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The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO)

that has been of great interest for decades for both, science and industry. The CVRP is

a variant of the vehicle routing problem characterized by capacity constrained vehicles.

The aim is to plan tours for vehicles to supply a given number of customers as efficiently

as possible. The problem is the combinatorial explosion of possible solutions, which

increases superexponentially with the number of customers. Classical solutions provide

good approximations to the globally optimal solution. D-Wave’s quantum annealer is a

machine designed to solve optimization problems. This machine uses quantum effects

to speed up computation time compared to classic computers. The problem on solving

the CVRP on the quantum annealer is the particular formulation of the optimization

problem. For this, it has to bemapped onto a quadratic unconstrained binary optimization

(QUBO) problem. Complex optimization problems such as the CVRP can be translated

to smaller subproblems and thus enable a sequential solution of the partitioned problem.

This work presents a quantum-classic hybrid solution method for the CVRP. It clarifies

whether the implementation of such a method pays off in comparison to existing classical

solution methods regarding computation time and solution quality. Several approaches

to solving the CVRP are elaborated, the arising problems are discussed, and the results

are evaluated in terms of solution quality and computation time.

Keywords: capacitated vehicle routing problem, CVRP, quantum annealing, hybrid solution method, clustering,

routing

1. INTRODUCTION

Optimization problems can be found in many different domains of applications, be it economics
and finance (Black and Litterman, 1992), logistics (Caunhye et al., 2012), or healthcare (Cabrera
et al., 2011). Their high complexity engaged researchers to develop efficient methods for solving
these problems (Papadimitriou and Steiglitz, 1998). With D-Wave Systems releasing the first
commercially available quantum annealer in 20111, there is now the possibility to find solutions
for such problems in a completely different way than classical computation does. To use
D-Wave’s quantum annealer the optimization problem has to be formulated as a quadratic

1https://www.dwavesys.com/news/d-wave-systems-sells-its-first-quantum-computing-system-lockheed-martin-corporation
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unconstrained binary optimization (QUBO) problem (Boros
et al., 2007), which is one of two input types acceptable by the
machine (alternative: the Ising model Glauber, 1963). Doing this,
the metaheuristic quantum annealing seeks for the minimum of
the optimization function, i.e., the best solution of the defined
configuration space (McGeoch, 2014). There has been recent
research about solving real world problems on a quantum
annealer, like Volkswagen’s Traffic Flow Optimization (Neukart
et al., 2017) or the recently announced Tsunami Evacuation
Optimization project by Tohoku University2.

The paper at hand regards the Capacitated Vehicle Routing
Problem (CVRP), an NP-optimization problem that plays a
major role in common operations research and is excessively
studied since its proposal in Dantzig and Ramser (1959). The
classic CVRP can be described as the problem of designing
optimal routes from one depot to a number of geographically
scattered customers subject to some side constraints (see
Figure 1). It can be formulated as follows:

Let G = (V ,E) be a graph with V = {1, ..., n} being a set of
vertices representing n customer locations with the depot located
at vertex 1 and E being a set of undirected edges. With every edge
(i, j) ∈ E, i 6= j a non-negative cost cij is associated. This cost
may, for instance, represent the (geographical) distance between
two customers i and j. Furthermore, assume there are m vehicles
stationed at the depot that have the same capacity Q. In addition,
every customer has a certain demand q (Laporte, 1992). The
CVRP consists of finding a set of vehicle routes such that

• each customer in V \ {1} is visited exactly once by exactly one
vehicle;

• all routes start and end at the depot;
• the sum of customer demand within a route does not exceed

the vehicles’ capacity;
• the sum of costs of all routes is minimal given the constraints

above;

To solve the CVRP on D-Wave’s quantum annealer, the
formulated QUBO problem has to be mapped to the hardware.
However, quantum computation compared to classical
computation is still in its infancy and one of the major
problems is that quantum hardware is limited regarding the
number of quantum bits (qubits) and their connectivity on the
chip. Generally, this leads to difficulties in mapping large QUBO
problems to the hardware.

With this paper we present an intuitive way to split the
CVRP into smaller optimization problems by taking advantage
of a classical 2-Phase-Heuristic (Laporte and Semet, 2002), see
Figure 1. This heuristic divides the CVRP into two phases, the
clustering phase and the routing phase. The clustering phase
itself can be mapped to the NP-complete Knapsack Problem (KP)
(Karp, 1972), which tries to pack different sized items (here:
customers) into capacity restricted knapsacks (here: vehicles).
Doing this, the sum of the objective values of the items in
a knapsack should be maximized, i.e., the euclidean distance
between customers assigned to a vehicle should be minimized.
The routing phase can be represented by the NP-hard Travelling

2https://www.dwavesys.com/sites/default/files/Ohzeki.pdf

Salesman Problem (TSP) (Biggs, 1986). Thus, theminimal tour in
which all customers of a cluster are visited once is sought. Doing
this, the tour starts and ends in one place, i.e., the depot. Figure 1
shows a CVRP example with the 2-Phase-Heuristic. First the
customers are grouped into clusters (b) before efficient vehicle
routes in each cluster are searched (c).

In this paper we investigate different quantum-classic hybrid
approaches to solve the CVRP, expound their difficulties in
finding good solutions, and finally propose a hybrid method
based on the 2-Phase-Heuristic to solve the CVRP using D-
Wave’s quantum annealer. We map the optimization problems to
a QUBO problem, and analyze performance from an application-
specific perspective by using large benchmark datasets.

The paper is structured as follows: section 2 gives an
introduction to quantum annealing and the common QUBO
problem. A brief overview of existing methods for solving the
CVRP is given in section 3. In section 4, two approaches for
solving the CVRP are briefly discussed before the concept of our
hybrid method is presented. Section 5 first introduces the test
setup, and subsequently presents and discusses the results with
regard to solution quality and computational performance on
commonly used CVRP datasets. Finally, we conclude this paper
in section 6.

2. QUANTUM ANNEALING ON D-WAVE
PROCESSOR

Quantum annealing in general is a metaheuristic for solving
complex optimization problems (Kadowaki and Nishimori,
1998). D-Wave’s quantum annealing algorithm is implemented
in hardware using a framework of analog control devices to
manipulate a collection of quantum bit (qubit) states according
to a time-dependent Hamiltonian, denoted H(t), shown in
Equation (1).

H(t) = s(t)HI + (1− s(t))HP (1)

The basic process of quantum annealing is to physically
interpolate between an initial Hamiltonian HI with an easy
to prepare minimal energy configuration (or ground state),
and a problem Hamiltonian HP, whose minimal energy
configuration is sought that corresponds to the best solution
of the defined problem. This transition is described by an
adiabatic evolution path which is mathematically represented as
function s(t) and decreases from 1 to 0 (McGeoch, 2014). If
this transition is executed sufficiently slow, the probability to
find the ground state of the problem Hamiltonian is close to
1 (Albash and Lidar, 2018).

The just described concept of adiabatic quantum computing
is the source of inspiration for the design of D-Wave’s quantum
annealing hardware. While the machine’s functioning is based on
following an adiabatic evolution path, the dynamics describing its
working is not adiabatic. This is because the machine is strongly
coupled to the environment resulting in the performance being
affected by dissipative effects (Marshall et al., 2017). Nonetheless,
the hardware is known to be capable of solving a specific
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FIGURE 1 | Overview of the CVRP and the 2-Phase-Heuristic. (A) Initial state with 9 customers and 1 depot. (B) Clustering phase results in three clusters found. (C)

Routing phase determines shortest path inside each cluster.

optimization problem called a quadratic unconstrained binary
optimization (QUBO) problem (Boros et al., 2007). QUBO is a
unifying model which can be used for representing a wide range
of combinatorial optimization problems. However, in order to
use quantum annealing on D-Wave’s hardware the CVRP has to
be formulated as a QUBO problem. The functional form of the
QUBO the quantum annealer is designed to minimize is:

min xtQx with x ∈ {0, 1}n (2)

with x being a vector of binary variables of size n, and Q being an
n× n real-valued matrix describing the relationship between the
variables. Given the matrix Q, the annealing process tries to find
binary variable assignments to minimize the objective function in
Equation (2).

The quantum processing unit (QPU) is a physical
implementation of an undirected graph with qubits as vertices
and couplers as edges between them. These qubits are arranged
according in a so-called chimera graph, as illustrated in Figure 2.
In relation to the QUBO problem, each qubit on the QPU
represents such a QUBO variable and couplers between qubits
represent the costs associated with qubit pairs, mathematically
described in matrix Q. If the problem structure can not be
embedded directly to the chimera graph, auxiliary qubits may be
introduced to augment the available couplings.

If—like in this paper—large data sets are used, the size of
the resulting QUBO problem may exceed the limited number of
available qubits on the QPU and the problem cannot be put on
the chip altogether anymore. For this case, D-Wave provides a
tool called QBSolv that splits the QUBO into smaller components
and solves them sequentially on the D-Wave hardware3. A
detailed view on the QBSolv algorithm is given in section 5.1.

In this paper we used the D-Wave 2000Q model located in
Vancouver, Canada, and we accessed themachine usingD-Wave’s
cloud interface. The instance at hand has got a working graph

3https://github.com/dwavesystems/qbsolv

FIGURE 2 | Excerpt of the structure of a chimera graph. The full 2,048 qubit

graph extends to a 16× 16 lattice of groups of 8 qubits. Figure in reference to

Biswas et al. (2017).

with 2,038 qubits and 5,955 couplers out of the full graph with
2,048 qubits and 6,016 couplers.

3. RELATED WORK

Over the last decades several families of heuristics have
been proposed for solving the CVRP. They can be divided
into construction heuristics, improvement heuristics and
metaheuristics (Laporte and Semet, 2002).

Construction heuristics try to generate a good solution
gradually. In every step, they insert customers into partial tours
or combine sub-tours considering some capacities and costs to
generate a complete solution. One of the most fundamental
construction heuristics is the Clarke and Wright savings
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algorithm (Clarke and Wright, 1964), which first constructs
a single tour for each customer, calculates the saving that
can be obtained by merging those single customer tours, and
iteratively combines the best sub-tours until no saving can be
obtained anymore. Improvement heuristics try to iteratively
enhance a given feasible solution, which is often generated
by a construction heuristic. A common methodology is to
replace or swap customers between sub-tours taking capacity
constraints into account. Popular improvement methods can
be found in Lin (1965) and Or (1976). Metaheuristics can be
thought of as top-level strategies which guide local improvement
operators to find a global solution. Groër et al. describe a
library of local search heuristics for the (C)VRP (Groër et al.,
2010). In addition, Crispin and Syrichas propose a classical
quantum annealing metaheuristic for vehicle scheduling (Crispin
and Syrichas, 2013). To approximate quantum annealing on
a classical computer, they use a stochastic variant called
Path-Integral Monte Carlo (PIMC) to simulate the quantum
fluctuations of a quantum system. In our work, the quantum
annealing hardware is responsible for that. However, the
complexity exists in mapping the CVRP to a format readable by
the hardware.

One of the most important classical 2-Phase-Heuristics is the
Sweep algorithm (Gillett andMiller, 1974), where feasible clusters
are formed by rotating a ray centered at the depot. After that the
TSP is solved for each cluster. Fisher and Jaikumar also tried to
solve the VRP with a cluster-first, route-second algorithm (Fisher
and Jaikumar, 1981). They formulated a Generalized Assignment
Problem (GAP) instead of using a geometry based method to
form the clusters. Bramel and Simchi-Levi described a 2-Phase-
Heuristic where the seeds were determined by solving capacitated
location problems and the remaining vertices were gradually
included into their allotted route in a second stage (Bramel and
Simchi-Levi, 1995).

However, there are similar investigations performed by
the quantum computing community. In Rieffel et al. (2015),
the authors have studied the effectiveness of a quantum
annealer in solving small instances within families of hard
operational planning problems under various mappings to
QUBO problems and embeddings. While their study did
not produce results competitive with state-of-the-art classical
approaches, they derive insights from the results, useful for
the programming and design of future quantum annealers. In
our work we investigate larger routing problem instances using
a classical quantum hybrid method and state the effectiveness
and efficiency. In Tran et al. (2016), a tree-search based
quantum-classical framework is presented. The authors use a
quantum annealer to sample from the configuration space of a
relaxed problem to obtain strong candidate solutions and then
apply a classical processor that maintains a global search tree.
They empirically test their algorithm and compare the variants
on small problem instances from three scheduling domains.
In general, one can see that many approaches have got a
hybrid structure. That is, classical bottlenecks are outsourced
to quantum computing devices that iteratively perform local
quantum searches (Haddar et al., 2016; Tran et al., 2016;
Chancellor, 2017).

4. CONCEPT OF HYBRID SOLUTION
METHOD

There are numerous heuristics in the literature for solving
the CVRP that all have an iterative approach. This makes it
difficult to map them into a QUBO problem to be solved on
a quantum annealer. In addition, there exists the classical 2-
Phase-Heuristic that separates the CVRP into a clustering phase
and a routing phase. Both phases can be seen as detached
optimization problems, the Knapsack Problem (KP) with an
additional minimization of distances between customers and the
Travelling Salesman Problem (TSP), respectively. This division
allows the mapping of the problems to one or two QUBO
matrices. We have investigated three different approaches for the
2-Phase-Heuristic using a quantum annealer, see Figure 3. The
insights of the preliminary exploration will be given in section
4.1. The concept of the most suitable approach—called Hybrid
Solution (HS)—will be presented in detail in sections 4.2 and 4.3.

4.1. Preliminary Exploration
The first approach based on the 2-Phase-Heuristic divides
the CVRP into two separate optimization problems (Q2Q
in Figure 3). The clustering phase can be considered as
the Knapsack Problem with additional distance minimization
between the customers to be grouped. The routing phase can
be reduced to the familiar Traveling Salesman Problem. Thus,
it is possible to split the CVRP down to two individual QUBO
problems and execute them sequentially. The QUBO formulation
for the routing phase corresponds exactly to the representation
of the TSP presented in Lucas (2014). The QUBO formulation
of the clustering phase, however, is an adaption of the Knapsack
Problem as stated in Lucas (2014). It is composed of H = HA +

HB +HC with

HA = X

m
∑

k=1

(

1−

W
∑

n=1

ykn

)2

+A

m
∑

k=1

(

W
∑

n=1

nykn −
∑

α

wαx
k
α

)2

,(3)

HB = X
∑

α

(

1−

m
∑

k=1

xkα

)2

and (4)

HC = C

m
∑

k=1





∑

(uv)∈E

Duvx
k
ux

k
v



 . (5)

As the CVRP usually needs to fill several routes m (i.e.,
backpacks) with customers, the original formulation of Lucas
(2014), which takes only one backpack into account, has been
adapted accordingly with HA (Equation 3). The first term of HA

ensures that the backpack has only one capacity constraint. That
is, as soon as two or more yn variables are set to 1, a penalty
value X (very high value) is added to the solution what declares
it as bad or invalid. The second term, in turn, ensures that the
sum of packed objects does not exceed the specified backpack
capacity from the first term. As soon as the difference is not
equal to 0, the squaring and the penalty value A also classify the
solution as bad. HB (Equation 4) guarantees that every object
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FIGURE 3 | Assignment of the clustering phase (KP) and the routing phase (TSP) of the 2-Phase-Heuristic to a classical solution method (Classic) or quantum

annealing solution method (Quantum). The algorithm on the left-hand side (Q2Q) and in the middle (Q1Q) are results of a preliminary study. The algorithm on the

right-hand side (HS) is the method proposed in this paper.

or customer must be packed in just one backpack or route.
Finally, HC (Equation 5) is an additional optimization function
that tries to improve the clustering by grouping the customers
that are close to each other. To do this, the distances between the
customers of a cluster are summed up. Duv corresponds to the
Euclidean distance between customers u and v. The solution with
the shortest summed distances within the clusters is the optimum
of a classical clustering. The penalty value X must be greater than
A andA greater thanC. This ensures that in fact only one capacity
limit per vehicle is set and each customer is assigned to exactly
one vehicle. Experimental tests for different CVRP datasets and
problem sizes yielded the following correlation of the penalty
values: X = A2 and A = max(Duv) ∗ number of customers. C
corresponds to an edge weighting of the clustering, which is used
to optimize the clustering.

However, in this first approachwe have faced severe difficulties
within the clustering phase. The problem was to find values for
the edge-weighting parameter C such that customers having a
short distance to each other (low cost) are grouped together.
Experimental results have shown that the edge-weighting
parameter needs to be chosen individually for each dataset. Thus,
we perceive this approach as impractical.

The second approach attempts to solve each of the CVRP
subproblems simultaneously instead of sequentially (Q1Q in
Figure 3). For this, the sub-problems have to be mapped to a
single QUBO problem. The overall solution for this QUBO is as
follows: H = HA +HB′ +HC +HD +HE +HF with

HB′ = X
∑

α



1−

m
∑

k=1

n
∑

j=1

xkα,j





2

, (6)

HD = X

n
∑

j=1

(

1−

m
∑

k=1

∑

α

xkα,j

)2

, (7)

HE = E

N
∑

j=1

Duvxu,jxv,j+1 and (8)

HF = X

m
∑

k=1



1−

d
∑

α

xkα





2

. (9)

HA corresponds to Equation (3) of the first approach. The first
term also ensures that the m vehicles have a clear capacity
constraint while the second term ensures that the vehicle capacity
determined by the first term is not exceeded by the summed
customer demand. HB′ (Equation 6) is similar to Equation 4
of the first approach. However, the position in a route has
additionally to be taken into account here, since in this approach
both the clustering and the routing within the clusters are solved
simultaneously. Thus, this term means that a customer can only
be assigned exactly one route with exactly one position within this
route.HC corresponds to Equation (5) of the first approach and is
responsible for optimizing the clustering. That is, we try to assign
customers who have a small distance from each other to a route.
HD (Equation 7) ensures that each position j can only be assigned
to exactly one customer α and one route k. Finally, the shortest
route within a cluster must be found. This is optimized with HE

(Equation 8). Since each position is unique across all routes, the
route subdivision can be neglected here. It should also be noted
that in the Q1Q approach the depot needs to be mapped to each
cluster in order to properly execute the TSP in each cluster. HF
causes the depots that were inserted multiple times in the dataset
to be assigned to different clusters each, where d corresponds to
the number of depots or the number of vehicles.

However, in the second approach we observed that both
optimization functions (HC and HE) seemed to hinder each
other. Neglecting the clustering optimization function (HC) led
to valid routes inside the clusters, but at the same time the clusters
were very sparse. The other way round, i.e., neglecting the routing
optimization functionHE, led to dense clusters but also to invalid
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routes inside the clusters. In summary, both efforts lead to invalid
or unusable solutions.

The third approach (HS in Figure 3) as a candidate for a
CVRP solution method combines the positive aspects of the
previous mentioned approaches. To achieve this, the clustering
phase (KP) is solved using a classical algorithm while the routing
phase (TSP) is mapped to a QUBO problem in order to solve
it on the quantum annealer. The following Subsections will go
into detail.

4.2. Hybrid Solution—Clustering Phase
The clustering phase of the hybrid solution method we propose
is inspired by Shin and Han (2011). Based on their work, we add
a characteristics called clustering core point parameter that will
be presented below. The clustering phase can be subdivided: (1)
cluster generation and (2) cluster improvement.

Within the cluster generation the core stop of a cluster,
i.e., the first customer in a cluster, is chosen. Koenig (1995)
propose to select the core stop either based on the maximum
demand of the customers, or based on the largest distance
to the depot. The motivation behind choosing the customer
with the highest demand is the assumption that this one is
the most critical customer in relation to the vehicles’ capacity
constraint. After selecting that particular customer, the vehicle
can be filled with goods for customers having a smaller demand.
The motivation behind choosing the customer with the largest
distance to the depot is the assumption that this one is the
most critical customer in relation to the routes’ length constraint
and that other customers may be supplied while approaching
or receding that particular customer. Once the core stop v of a
cluster has been selected, the geometric center CC(mk) of cluster
mk is calculated using

CC(mk) =

n
∑

i=0

vxi
n
,

n
∑

i=0

v
y
i

n
(10)

with vxi and v
y
i being the x and y coordinates of customer vi

and n being the number of customers within cluster mk. Now,
the customer with the smallest distance to the cluster center is
selected from the set of unclustered customers and added to
the cluster. After the cluster center is recalculated the steps are
repeated until the demand of a customer to be added would
exceed the vehicle’s capacity. If this is the case, a new core
stop is selected based on the previously explained criteria and
the still unclustered customers are assigned to the new cluster.
This procedure stops when each customer has been assigned to
a cluster.

Once the clusters have been generated, the cluster

improvement is executed to enhance the clusters. This step
assigns a customer vi belonging to cluster mk to another cluster
mj, if that would reduce the distance to the cluster center, i.e., if
the distance to CC(mj) is smaller than the distance to CC(mk).
However, assigning a customer to a new cluster must not violate
the capacity limitation. If the reassignment is possible and valid,
CC(mj) and CC(mk) are recalculated and the improvement

process begins again. The improvement step terminates if it is
not possible to assign a customer to another cluster or when a
certain stop criterion is reached (e.g., number of iterations).

4.3. Hybrid Solution—Routing Phase
After the clustering phase is completed, the goal is now to find the
shortest route inside each cluster. Thus, the Travelling Salesman
Problem (TSP) is executed for every generated cluster. The TSP
can be reduced to the Hamiltonian Cycle Problem (HPC), which
can be formulated as QUBO problem as follows (Lucas, 2014):

HA = A

n
∑

i=1



1−

n
∑

j=1

xi,j





2

+ A

n
∑

j=1

(

1−

n
∑

i=1

xi,j

)2

+A
∑

(ui)/∈E

n
∑

j=1

xu,jxi,j+1(11)

The binary variable xi,j is 1 if the customer with index i is located
at position j in the Hamiltonian Cycle. The first term (constraint)
requires that each customer must occur only once in the cycle,
while the second term enforces that each position in the cycle
must be assigned to exactly one customer. This defines the order
of the customers within the tour. The squared differences of these
terms ensure that exactly one customer has a unique position in
the tour. Otherwise, a high penalty value A would be added to
the solution energy, which states the solution itself as suboptimal
or rather invalid. Although different penalties are possible for the
two terms, we choose the same value because we consider both
constraints equally important. The third term ensures that the
order of customers found is possible. That is, if xu,j and xi,j+1

are both 1 and (ui) /∈ E with E being the set of edges between
the nodes representing the customers, then the penalty value
A should also state the solution invalid (Lucas, 2014). In this
work we have evaluated our algorithm using CVRP/TSP datasets
with fully meshed vertices, i.e., customers are connected with
undirected edges. That is why the third term can be neglected.

In order to find the Hamiltonian Cycle with the shortest
length, the following minimization function is needed:

HB = B
∑

(ui)∈E

Dui

n
∑

j=1

xu,jxi,j+1 (12)

HereDui is the euclidean distance between the customers u and i.
The minimization function sums all costs of the edges between
successive customers. The total solution for the TSP QUBO
problem is then composed of:

H = HA +HB (13)

The penalty value B must be chosen sufficiently small so that it
does not violate the constraint HA. A possible choice would be
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FIGURE 4 | Excerpt of a visualized TSP QUBO problem matrix: A1 corresponds to customer A on position 1 in the TSP cycle. The colored entries correspond to the

coefficients and distances from Equations (11) and (12), respectively.

TABLE 1 | Results for various TSP datasets.

Problem Size
Best known solution

(BKS)

Best solution

found of 100 runs

Avg. deviation

of 100 runs from BKS

(1) Burma14 14 3,323 3,323 0.00%

(2) Ulysses16 16 6,859 6,859 0.31%

(3) Ulysses22 22 7,013 7,019 2.70%

(4) WesternSahara29 29 27,603 28,293 8.16%

(5) Djibouti38 38 6,656 7,396 25.91%

Parameter num_repeats was set to 250.

0 < B · max(Dui) < A (Lucas, 2014). With B = 1, A has to be
chosen larger than the greatest distance between two customers.
In our experiments B was set to 1 and A was set to n · max(Dui)
with n being the number of customers.

By multiplying the QUBO formulas, one obtains the
coefficients for the QUBO problem matrix which can be written
as a lower (or upper) triangular matrix to be mapped to the
quantum annealing processor. Figure 4 shows an excerpt of an
exemplary QUBO problem in which only the coefficients are
entered for simplification. As soon as several coefficients are
noted on one cell of the matrix they must be added. In addition,
every coefficient is multiplied with the penalty value A and the
distance is multiplied with penalty value B.

5. EVALUATION

In this section we present the results of the hybrid solvingmethod
with regards to solution quality and computational results. First
the preliminaries for the test setup are given, then the test results
are shown.

5.1. Preliminaries
As already mentioned, the D-Wave quantum annealer can
be regarded as a discrete optimization machine that accepts
problems in QUBO formulation. The QUBO problem matrix
increases with the problem size, i.e., with the number of problem
variables used. For the TSP n2 logical variables, with n being
the number of customers, have to be used to describe it as a
QUBO problem (see section 4.3). These variables have to be
mapped to the qubits and the logical links between them to the
couplers of the physical QPU. Because of the almost fully meshed
dependencies between the logical variables it is not possible that
the logical problem structure matches the physical one. For such
issues D-Wave provides a minor embedding technique to find
a valid embedding to the hardware, as described in Cai et al.
(2014). We have used this technique4 in combination with D-
Wave’s QBSolv tool to fit our large QUBO problems to the
physical hardware.

4https://github.com/dwavesystems/qbsolv/blob/master/examples/

useFixedEmbeddingComposite.py
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QBSolv splits the QUBO into smaller components
(subQUBOs) of a predefined subproblem size5, which are
then solved independently of each other. This process is
executed iteratively as long as there is an improvement and it
can be defined using the QBSolv parameter num_repeats. This
parameter determines the number of times to repeat the splitting
of the QUBO problem matrix after finding a better sample. With
doing so, the QUBO matrix is split into different components
using a classical tabu search heuristic in each iteration. QBSolv
can be used in a completely classical way to solve the subQUBOs
or as a quantum-classic hybrid method by solving the single
subQUBOs on the quantum annealer.

Besides embedding and splitting the QUBO into subQUBOs,
QBSolv also takes care of the unembedding and the merging
of the subproblems’ solutions. We use the default configuration
of D-Wave’s QBSolv6 including the auto_scale function that
automatically scales the values of the QUBO matrix to the
allowed range of values for the biases and strengths of qubits and
couplers. The single-shot annealing time is set to the default value
of 20µs. For more details about QBSolv, see Michael Booth and
Roy (2017).

There exist many different benchmark datasets for the CVRP
and the TSP, which can be downloaded from Xavier (2014),
Reinelt (2013), and Cook (2009). In addition, the Best Known
Solution (BKS) of each dataset is noted. It gives information
about the best solution, i.e., the shortest euclidean distance found
by any solution method. In order to test and compare the
proposed hybrid solution method with regard to the solution
quality, various test datasets of Christofides and Eilon (Xavier,
2014) have been selected. Details about the CVRP datasets can be
extracted from the name with the format E-nX-kY. For example,
E-n22-k4 stands for a certain dataset E, n22 for the number of
customers including the depot and k4 for the minimal number
of vehicles needed to solve the problem. The TSP datasets have
the name format CityX, which just indicates the number of
customers which have to be visited in the TSP tour. As already
mentioned, the customer and depot coordinates relate to a 2D
euclidean space.

5.2. Results
In this subsection the results of our hybrid method are presented.
First, we exclusively analyze the TSP which is executed on
the quantum annealer to see how the different-sized problem
instances are handled.

5.2.1. TSP—Solution Quality
Table 1 shows the results for different-sized TSP datasets. The
problem instance and its size, also included in the name, can be
read from column one and two. In addition, the BKS, the best
solution of 100 runs, and the average deviation of all 100 runs
from the BKS, is noted in column three to five, respectively. One
can see that for smaller sized problem instances (1)(2) the BKS
has been found and the average deviation is generally low (0.00%
to 0.31%). With increasing problem size (3)(4)(5) the BKS is not

5Due to experimental tests we have chosen a subQUBO size of 20 logical variables.
6To the time of writing QBSolv’s current version 0.2.8.

FIGURE 5 | Deviation of the results from the BKS for each dataset. Every

dataset was run 100 times and num_repeats was set to 250. The dots

represent the measured deviations. The box corresponds to the area in which

the middle 50% of the data reside in with the continuous line being the

median. The whiskers extend to the most extreme data point which is no more

than 1.5 times the interquartile range from the box.

found and the average deviation increases continuously (2.70%
to 25.91%). Therefore it can be concluded that the TSP can be
solved comparatively well for smaller sized problem instances on
the quantum annealer, while with regard to larger sized instances
only a good approximation is found.

In Figure 5 the deviation of each found solution from the
BKS is visualized with a boxplot diagram. In this figure the
variance of each test result in relation to the deviation is shown
in more detail. It also seems that with increasing problem size
the variance of the results expands.Whereas for datasets (1)(2)(3)
the variance is comparatively low (0.00%, 0.00–1.56%, and 0.09–
5.29%), larger datasets (4)(5) show more fluctuations (2.50–
13.77% and 11.12–36.01%).

Experimental tests showed that the solution quality depends
on the QBSolv parameter num_repeats. In Figure 6 the deviation
from the BKS for the already known datasets with different
settings for the num_repeats parameter are shown. Dataset
Burma14 has been neglected since even num_repeats set to 50
finds the BKS in every run. Each setting has been executed
10 times. One can see that with increasing the num_repeats
parameter there is a tendency that the solution quality improves,
i.e., the deviation from the BKS decreases.

5.2.2. CVRP—Solution Quality
Now the results of the hybrid method including its classical
clustering phase are presented. One can optimize the clustering
of the customers by choosing the core stop of a cluster
(max_distance or max_request). Depending on the selected
parameter, either the customer with the largest distance to
the depot or the customer with the highest demand is
set as the seed of a cluster. In Table 2 the best solution
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FIGURE 6 | Different settings for the num_repeats parameter of QBSolv for various datasets. Meaning of dots, box and whiskers as described with Figure 5.

(A) Ulysses16. (B) Ulysses22. (C) WesternSahara29. (D) Djibouti38.

found is noted, i.e., the sum of all vehicle routes and
the deviation from the BKS for both options of the core
stop parameter.

The results do not allow a concrete statement about the
choice of the core stop parameter of the hybrid method.
One can see, that it is independent of the problem size.
In fact the core point has to be selected individually
for each dataset to obtain a good clustering and a short
route length as a consequence. Especially for the first
three datasets (1)(2)(3) the hybrid method finds good
approximations to the BKS with regard to the solution quality
(2.66–6.91% deviation).

In Table 3 the solution quality of the hybrid method is
compared to other fundamental construction and 2-phase-
heuristics. The solution quality has been compared based
on seven CMT datasets of Christofides, Mingozzi and Toth
(Xavier, 2014). Datasets CMT6-CMT10 have been neglected
in the evaluation as they are identical to CMT1-CMT5,
however, they regard an additional time window, which in
turn is ignored in the classic CVRP. The solutions for the
selected datasets found by the other heuristics were extracted
from Fisher and Jaikumar (1981). For every solution method
the best solution found (Distance) and the deviation (Dev.)
from the BKS is depicted. In addition, the problem size
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TABLE 2 | Distances and deviations from the BKS for certain E datasets of Christofides and Eilon.

Hybrid solution method

Problem BKS
Shortest distance

(max_distance)

Shortest distance

(max_request)

Avg. deviation

from BKS

(max_distance)

Avg. deviation

from BKS

(max_request)

(1) E-n22-k4 375 385 407 2.66% 8.53%

(2) E-n33-k4 835 965 852 15.07% 2.05%

(3) E-n51-k5 521 618 557 18.75% 6.91%

(4) E-n76-k7 682 748 814 9.70% 19.46%

(5) E-n101-k8 815 892 898 11.16% 11.39%

Every dataset was executed 10 times.

TABLE 3 | Results for selected CMT datasets: Solution found with (a) max_distance or (b) max_request.

Clarke-

Wright

Fisher-

Jaikumar

Christofides et al.

2 Phase
Sweep

Hybrid

method

Problem Size BKS Distance Dev. Distance Dev. Distance Dev. Distance Dev. Distance Dev.

CMT1 50 524.61 585 11.5% 524 0.12% 550 4.84% 532 1.41% 556b 5.98%

CMT2 75 835.26 900 7.75% 857 2.60% 883 5.72% 874 4.64% 926a 10.86%

CMT3 100 826.14 886 7.25% 833 0.83% 851 3.01% 851 3.01% 905a 9.55%

CMT4 150 1028.42 1204 17.07% – – 1093 6.28% 1079 4.92% 1148a 11.63%

CMT5 199 1291.29 1540 19.26% 1420 9.97% 1418 9.81% 1389 7.57% 1429a 10.66%

CMT11 120 1042.12 – – – – – – – – 1084b 4.02%

CMT12 100 819.56 877 7.01% 848 3.47% 876 6.89% 949 15.79% 828a 1.03%

and the BKS for each dataset is noted in column two
and three.

For problem instances CMT1 and CMT5, the hybrid method
was able to keep up or even surpass the Saving-Heuristic of
Clarke and Wright. With regard to datasets CMT2, CMT3,
and CMT4 major deviations from the BKS are recorded. Here
the hybrid method can keep up with or even dominate the
Saving-Heuristic. However, with regard to the other heuristics
it was not competitive. The last two problem instances are
structured problems in which the customers are organized in
clusters by the authors of the datasets. According to Fisher
and Jaikumar, these datasets resemble real problems rather
than problem instances CMT1-CMT5 (Fisher and Jaikumar,
1981). Therefore, with these instances one can recognize
that the clustering algorithm of the hybrid method works
comparatively well, since each of the other four heuristics
was surpassed with regard to the solution quality. However,
in relation to the BKS it should be mentioned that both, the
hybrid method and the other heuristics, never found the BKS
(exception: problem instance CMT1—Fisher and Jaikumar). This
is basically a well-known problem of clustering customers in
the CVRP, since finding the BKS or the global optimum is
related to the geographical structure of the customers of a
problem instance.

5.2.3. CVRP—Computational Results
The computation time for the executed test instances must be
considered differentiated. As already mentioned, QBSolv can

be used as a pure classical solver (called Local) as well as a
hybrid solver (called Remote) for large QUBO problems. With
the classic version, the subQUBOs are solved locally, while with
the hybrid version the subQUBOs are solved sequentially on the
D-Wave hardware. Doing this, the QUBO is split locally and the
subQUBOs are sent to the hardware via a remote connection
and the individual jobs are placed in a queue. As a result
of this process, additional latency and possibly waiting times
may occur.

To demonstrate the difference in relation to the computational

time of the routing phase, the CMT1 dataset has been used.

For each of the 5 contained clusters, the routing phase has

to find the shortest tour visiting all clusters’ customers. This
has been done locally as well as remotely on the quantum
annealer using QBSolv. A distance of 557 has been found in
the classical way and the hybrid version found a distance of
556. The corresponding computational results are consolidated
in Table 4. The numbers of the table are based on the listings
given in the Appendix (Supplementary Material): In Listing 1
and Listing 2 the measured CPU times for the locally executed
QBSolv are shown, while Listing 3 and Listing 4 show the
same for the remotely executed QBSolv. The dataset has been
run on a Dell 2.8 GHz i7 with 16 GB RAM Notebook. For
measuring the CPU processing time the Python module cProfile
has been used.

The total runtime of the locally executed algorithm consists
of two parts, the main procedure (clustering phase, QUBO
construction, I/O) and the actual routing (i.e., the QBSolv

Frontiers in ICT | www.frontiersin.org 10 June 2019 | Volume 6 | Article 13

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Feld et al. A Hybrid Solution Method for the CVRP

TABLE 4 | Computational results for the CMT1 dataset.

Local Remote

CPU QPU Total CPU QPU Total

Cluster 1 0.016 – 0.016 3.281 0.031 3.312

Cluster 2 0.046 – 0.046 2.016 0.016 2.032

Cluster 3 0.016 – 0.016 1.235 0.016 1.251

Cluster 4 0.031 – 0.031 3.535 0.031 3.566

Cluster 5 0.125 – 0.125 1.184 0.016 1.200

Sum QBSolv 0.234 – 0.234 11.251 0.110 11.361

Main Procedure 1.240 – 1.240 4.431 – 4.431

Total Runtime 1.474 15.792

Various time components (CPU, QPU and Total Time) are given for locally and remotely

used QBSolv. Cluster 1–5 correspond to the 5 clusters of the CMT1 dataset found by the

clustering phase of our Hybrid Solution.

runtime). In Table 4 can be seen, that the total runtime of the
classically executed hybrid solution algorithm took 1.474 s to
complete consisting of a QBSolv runtime of 0.234 s and a main
procedure of 1.24 s. In contrast to that, the remote version of
our hybrid solution method needed 15.792 s. This is due to
the fact, that the algorithm additionally encounters times for
embedding the problem onto the Chimera graph, latency of the
Internet connection and queueing at the quantum hardware.
The method listing of cProfile in Listings 2 and 4 (Appendix
in the Supplementary Material) clearly show that the hybrid
version of QBSolv mainly stays in the method method “acquire”
of “thread.lock” objects, which is not listed in the locally QBSolv
run. Therefore we assume that here the main QBSolv thread
waits for the child threads to find a valid embedding for the
respective subQUBOs to the D-Wave hardware. This process is
not needed using QBSolv locally. However, the actual annealing
time for solving the QUBO problem remotely is in the range of
0.016 to 0.031 s. Please note, that the QBSolv method splits the
5 problem QUBOs into 4, 2, 2, 4, and 2 subQUBOs (Number
of Partitioned Calls and solves them one after the other on the
quantum annealer. Thus, the listed numbers in Table 4 are based
on the QPU access times per subQUBO inmicroseconds pictured
in Listing 5 (Appendix in the Supplementary Material). These
add up to 0.11 s. The classic QBSolv version requires 0.234 s to
solve the 5 QUBOs.

In summary, it can be stated that the real computation
time to solve a QUBO problem on D-Wave’s quantum annealer
is comparatively shorter than with the classic QBSolv version
(0.234 s locally vs. 0.11 s remotely). However, methods like
finding a valid embedding of the QUBO problem to the
hardware, which is not needed for usingQBSolv locally, generates
overhead. For this reason, the classic version of QBSolv is
currently more advantageous in practice regarding the total
calculation time.

6. CONCLUSION

To the best of our knowledge, this work presents the first study
that solves the capacitated vehicle routing problem (CVRP) using
quantum annealing hardware. The most important step was

to find an intuitive way to map this optimization problem to
a QUBO problem. Doing this, the classical 2-phase-heuristic
has been used, which enables to divide the complex problem
into a clustering phase as well as a routing phase and solves
them sequentially or simultaneously (see approaches Q2Q
and Q1Q in Figure 3). Due to various problems within the
clustering phase, a hybrid method proved to be the best.
We showed that our hybrid method was able to compete
with other classical construction and 2-phase-heuristics and
in some cases even surpass them with regard to solution
quality. However, it should be mentioned that there are other
solution methods like metaheuristics, which provide a better
solution with regard to the used benchmark datasets. Especially
when using datasets whose BKS contains overlapping routes,
the hybrid method—and in general heuristics with clustering
methods that work distance-based—has got difficulties in finding
the BKS. However, the hybrid method usually provided a
good approximation.

The results of the present study can also be considered
detached from the CVRP domain. One part of the hybrid
solution method has been formalized as the TSP. As a
decision problem, the TSP is known to be NP-complete.
However, practically relevant tasks using the TSP as a building
block require solving the optimization variant of the problem
(Bovet and Crescenzi, 1994). TSP is known to be APX-
complete (Ausiello et al., 1999), which essentially means it is
hard to approximate—any efficient polynomial time algorithm
can only find answers that differ from the optimal solution
by a constant multiplicative factor. The question now is
whether a quantum annealing device can offer advantages
over classical algorithms. On the one hand, the advantage
can relate to the solution quality, as already described above.
On the other hand, the advantage can be regarding the time
to solution.

Thus, the computational time of the hybrid solution
method must be considered differentiated. Due to the currently
limited number of available qubits on the D-Wave QPU,
the tool QBSolv must be used for large QUBO problems
which are not directly embeddable on the D-Wave chip.
This tool makes it possible to split the QUBO into smaller
subQUBOs and place them one after the other on the
quantum annealer. However, this hybrid solution option involves
certain latency and waiting times which lacks the hoped
acceleration of the computational time compared to the classical
option. Thus, with an increasing size of the hardware the
necessity of using QBSolv is decreasing. This results in a
drastically lowered classical overhead time while the real
solution time for an embeddable QUBO problem on the D-
Wave quantum annealer is expected to stay in the range
of microseconds.

In summary, the hybrid solution method presented in
this study has not brought clear benefit in solution quality
or computational time. Nonetheless, we have presented an
approach on how to split complex combined problems and
solve them in a hybrid way using a quantum annealer. This
in turn can serve as a basis for further optimization problems.
Working out a clear advantage in terms of time or quality
thus remains future work, as we wait for larger hardware. Part
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of the future work will then be to investigate the effective
scaling: how does the size of the hardware affects the efficiency
of the problem mapping, the necessity of using additional
tools like QBSolv, but also the duration of the annealing
process itself.

At the 2018 D-Wave Qubits Europe users conference
D-Wave provided an outlook about the future hardware
directions of quantum annealing. They stated that the
connectivity and the number of qubits on D-Wave
machines will immensely rise over the next years7. These
news give hope that in the future D-Wave’s quantum
annealers are more suitable for these kind of optimization
problems and a shorter total computation time can
be achieved.

7https://www.dwavesys.com/sites/default/files/mwj_dwave_qubits2018.pdf

AUTHOR CONTRIBUTIONS

SF being the head of the project. CR and TG inside the project
team. CS, FN, and IG gave the idea of the topic. WM and CL-P
are the supervising professors.

FUNDING

The authors declare that this study received funding from
Volkswagen Group, department Group IT.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fict.2019.
00013/full#supplementary-material

REFERENCES

Albash, T., and Lidar, D. A. (2018). Adiabatic quantum computation. Rev. Mod.

Phys. 90:015002. doi: 10.1103/RevModPhys.90.015002

Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi,

P., and Kann, V. (1999). Complexity and Approximation: Combinatorial

Optimization Problems and Their Approximability Properties. 1st Edn. Berlin,

Heidelberg: Springer-Verlag.

Biggs, N. (1986). The traveling salesman problem a guided tour of combinatorial

optimization. Bullet. Lond. Math. Soc. 18, 514–515. doi: 10.1112/blms/18.5.514

Biswas, R., Jiang, Z., Kechezhi, K., Knysh, S., Mandrã, S., O’Gorman, B.,

et al.(2017). A nasa perspective on quantum computing: opportunities and

challenges. Parall. Comput. 64, 81–98. doi: 10.1016/j.parco.2016.11.002

Black, F., and Litterman, R. (1992). Global portfolio optimization. Finan. Anal. J.

48, 28–43. doi: 10.2469/faj.v48.n5.28

Boros, E., Hammer, P. L., and Tavares, G. (2007). Local search heuristics for

quadratic unconstrained binary optimization (qubo). J. Heurist. 13, 99–132.

doi: 10.1007/s10732-007-9009-3

Bovet, D. P., and Crescenzi, P. (1994). Introduction to the Theory of Complexity.

London: Prentice Hall.

Bramel, J., and Simchi-Levi, D. (1995). A location based heuristic for general

routing problems. Operat. Res. 43, 649–660. doi: 10.1287/opre.43.4.649

Cabrera, E., Taboada, M., Iglesias, M. L., Epelde, F., and Luque, E. (2011).

Optimization of healthcare emergency departments by agent-based simulation.

Proc. Comput. Sci. 4, 1880–1889. doi: 10.1016/j.procs.2011.04.204

Cai, J., Macready, W. G., and Roy, A. (2014). A practical heuristic for finding graph

minors. arXiv:1406.2741.

Caunhye, A. M., Nie, X., and Pokharel, S. (2012). Optimization models in

emergency logistics: a literature review. Socioecon. Plan. Sci. 46, 4–13.

doi: 10.1016/j.seps.2011.04.004

Chancellor, N. (2017). Modernizing quantum annealing using local searches. N. J.

Phys. 19:023024. doi: 10.1088/1367-2630/aa59c4

Clarke, G., and Wright, J. W. (1964). Scheduling of vehicles from a

central depot to a number of delivery points. Operat. Res. 12, 568–581.

doi: 10.1287/opre.12.4.568

Cook,W. (2009).The Traveling Salesman Problem. Available online at: http://www.

math.uwaterloo.ca/tsp/world/countries.html

Crispin, A., and Syrichas, A. (2013). “Quantum annealing algorithm for vehicle

scheduling,” in Systems, Man, and Cybernetics (SMC), 2013 IEEE International

Conference on (Manchester, UK: IEEE), 3523–3528.

Dantzig, G. B., and Ramser, J. H. (1959). The truck dispatching problem. Manag.

Sci. 6, 80–91. doi: 10.1287/mnsc.6.1.80

Fisher, M. L., and Jaikumar, R. (1981). A generalized assignment heuristic for

vehicle routing. Networks 11, 109–124. doi: 10.1002/net.3230110205

Gillett, B. E., andMiller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch

problem. Operat. Res. 22, 340–349. doi: 10.1287/opre.22.2.340

Glauber, R. J. (1963). Time-dependent statistics of the ising model. J. Math. Phys.

4, 294–307. doi: 10.1063/1.1703954

Groër, C., Golden, B., and Wasil, E. (2010). A library of local search

heuristics for the vehicle routing problem. Math. Prog. Comput. 2, 79–101.

doi: 10.1007/s12532-010-0013-5

Haddar, B., Khemakhem,M., Hanafi, S., andWilbaut, C. (2016). A hybrid quantum

particle swarm optimization for the multidimensional knapsack problem. Eng.

Appl. Artif. Intell. 55, 1–13. doi: 10.1016/j.engappai.2016.05.006

Kadowaki, T., and Nishimori, H. (1998). Quantum annealing in the transverse

ising model. Phys. Rev. E 58:5355. doi: 10.1103/PhysRevE.58.5355

Karp, R. M. (1972). “Reducibility among combinatorial problems,” in Complexity

of Computer Computations, eds R. E. Miller, J. W. Thatcher, and J. D. Bohlinger

(Boston, MA: Springer), 85–103.

Koenig, B. (1995). Heuristiken zur Ein-Depot-Tourenplanung (Master’s thesis).

Technische Universität München, 1995.

Laporte, G. (1992). The vehicle routing problem: an overview of exact

and approximate algorithms. Eur. J. Operat. Res. 59, 345–358.

doi: 10.1016/0377-2217(92)90192-C

Laporte, G., and Semet, F. (2002). “Classical heuristics for the capacitated

VRP,” in The Vehicle Routing Problem, eds P. Toth and D. Vigo

(Philadelphia, PA: Society for Industrial and Applied Mathematics),

109–128. doi: 10.1137/1.9780898718515.ch5

Lin, S. (1965). Computer solution of the traveling salesman problem. Bell Syst.

Tech. J. 44:2245. doi: 10.1002/j.1538-7305.1965.tb04146.x

Lucas, A. (2014). Ising formulations of many np problems. Front. Phys. 2:5.

doi: 10.3389/fphy.2014.00005

Marshall, J., Rieffel, E. G., and Hen, I. (2017). Thermalization, freeze-out, and

noise: deciphering experimental quantum annealers. Phys. Rev. Appl. 8:064025.

doi: 10.1103/PhysRevApplied.8.064025

McGeoch, C. C. (2014). Adiabatic quantum computation and quantum

annealing: theory and practice. Synt. Lect. Quant. Comput. 5, 1–93.

doi: 10.2200/S00585ED1V01Y201407QMC008

Michael Booth, S. P. R., and Roy, A. (2017). Partitioning Optimization Problems for

Hybrid Classical/Quantum Execution. Tech. rep.

Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., and Parney,

B. (2017). Traffic flow optimization using a quantum annealer. Front. ICT 4:29.

doi: 10.3389/fict.2017.00029
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