN. The criteria priority and member
function are created with the fuzzy comprehensive early warning
model and then the method for early warning of the coal and gas
outbursts, based on the characteristics of the online monitoring
gas emission quantity, is realized.

Determining the Severity of the Gas
Emission Quantity Model Abnormality
This paper combines the analytic hierarchy process (AHP) with
fuzzy theory to evaluate the probability of the coal and gas
outburst.

FIGURE 4 | Construction of coal and gas outburst early warning model.
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Determining the Indicator Weights With AHP
I. The 1–9 scale method is used to construct the judgment matrix
A, the principle eigenvalue λmax and the criteria priority vector w
are then calculated.

II. Check the consistency of the judgment matrix. In order to
test if the judgement criteria priorities are reasonable, the formula
of the consistency ratio for the judgment matrix is used.

C1 � λmax − n

R1(n − 1) (12)

WhereC1 is the consistency ratio, n is the number of criteria, R1 is
the random consistency indicator. When C1 ＜0.1, the
constructed judgement matrix is acceptable.

Establishing the Fuzzy Comprehensive Early Warning
Model
Fuzzy comprehensive evaluation contains three elements: the
factor set, the evaluation set, and the single-factor evaluation.
On the basis of single-factor evaluation, a multi-factor fuzzy
comprehensive evaluation is carried out.

Building the Factor Set
The factor set U is a set of all the factors that affect the evaluation
object, which can be expressed as U=(u1,u2,. . .,un). Among them,
the element ui (i = 1,2,. . .,n) represent influencing factors. In this
paper, the evaluation factor index set consists of two evaluation
factors, i.e., the gas emission quantity variation characteristics

and the gas prediction model output, which can be expressed as
U � (u1, u2).

Creating the Evaluation Set
The evaluation set is a set of possible evaluation results to the
evaluation objects, which can be expressed as V=(v1,v2,. . .,vm),
where the element vj (j = 1,2,. . .,m) indicates the result of the
evaluation. The evaluation result set in this paper includes two
kinds of results: outburst and no outburst, namely V = (outburst,
no outburst).

Creating the Weight Set
The weight of each element in the factor set U is different to the
evaluation, so each element ui should have a different weight wi

according to its importance. W is a fuzzy set of the factor set U,
which can be expressed asW = (w1,w2,. . .,wn). In this paper, since
it has 2 factors in the factor set, the weight set isW = (w1,w2), and
w1 + w2 = 1.

Single Factor Fuzzy Evaluation
The evaluation begins from one factor alone to determine the
degree of membership of the evaluated object to the elements of
the evaluation set. Suppose the object evaluated according to the
ith factor ui in the factor set, and the degree of membership of the
jth element vj in the evaluation set is rij, then the evaluation result
can be expressed as Ri = (ri1,ri2,. . ., rim ), where Ri representing the
single factor judgment set.

FIGURE 5 | Layout of coal and gas outburst accident site.
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FIGURE 6 | Pre-accident monitoring data in Shigang Coal Mine.

FIGURE 7 | Processed monitoring data in Shigang Coal Mine.
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Fuzzy Comprehensive Evaluation
The multi-factor comprehensive evaluation (R evaluation matrix)
is constructed from the single-factor evaluation sets, namely R =
(R1,R2 )T. Using the weighted average model, according to the
multiplication operation of the fuzzy matrix, we can obtain the
fuzzy comprehensive evaluation set B given as

B � WR � {b1, b2,/, bm} (13)
Where bi(i � 1, 2, . . . , m) is the fuzzy comprehensive evaluation
indicator, denoting the membership degree of the evaluated
object relative to the ith element in the evaluation set V, while
taking into account all the factors.

The value of the fuzzy comprehensive evaluation set B is used
to represent the comprehensive indicator of the differential
individual indicator, based on the evaluation indicators RMSE
and MAPE of the prediction model. The gas emission quantity
dynamic change characteristic indicators are used for the

evaluation and early warning for the coal and gas outburst.
The data of gas emission during the normal production period
of a coal mine are analyzed by using the difference comprehensive
index. The maximum value of the calculation result is multiplied
by the safety factor (1.2–1.5) to determine the early warning
threshold. When the comprehensive indicator reaches the
maximum value within the normal range, an orange alarm is
given; when the comprehensive indicator approaches 1, it means
that the probability of a coal and gas outburst is high and the red
alarm is sent out.

Construction of Early Warning Model for
Coal and Gas Outburst
This system continuously collects the gas concentration and the
wind speed data from the sensors in the tailgate of the driving
face. After removing the interference data, the value of gas

FIGURE 8 | Gas emission quantity moving average curve.

FIGURE 9 | Gas emission quantity deviation ratio curve.
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emission quantity is calculated, then the moving average, the
deviation ratio, the dispersion ratio, and the fluctuation ratio of
the gas emission quantity change values are extracted as
characteristic indicators. At the same time, the data collected
during the normal excavation process in the past period of time
is input into the Bi-LSTM neural network model for training and
tuning, so that the model training error meets the predetermined
requirements and the data model under normal production
conditions is established. The newly collected data is then input
into the model as the test data set to calculate the predicted value of
the gas emission quantity and the loss value. The predicted gas
emission quantity is combined with the characteristic indicators of
gas emission quantity variation to form the early warning indicators
for the coal and gas outburst. Next, the early warning indicators are
used for the fuzzy comprehensive early warning model. By
calculating the differential individual index, the threshold is

determined and the evaluation and early warning of the risk level
of coal and gas outburst is implemented. The construction of coal
and gas outburst early warning model is shown in Figure 4.

APPLICATION RESULT ANALYSIS

Data Collection and Analysis
The national mine safety production risk monitoring and early
warning system platform has collected the safety monitoring
system data of all production and construction coal mines.
The data includes information such as the sensor type, the
sensor location, the real-time monitoring data value of the
sensor and the collection time. The data is transmitted once a
minute in a message queue. The platform data provides data
support for the time series data analysis of this study.

FIGURE 10 | Gas emission quantity dispersion ratio curve.

FIGURE 11 | Gas emission quantity amplitude variation ratio curve.
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FIGURE 12 | Gas emission quantity frequency of change curve.

FIGURE 13 | Gas emission prediction based on Bi-LSTM. (A) Gas emission prediction in normal production (B) Gas emission prediction before the accident

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 81197810

Wang et al. Early-Warning Method for CGO

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


In the first half of 2021, coal and gas outburst accidents
occurred frequently. They provide copious data source for
analysis in this work. There were three coal and gas outburst
accidents occurred in this period, cost 20 lives.

I. At 3:51 a.m. 25 March 2021, outburst accident happened at
the 15210 headentry in Huayang New Material Technology
Group Co., Ltd., Shanxi Shigang Coal Industry Co., Ltd.,
causing four people died.

II. At 11:33 a.m. April 9, 2021, outburst accident happened at
the open-off cut of 10901 headentry in Dongfeng Coal Mine,
Guizhou, causing eight people died.

III. At 17:50 4 June 2021, outburst accident happened at the
tailentry of the 3,002 excavation face in the No. 6 mine of Henan
Hebi Coal and Electricity Co., Ltd. The accident caused eight
deaths.

Based on gas emission quantity statistical indicators and the
deep learning indicators, the early warning model in this work is
used to analyze the data of Shigang coal mine for the research on
early warning of coal and gas outburst. The accident occurred at
the excavation face of 15210 headentry. The gate is a rectangular
section with 3 m height and 5 m wide. The mining layout is
shown in Figure 5. This work selects the gas concentration data
and the wind speed data of 15210 headentry from the 2 months
before the outburst for analysis. A total of 86,400 pieces of
monitoring data were collected. On the whole, the gas
emission quantity fluctuates with the progress of mining

activities. About 4 days before the accident, the frequency of
gas emission quantity fluctuations increased significantly, and the
variation of gas emission quantity was abnormal This is a sign of
coal and gas outbursts. Through the early warning model, the
prediction of coal and gas outburst is realized.

The commonly used training strategies are adopted in deep
learning to select the hyperparameters for the Bi-LSTMmodel. The
initial value of the learning rate is set as 1e−4; the dropout set as 0.2
to suppress overfitting; the lag set at 16; the batch size set at 32; the
frequency set at 8 the epoch set at 20; the number of nodes in the
hidden layer set at 64; the optimization method selected is Adam.

On the 15210 headentry excavation face, the original
monitoring data curve is shown in Figure 6. The involved
manual calibrations were found in monitoring data collected
by the gas sensors. The calibration would cause interruption to
the continuity of the data, and the data manifests the abnormal
increase. Therefore, this part of the data needs to be removed,
which interpolated with the cubic spline curve. The overall gas
emission quantity sequence is reduced noise with five-point cubic
smoothing. The processed curve is shown in Figure 7:

This work selects the gas emission quantity data from 19
February to 20 March 2021 for the model training. Totally 43,200
pieces of data are divided into the training set and the test set at a
ratio of 0.8. After the model was trained, the gas emission
quantity data from 21 March to the moment before the
accident was input into the model as a test set. The obtained

TABLE 1 | Weights of all criteria and sub criteria.

Early warning criteria Weights (%) Early
warning sub criteria

Weights (%)

Statistical indicators 66.67 Moving average 54.07
Dispersion ratio 9.65
Diversion ratio 30.07
Fluctuation ratio 6.21

Prediction model indicators 33.33 RSME 66.67
MAPE 33.33

FIGURE 14 | Analysis of outburst warning results on March 19th.
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loss values RSME andMAPE, combined with themoving average,
the deviation, the dispersion and the volatility of gas emission
time series can comprehensively reflect the abnormal changes of
gas emission before the outburst accident.

Determination of Indicators Weights and
Membership Functions
Based on the indicators change before the coal and gas outburst,
the judgment matrix is constructed by the AHP to calculate
indicators weights. Since the calculated C1 = 0.0123 < 0.1, the
judgment matrix confirms that the result is acceptable. The
weights of the indicators are shown in Table 1:

According to the principle of determining the membership
function, a large amount of the experimental data is used to
determine the membership function of various indicators.

Ⅰ. Moving average: it is defined as the ratio of the real-time gas
emission moving average to the previous period (1 h) gas
emission average �Cave.

Ⅱ. Deviation ratio, dispersion ratio: the value interval is divided
by the ratio of the real-time deviation, dispersion and the average
value of their respective calculation periods.

Ⅲ. Fluctuation ratio: the value interval for volatility is divided
by the real-time volatility with its average in the calculation
period. Then the larger value of the amplitude change rate
and the frequency change rate was taken as the final value.

Ⅳ. RSME, MAPE: the value interval is divided by the ratio of
the loss value of the predicted gas emission quantity before the
real-time accident to the average value of the predicted loss of the
gas emission quantity in the normal production.
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Analysis of Changes in Indicators Before the Outburst
Accident
For the “3.25” coal and gas outburst accident in Shigang
Coal Mine, the gas emission monitoring data from 4 a.m. on
24 March to 4 a.m. on 25 March is collected to calculate the
moving average, the deviation, the dispersion, the amplitude
change and the variation frequency. The change law of the gas
emission quantity change on the eve of the outburst accident is
analyzed.

I. Moving average
The moving average is calculated using Eq. 2 during the 5-min
periods. The gas emission quantity moving average curve is
shown in Figure 8. According to the calculation results, it can
be found that the gas emission variation is relatively stable from
24 to 12 h before the outburst accident. At 12 h before the
outburst, the gas emission drastically changes with a patten of
“suddenly large and suddenly small”. Themoving average reaches
the highest value of 4.95 m3/min at 4 h before the outburst, and
then drops sharply. The gas emission begins to increase at 2 h
before the outburst and reaches the peak value of 4.56 m3/min.
Just before the outburst, the gas emission reaches the maximum
value of 13.4 m3/min. Overall, the gas emission quantity presents
a dynamic trend of “stable-rising-falling-rising”, which is similar
to a “W” shape, with multiple peaks.

Deviation Ratio
The deviation of the gas emission quantity sequence is
calculated from Eq. 3 and the result of the moving average.
The gas emission quantity deviation ratio curve is shown in
Figure 9. According to the calculation results, it can be found
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that the deviation from 24 to 14 h before the outburst
changes within the range of ±0.2. There is an abnormal
value of 0.567 at 12 h before the outburst. The peak value of
the gas emission quantity deviation is 0.866 just before
the outburst. The “suddenly large and suddenly small”
patten of changes in gas emission quantity leads to an overall
increase of 2–3 times higher than the deviation rate at 24–14 h
before the outburst.

Dispersion ratio
The dispersion of the gas emission quantity sequence is calculated
with Eq. 4. The time period is 10 min. The gas emission quantity
dispersion ratio curve is shown in Figure 10. According to the
calculation results, it can be found that the dispersion is at around
0.0007 from 24 to 14 h before the outburst. From 12 h before the
outburst to the outburst time, the average value of the dispersion
rate is 0.0023, an increase of 3 times. The peak value of the gas
emission quantity dispersion is 0.132 just before the outburst.
Abnormal changes in gas emission quantity leads to the increased
dispersion.

Amplitude variation ratio
The amplitude variation ratio of the gas emission quantity
sequence is calculated with Eq. 5. The time period is 10 min.
The gas emission quantity amplitude variation ratio curve is
shown in Figure 11. According to the calculation results, it can be
found that the fluctuation range of the amplitude variation ratio
from 24 to 14 h before the outburst accident is large, with an
average value of 0.362. The peak value of the gas emission
quantity amplitude variation ratio is 0.87 at 12 h before the
outburst. It tends to be stable from 12 h before the outburst to
the outburst time, with an average value of 0.474. From the data,
the overall amplitude variation ratio before the outburst tends to
be relatively frequent.

Frequency of Change
The frequency of change of the gas emission quantity is calculated
with Eq. 6. The time period is 10 min. The gas emission quantity
frequency of change curve is shown in Figure 12. According to
the calculation results, it can be found that the frequency of
change from 24 h to 14 h before the outburst fluctuates around 7
times. The average of the frequency of change is about 8 times
from 12 h before the outburst to the outburst time. Over time, the
closer it is to the outburst time, the more frequent the changes.
The frequency of change approaches 10 times.

The Bi-LSTM prediction model is used to simulate the normal
production gas emission quantity sequence and the gas emission
quantity sequence including the eve of the accident. The average
RSME of normal production gas emission quantity sequence is
0.006, and the average MAPE is 2.274%. The prediction results
are in good agreement with the actual value, indicating that the
Bi-LSTM prediction model has high accuracy for the gas emission
quantity sequence. The gas emission prediction curve in normal
production is shown in Figure 13A. The average RSME of gas
emission quantity sequence at the moment before the outburst is
0.023, and the average MAPE is 10.14%, which are 3.8 times and
4.5 times of the normal, respectively. The gas emission prediction
curve before the accident is shown in Figure 13B. This indicates
that abnormal changes in gas emission quantity before the
outburst has led to a decrease in the accuracy of the model.
The loss functions of the model could be used as the early warning
indicators for the outburst.

Analysis of Early Warning Results of Each Indicator
System
The gas emission quantity data of Shigang Coal Mine during the
normal production from 19 March to 20 March is used to
calculate the statistical indicators, the deep learning indicators
and the comprehensive indicators to conduct the early warning

FIGURE 15 | Analysis of outburst warning results on March 20.
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research and the judgment on the gas emission quantity. The
results of the research are shown in Figures 14, 15:

As reflected by early warning results of gas emission quantity
on March 19th and 20th, the deep learning indicators are used to
analyze the gas emission quantity. Orange warnings with more
than 0.5 appear many times, indicating that the deep learning
indicators are overly sensitive to outburst early warnings;
Statistical-based indicators can describe the characteristics of
the abnormal changes in gas emission quantity to a certain
extent, but the sensitivity is lower. The comprehensive
indicators combine the sensitivity of deep learning indicators
and the statistical indicators to abnormal changes in gas emission
quantity, which have significant advantages in the accuracy of the
gas outburst early warning.

Analysis of the Outburst Early Warning
Results
According to the gas emission data of Shigang Coal Mine from
March 19th to 24th, the comprehensive index model is used to
carry out the early warning of the coal and gas outburst. The
results are shown in Figure 16:

Through the analysis of the early warning of coal and gas
outburst in Shigang Coal Mine from March 19th to 24th, the
results show that the comprehensive index of gas outburst early
warning fluctuates below 0.5 during the normal production
period. At around 20:00 on March 20th, the early warning
index rose sharply with many red warnings (comprehensive
index exceeding 0.8) and continuous orange warnings
(comprehensive index exceeding 0.5). From the 21st to 23rd,
as the driving activity continued, the comprehensive index
fluctuated rapidly and longer-time red warnings (exceeding
0.8) appeared every day, which reveals that the coal and gas
outbursts was in the formation phase, and the gas was gushing out
rapidly. From 22:00 on the 23rd to 12:00 on the 24th, the
comprehensive index fluctuated below 0.5. It might be caused
by the fact that the formed small protruding holes were blocked at
the development phase, which stopped the gas from gushing out.
After 12:00 on the 24th, the gas emission quantity changed
drastically until the outburst occurred, and red warnings
appeared many times at this stage.

The coal and gas outburst early warningmodel is used to verify
and analyze the data of outburst accidents in Dongfeng Coal
Mine and Hebi No. 6 mine. By collecting 24-h period of data at
Dongfeng Coal Mine from 8:00 on April 8th to 8:00 on April 9th
for early warning analysis, there were many orange warnings and
red warnings. The outburst warning results of on Dongfeng coal
mine are shown in Figure 17A. By collecting the data of Hebi No.
6 mine from 17:00 on June 3rd to 17:00 on June 4th for early
warning analysis, it showed many orange warnings and red
warnings. The outburst warning results of on Hebi Six
Mineral are shown in Figure 17B. By comparing and
analyzing the time series of the gas emission quantity, it is
found that the gas emission quantity changes abnormally on
the eve of coal and gas outburst, which is consistent with the
occurrence law of coal and gas outburst.

FIGURE 16 | Analysis of outburst warning results on March 19–24. (A)
Analysis of outburst warning results on March 19 (B) Analysis of outburst
warning results onMarch 20 (C) Analysis of outburst warning results onMarch
21 (D) Analysis of outburst warning results on March 22 (E) Analysis of
outburst warning results on March 23 (F) Analysis of outburst warning results
on March 24.
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CONCLUSION

I. According to the analysis of the coal and gas outburst evolution
process, a coal and gas outburst early warning index based on the
combination of statistical indicators of the gas emission and deep
learning indicators is proposed, which includes the moving
average, the deviation ratio, the dispersion ratio, the
fluctuation ratio, RMSE and MAPE.

II. The early warning indicators are examined in the “3.25”
coal and gas outburst accident in Shigang Coal Mine. The
statistical indicators, deep learning indicators and the
comprehensive indicators are used for the early warning
analysis on the gas emission quantity during the normal
production period. By using the deep learning indicators to
analyze the gas emission quantity, orange warnings (exceeding

0.5) appear many times, indicating that the deep learning
indicators are overly sensitive to outburst early warnings.
Statistical-based indicators can describe the characteristics
of abnormal changes in gas emission quantity to a certain
extent, but the sensitivity is lower. The comprehensive
indicators combined with the deep learning indicators and
statistical indicators successfully captures the abnormal
changes in the gas emission quantity, which has significant
advantages in the accuracy of gas outburst early warning and
interprets the change rule of the gas emission quantity before the
gas outburst.

III. Comprehensive indicators are used to mine and
analyze the gas emission quantity data of Shigang Coal
Mine. The model proposed in this work captured signals
of abnormal changes in the gas emission on March 20th

FIGURE 17 | Prominent warning results validation analysis. (A) Outburst warning results of on Dongfeng coal mine (B) Outburst warning results of on Hebi Six
Mineral.
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(4 days before the accident), and orange warnings and red
warnings were given continuously for many times. The
accuracy and practicality of the model is also verified by the
gas emission quantity data of Dongfeng Coal Mine and Hebi
No. 6 mine.
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