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Rapid characterization of biomass composition is a key enabling technology for
biorefineries—the ability to measure the chemical composition of biomass materials
entering the biorefinery as well as the composition of key process intermediate streams
would allow real-time process control and the development of robust models to predict
process performance. The utility of near-infrared (NIR) spectroscopy for rapid
characterization requires multivariate algorithms for building calibration models. The
most prevalent algorithm used for building calibration models using NIR spectra is the
linear modeling algorithm Partial Least Squares Regression (PLS). Nonlinear regression
algorithms (which are typically more computationally intensive than linear modeling
approaches) have gained popularity in recent years due to their ability to solve a wide
variety of classification and regression problems and the dramatic increase in available
computational resources. In this work, we demonstrate that a calibration model can
predict the composition of corn stover process intermediate samples pretreated with
three different treatments—hot water (HW), dilute acid (DA), and deacetylation followed
by dilute acid (DDA). We quantitatively compare three different algorithms for building
prediction models based on near-infrared spectroscopy—partial least squares (PLS),
support vector machines (SVM), and random forests (RF). We demonstrate the utility of
improving model performance by accounting for instrument performance variability
using repeated measurements of standard materials (e.g., the “repeatability file”
strategy) and investigate its performance with nonlinear regression techniques, and
we discuss methods for quantifying the uncertainties of specific predictions among the
three methods.
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1 INTRODUCTION

Rapid characterization of biomass composition is a key enabling technology for biorefineries—the
ability to measure the chemical composition of biomass materials entering the biorefinery as well as
the composition of key process intermediate streams would allow real-time process control and the
development of robust models to predict process performance. There is substantial literature on the
use of spectroscopic methods such as near-infrared (NIR) spectroscopy for rapid biomass
characterization going back several decades (Abrams et al., 1987; Sanderson et al., 1996; Kelley
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et al., 2002; Tsuchikawa, 2007; Labbe et al., 2008; Tsuchikawa and
Kobori, 2015) and including some comprehensive reviews (Xiao
et al., 2014; Skvaril et al., 2017).

The use of NIR spectroscopy for rapid characterization
requires multivariate algorithms for building calibration
models (Höskuldsson, 1988; Beebe et al., 1998; Pasquini,
2018). The most prevalent algorithm used for building
calibration models using NIR spectra is Partial Least Squares
Regression (PLS). PLS is an extension of multiple linear
regression and uses feature extraction to produce new latent
variables (principal components) composed of linear
combinations of the original variables that describe the
majority of the variance correlated with the outcome of
interest (Höskuldsson, 1988). While originally developed for
the field of econometrics, PLS has been used in chemometrics
since the 1970s, and is currently a standard method for NIRS
regression (Geladi and Kowalski, 1986).

Nonlinear regression techniques have demonstrated utility in
solving a wide variety of classification and prediction problems.
In recent years their usage has increased due to a combination of
dramatically increased availability of high-performance
computing (HPC) tools and access to open-source
implementation of these algorithms in computing languages
such as R and Python. Support Vector Machines (SVM)
(Awad and Khanna, 2015) and Random Forest (RF) (Breiman,
2001; Fawagreh et al., 2014) are two such nonlinear machine
learning techniques. SVM regression expands upon the support
vector machine classification technique (Cristianini and Shawe-
Taylor, 2000) to fit a hyperplane that minimizes the residuals
outside a defined error margin (ε-margin). In the training
process, a cost parameter, C, is chosen, which defines the
penalty for residuals above a certain value. SVM can be used
to explain linear and nonlinear relationships through the use of
kernel functions (Cristianini and Shawe-Taylor, 2000; Awad and
Khanna, 2015). Radial bias functions (RBF) are often used with
training sets having nonlinear relationships between dependent
and independent variables. RBF functions require the additional
tuning of the parameter σ, which controls for the level of
nonlinearity in the model. Random Forest Modeling develops
individual decision trees based on a randomly chosen selection of
predictors and then aggregates tree results to determine the
outcome of interest. The user must decide upon the number
of predictors to use in each model, and the number of models (the
number of trees) to include in the forest (Breiman, 2001).

There have been direct comparisons of the performance of
these regression techniques with NIR spectral data. RBF-SVM
was found to be statistically significantly better than PLS at
predicting soil quality parameters in spectral data sets greater
than 1,000 samples, as evidenced by reductions in RMSEP of
14%–29% (de Santana et al., 2021). A study using NIR to
quantify caffeine content in tea samples found a 9%
improvement in RMSEP from SVM as compared to PLS
(Chanda et al., 2019). RF was found to be statistically
significantly better than PLS at predicting soil quality
parameters from a regionally diverse soil spectra database,
with improvements ranging from 8%–16% RMSEP (de
Santana et al., 2018). RF led to improvements in the

predictive modeling of petroleum products (paraffin,
naphthene, and total aromatic wt%) in naphtha and
gasoline samples of up to 18% SEP compared to PLS, and
RF was more robust against overfitting than PLS for outcomes
with narrow ranges (Lee et al., 2013). It may be that the success
of these nonlinear approaches may be related to the presence of
nonlinear relationships between NIR spectra and the primary
analytical measurements.

The strategy of using a “repeatability file” to reduce the impact
of instrument and environmental changes on spectral variability
over the long term was introduced over 30 years ago (Shenk and
Westerhaus, 1991). It has been demonstrated to decrease the
effect of spectral variance associated with instrument and
environmental (e.g., temperature, humidity) variability in
partial least squares regression. These variabilities are more
prominent and important to account for in samples that
inherently contain water, such as biomass (Near-Infrared
Spectroscopy in Agriculture, 2004). This approach uses
repeated measurements of external materials to create a
collection of spectra. The difference of each spectrum in the
collection from the collection mean value are then calculated.
These difference spectra are appended to the mean-centered
calibration or training set (with appropriate weighting factors)
and assigned the mean composition values for the training set.
These “repeatability” spectra thus capture any spectral variation
that is not correlated with compositional changes because the
composition of these external materials does not change over
time. The difference spectra represent uncontrolled
environmental or instrumental variability. Including these
spectra in the calibration set explicitly quantifies measured
spectral variation not associated with sample composition
variability.

To our knowledge, a comparison of how the nonlinear
regression algorithms SVM and RF perform at predicting key
biomass compositional attributes (structural carbohydrate,
lignin, and ash content) in pretreated corn stover samples
across a variety of pretreatments has not been demonstrated
previously. Furthermore, the effect of the “repeatability file”
strategy to control for instrument and environmental variance
using nonlinear regression algorithms (rather than PLS) has not
been demonstrated. In this work, we thus extend the existing
literature in the following ways –

• We demonstrate that a single calibration model can predict
the composition of corn stover samples subjected to three
different pretreatments—hot water (HW), dilute acid (DA),
and deacetylation followed by dilute acid (DDA)

• We quantitatively compare three different algorithms for
building prediction models based on near-infrared
spectroscopy—partial least squares (PLS), support vector
machines (SVM), and random forests (RF)

• We demonstrate the utility of improving model
performance by accounting for instrument performance
and environmental variability using repeated
measurements of standard materials (e.g., the
“repeatability file” algorithm) and its performance with
nonlinear regression techniques.
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• We discuss methods for quantifying the uncertainties of
specific predictions from the three methods

2 MATERIALS AND METHODS

2.1 Sample Set
The dataset used in this work consisted of 151 corn stover
samples which were subject to different pretreatments– hot
water (HT), dilute acid (DA), and deacetylation followed by
dilute acid (DDA). All pretreatment experiments were
performed using a horizontal pretreatment reactor operated at
multiple temperatures (150°C–200°C) and two different mean
residence times (12 and 20 min). The reactor systems used have
been described previously (Shekiro et al., 2014). In brief, the corn
stover was impregnated with either hot water (HW) or dilute acid
(DA, DDA) prior to entering the pretreatment reactor. DDA
samples were subjected to a batch deacetylation step using a
separate reaction system. Samples were taken immediately before
or immediately after the horizontal pretreatment reactor once
steady-state conditions were reached in the reactor and were
refrigerated until compositional analysis.

The corn stover feedstock used in this work was harvested in
Trumbull County Iowa in September 2020 using single-pass
harvesting. The corn stover was milled to pass through a
19.05 mm (¾ inch) screen using a knife mill and stored in
flexible supersacks until use.

2.2 Analytical Methods
To prepare the corn stover samples for analytical chemistry,
stored samples were removed from refrigeration, washed with
deionized water to remove any soluble material, air-dried to less
than 10% moisture, knife-milled to pass through a 2 mm screen,
and stored in plastic bags until further analysis.

Primary analytical data were generated using NREL
Laboratory Analytical Procedures (LAPs, https://www.nrel.gov/
bioenergy/biomass-compositional-analysis.html). In brief, the
biomass samples underwent a 2-stage acid hydrolysis to
solubilize structural carbohydrates which were measured via
high-pressure liquid chromatography. Lignin was measured as
the acid-insoluble residue after hydrolysis, and total ash was
determined using a combustion assay. Because all samples in this
work had undergone pretreatment, the samples were not
extracted prior to analytical hydrolysis. The primary analytical
chemical data (wet chemistry) were produced between August
2020 and January 2021.

2.3 Near Infrared Spectroscopy Methods
Near-infrared (NIR) spectra used in the training set were
collected using a Metrohm NIRS XDS Multivial Analyzer
(Metrohm AG Switzerland). Samples were removed from their
plastic bags and stored under house vacuum for at least 24 h
before scanning to eliminate variability due to moisture content.
Relative humidity readings in the lab on all days of scanning
ranged from 13%–44%. Temperature readings in the lab on all
days of scanning ranged from 21.8°C to 25.2°C. Samples were
placed in quartz optical glass sample cups and scanned in

reflectance mode between April and June 2021. Spectra were
collected over the range of 400.0–2499.5 nm (0.5 nm resolution).
Spectra were the average of 32 unique scans, which were reference
standardized to Certified Reflectance standards (Metrohm AG
Switzerland). Spectra were collected using NIRS Vision 4.1
(Metrohm AG Switzerland). The entire sample population was
scanned a second time between October 2021 and January 2022.
None of the spectra created during this second scanning period
were included in the calibration set, but instead used to evaluate
the robustness of the models. The duplicate scans will be referred
to later as the “late training” set.

2.4 Modeling
The open-source programming language R (http://www.r-
project.org) was used for all model building. The following
packages were used: prospectr for spectral transformation and
selection of calibration and independent validation populations,
tidymodels recipes for dimensionality reduction techniques, the
pls package for PLS models, kernlab for SVM models,
randomForest for RF models, caret for model tuning and
cross-validation, and the tidyverse collection of packages for
data cleaning and wrangling. All model training was
performed on individual laptops or a local HPC cluster.
Unique models were created for four analytes—glucan, xylan,
lignin, and ash—using each modeling algorithm (PLS, SVM, RF).

Supervised (PLS) and unsupervised (PCA) dimensionality
reduction were evaluated as additional preprocessing
techniques for both SVM and RF models. No additional
preprocessing was used for the PLS model building.

The R scripts used to for spectral transformation, developing
the repeatability file, and regression modeling can be found in the
Supplementary Material.

2.4.1 Spectral Transformation
Spectra were normalized using the Standard Normal Variate
(SNV) transformation and smoothed using the Savitzky-Golay
algorithm (second order polynomial, first derivative, and window
size of 7). Spectra were then truncated to remove the visible
region below 600 nm, which corresponded with a low signal to
noise ratio, and the region between 1,075 and 1,125 nm, which
corresponded with a detector change that causes an abrupt shift
in absorbance. Centering was performed on the training-set prior
to model fitting.

The Kennard Stone algorithm (prospectr package) was used to
select an independent validation set that was spectrally
representative of the population, and therefore could evaluate
how well each model acted at predicting samples within the
observed spectral variance. This method resulted in 120 samples
for calibration and 31 for validation.

2.4.2 Managing Instrumental Variability
To minimize the effect(s) of instrument variability on spectra
collection and therefore regression model performance, we
implemented the “repeatability file” strategy using stable
biomass check cell spectra (Near-Infrared Spectroscopy in
Agriculture, 2004). A total of 15 spectra were collected from
each of two corn stover samples over the course of the scanning
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campaign. The two samples were selected to be representative of
the calibration population.

The spectra were normalized, smoothed, and truncated using
the same procedure used on the training spectra. The spectra were
then grouped by sample and recentered to a mean value of zero.
The centered, transformed spectra were weighted using the
technique suggested by Acharya (Acharya et al., 2014), which
corresponded to a weight (W) of 2. The spectra were paired with
the mean wet chemistry values for the entire calibration set and
added to the calibration set used for modeling. All models were
created and evaluated with and without the addition of these
spectra to the calibration data set to determine how the
“repeatability file” strategy affected model performance.

2.4.3 Model Validation
Ten repeated-10-fold cross validation was used to tune each
model to the appropriate hyperparameter selection. For the
PLS model, the only hyperparameter was the number of
principal components (PCs) in the model. The optimal
number of PCs was chosen based on the RMSECV value. For
the SVM model, two hyperparameters required tuning—cost (C)
and the radial kernel scaling parameter sigma (σ). For the RF
model, two hyperparameters required tuning—the number of
randomly selected predictors chosen at each split (mtry) and the
number of trees used in the model (ntree). For the SVM and RF
models, hyperparameter tuning was performed using a grid
search across an initially wide set of hyperparameters, and
selection was based on the combination of hyperparameters
that resulted in the lowest RMSECV. The initial grids for each
model are shown in the Supplemental Material model building
scripts. If the hyperparameter combination chosen by this
technique resulted in an edge case (at least one of the
parameters was one of the minimum or maximum options in
the grid), the grid was expanded iteratively until the resulting
hyperparameter combination did not include an edge case.

Model performance was evaluated by comparing the root
mean squared errors (RMSE) associated with different
predictions—predictions of the calibration or training
population (RMSEC), the repeated 10-fold cross validation
results (RMSECV), and the prediction of the independent
validation set (RMSEP). In addition to these three standard
measures of model performance, we also calculated the RMSE
of the prediction of the second set of calibration set spectra, the
“late training” set—the calibration set re-scanned several months
after the original scans (RMSE-late). Models were also evaluated
via the correlation coefficients (R2) for the same scenarios (e.g.,
training, cross-validation, independent validation, late training).
We used a Student’s t-test (after applying the Fisher z-transform)
to compare correlation coefficients, and an F-test to compare
RMSE values (Roggo et al., 2003).

3 RESULTS AND DISCUSSION

3.1 Compositional and Spectral Variability
The compositional analysis data for the pretreated corn stover
samples (organized by pretreatment chemistry and sampling

location) are shown in Table 1 and Figure 1. The
compositional analysis results show several consistent trends
that are attributed to the both the pretreatment used and the
sampling location.

3.1.1 Compositional Variability
The overall composition of the HW and DA samples taken at the
reactor inlet are very similar for all four analytes, while the DDA
samples taken at the reactor inlet are consistently higher in glucan
content and lower in both lignin and ash content. The xylan
content for inlet samples with all pretreatments is similar.
Because the HW and DA samples from the reactor inlet had
not yet been subject to elevated temperatures, and all samples
were washed prior to analysis, these samples should be quite
similar in glucan, xylan, and lignin content. The mean ash
content of the DA samples is slightly lower than for the HW
samples, since dilute acid is more aggressive in removing
inorganic materials than water even at ambient temperature.
The DDA samples at the reactor inlet had been subjected to
deacetylation, which removes acetate side chains from
hemicellulose, extractives, and a portion of lignin, xylan, and
ash. Thus, this results in increased glucan content and reduced
lignin and ash content. The loss in extractives, lignin, and ash,
which collectively increases the remaining glucan content, is
offset by the loss in hemicellulose during deacetylation,
keeping the xylan content approximately constant.

Thermochemical pretreatment increases the glucan and lignin
content and decreases the xylan content. Again, this is consistent
with the chemistry of pretreatment, where elevated temperature
and the presence of a catalyst (for DA and DDA) result in the
solubilization of a large portion of the hemicellulose fraction, a
small portion of the lignin fraction, but virtually none of the
glucan fraction. This results in pretreated samples with
substantially higher glucan, lower xylan, and higher lignin
contents. The HW chemistry does not use a catalyst, and so is
less effective in removing xylan and therefore enriching the
sample in glucan and lignin. The larger variability in the post-
pretreatment HW samples is due to the impact of reactor
temperature and residence time—higher temperatures and
longer residence times increase xylan removal and therefore
increase the residual glucan and lignin contents (full data
presented in Supplementary Material).

3.1.2 Spectral Variability
Figure 2 shows the mean values of the collected (A and B) and
mathematically-transformed (C and D) NIR spectra both before
(A and C) and after (column and D) thermochemical
pretreatment for the three different pretreatments used in this
work. As described previously, all collected spectra were
mathematically transformed (normalization and derivatization)
prior to use in model building.

The collected spectra of samples taken before pretreatment
(Figure 2A) have lower maximum absorbance at 500 nm in
comparison to corresponding samples taken after pretreatment
(Figure 2B) but have higher absorbance in the NIR range. The
spectra of DDA samples show higher absorbance in the NIR
range prior to pretreatment, while HW treated samples show the
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highest absorbance in the visible range after treatment. The
transformed spectra of the samples collected prior to
pretreatment are substantially different from the
corresponding spectra collected after pretreatment. Close
inspection of the transformed spectra shows that the HW and
DA sample spectra are more similar to each other than to the
DDA sample spectra, both before and after pretreatment. This is
consistent with the differences in primary analytical
chemistry—spectral variability follows compositional variability.

To investigate the spectral variability in more detail, we
used Principal Component Analysis (PCA) to reduce the
dimensionality of the transformed NIR spectra of the corn
stover samples. Figure 3A shows a key result of this PCA in a
score plot of the first two principal components. Sample points
are colored by sampling location, and sample point symbols
denote different pretreatment chemistries. The NIR spectra of
the reactor inlet and reactor outlet samples are substantially
different from each other (PC1), and the NIR spectra of the
DDA samples are substantially different from the DA and HW
samples (PC2). The DA and HW samples show substantial
overlap. Note also that the NIR spectra of the independent
validation samples held out of the model building (solid
symbols) overlap the NIR spectra of the calibration samples
(open symbols)—they are representative of the overall sample
population and therefore a good indicator of model
performance for spectra within the variance described by
the calibration set. In Figure 3B we plot the glucan content
vs. PC1 values. Glucan content correlates strongly and

inversely with sampling location (r = −0.87)—samples taken
from the reactor outlet have higher glucan content and lower
PC1 values than reactor inlet samples. The separation of the
population by chemistry seen in Figure 3A is still
evident—DDA samples are consistently higher in glucan
content than either HW or DA samples.

3.2 Construction of Quantitative Models
Supervised (PLS) and unsupervised (PCA) dimensionality
reduction techniques were evaluated as additional spectral
transformation techniques prior to SVM and RF. No
additional spectral preprocessing was used for PLS.
Dimensionality reduction using PLS resulted in better SVM
models compared to either no dimensionality reduction or
dimensionality reduction using PCA. No dimensionality
reduction led to the best performing RF model. Details of
these models are provided in the Supplementary
Material—for the balance of this work we compare PLS, SVM
with dimensionality reduction using PLS, and RF with no
dimensionality reduction.

Figure 4A shows the variability in raw spectra observed in the
biomass external reference check cells. Regions of high variability
in check cell spectra occur at 1,400 and 1,900 nm, which
correspond to the first overtone of the O-H stretch and the
combination mode H-O-H bend and O-H stretch in water,
respectively (Near-Infrared Spectroscopy in Agriculture, 2004).
Ambient building sensor data showed fluctuations in both the
relative humidity and temperature of the laboratory over that

TABLE 1 | Summary of compositional analysis data for population. Summary statistics for glucan, xylan, lignin and ash (%DW) content in the sample population used in this
work. Summary statistics are shown for each of the pretreatments, with samples taken from catalyst-impregnated samples prior to (before) and after thermochemical
pretreatment (after).

ALL Pretreatment

Hot water (HW) Dilute acid (DA) Deacetylated dilute
acid (DDA)

Before After Before After Before After

N 151 17 10 41 27 28 28

Mean (%) Glucan 48.0 39.0 49.9 39.2 54.4 47.2 60.1
Xylan 18.5 23.2 16.0 24.1 9.2 24.5 11.4
Lignin 23.2 20.8 23.4 22.0 29.1 19.4 24.5
Ash 1.6 2.3 1.8 1.7 2.3 1.0 1.1

Min (%) Glucan 35.6 37.5 42.8 35.6 50.1 44.1 56.9
Xylan 4.2 22.1 4.2 22.0 5.5 20.1 6.8
Lignin 17.5 19.8 20.7 19.7 25.8 17.5 22.8
Ash 0.6 1.8 1.5 0.7 1.6 0.6 1.0

Max (%) Glucan 64.5 40.4 58.9 41.6 57.9 51.4 64.5
Xylan 29.5 25.6 22.8 29.5 14.4 27.3 15.0
Lignin 31.3 22.1 29.2 23.1 31.3 21.6 26.2
Ash 3.0 3.0 2.2 2.8 2.8 1.3 1.4

SD (%) Glucan 8.4 0.9 6.1 1.0 2.1 2.1 2.1
Xylan 7.0 1.0 7.1 1.9 2.3 1.9 2.4
Lignin 3.4 0.7 3.1 0.7 1.3 1.1 0.8
Ash 0.6 0.4 0.2 0.4 0.3 0.2 0.1

DA, dilute acid; DDA, deacetylated/dilute acid; HW, hot water; DW, dry weight.
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time. It is likely that these fluctuations are the root cause of this
variability. Figure 4B compares the variability observed in the
transformed check cell spectra to that observed in the training set.
The variability observed at 1,900 nm in the check cells has a
similar in range to that observed across the entire training set,
suggesting that little useful compositional information can be
obtained from this region of the spectra.

Figure 5 compares the performance results (measured as
RMSE) for cross validation (Figures 5A–D), independent
validation Figures 5E–H, and late training validation
(Figures 5I–L) for PLS, RF, and SVM models made with
and without the addition of the check cell spectra variability
to the calibration set through implementation of the
“repeatability file” strategy. The tabulated results are
presented in the Supplementary Material. SVM and PLS
models showed statistically significant improvements in
glucan, xylan, and ash performance across the independent
validation and late training sets with the inclusion of a
repeatability file (α = 0.05). These results support the idea
that the repeatability file improves NIR model performance for
outcomes that are highly influenced by water when PLS is used

for dimensionality reduction. All models predicting lignin
showed no statistically significant improvement with the
addition of a repeatability file, indicating that the prediction
of lignin from pretreated biomass viaNIR is more robust to the
environmental variability encountered during this work than
the structural carbohydrates.

RF models showed no significant difference in performance
with the use of the “repeatability file” strategy. Random forest
models are known to be robust against the inclusion of
unimportant predictors and outliers (Breiman, 2001; Lee
et al., 2013). Because of the algorithm’s robustness against
unimportant variables, inclusion of the NIR regions with high
check cell variability had no substantial impact on the model
performance, regardless of whether a repeatability file is added.
Furthermore, the decision tree algorithm used in RF models
treats the repeatability file check cell variance like outliers to
the calibration set rather than variance to ignore. The
nonlinear nature of the individual decision trees is robust
against such outliers, making the addition of the check cell
spectra in the repeatability file algorithm superfluous—it
neither improves the model by decreasing the effect of this

FIGURE 1 | Dot plot depicting the distribution of primary analytical data (separated by pretreatment chemistry) of the combined calibration and independent
validation sample set for glucan (A), xylan (B), lignin (C), and ash (D) content (%DW). Samples are prior to (before) and after thermochemical pretreatment (after), which is
represented by color. Average measured glucan and lignin contents (%DW) increase and average measured xylan content (%DW) decreases after thermochemical
pretreatment for all pretreatments. DDA treated samples show higher glucan and lower lignin and ash content than DA or HW. DA, dilute acid; DDA, deacetylated/
dilute acid; Water, hot water; DW, dry weight.
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FIGURE 2 | Average Near-infrared (NIR) and Visible (Vis) diffuse reflectance spectra collected across the three different pretreatments. Samples are taken from
catalyst-impregnated samples prior to pretreatment (before) and after thermochemical pretreatment (after). Plots (A) and (B)—raw NIR spectra as collected. Plots (C)
and (D)—NIR spectra after spectral transforming via Standard Normal Variate and Savitsky-Golay smoothing. DA, dilute acid; DDA, deacetylated/dilute acid; Water, hot
water; DW, dry weight.

FIGURE 3 | (A) Scatter plot of Principal Component 2 (PC 2) vs. PC 1 of transformed near-infrared (NIR) spectra of pretreated corn stover samples. The samples
represent three different pretreatments. Samples are taken from catalyst-impregnated samples prior to (before) and after thermochemical pretreatment (after). The DA
and HW samples appear more similar to each other than to the DDA samples. (B) Scatter plot of measured glucan content (%DW) vs. PC 1 of transformed NIR spectra of
pretreated corn stover samples. PC 1 is highly correlated with the glucan content—variability in chemical composition strongly affects PC 1 variance, demonstrating
that spectral variance follows composition variance. DDA samples have consistently higher glucan content than DA and HW samples (see text). DA, dilute acid; DDA,
deacetylated/dilute acid; Water, hot water; DW, dry weight.
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variability nor decreases model performance by including this
variability. A comparison of the variable importance predictor
scores between the RF models with and without the inclusion
of the repeatability file (Supplementary Material) shows little
change in which predictors are used in modeling.

3.3 Modeling Algorithm Comparisons
In Table 2 we show the R2 and RMSE values for all four
analytes of interest (glucan, xylan, lignin, ash) for all three
modeling approaches (PLS, SVM, RF) for calibration, cross-
validation, independent validation, and late training. For these
models, the calibration data set was augmented with repeated
check cell spectra using the “repeatability file” strategy.

The SVM algorithm resulted in the statistically significantly
better cross validation performance compared to both PLS and
RF across all constituents. The best SVM models had an
RMSECV of 0.89 for glucan content, 0.71 for xylan content,
0.49 for lignin content, and 0.23 for ash content. No statistically
significant differences were found between the RF and PLS model
RMSECV results for any analyte.

Prediction performance with an independent validation set is
a more stringent test of model performance than cross-validation.
The performance results for the independent validation
predictions (RMSEP) were mixed between the different model
types. The SVM algorithm predicted glucan, xylan, and lignin

content from the independent validation set with greater accuracy
than the PLS algorithm. The residual plots included in the
Supplementary Material graphically demonstrate the reduced
scatter in the prediction residuals and reduced bias in samples
with high glucan content with the SVM algorithm. The RF
algorithm predicted glucan and xylan content with greater
accuracy than the PLS algorithm, while the SVM algorithm
resulted in better accuracy at predicting lignin content and
reduced bias in samples with high glucan content than RF, but
similar overall performance at predicting xylan content. All
modeling techniques resulted in similar prediction
performance at predicting ash content for the independent
validation set.

Finally, the prediction performance of the rescanned
calibration set (the “late-training” set described above) is
another test of model performance which includes the
model’s ability to differentiate instrumental or
environmental variance from variance associated with wet
chemistry. The SVM algorithm showed better performance
at predicting all constituents using the late training set as
compared to PLS, and better performance at predicting xylan
and lignin content than RF. SVM and RF had similar
performance for predicting ash and glucan content. RF
models predicted all constituents with higher accuracy
than PLS.

FIGURE 4 | (A) Plot of raw diffuse reflectance spectra of external standard materials check cells. The two external standard material check cells were created at the
beginning of the project from two unique pretreated corn stover feedstocks. The check cells were scanned 15 times over the course of 6 months. High variability in the
reflectance spectra exists at 1,900 nm, which corresponds to a known water overtone (B) SNV/SG/centered spectra of calibration spectra (grey) overlaid with SNV/SG/
centered difference spectra of the external standard material check cells (green). The variability of the calibration spectral between 1,900 and 2,050 nm is similar in
magnitude to the variability observed in the external standard material check cells. The ratio of calibration spectra variability to repeatability file variability is low in the visible
region below 500 nm, at the 1,100 nm detector change, and at 1,400 nm, which corresponds to another water peak.
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While all three algorithms provided acceptable models, the RF
algorithm required more computational resources—approximately
10–20 times longer than either the PLS or SVM algorithms. Final
versions of the RF models were trained using a local HPC cluster,

while the final PLS and SVM models were trained on a standard
laptop computer.

Figures 6, 7 show the predicted versus measured cross
validation and independent validation results across the three

FIGURE 5 | Bar chart of the model performance measured by RMSE values by constituent with the calibration data set alone or augmented by the check cell
difference spectra, the “repeatability file” strategy. The measures of performance shown are as follows: (A–D) : RMSECV (root mean square error of 10 × 10-fold cross
validation); (E–H): the RMSEP root mean square error of prediction; (I–L): the RMSE-late (root mean square error of late scan predictions). Themeasurement uncertainty
associated with the primary analytical method, (Templeton et al., 2010) which is two times the standard deviation from the primary analytical method, is shown for
scale as the leftmost black bar on each graph. The “repeatability file” algorithm improves the performance of the SVM and PLS models as measured by RMSEP and
RMSE-late but has little effect on the RF model (see text).

TABLE 2 | Summary of model performance results by constituent. Performance results for each model build for each constituent of interest.

Performance parameter %Glucan %Xylan %Lignin %Ash

PLS SVM (PLS) RF PLS SVM (PLS) RF PLS SVM (PLS) RF PLS SVM (PLS) RF

Training RMSEC 1.04 0.73 0.46 0.91 0.58 0.41 0.60 0.43 0.28 0.24 0.17 0.11
R2 0.98 0.99 1.00 0.98 0.99 1.00 0.97 0.98 0.99 0.83 0.92 0.97

Cross validation RMSECV 1.16 0.89 1.21 1.06 0.71 1.10 0.68 0.49 0.72 0.28 0.23 0.27
R2 0.98 0.99 0.98 0.98 0.99 0.97 0.96 0.98 0.95 0.77 0.85 0.79

Independent validation RMSEP 1.33 1.01 1.11 1.13 0.93 0.97 0.78 0.55 0.73 0.24 0.27 0.27
R2 0.98 0.99 0.99 0.98 0.99 0.99 0.96 0.98 0.97 0.83 0.80 0.81

Late training RMSE-late 1.64 1.12 1.27 1.30 0.88 1.07 0.76 0.52 0.64 0.31 0.25 0.25
R2 0.97 0.99 0.98 0.97 0.99 0.98 0.96 0.98 0.97 0.77 0.83 0.88

RMSEC, root mean squared error of calibration; R2, coefficient of determination, the square of correlation coefficient R; RMSECV, root mean square error of cross validation; RMSEP, root
mean square error of prediction; RMSE-late, root mean square error of late scan predictions.
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modeling techniques for measured glucan and lignin content (%
DW). Similar plots for measured xylan and ash, as well as residual
plots for all four constituents, are provided in the Supplementary
Material. In agreement with the statistics presented in Table 2
and discussed above, graphical displays of model performance
show all three algorithms provide acceptable prediction results
for all constituents, with the SVM modeling results appearing
slightly superior to PLS and RF for both the cross-validation and
independent validation predictions. In particular, we observe that
the SVM modeling algorithm appears to provide better glucan
predictions for the samples with the highest glucan content (as
measured by prediction residuals).

Moreover, a single model can accurately predict the
composition of corn stover samples undergoing three different
pretreatment chemistries (HW, DA, DDA) and at multiple
locations within the process (before and after the
thermochemical pretreatment reactor). We believe this has
substantial implications on the feasibility of real-time
characterization using on-line NIR spectroscopy—a single
model could be built and maintained for implementation at
multiple points in the process.

Discussions about the relative performance of different
modeling approaches or different modeling algorithms should
take the uncertainty of the primary analytical data used as the
dependent variables into account. Differences in RMSE values
smaller than the primary analytical uncertainties are not
practically significant. In Figure 5 we include a small vertical

bar in all plots corresponding to the uncertainty of the primary
analytical chemistry (Templeton et al., 2010) estimated as two
times the standard deviation of multiple replicate measurements
by analysts. Thus, the improvements in both glucan and xylan
RMSE-late values for the PLS and SVM models by using the
“repeatability file” strategy are both statistically and practically
significant, while the improvements in the ash predictions for
these models are statistically significant but not practically
significant.

RMSE values like those presented for the PLS, SVM, and RF
models developed in this work provide an estimate of the average
uncertainty for samples in the model population (e.g., training,
independent validation). However, they do not provide an
estimate of uncertainty of a specific prediction. Like in
primary analytical chemistry measurements, some estimation
of the uncertainty of a specific prediction from a rapid
characterization model is important to provide a quantitative
estimate of the confidence the user should have in that specific
prediction.

Linear modelling approaches like PLS have a robust literature
discussing this issue (Faber, 2005; Olivieri et al., 2006; Zhang and
Garcia-Munoz, 2009; Garrido-Varo et al., 2019; Emil Eskildsen
and Næs, 2020). Some measures of uncertainty calculate a
confidence interval for the prediction similarly to that of a
linear model where the confidence interval increases with the
distance in multivariate space from the spectra to be predicted to
the center of the calibration population and decreases as the

FIGURE 6 | Predicted vs. measured glucan content (%DW) for PLS, RF, and SVMmodels. The symbol shape represents the different pretreatment used, while the
color represents the sampling location—before or after thermochemical pretreatment. The upper row depicts the repeated 10-fold cross validation results for each
model. The lower row depicts the independent validation results for each model. DA, dilute acid; DDA, deacetylated/dilute acid; Water, hot water; DW, dry weight.
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quality of the calibration model increases. Other uncertainty
measures calculate a population membership region based on
the Mahalanobis distance of a sample to the center of the
calibration population. This is the basis of the well-known
global-H, neighborhood-H (GH, NH) statistic (Westerhaus,
2014).

While a detailed comparison of these different uncertainty
measures is beyond the scope of this work, we wish to point out
that these measures are based on an evaluation of spectral
similarity in a linear modeling framework (e.g., PLS, PCA,
PCR). Thus, such uncertainty estimates may be appropriate
for use with Support Vector Regression even with nonlinear
kernels if a linear dimensionality reduction technique (like
PCA or PLS) is used. However, Random Forest Regression is a
nonlinear technique, and use of uncertainty estimations using
such assumptions are inappropriate. There has been some
research into uncertainty measures for RF (McAlexander and
Mentch, 2020; Tavazza et al., 2021), but consensus on the best
approach has not been reached, nor has the application of any
specific approach to RF models based on spectroscopy been
demonstrated. In the absence of such consensus, a concern
with using an RF model is the inability to estimate a
confidence interval for individual predictions.

3.4 Selecting a Model
In this work we have compared the performance of three
different modelling approaches (PLS, SVM, and RF) for

developing a rapid characterization model for a population of
pretreated corn stover samples using three different
pretreatment chemistries. All three approaches resulted in
acceptable models as measured by multiple RMSE
assessments (training, cross-validation, independent
validation, late-training) when compared to the uncertainty
in the primary analytical chemistry methods. The use of
repeated check cell spectra via the “repeatability file” strategy
improved the performance of both the PLS and SVM
algorithms. The RF algorithm performed equivalently with or
without a “repeatability file”. The use of dimensionality
reduction via PLS improved the performance of the SVM
algorithm. The RF algorithm performed best without any
dimensionality reduction. While all three algorithms
provided acceptable models, the RF algorithm required more
computational resources—RF models took approximately
10–20 times longer to solve than the either PLS or SVM
models. Multiple robust estimations of prediction uncertainty
exist for the PLS algorithm, and these uncertainty algorithms
can also be used for SVM algorithms when dimensionality
reduction is used as an additional spectral preprocessing step.
No such robust estimates of uncertainty exist for the RF
algorithm.

Based on these results, we believe the SVM algorithm is the
method of choice for this dataset when used with both the
“repeatability file” strategy and dimensionality reduction using
PLS. The SVM algorithm presents a good compromise between

FIGURE 7 | Predicted vs. measured lignin content (%DW) for PLS, RF, and SVM models. The symbol shape represents the different pretreatment used, while the
color represents the sampling location—before or after thermochemical pretreatment. The upper row depicts the repeated 10-fold cross validation results for each
model. The lower row depicts the independent validation results for each model.
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computational efficiency and prediction performance and
permits the use of multiple robust estimations of individual
prediction uncertainties.
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