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Phylogenetic relationships within many lineages of the phylum Nematoda remain
unresolved, despite numerous morphology-based and molecular analyses. We
performed several phylogenomic analyses using 286 published genomes and
transcriptomes and 19 new transcriptomes by focusing on Trichinellida, Spirurina,
Rhabditina, and Tylenchina separately, and by analyzing a selection of species from
the whole phylum Nematoda. The phylogeny of Trichinellida supported the division
of Trichinella into encapsulated and non-encapsulated species and placed them as
sister to Trichuris. The Spirurina subtree supported the clades formed by species from
Ascaridomorpha and Spiruromorpha respectively, but did not support Dracunculoidea.
The analysis of Tylenchina supported a clade that included all sampled species from
Tylenchomorpha and placed it as sister to clades that included sampled species
from Cephalobomorpha and Panagrolaimomorpha, supporting the hypothesis that
postulates the single origin of the stomatostylet. The Rhabditina subtree placed a clade
composed of all sampled species from Diplogastridae as sister to a lineage consisting
of paraphyletic Rhabditidae, a single representative of Heterorhabditidae and a clade
composed of sampled species belonging to Strongylida. It also strongly supported
all suborders within Strongylida. In the phylum-wide analysis, a clade composed
of all sampled species belonging to Enoplia were consistently placed as sister to
Dorylaimia + Chromadoria. The topology of the Nematoda backbone was consistent
with previous studies, including polyphyletic placement of sampled representatives of
Monhysterida and Araeolaimida.

Keywords: roundworms, evolution, transcriptome, genome, parasitism, classification

INTRODUCTION

Nematodes are a diverse group of animals and include about 25000 species that are found in a
wide range of habitats. While they are known to assume diverse lifestyles, their parasitic forms
have dominated the subject of research because they directly affect humans (Sudhaus and Fitch,
2001) while the free-living forms have, to some extent, been neglected (Smythe et al., 2019), with
the exception of the model genera Caenorhabditis and Pristionchus. Phylogeny and classification
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of nematodes has been and remains a subject of debates and
disagreements between experts. It has long been acknowledged
that morphology alone is not sufficient for resolving phylogenetic
relationships within Nematoda (Lorenzen, 1981; Coomans, 2000)
due to the paucity of informative homologous morphological
characters, difficulty in distinguishing between homologous and
independently evolved characters, unclear character polarity and
the absence of fossil data (Blaxter et al., 1998). Excluding short-
lived early classifications of the phylum (Cobb, 1919; Filipjev,
1934), the most widely accepted morphology-based classification
proposed by Chitwood (1933, 1958), with the dichotomous
division of Nematoda into Aphasmidia/Adenophorea and
Phasmidia/Secernentea, came under scrutiny when it became
evident that Adenophorea did not represent a monophyletic
group (Maggenti, 1963; De Coninck, 1965). Chitwood (1933,
1958) classification continued to remain in use for quite some
time (Lorenzen, 1981; Maggenti, 1981), despite strong opposition
and repeated proposals to replace it with a new dichotomy
or trichotomy-based framework (Goodey, 1963; Gadea, 1973;
Andrássy, 1976; Drozdovsky, 1981; Malakhov, 1986; Adamson,
1987). Numerous phylum-wide molecular phylogenetic analyses
utilizing the nuclear 18S ribosomal RNA gene (rDNA) have been
published since 1998 (Aleshin et al., 1998; Blaxter et al., 1998;
Holterman et al., 2006, 2019; Smythe et al., 2006; van Megen
et al., 2009). While there was to a large extent consistency between
the new molecular trees and morphological interpretation of
nematode phylogeny, placements of many smaller and larger
clades were far from expected (Sudhaus, 2011). As a result, a
revised trichotomy-based classification system was proposed by
De Ley and Blaxter (2002, 2004) that partially reflected the 18S
rDNA phylogeny and partially remained morphology-based for
those taxa that had not been sequenced or for which placement
in the phylogeny was not unequivocal.

From the 53 taxa sampled in first phylum-wide 18S rDNA-
based phylogeny of nematodes (Blaxter et al., 1998), five main
clades were recognized that each comprised lineages implicated
in parasitism of plants and/or animals. The first two clades
equate to Dorylaimia and Enoplia, while the remaining three
belong to “Secernentea.” In the same year, Aleshin et al. (1998)
also analyzed the 18S rDNA of 19 nematode taxa. Both studies
confirmed the paraphyly of Adenophorea as suggested by several
morphological studies mentioned above, but the key limitations
of both molecular phylogenies were the extremely limited taxon
sampling for free-living taxa, particularly the marine nematodes.
This, and the low diversity of the sampled taxa in general,
meant that early branching of the nematode tree remained
unresolved. To examine how broader taxon sampling and the
better representation for free-living/aquatic/marine species could
help address the lack of resolution at the root of Nematoda,
Holterman et al. (2006) and Meldal et al. (2007), respectively
assembled the 18S rDNA sequences of 339 and 212 nematode
taxa for their analyses. Holterman et al. (2006) identified 12
major clades, with the earliest one to diverge from the rest
of nematodes being Enoplia, thus forming a sister to the
Dorylaimia + Chromadoria lineage. Clade II was formed by
the subclass Dorylaimia. The remaining clades were all lineages
belonging to Chromadoria. The placement of Enoplia as sister to

the rest of Nematoda was not supported statistically, although
morphological and embryological characters do support their
position as the earliest extant branch of Nematoda (Holterman
et al., 2006; Smythe et al., 2019). Meldal et al. (2007) obtained
a polytomy at the base of their tree indicating that the earliest-
diverging lineage could not be identified, at least not by using
the 18S rDNA data. The situation did not improve even when
van Megen et al. (2009) sampled more than three times the
number of taxa compared to Holterman et al. (2006). Despite
its popularity as a molecular marker for reconstruction of deep
phylogenies, 18S rDNA alone lacks the resolving power needed
to better clarify relationships at the root of the nematode tree
(Blaxter and Koutsovoulos, 2015). It has also become apparent
that improved taxon sampling combined with better alignments
and more realistic phylogenetic algorithms are not sufficient
to resolve the relationships at the root of the Nematoda tree
using 18S rDNA alone. This is demonstrated in the most
recent 18S rDNA-based analysis involving approximately 2,700
sequences, the Dorylaimia + Chromadoria lineage was also not
well supported (Holterman et al., 2019). Another shortcomings of
phylum-wide 18S rDNA phylogenetic hypotheses of nematodes
published to date is a lack of support for the “backbone”
of the phylogenetic tree of the group, and complete lack of
resolution (phylogenetic signal) in many lineages within the
phylum (Ahmed and Holovachov, 2021).

Whole-genome or transcriptome-based phylogenetic analyses
are increasingly popular due to increased accessibility to high-
throughput sequencing (e.g., declining costs). The integration
of whole genomes in phylogenetic studies has been shown
to produce a better understanding of relationships at deeper
taxonomic levels (Daubin et al., 2002). By providing additional
data, whole-genome analyses can potentially increase the overall
resolution of phylogenetic relationships and make it possible
to filter the noise out of true phylogenetic signals (Eisen
and Fraser, 2003). Despite the potential benefits of genome-
wide phylogenetic approaches, their application to studying
nematode phylogenies is yet to have the expected impact on
our understanding of relationships within the phylum. This
is because the few studies that have attempted multi-gene or
genome-wide approaches (Parkinson et al., 2004; Wasmuth et al.,
2008; Blaxter et al., 2012, 2016; Blaxter and Koutsovoulos, 2015;
Koutsovoulos, 2015) often have used very limited taxon sampling,
with the taxa mostly dominated by model and parasitic species
(Smythe et al., 2019). Most of these analyses had outcomes
that were generally consistent with earlier 18S rDNA-based
phylogenies. Smythe et al. (2019) collated the most taxonomically
comprehensive dataset for Nematoda to-date, including new
transcriptomes for one freshwater and seven marine species
that expanded the representation of Clade I (= Enoplia)
beyond a single taxon (as in Blaxter and Koutsovoulos, 2015;
Koutsovoulos, 2015) to eight taxa. A key finding of Smythe et al.
(2019) was support for the placement of Enoplia as sister to
all other Nematoda. This result was similar to the topology of
Koutsovoulos (2015) but was based on greater taxon sampling
of Enoplia. However, Smythe et al. (2019) found that support for
Enoplia as closest to the root of the nematode tree was weaker
when orthology was inferred using a more stringent method
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based on HaMStR (Ebersberger et al., 2009) and PhyloTreePruner
(Kocot et al., 2013).

Of the six orders within Chromadoria, three, namely
Monhysterida, Desmodorida and Desmoscolecida, had no
representation in the analysis of Smythe et al. (2019) and
the sampled taxa were, as in previous phylogenomic analyses,
massively dominated by species of the order Rhabditida.
A significant number of species of these missing orders of
Chromadoria are marine and their inclusion could help balance
the taxonomic distribution of the sampled taxa and offer a better
avenue for the comparison of genome-wide analyses with 18S
rDNA-based ones. Moreover, for some of the clades included
in Smythe et al. (2019), there was insufficient representation
to allow for assessment of their monophyly. In the current
study, we sought to address these issues by sampling an
even larger set of genomes and transcriptomes from a diverse
group of nematodes. We mined hundreds of genome and
transcriptome datasets from public databases, including datasets
published since 2019 or omitted by Smythe et al. (2019). We
supplemented these data with 19 newly generated transcriptomes
from distantly related marine and terrestrial nematodes. We
opted to sequence transcriptomes because they are less costly
and relatively easier to assemble and annotate than genomes,
while still providing sufficient amount of information for
phylogenetic studies.

The taxa that mostly dominate the genome and transcriptome
datasets in public databases are those belonging to Rhabditina,
Tylenchina, and Spirurina, all of which belong to a single order,
Rhabditida. Within Dorylaimia, Trichinellida is a group with
a good number of genomes in public databases. Our goal was
to include most of the available genomic and transcriptomic
datasets, excluding only overrepresented species or tissue-specific
transcriptomes. However, since this assembly of species is still
heavily biased toward parasitic and model species, we created
subsets of genomes/transcriptomes for Trichinellida, Spirurina,
Tylenchina and Rhabditina and analyzed them separately from
the main Nematoda phylogeny. And in the main Nematoda
phylogeny, we included only few taxa for overrepresented
lineages. By sampling more species, our secondary goal was
also to test for monophyly of higher taxa where enough data
is available, especially if such were unresolved in previous
phylogenomic analyses or 18S rDNA phylogenies.

MATERIALS AND METHODS

Data Sources
Data analyzed in this study included 19 newly generated
transcriptomes (Table 1, Ahmed et al., 2021), as well as
225 of publicly available genomes and 61 publicly available
transcriptomes selected to represent the most complete
phylogenomic dataset of the phylum Nematoda to date, albeit
still heavily biased toward parasitic and model species (referred
to in individual sections below, see also Supplementary
Information File). Seven genomes and 49 transcriptomes were
re-assembled and annotated from raw data, due to original
assemblies being publicly unavailable, while 34 genomes and

12 transcriptomes were re-annotated for the same reason
(annotations not available to the public).

Some species are represented by multiple genomes and
transcriptomes. However, in the main Nematoda phylogeny,
the number of conspecific datasets was kept to one for each
species (with the exception of Plectus sambesi and Plectus
murrayi represented each by two datasets), in order to avoid
unnecessary computational burden. Several publicly available
datasets were not included due to them being misidentified (see
Smythe et al., 2019), contaminated (e.g., Pratylenchus brachyurus
PRJNA551772 may be contaminated with Cephalobidae), of low
quality or difficult to assemble. Polyploid hybrids from the genus
Meloidogyne (e.g., M. arenaria PRJNA438575, Sato et al., 2018;
M. arenaria PRJEB8714, M. floridensis PRJEB8714, M. incognita
PRJEB8714, and M. javanica PRJEB8714, Blanc-Mathieu et al.,
2017) were also excluded due to problems identifying orthologs.
The classification used here and in the Supplementary Files is
based on De Ley and Blaxter (2004) unless specified otherwise.

Sample Preservation
Nematodes (Figure 1) were collected and isolated from
marine sediments or soil following standard protocols (Higgins
and Thiel, 1988; van Bezooijen, 2006). Preservation and
subsequent processing of samples varied. Cylicolaimus sp.
from Sweden, Allodorylaimus sp. Halichoanolaimus dolichurus,
Leptonemella sp., Stilbonema sp., Linhomoeidae sp., Monhystera
sp., Gammarinema sp., Sphaerolaimus sp., Dorylaimopsis sp.,
Neocamacolaimus parasiticus, and Stephanolaimus elegans were
preserved in RNAlater solution, while Cylicolaimus sp. from
United States, Thoonchus sp., Paradraconema sp. and Tricoma
sp. were frozen in RNAqueous lysis buffer for RNA extraction,
and Pomponema sp., Ceramonema sp., and Siphonolaimus sp.
were frozen in Takara SMART-Seq lysis buffer for reverse
transcription directly from lysed cells. Subsequently, samples
were stored at –80◦C (samples in lysis buffer) or –20◦C
(samples in RNAlater).

RNA Extraction, cDNA Library
Preparation and Transcriptome
Sequencing
Total RNA was extracted using the Ambion RNAqueous Micro
Kit following the manufacturer’s protocol. Subsequent library
preparation and cDNA synthesis was performed using the Takara
SMART-Seq HT kit following the manufacturer’s instructions.
Resulting double-stranded cDNA was purified using Ampure
XP magnetic beads. Final sequencing library preparation was
performed using the Illumina Nextera XT kit. For specimens
processed in the United States, sequencing was performed using
an Illumina NovaSeq (2 × 150 bp paired-end reads), while for
specimens processed in Sweden, sequencing was done using an
Illumina HiSeq X (2 × 150 bp paired end reads).

Transcriptome Assembly
For both new and published transcriptomes, Illumina
reads were filtered using either AfterQC (Chen et al., 2017)
or fastp (Chen et al., 2018) and assembled with Trinity
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FIGURE 1 | Select images of target species for newly generated transcriptomes: (A,B) Tricoma sp., female, United States, Florida, anterior end (A) and tail (B);
(C) Thoonchus sp. female, United States, Florida, head; (D) Allodorylaimus sp. male, United States, Virginia, tail; (E,F) Stilbonema sp., female, United States, Florida,
head (E) and tail (F) showing symbiotic bacterial coat; (G) Pomponema sp. female, United States, Florida, mid-body showing cuticle and pigment spots; (H,I)
Siphonolaimus sp. female, United States, Florida, multifocal composite image of head (H) and mid-body showing symbionts (I); (J) Cylicolaimus sp. male,
United States, Florida, tail; (K,L) Ceramonema sp. female, United States, Florida, head (K) and mid-body showing cuticle (L).
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TABLE 1 | Classification, names, accession numbers (BioProject/BioSample), sequencing and assembly statistics for newly generated transcriptomes.

Taxon Field coll. # BioProject Sampling locality Raw reads Bases sequenced Transcripts Proteins

Leptosomatidae

Cylicolaimus sp. KK620 PRJNA774546 United States, Florida 34,927,074 3,527,634,474 34,015 15,758

Cylicolaimus sp. T88 PRJNA767226 Sweden, Tjärnö 119,217,352 18,001,820,000 50,108 5,829

Enchelidiidae

Thoonchus sp. KK658 PRJNA774546 United States, Florida 86,867,096 8,773,576,696 11,571 5,118

Qudsianematidae

Allodorylaimus sp. X-1655 PRJNA774546 United States, Virginia 117,886,870 17,800,917,370 57,981 16,924

Cyatholaimidae

Pomponema sp. KK807 PRJNA774546 USA, Florida 189,606,668 28,630,606,868 245,765 11,239

Selachinematidae

Halichoanolaimus dolichurus T95 PRJNA767273 Sweden, Tjärnö 120,587,888 18,208,771,000 83,674 25,825

Desmodoridae

Leptonemella sp. KK618 PRJNA774546 United States, Florida 80,904,548 8,171,359,348 18,216 8,591

Stilbonema sp. KK748 PRJNA774546 United States, Florida 183,337,624 27,683,981,224 59,893 7,169

Draconematidae

Pradraconema sp. KK625 PRJNA774546 United States, Florida 165,113,522 24,932,141,822 90,383 7,349

Desmoscolecidae

Tricoma sp. KK676 PRJNA774546 United States, Florida 84,968,966 8,581,865,566 31,411 15,809

Ceramonematidae

Ceramonema sp. KK776 PRJNA774546 United States, Florida 82,915,410 8,374,456,410 43,069 15,563

Siphonolaimidae

Siphonolaimus sp. KK765 PRJNA774546 United States, Florida 114,360,938 17,268,501,638 127,224 4,573

Linhomoeidae

Linhomoeidae sp. T98 PRJNA767522 Sweden, Tjärnö 131,322,702 19,829,728,000 84,469 23,003

Monhysteridae

Monhystera sp. X-1680 PRJNA774546 United States, Virginia 167,154,588 25,240,342,788 20,521 7,080

Gammarinema sp. T79 PRJNA767233 New Caledonia 96,738,756 14,607,552,000 51,221 16,921

Sphaerolaimidae

Sphaerolaimus sp. T62 PRJNA768956 Sweden, Gullmarn Fjord 180,885,798 27,313,755,000 185,350 36,204

Comesomatidae

Dorylaimopsis sp. T63 PRJNA767231 Sweden, Gullmarn Fjord 121,634,766 18,366,850,000 184,557 36,529

Camacolaimidae

Neocamacolaimus parasiticus T82 PRJNA707491 Sweden, N. Dygn On 95,733,498 14,455,758,000 66,328 19,180

Stephanolaimus elegans T14 PRJNA768632 Sweden, Hållö 112,274,724 16,953,483,000 117,935 17,832

(Grabherr et al., 2011) installations on a local computer,
on public Galaxy (Afgan et al., 2018) servers 1,2,3 or using
UPPMAX4, with default parameter settings and normalization
of reads. The quality of each assembled transcript was assessed
using the Transrate (Smith-Unna et al., 2016) installation on
UPPMAX (see footnote 4), with default settings. Roche 454 reads
for published transcriptomes were assembled using the Roche
Newbler/GS De Novo Assembler v. 3.0 (Margulies et al., 2005)
on a local computer using the following command: runAssembly
-cdna -large ∗RR∗.fastq.

Genome Assembly
Genome assemblies were generated de novo only for
those datasets for which assemblies were not publicly

1usegalaxy.eu
2usegalaxy.org
3galaxy.ncgas-trinity.indiana.edu
4www.uppmax.uu.se

available. Illumina-generated reads were filtered using fastp
(Chen et al., 2018) and assembled with SPAdes version 3.14.0
(Bankevich et al., 2012) run on a local computer or using
SPAdes version 3.13.1 on UPPMAX (see footnote 4). Roche
454 reads were assembled using the Roche Newbler/GS De
Novo Assembler v. 3.0 (Margulies et al., 2005) via the command
runAssembly -large ∗RR∗.fastq. All contigs less than 500 bp in
length were discarded. Scaffolding was not done for the purpose
of this project.

Prediction of Protein Sequences
From transcriptome assemblies, protein sequences were
translated with TransDecoder 5.5.05 using the UniProt
SwissProt database and PFAM (Pfam-A.hmm) versions
32 or 33 (The UniProt Consortium, 2018). From genome
assemblies, protein coding genes were predicted and protein
sequences were translated with the local installation of

5transdecoder.github.io
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AUGUSTUS (Stanke et al., 2008) or a WebAUGUSTUS
service at http://bioinf.uni-greifswald.de/webaugustus/ (Hoff
and Stanke, 2013) using existing AUGUSTUS species parameters
projects (Brugia malayi, Caenorhabditis elegans, or Trichinella
spiralis) as training datasets and cDNA/protein sequence data
from the same or closely related species, where available, as
extrinsic evidence for predicting genes.

Decontamination of Assemblies
Following Phillips et al. (2017) and Huang et al. (2019),
potential contaminated proteins were eliminated from newly
generated (and some public) proteomes by comparing
them with a high-quality reference dataset of nematode
proteins. The reference dataset includes proteins derived
from reference/core/telomere-to-telomere quality genomes of
Caenorhabditis elegans (PRJNA13758), Pristionchus pacificus
(PRJNA12644), Brugia malayi (PRJNA10729), Trichuris muris
(PRJEB126), Acrobeloides nanus (PRJEB26554), and Plectus
sambesii (PRJNA390260). All proteomes were combined into
a single file that was used to create a reference database for
DIAMOND (Buchfink et al., 2015). All proteins from query
annotations not meeting the required similarity threshold
to the reference dataset (E value < 10−5, see Phillips et al.,
2017; Huang et al., 2019) were removed. Furthermore, CroCo
(Simion et al., 2018) was used to detect and remove cross-species
laboratory contamination by comparing the expression levels of
different transcripts in samples prepared and sequenced together.
However, instead of using the initial assemblies, we only checked
for cross-contamination in the contigs that corresponded to
filtered protein-coding sequences.

Data Evaluation and Cleaning
BUSCO scores were calculated using BUSCO version 5.1.2
(Waterhouse et al., 2018). Both “Nematoda” and “Metazoa”
reference datasets were used for comparison. Two additional
procedures were done to all datasets before the phylogenomic
analysis: all protein coding sequences shorter than 50 amino
acids and all duplicate sequences were removed using seqkit
(Shen et al., 2016).

Analysis Strategy
The entire dataset was not analyzed at once due to the large
number of taxa. Instead, it was split and analyzed in stages.
First, sub-trees were generated for the clades classified under
names Trichinellida, Spirurina, Tylenchina, and Rhabditina (De
Ley and Blaxter, 2004) and including all available species.
From these subtrees, representative species were chosen to
infer phylum-wide phylogenetic hypotheses based on the
completeness of each individual proteome, relative branch length
and position in the cladogram. These were combined with
the remaining datasets not included in the “Trichinellida,”
“Spirurina,” “Tylenchina,” and “Rhabditina” sub-trees to create a
“Nematoda” tree.

Orthology Inference
Orthogroups were inferred for each of the five individual
datasets (“Trichinellida,” “Spirurina,” “Tylenchina,” “Rhabditina,”

and “Nematoda”) by conducting an all-versus-all comparison
with Proteinortho (Lechner et al., 2014) using DIAMOND
(Buchfink et al., 2015), either on UPPMAX (footnote 4)
or using Galaxy Version 6.0.14 installed on usegalaxy.eu
(Afgan et al., 2018). All orthogroups represented by 50% or
less of the sampled species were discarded. Each candidate
orthogroup was aligned with MAFFT (Katoh, 2002) using
the automatic alignment strategy with a “maxiterate” value of
1000. Alignments were filtered with Aliscore and trimmed
with Alicut (Kück et al., 2010) to remove ambiguously
aligned regions following the strategy used by Smythe
et al. (2019). To screen candidate core ortholog groups
for evidence of paralogy or exogenous contamination,
a maximum-likelihood (ML) tree was inferred for each
alignment using IQ-TREE multicore version 2.0.6 (Minh
et al., 2020) with the substitution model automatically
selected by the ModelFinder (Kalyaanamoorthy et al.,
2017) for each alignment, followed by 1000 bootstrap
pseudoreplicates. PhyloPyPruner (latest version6, Thalén
and Kocot, unpublished) was then employed to use a
tree-based approach to screen each candidate ortholog for
evidence of paralogy with the following settings “–min-len
50 –trim-lb 5 –min-support 0.75 –prune MI –mask pdist.”
Finally, in order to eliminate orthogroups with poor taxon
sampling, all groups sampled for fewer than 50% of the
input taxa were discarded. PhyloPyPruner also outputs a
supermatrix of all the individual orthogroup alignments
concatenated into one.

Phylogenetic Analysis
For the final phylogeny reconstruction analysis, we employed
two strategies. The first involved using the supermatrix
alignment for ML analysis while the second involved coalescent-
based inference of a species tree from individual orthogroup
trees. For the supermatrix approach, ML analyses were
conducted on the supermatrix alignment using RAxML 8.2.8
(Stamatakis, 2014) and IQ-TREE multicore version 2.0.6
(Minh et al., 2020). Because of the very large number of
taxa in our matrices, for the RAxML analyses, data matrices
were partitioned by gene but the PROTGAMMALG model
was specified for all partitions rather than empirically
inferring the best-fitting model for each partition. IQ-
TREE analyses were performed using the site heterogeneous
PMSF model (Wang et al., 2018) (-m LG + C20 + G + F)
with the RAxML bipartitions tree (generated as described
above) provided as the required guide tree (–ft). Nodal
support was assessed with 1000 rapid bootstraps (–bb
1000). Coalescent-based phylogenies were inferred from
the ML orthogroup trees using ASTRAL (a method for
estimating species trees from unrooted gene trees) version
5.7.3 (Zhang et al., 2018). In order to improve accuracy
of the species tree, poorly supported branches (bootstrap
support < 75) were first collapsed in each orthogroup tree using
newick utilities version 1.6 (Junier and Zdobnov, 2010) prior
to the ASTRAL run.

6gitlab.com/fethalen/phylopypruner/-/wikis/Home

Frontiers in Ecology and Evolution | www.frontiersin.org 6 January 2022 | Volume 9 | Article 769565

http://bioinf.uni-greifswald.de/webaugustus/
https://usegalaxy.eu
https://gitlab.com/fethalen/phylopypruner/-/wikis/Home
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-769565 January 25, 2022 Time: 12:35 # 7

Ahmed et al. Phylogeny of Nematoda

RESULTS

Trichinellida
Trichinellida is a part of the Clade I from Blaxter et al. (1998) or
Clade 2 from Holterman et al. (2006). This subset includes only
13 species from two genera and two families (Supplementary
Table 1) of the clade with nearly 400 known species distributed
among over 30 genera and six families, all of which are parasites
of vertebrates (Anderson, 2000). Completely missing from our
analysis is the most speciose group, the family Capillariidae
with over 390 known species parasitising a wide range of
vertebrate hosts.

The phylogenies were constructed from a dataset of 469
orthologs for 24 ingroup taxa and Longidorus elongatus used as
an outgroup (Supplementary Table 1). Concatenated alignment
was 211,925 bases long. Both the IQ-TREE ML supermatrix
tree (Figure 2) and ASTRAL coalescent-based species tree
(Supplementary Figure 1) resulted in similar topologies, albeit
with different branch length, clearly separating the two sampled
genera, Trichuris and Trichinella, into two lineages. Within the
Trichuris clade, there was strong support for all nodes, with
Trichuris muris branching off first, while Trichuris trichiura
and Trichuris suis being sister taxa, in full agreement with
previous phylogenetic analyses based on COX1 (Callejón
et al., 2015) and 18S rRNA (van Megen et al., 2009) genes.
Within the Trichinella clade, two subclades were established
representing the so-called encapsulated (T. spiralis, T. nelsoni,
T. patagoniensis, T. britovi, T. murrelli, and T. nativa) and non-
encapsulated (T. papuae, T. zimbabwensis, and T. pseudospiralis)
species. All branches received moderate to strong bootstrap
support/local posterior probabilities in both analyses (51–
100%/0.64–1.0). Consistent with the analysis by Zarlenga et al.
(2006) and Korhonen et al. (2016), the clade formed by the
encapsulated taxa placed the lineage T. nelsoni + T. spiralis
as sister to all other encapsulated taxa (T. britovi, T. murelli,
T. nativa, T. patagoniensis and unidentified species T6, T8,
and T9). Relationships among the non-encapsulated taxa
was also identical to what has been previously reported,
with the T. zimbabwensis + T. papuae lineage forming a
sister group to the clade encompassing several populations
of T. pseudospiralis.

Spirurina
Within the suborder Spirurina, De Ley and Blaxter (2004)
recognized 58 families representing five infraorders.
While our analysis covers four of the five infraorders
(Rhigonematomorpha is not included), less than a fifth (11
families) of the 58 families are represented, including the
families Dracunculidae and Aguillicolidae not classified in
any infraorder (Supplementary Table 2). Moreover, a large
majority of families are represented by one or two species,
except for Ascarididae and Onchocercidae, with 5 and 14
species respectively.

The IQ-TREE ML supermatrix and the ASTRAL coalescent-
based analyses produced trees with identical topologies
(Figure 3 and Supplementary Figure 2) where all families

represented in this analysis by two or more species formed
well-supported clades. The clade representing Anguillicola
crassus + Gnathostoma spinigerum was the earliest diverging
lineage forming a sister to all remaining taxa. Although united
in a well-supported clade in both analyses, Anguillicola
crassus and Gnathostoma spinigerum appear to be fast
evolving lineages and their phylogenetic affinities must
be re-assessed with the addition of more taxa. Moreover,
separate placement of Anguillicola crassus from Dracunculus
medinensis (which is placed further along the phylogeny) makes
the superfamily Dracunculoidea sensu De Ley and Blaxter
(2004) polyphyletic.

The next dichotomy leads to a well-supported clade
represented by Syphacia muris and Enterobius vermicularis,
the only two representatives of the suborder Oxyuridomorpha.
Subsequent division separates Ascaridomorpha from
Dracunculidae + Spiruromorpha. Within Ascaridomorpha,
the family Ascarididae forms a well-supported clade, sister
to a lineage uniting Anisakidae (represented by two datasets
for Anisakis simplex) and Raphidascaridae (represented by
Hysterothylacium aduncum), similar to the results obtained by
Nadler and Hudspeth (2000). Within Ascarididae, Toxocara
canis is a sister taxon to a clade uniting the genera Ascaris and
Parascaris.

Within Spiruromorpha, subsequent branching events separate
species representing the families Gongylonematidae (with single
species Gongylonema pulchrum) and Thelazidae (Thelazia
callipaeda) from the most speciose family in this analysis,
Onchocercidae. Onchocercidae, represented here by three
subfamilies Setariinae, Onchocercinae, and Dirofilariinae, was
well supported, consistent with previous analyses based on
mitochondrial genomes (Park et al., 2011; Liu et al., 2015).
Thelaziidae formed a sister group to Onchocercidae with
Gongylonematidae placed at their base, which is in disagreement
with Liu et al. (2015), whose analysis placed Onchocercidae
(=Filarioidea in Liu et al., 2015) and a clade including
Gongylonematidae as sister taxa, and found Thelaziidae
immediately basal to them. Within Onchocercidae, the clade
composed of Dirofilaria and Onchocerca is a sister lineage to
a clade representing the remaining genera of Onchocercidae.
Here a small clade with the three species Elaephora elaphi,
Acanthocheilonema viteae, and Litomosoides sigmodontis
parasitising rodents and deer is a sister lineage to the clade that
includes the genera Loa, Wuchereria, and Brugia known to cause
infections in humans, domestic cats, dogs and other animals.
As a result, subfamilies Onchocercinae and Dirofilariinae, as
defined in Bain et al. (2014) are polyphyletic in the current
analysis (Figure 3).

Tylenchina
Four infraorders constitute the suborder Tylenchina as defined by
De Ley and Blaxter (2004). These include Panagrolaimomorpha,
Cephalobomorpha, Tylenchomorpha, and Drilonematomorpha,
all of which except Cephalobomorpha comprise members that are
parasites of animals and/or plants (Bert et al., 2008). Represented
in the current phylogenetic analysis are 11 families that span
three out of the four above-mentioned infraorders (Figure 4 and
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FIGURE 2 | Phylogeny of Trichinellida inferred by the IQ-TREE maximum likelihood analysis (only bootstrap support values < 100% are shown).

Supplementary Table 3). Drilonematomorpha is the only group
with no representation.

Both the ML supermatrix tree and the coalescent-based
tree showed the Steinernema lineage as the earliest branching
clade of all Tylenchina sampled in this analysis. The next
lineage splitting recovered Alloionematidae (Rhabditophanes)
as sister to Strongyloididae (Strongyloides + Parastrongyloides).
The next dichotomy is where lies the difference in the
topologies of the two analyses. While the ML supermatrix
tree placed the Cephalobomorpha + Panagrolaimomorpha
as sister to all Tylenchomorpha with strong support, the
placement of Cephalobomorpha in relation to the two other
infraorders appears to be unresolved in the coalescent-based
tree (Supplementary Figure 3). This topology according
to the ML supermatrix tree is in concert with Grynberg
et al. (2020) whose analysis also placed Acrobeloides nanus,
the only representative of Cephalobomorpha, in a clade
with Panagrolaimidae. It also contradicts previous 18S

rDNA-based analyses where a close relationship between
Tylenchomorpha and Cephalobomorpha was found to be
moderately to well supported (De Ley and Blaxter, 2004;
Holterman et al., 2006; Bert et al., 2008) and phylogenies
based on mitochondrial genomes where Tylenchina is
polyphyletic (Kim et al., 2020). The first lineage to diverge
from within Tylenchomorpha was Aphelenchoididae. This
dichotomy was followed by the splitting of Aphelenchus avenae
(Aphelenchidae) from Tylenchoidea + Sphaerularioidea.
Tylenchoidea + Sphaerularioidea formed a well-supported
monophyletic clade in both analyses. Within this clade,
a lineage consisting of Anguinidae and Neotylenchidae
(=Sphaerularioidea) formed a sister clade to all other
tylenchs (Tylenchoidea), agreeing with Smythe et al. (2019)
but contradicting 18S rDNA-based studies (van Megen et al.,
2009; Holterman et al., 2019).

Within Tylenchoidea, representatives of the family
Pratylenchidae were divided into two clades, where
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FIGURE 3 | Phylogeny of Spirurina inferred by the IQ-TREE maximum likelihood analysis (only bootstrap support values < 100% are shown).

Radopholus is a sister group to Hoplolaimidae, while
Nacobbus and Pratylenchus are a sister to Meloidogyne
(Meloidogynidae), both well-supported. This is in
conformity with previous studies where Pratylenchidae

have been found to be closely related to Meloidogynidae.
There is also congruence with other studies with respect
to the polyphyly of Pratylenchidae (Bert et al., 2008;
van Megen et al., 2009).
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FIGURE 4 | Phylogeny of Tylenchina inferred by the IQ-TREE maximum likelihood analysis (only bootstrap support values < 100% are shown).

Rhabditina
All three infraorders of Rhabditina were represented in
our analysis, although Bunonematomorpha was represented
by just a single species. Pristionchus and Caenorhabditis

constituted over half of the taxa that were sampled for
this analysis (Supplementary Table 4). Contrary to Fürst
von Lieven (2002) there was no support in either tree
for the sister relationship between Bunonematomorpha and
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FIGURE 5 | Phylogeny of Rhabditina inferred by the IQ-TREE maximum likelihood analysis (only bootstrap support values < 100% are shown). Clade names follow
Sudhaus and Fürst von Lieven (2003) and Sudhaus (2011).

Diplogasteromorpha. However, this could be due to long branch
attraction caused by insufficient data for the representatives of the
former in this analysis. Both trees (Figure 5 and Supplementary
Figure 4) placed Bunonema as sister to both Diplogasteromorpha
(equal to Diplogastridae on Figure 5) and Rhabditomorpha
(equal to Rhabditidae + Heterorhabditidae + Strongylida on
Figure 5). In both ML supermatrix and coalescent-based
trees, subsequent dichotomies resulted in the establishment of
four major clades. Poikilolaimus (Rhabditidae incertae sedis)

was positioned at the base of these clades, branching from
the remaining Rhabditina earlier than Diplogasteromorpha
[=Diplogastridae according to Sudhaus and Fürst von Lieven
(2003)]. This early divergence of Poikilolaimus among rhabditids
(Rhabditina) is consistent with previous analysis based on 18S
rDNA (Sudhaus and Fitch, 2001; Sudhaus, 2011). Interestingly,
other 18S rDNA based analyses placed the genus as an earlier
branching group than even Bunonematomorpha (van Megen
et al., 2009; Holterman et al., 2019). The family Diplogastridae,
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represented here by seven genera made up the sister clade to
the remaining Rhabditina included in the analysis. There was
strong support for this clade and for the monophyly of all its
genera for which monophyly was testable, namely Pristionchus,
Parapristionchus, and Micoletzkya. Relationships within this
clade as depicted by both ML supermatrix and coalescent-
based trees is incongruent with Fürst von Lieven (2002) and
Sudhaus and Fürst von Lieven (2003) with regards to the time
of divergence of Diplogasteroides relative to all other sampled
diplogasterids. Notwithstanding this, the number and diversity
of diplogastrid genera and species included in the current study
remains very limited.

The next major bifurcation resulted in Mesorhabditioidea
sensu De Ley and Blaxter (2004) or Pleiorhabditis sensu
Sudhaus (2011), represented here by Mesorhabditis and
Pelodera, forming the second clade. Occupying the next
clade is Anarhabditis sensu Sudhaus (2011), represented
here by several species of Caenorhabditis and two species of
Diploscapter, both of which are supported as monophyletic.
The general tree topologies from both the ML supermatrix
tree and the coalescent-based tree are comparable with
previous 18S rDNA-based analyses (Holterman et al., 2006;
van Megen et al., 2009). The final main clade consisted
of vertebrate parasites, entomopathogenic and free-living
nematodes. A lineage comprising Oscheius and Auanema
were the first to diverge from the rest of the members of this
clade to form Synrhabditis sensu Sudhaus (2011), a sister to
Strongyloidea (Heterorhabditidae and several animal parasitic
families). As a result, and consistent with some previous
molecular and morphology-based analyses, Rhabditidae is not
a monophyletic entity if one does not include Diplogastridae,
Heterorhabditidae and Strongylidae (=Strongylida sensu
Beveridge et al., 2014) in it.

The families Ancylostomatidae, Metastrongylidae, and
Strongylidae (sensu De Ley and Blaxter, 2004) were all recovered
as monophyletic with strong branch supports but there was no
support for the monophyly of Trichostrongylidae because the
family Heligmosomidae, represented by Heligmosomoides, was
deeply embedded within Trichostrongylidae. Comparing our
phylogeny with a more conservative and detailed classification
by Beveridge et al. (2014) and illustrated in the Figure 4, this
clade assumes the rank of the order Strongylida. Phylogenetic
relationships between species of this order closely correspond
to the classification maintained by Beveridge et al. (2014),
with only one exception. All four suborders identified in their
classification are represented in this analysis, and all of them
were well-supported as monophyletic. Trichostrongyloidea
(suborder Trichostrongylina), the super-family with the most
diverse taxa in this analysis, was well-supported as well. The
other superfamily of Trichostrongylina, Heligmosomoidea was
also well-supported. With the exception of Haemonchidae,
all families consisting of more than one taxon were resolved
as monophyletic. Our analysis with respect to Strongylida
contradicts that of Grynberg et al. (2020) whose analysis placed
Trichostrongylina and Ancylostomatina in a clade that is
sister to Metrostrongylina, thus indicating Trichostrongylina
as being more closely related to Ancylostomatina than it

is to Metastrongylina. Similarly, phylogenies based on
mitochondrial genomes propose a somewhat different
topology, where Metastrongylina is a sister clade to remaining
Strongylida, and Trichostrongylina is a sister clade to
Anchylostomatina + Strongylina (Kim et al., 2020).

Nematoda
Most of the major nematode lineages (orders) are represented
in our dataset by at least one species (Supplementary Table 5).
The only groups missing from our dataset are the small
orders Isolaimiida and Muspiceida. Benthimermithida,
Marimermithida, and Rhaptothyreida previously considered as
individual orders (De Ley and Blaxter, 2004) but now classified
within Plectida (former) and Enoplida (latter two), are also
absent from the current dataset.

After proteinortho orthology inference, 802 orthogroups were
identified, almost half of which were discarded following a
rather stringent screening for paralogy using PhyloPyPruner.
The final supermatrix consisted of 416 putative orthologous
groups with 187,750 amino acid positions and 90 OTUs.
Both ML supermatrix analysis (Figure 6 and Supplementary
Figure 5) and coalescent-based (Supplementary Figure 6)
species trees moderately supported (94/0.92) the placement of
tardigrades as sister to Nematoda, which corroborates previous
analyses based on both 18S rDNA (Meldal et al., 2007) and
whole genome/transcriptome data (Smythe et al., 2019). Also
consistent with our analysis with respect to the Nematoda –
Tardigrada sister relationship is Rota-Stabelli et al. (2011)
whose analysis placed Nematoda as sister to the Panarthropoda
clade which included the tardigrades. Their analysis did
not include nematomorphs so could not resolve which of
Tardigrada or Nematomorpha is closer to Nematoda. Campbell
et al. (2011) also supported the Panarthropoda although their
analysis put Nematoda and Nematomorpha together in a
clade sister to the Panarthropoda which included Tardigrada.
Nematoda was strongly supported, with the first major split
resulting in a well-supported Enoplia clade forming a sister
group to Dorylaimia and Chromadoria. Within the Enoplia
clade, Triplonchida (represented by single Tobrilus) was an
ingroup of Enoplida, sister to Bathylaimus, making Enoplida
paraphyletic, in both ML supermatrix analyses (Figure 6 and
Supplementary Figure 5), while in the coalescent-based tree
(Supplementary Figure 6) Triplonchida and Enoplida were sister
taxa. Such behavior can probably be explained by insufficient
taxon sampling in Triplonchida and low matrix occupancy in
Bathylaimus.

Dorylaimia formed a well-supported clade and there was
strong support for the Dorylaimia and Chromadoria sister
relationship as well. Within Dorylaimia, Dioctophymatida
and Trichinellida were recovered as sister to Dorylaimida
and Mononchida. While Dorylaimida and Trichinellida were
both recovered as monophyletic as established by Smythe
et al. (2019), the monophyly of Mermithida, Mononchida
and Dioctophymatida, once again, could not be assessed
because they were represented each by just one species. The
subsequent split resulted in a clade consisting of Chromadorida
and Desmodorida (with Chromadorida being paraphyletic
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FIGURE 6 | Phylogeny of Nematoda inferred by the IQ-TREE maximum likelihood analysis using the PMSF model (LG + C20 + G + F). Only bootstrap support
values < 100% are shown. Paraphyletic orders are marked with *, polyphyletic orders are marked with **, species sequenced in this study are marked in bold.
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in respect to monophyletic Desmodorida), and together
forming a sister group to the rest of Chromadoria. At the
base of the remaining nematodes was a weakly supported
clade consisting of Ceramonema and Tricoma. Subsequently,
two well-supported clades each consisting of representatives
of Monhysterida and Araeolaimida were recovered. In one,
Dorylaimopsis (Araeolaimida) was recovered as a sister
to Xyalidae + Monhysteridae (Monhysterida) and in the
other clade Odontophora (Araeolaimida) clusters together
with Linhomoeidae and Siphonolaimus (Monhysterida).
Similar topology was reported in multiple 18S rDNA-based
analyses (Meldal et al., 2007; Holterman et al., 2019; Ahmed
and Holovachov, 2020). Plectida formed a well-supported
monophyletic clade, sister to a well-supported Rhabditida
clade. Two subclades were recovered within Plectida in which a
lineage comprising Neocamacolaimus and Stephanolaimus (both
classified in Camacolaimidae by Holovachov, 2014) formed a
sister group to Plectidae represented by Plectus sambesii, Plectus
murrayi, and Anaplectus granulosus.

Rhabditida was made up of three subclades equal to
Spirurina, Rhabditina, and Tylenchina, all of which were strongly
supported (and analyzed in details above). Within Spirurina,
the families Ascarididae, Raphidascarididae, and Anisakidae
clustered together in a well-supported clade, thus supporting
the monophyly of the superfamily Ascaroidea. Oxyuridae,
represented by Syphacia muris and Enterobius vermicularis, was
also monophyletic. All three infra-orders of Rhabditina were
represented in this analysis, and the topology of the tree closely
corresponds to the more detailed analysis described above.
Similarly, the topology of Tylenchina matches perfectly the more
detailed analysis described above in this manuscript.

DISCUSSION

Root of the Nematode Tree
The placement of Enoplia as sister to the rest of Nematoda
in our phylogeny corroborates similar results obtained by
Smythe et al. (2019). This relationship at the root of the tree
was consistently strongly supported in both the ML analysis
using the PMFS model and the coalescent-based phylogeny
using ASTRAL. In Smythe et al. (2019) however, Enoplia’s
position as sister to all other nematodes received strong support
only from one of the two analysis methods they used – the
one involving the use of SCaFoS instead of PhyloTreePruner
(Kocot et al., 2013) for refining the orthologs. As the authors
pointed out, the algorithm employed in PhyloTreePruner
can potentially cause a large number of sequences to be
unnecessarily removed from the dataset. SCaFoS, on the other
hand, offered a less stringent alternative and so resulted in a
more complete dataset. PhyloPyPruner, which was used in this
analysis, like PhyloTreePruner, uses a tree-based approach for
screening putative paralogs. Because PhyloPyPruner is capable
of differentiating contamination-like sequences from paralogs,
there is a reduced risk of erroneously inferring paralogy and
unnecessarily removing these sequences as it happens with other
tree-based approaches such as PhyloTreePruner.

Backbone of the Nematode Tree
Backbone relationships between the major groups of Nematoda
were generally similar with previously published phylogenomic
analyses (Blaxter and Koutsovoulos, 2015; Koutsovoulos, 2015;
Smythe et al., 2019). Aside from the taxa being represented for
the first time in a phylogenomic study, no conflicting relationship
can be observed between the current study and the most
representative analyses to date. Compared to 18S rDNA-based
phylogenies (Holterman et al., 2006, 2019; Meldal et al., 2007;
van Megen et al., 2009), the same inconsistencies that were
identified by Smythe et al. (2019) were also recovered here.
For example, results from the current study concurred with
Smythe et al. (2019) in the placement of Trichinellida and
Dioctophymatida as sister to a lineage consisting of Mononchida,
Mermithida and Dorylaimida, but it disagrees with placement of
a clade of Dorylaimida, Trichinellida and Dioctophymatida as
sister to Mononchida + Mermithida in Meldal et al. (2007) or
the placement of Dorylaimida as sister to the rest of Dorylaimia
in van Megen et al. (2009). The branching pattern in Holterman
et al. (2006), somewhat resembles that of the current study
in that, Dorylaimida + Mononchida + Mermithida formed
a sister clade to Trichinellida, with the exception being the
absence of Dioctophymatida in their analysis. Additionally,
while the relationship between Chromadorida and Desmodorida
was unresolved in van Megen et al. (2009) and Holterman
et al. (2019), Chromadorida was recovered as paraphyletic in
our analysis with Desmodorida being an ingroup of it, and
the two were placed in a well supported clade. Relationships
between the three suborders of Rhabditida have also been shown
to vary, with one genome-scale analysis placing Tylenchina
as sister to Spirurina + Rhabditina (International Helminth
Genomes Consortium, 2018) and 18S rDNA-based analysis
placing Rhabditina as sister to Tylenchina + Spirurina (Meldal
et al., 2007). Consistent with our analysis, however, is that
Spirurina is positioned as sister to Tylenchina + Rhabditina in
Holterman et al. (2006, 2019), van Megen et al. (2009), and
Smythe et al. (2019). Mitogenome-based phylogenies, on the
other hand, do not support the monophyly of either Tylenchina
or Spirurina (Kim et al., 2020).

Seven species of Monhysterida included in this analysis
occupied two separate lineages. Altogether, the three
superfamilies of the order had at least one representative.
The superfamily Siphonolaimoidea was strongly supported, and
within it, Siphonolaimidae and Linhomoeidae were recovered as
sister taxa. This is in concordance with previous analysis based
on the 18S rDNA (van Megen et al., 2009; Holterman et al., 2019).
Also consistent with previous studies is the placement of this
superfamily as sister to the araeolaimid family Axonolaimidae,
represented in our analysis by Odontophora (Figure 6). The only
other family of Araeolaimida included here is Comesomatidae
and it formed a sister group to the other two superfamilies of
Monhysterida, Sphaerolaimoidea and Monhysteroidea, in a well
supported clade (Figure 6). This is corroborated by previous
18S rDNA-based studies where Comesomatidae is consistently
recovered among Monhysterida (except Siphonolaimoidea)
(van Megen et al., 2009; Holterman et al., 2019; Ahmed and
Holovachov, 2020). One of the defining characters used to
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support the monophyly of the order Monhysterida is the
presence of outstretched gonads (Fonseca and Bezerra, 2014a).
Unlike Monhysterida, the order Araeolaimida comprises
taxa both with reflexed and outstretched female gonads
(Fonseca and Bezerra, 2014b). However, both clades in our
analysis that combine representatives of Monhysterida and
Araeolaimida (Figure 6, marked with ∗∗) consist of taxa
with outstretched female gonads that are either not-paired
(monodelphic) or paired (didelphic) – the shared apomorphic
character used to establish Monhysterida in the first place.
Lorenzen (1981, 1994) actually grouped all the families of
Araeolaimida under the superfamily name Axonolaimoidea
within Monhysterida based on this synapomorphy, but De
Ley and Blaxter (2004) reinstated Araeolamida on the basis
of 18S rDNA data available at that time. Morphologically,
however, there is no apomorphic character to support the
monophyly of Araeolamida. Moreover, recent 18S rDNA-based
analyses as well as our results do not support their monophyly
(Holterman et al., 2019; Ahmed and Holovachov, 2020). Not
included in this analysis but frequently recovered between the
two Monhysterida + Araeolaimida lineages in 18S rDNA-based
phylogenies is a clade consisting of the order Isolaimida and
family Aulolaimidae whose placements in the classification
and phylogeny remain debatable (van Megen et al., 2009;
Holterman et al., 2019). This placement may be simply a result
of phylogenetic artifact which would explain why it is poorly
supported. Further, having a clade (Isolaimida + Aulolaimida)
whose taxa have reflexed ovaries placed between two lineages
whose shared character is outstretched ovaries makes this
position even more doubtful. Future phylogenomic analyses
involving representatives of both Isolaimida and Aulolaimidae
or at least one may finally help resolve their position with respect
to Monhysterida and Areaolaimida.

Evolution of Plant-Parasitic Tylenchina
Taxa that are phylogenetically close to plant-parasitic lineages
have long been of interest in the quest to elucidate the origin of
plant parasitism (Bert et al., 2008; Quist et al., 2015; Holterman
et al., 2017). Analysis of the Tylenchina dataset gave some
insight into the relationships between several important groups
of plant-parasitic tylenchids as well as their close free-living
relatives. Our results were generally in concurrence with
previous 18S rDNA analyses. The first notable difference is
with respect to the relationship between Tylenchomorpha,
Cephalobomorpha, and Panagrolaimomorpha, where most 18S
rDNA-based phylogenies have placed the last one as sister to
the first two (Holterman et al., 2006; van Megen et al., 2009).
Even though this was never strongly supported, it meant that
Cephalobomorpha could belong to the same lineage as most
plant-parasitic tylenchids, separate from Panagrolaimomorpha.
Our analysis instead placed Tylenchomorpha as sister to
Cephalobomorpha and Panagrolaimomorpha, consistent with
Grynberg et al. (2020). The two species of Cephalobidae in
our analysis occupied the same clade with Panagrolaimidae
and this clade formed a sister group with all Tylenchomorpha,
which suggests that Cephalobomorpha may not be any closer
to Tylenchomorpha than Panagrolaimomorpha are (Figure 4).

Another important difference is in regards to the strong
support for the monophyly of Tylenchomorpha. The position
of the Aphelenchoidea with respect to Tylenchoidea according
to 18S rDNA has persistently deviated from morphological
prediction which unites all taxa equipped with the stomatostylet
(the tylenchid and aphelenchid feeding apparatus) within
Tylenchomorpha. These above-mentioned analyses have
Aphelenchoididae and Parasitaphelenchidae placed as sister to
Panagrolaimidae, although often in a poorly supported clade
(van Megen et al., 2009; Holterman et al., 2019). This lack of
support for the monophyly of the superfamily Aphelenchoidea
has led to speculation that the stomatostylet could have arisen
multiple times during the course of evolution within Tylenchina
(Quist et al., 2015). However, although our analysis does
not support Aphelenchoidea as a monophyletic group, it
rejects the possible multiple origins of the stomatostylet. The
more substantial incongruences between our analyses and
mitogenome-based phylogenies in regards to the evolution of
Tylenchina are discussed in detail in section “Impact of Data
Quality on the Results of Current Analyses.”

Evolution of Animal-Parasitic Strongylida
Amongst the many animal-parasitic lineages to have arisen from
within Rhabditomorpha is the exclusively tetrapod vertebrate
parasitic group Strongylida (Sudhaus, 2011). The group has
been defined primarily on the basis of the presence of caudal
bursa in males (Beveridge et al., 2014). In addition to the
support given this group based on this shared presence of
male bursa, molecular data have also strongly supported the
group as monophyletic and our analysis is not an exception.
The observed support for Heterorhabditidae as sister to
Strongylida is confirmed by other 18S rDNA data as well
(van Megen et al., 2009). As with the phylum itself, various
classification systems have been proposed for the order
Strongylida. And with these, the relationships between the
suborders and superfamilies remained unclear. Most notable of
these systems was the one proposed by Anderson et al. (1974)
who divided the order into five superfamilies, Strongyloidea,
Trichostrongyloidea, Ancylostomatoidea, Metastrongyloidea,
and Diaphanocephaloidea based on morphology. Later
modification to this system by Durette-Desset and Chabaud
(1993) resulted in the elevation of four of these superfamilies to
the ranks of suborder, with Diaphanocephaloidea being moved
to Ancylostomatina. Although efforts have been made using
molecular data to analyze the relationships between members
of this group, very few exist that have tested the monophyly
of the suborders (de Bellocq et al., 2001). The most important
one in this respect was the phylogeny presented by Chilton
et al. (2006) even though it was only able to establish support
for Metastrongylina. All suborders in our analysis were well
supported and there was a clear separation between lineages with
prominent head capsule (Ancylostomatina and Strongylina)
and ones without (Metastrongylina and Trichostrongylina).
Detailed morphology-based cladistic interpretation of this
division was presented by de Bellocq et al. (2001) and their
analysis seems to suggest the presence of buccal capsule in this
group as an ancestral feature. It is not clear, however, which
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of these character states (presence or absence of head capsule)
is ancestral. The use of combined sequences of the 18S and
28S rDNA regions strongly supported Metastrongylina and
placed them as sister to the other three suborders. Similar
topology was obtained based on mitochondrial genomes,
although all three suborders included in the analysis formed
well supported distinct clades (Jex et al., 2010). Subsequent
mitogenome-based phylogeny supported the monophyly of
Metastrongylina, Trichostrongyina, and Ancylostomatina, while
Strongylina was recovered as paraphyletic (Kim et al., 2020).
According to Beveridge et al. (2014), aside from Metastrongylina
being associated with the pulmonary system and the others not
being associated with it, there are no other morphological or
life cycle characteristics to support their separation from the
remaining suborders. So far, our analysis presents a topology
more consistent with morphology-based classifications than
any other previous study. It will be interesting in the future to
see how even more expanded taxon sampling influences the
phylogeny of the group.

Topological Discrepancies With
Mitochondrial Genome Phylogenies
For nematodes, mitogenome phylogenies often produce results
that are consistent with both ribosomal DNA phylogenies and
genome- or transcriptome- phylogenies (Kim et al., 2017; Kern
et al., 2020). For some clades, however, mitogenome phylogenies
have also been shown to yield some significant topological
discordances with these approaches as well. A comparison
of the current analyses with some published mitochondrial
genome phylogenies demonstrates this clearly. In the most
updated phylum-wide mitogenome phylogeny (Kim et al.,
2020), Chromadoria and Dorylaimia are both supported; and
within the latter, Mermithida + Dorylaimida form a sister
clade to Trichinellida, similar to the topology obtained in
this study. Comparisons involving Enoplia cannot be made
at the moment, since the group is yet to be represented in
any mitogenome phylogeny. Therefore, the only topological
differences between mitogenome phylogenies and 18S rDNA- or
genome-based that can be commented on are the ones found
within the Chromadoria subclass, and more specifically within
Rhabditida. The order Rhabditida itself is well supported by
all mitogenome trees (Sultana et al., 2013; Kim et al., 2015,
2017, 2020) except in Ivanova et al. (2021) where the presence
of Plectida nested within the same polytomous clade as the
other Rhabditida rendered the latter paraphyletic. All three
suborders of Rhabditida have been supported by phylogenomic
analysis thus far. For mitogenome-based phylogenies, only
Rhabditina are recovered as monophyletic (Sultana et al.,
2013; Kim et al., 2015, 2017, 2020) with the other two being
polyphyletic–again the exception here being Ivanova et al.
(2021) whose analysis recovered Rhabditina as polyphyletic.
Within Rhabditina however, both the current analysis and
mitogenome phylogenies support Diplogasteromorpha and
Rhabditomorpha as monophyletic. The support for Spirurina
in the current analysis is not consistent with mitogenome
phylogenies involving this group. According to mitogenome

trees, the infraorders of Spirurina are placed in three distinct
clades, Spiruromorpha and Oxyuridomorpha occupy the first
clade, immediately following this is the one that consists
only of the superfamily Dracunculoidea. The third clade,
which consists of Ascardiomorpha, Gnathostomatomorpha,
and Rhigonematomorpha is embedded within a larger clade
where it forms a sister to Rhabditina (Rhabditomorpha
and Diplogasteromorpha). Between this larger clade and
the Dracunculoidea lineage are Tylenchomorpha (specifically
Aphelenchoidea) and Panagrolaimomorpha lineages. Within
Tylenchina, the support for the infraorder Tylenchomorpha
in the current analysis is also in contrast with mitogenome
phylogenies which placed Tylenchoidea and Aphenchoidea
in two distinct clades, with the former nested between
Spirurina and Cephalobomorpha and the latter placed between
Dracunculoidea and Panagrolaimomorpha. This lack of support
for Tylenchomorpha therefore shows that mitogenome trees
(Sultana et al., 2013; Kim et al., 2015, 2017, 2020), like some
18S rDNA trees (Quist et al., 2015), reject the single origin of
the stomatostylet.

Impact of Data Quality on the Results of
Current Analyses
For a group as diverse and ubiquitous as nematodes, broad and
balanced taxon sampling is imperative for better understanding
of relationships among its members (Holterman et al., 2006).
This was achieved by analyzing the overrepresented suborders
separately as subsets of the Nematoda tree, thus allowing only
selected sets of taxa for these groups to be sampled for the main
analysis, while at the same time generating more detailed analyses
for them. Nineteen transcriptomes were newly sequenced as
part of the current study to further maximize representation at
the order level, particularly for the hitherto excluded orders of
predominantly marine nematodes, Desmodorida, Monhysterida,
and Desmoscolecida. Also, our use of expanded taxon sampling
for Araeolaimida and Chromadorida permits us to use our results
to test the monophyly of these groups.

Data quality and completeness varied greatly between the
sampled taxa, with completeness of sites reaching as low as 2.5%
for Pomponema sp. and as high as 85.2% for Anisakis simplex.
And for the four subset datasets, completeness was as low as
1.8% for Onchocerca volvulus (Spirurina), 0.5% for Heterodera
schachtii (Tylenchina), and 2.0% for Oscheius sp. (Rhabditina).
How deleterious the inclusion of patchy and incomplete data
sets is on phylogenetic inference is still unclear, although most
empirical evidence suggest that on its own, incomplete data
is not problematic (Hejnol et al., 2009; Rubin et al., 2012;
Roure et al., 2013). This was evident in the clades where
the majority of species have moderate to high completeness
(Onchocercidae, Hoplolaimidae, and Rhabditidae). For example,
the placements of Oncholaimidae gen. sp., Bathylaimus sp.,
Pomponema sp., Monhystera sp., Onchocerca volvulus, Heterodera
schachtii, and Oscheius sp. were all consistent with general
taxonomy, morphology-based and molecular phylogenies based
on the 18S rDNA (van Megen et al., 2009; Holterman et al., 2019)
despite these data sets having site completion scores below 5%.
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Incongruence Between
Maximum-Likelihood and
Coalescent-Based Analyses
The ML supermatrix trees and the coalescent-based trees
were generally similar in topology. The few conflicting nodes,
particularly in the topologies of the coalescent-based trees,
had low support values. The first contradiction concerned
the phylogenetic affinity of Tobrilus, a member of the order
Triplonchida with which Enoplida shares the subclass Enoplia.
Being the only triplonchid, its placement together with
Bathylaimus as observed in the ML supermatrix tree, while
unexpected, could have been a result of insufficient taxon
sampling for Triplonchida. The fact that the relationships
between Tobrilus, Bathylaimus, and the other enoplids appeared
unresolved in the coalescent-based tree supports this argument.
Tobrilus belongs to one of the families of Triplonchida, namely
Tobrilidae, that together with Tripylidae, Triodontolaimidae,
Rhabdodemaniidae, and Pandolaimidae, was placed by Lorenzen
(1981, 1994) in the Tripyloidina, the suborder to which family
Tripyloididae and genus Bathylaimus belongs. The presence of
metanemes was used as the synapomorphic character. These
families were later moved to Triplonchida by De Ley and Blaxter
(2004) based on 18S rDNA phylogenies. However, Bathylaimus
together with the other genera of Tripyloididae are known to
share similar stoma morphology with some triplonchid families
including Tobrilidae. Some species of the family Tripyloididae
have also been described as having their spicular protractor
muscle modified into circular muscles similar to the capsule
of suspensor muscles seen among Triplonchida (Smol et al.,
2014). More taxa from these families will be necessary for
comprehensive understanding of their relationships with regards
to the two orders within Enoplia.

Supermatrix methods (IQ-TREE) and coalescent-based gene
tree summarization methods (ASTRAL) differ in using individual
DNA or amino acid characters and gene trees as input data,
respectively (reviewed by Bininda-Emonds, 2004; de Queiroz and
Gatesy, 2007). The question of which of the two approaches,
supermatrix trees or coalescent-based trees, gives the most
accurate inference of phylogeny has always been contentious
(Bininda-Emonds, 2004; Gatesy and Springer, 2004; Springer
and Gatesy, 2014). Bininda-Emonds (2010) proposed that rather
than pushing for which approach is more accurate, the two
methods can best be viewed as simply being different, in a manner
similar to how statistical methods of inferring phylogenies such as
ML, Bayesian inference or maximum parsimony are considered
different. Thus, we can view the topological consistency in the
two tree inference methods used here as only enhancing our
confidence in the resulting topology and the inconsistencies
as representing nodes that need further investigation. ASTRAL
is a statistically consistent coalescent-based method which has
been shown to be more accurate and run faster than other
coalescent-based methods such as MP-EST (Liu et al., 2010)
and BUCKy (Larget et al., 2010). It also performs well against
concatenation methods, especially in datasets with fair amounts
of incomplete lineage sorting (Mirarab et al., 2014; Mirarab and
Warnow, 2015). As far as our dataset is concerned however,
future analyses with better taxon sampling for Triplonchida

(particularly families outside of the ones previously classified
under Tripylina), Desmoscolecida and Ceramonematina can
result in even more similar topologies between the two.

CONCLUSION

We sampled taxa from across the phylum Nematoda, and
obtained a dataset representing almost all the major groups
of the phylum for the current analysis. This is the most
comprehensive phylogenomic analysis to date. Generating whole
transcriptome data is becoming easier due to the increasing
number of sequencing protocols that can handle small input
volumes of genetic material and the continuous decrease in the
cost of sequencing produced with high-throughput sequencing
platforms. Nematode phylogeny is currently at a point where
analysis based on single genes such as the 18S rDNA are not
producing the expected resolution due to the limited amount of
phylogenetic information that can be derived from the region.
The most up-to-date single gene analysis of phylogeny of the
entire phylum consisted of over 2,700 sequences (Holterman
et al., 2019), almost a thousand more than van Megen et al.
(2009). The higher taxon sampling did not appear to have
resulted in increased resolution along the backbone of the
nematode tree, or within many individual clades (Ahmed and
Holovachov, 2021). Resolution at the root of Nematoda observed
in the current and two of the previous phylogenomic analyses
signifies the kind of improvement in Nematode phylogeny
possible with genome-scale analysis involving transcriptomic
and genomic data. Our analysis confirms the polyphyly of
Monhysterida and Araeolamida and seems to suggest that
Monhysterida sensu Lorenzen (1994) is paraphyletic.

The inclusion of the subtrees of Trichinellida, Spirurina,
Tylenchina, and Rhabditina allowed us to carry out a more
comprehensive analysis of these important groups while keeping
a fairly balanced taxon sampling for the phylum-wide analysis.
We found that our phylogenomic analysis supported some
of the “old” morphology-based phylogenetic hypotheses which
were challenged by 18S rDNA- and mitogenome- based trees.
For example, within the Tylenchina, there was a lineage
that gave rise to Cephalobomorpha and Panagrolaimomorpha
and this lineage was placed as sister to Tylenchomorpha.
Tylenchomorpha (species bearing a piercing stomatostylet)
received strong support with Aphelenchoididae uniting with
the other members of the infraorder in a well supported
clade, thus rejecting the notion that the stomatostylet may
have arisen independently within Tylenchina. The nematode
stylet-like feeding apparatus in general has for a long time
been known to have occurred in multiple lineages. This was
already apparent from the distinct morphologies of these feeding
structures. However, the stomatostylet itself has been known
only amongst herbivorous/fungivorous nematodes and has been
the defining feature (apomorphy) of all Tylenchomorpha. And
while there may be some morphological differences between
the different lineages of this infraorder, the general structure
and its composition remains consistent across the group – they
all consist of the distal cornus, on top of the shaft which
consists of three knobs at its base. There was strong support
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for Strongylida as well as its division into four suborders.
The presence or absence of a buccal capsule as basis for
separating the lineage of Ancylostomatina + Strongylina from
Metastrongylina + Trichostrongylina was also supported.

While the current study presents a significant improvement
over previous phylogenomic analyses in terms of taxon sampling,
topological relationships inferred herein agreed well with
previous studies. Compared to studies of 18S rDNA alone, which
lacks resolving power needed to clarify phylogenetic relationships
across the entire nematode tree, we obtained better supported
relationships in our results based on phylotranscriptomics,
suggesting that whole-genome and transcriptomic approaches
represent the future of phylogenetics, in general, and for
Nematoda, in particular. What is left now is for there to be an
extensive effort to obtain reliable transcriptomic and genomic
data of as many nematode species as possible, especially those
morphologically unique lineages and taxa whose placement has
remained uncertain across various 18S rDNA-based phylogenetic
analyses to date. The discrepancies between the evolutionary
history of nuclear and mitochondrial genomes in nematodes
remain to be explained as well.
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