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Vulnerable marine ecosystems (VMEs) are ecosystems at risk from the effects of

fishing or other kinds of disturbance, as determined by the vulnerability of their

components (e.g., habitats, communities, or species). Habitat suitability modeling is

being used increasingly to predict distribution patterns of VME indicator taxa in the

deep sea, where data are particularly sparse, and the models are considered useful

for marine ecosystem management. The Louisville Seamount Chain is located within

the South Pacific Regional Fishery Management Organization (SPRFMO) Convention

Area, and some seamounts are the subject of bottom trawling for orange roughy by

the New Zealand fishery. The aim of the present study was to produce high-resolution

habitat suitability maps for VME indicator taxa and VME habitat on these seamounts,

in order to evaluate the feasibility of designing within-seamount spatial closures to

protect VMEs. We used a multi-model habitat suitability mapping approach, based

on bathymetric and backscatter data collected by multibeam echo sounder survey,

and data collected by towed underwater camera for the stony coral and habitat-

forming VME indicator species Solenosmilia variabilis, as well as two taxa indicative

of stony coral habitat (Brisingida, Crinoidea). Model performance varied among the

different model types used (Boosted Regression Tree, Random Forest, Generalized

Additive Models), but abundance-based models consistently out-performed models

based on presence-absence data. Uncertainty for ensemble models (combination of

all models) was lower overall compared to the other models. Maps resulting from our

models showed that suitable habitat for S. variabilis is distributed around the summit-

slope break of seamounts, and along ridges that extend down the seamount flanks.

Only the flat, soft sediment summits are predicted to be unsuitable habitat for this

stony coral species. We translated a definition for stony coral-reef habitat into a S.

variabilis abundance-based threshold in order to use our models to map this VME

habitat. These maps showed that coral-reef occurred in small and isolated patches,

and that most of the seabed on these seamounts is predicted to be unsuitable
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habitat for this VME. We discuss the implications of these results for spatial management

closures on the Louisville Seamount Chain seamounts and the wider SPRFMO area, and

future modeling improvements that could aid efforts to use habitat suitability maps for

managing the impact of fishing on VMEs.

Keywords: vulnerable marine ecosystems, habitat suitability modeling, Solenosmilia variabilis, fishery

management, Louisville Seamount Chain, SPRFMO, seamount

INTRODUCTION

Vulnerable marine ecosystems (VMEs) are ecosystems at
potential risk from the effects of fishing or other kinds
of disturbance, as determined by the vulnerability of their
components (e.g., habitats, communities, or species) (FAO,
2009). A number of United Nations General Assembly
resolutions have been passed that require nation states and
fishery management organizations to identify VMEs within their
jurisdiction as one of the steps toward their protection (see
Ardron et al., 2014 for details). Species or taxonomic groups
have been identified that can be used as indicators of the
presence of VMEs in particular ocean regions, in order to
assist agencies responsible for their protection [e.g., the South
Pacific Regional Fisheries Management Organization (SPRFMO)
in the South Pacific region—Parker et al., 2009]. Such taxa
possess characteristics that make them particularly vulnerable
to disturbance (such as slow growth rates, longevity, late
maturity, and fragility), and include species that form structurally
complex features, like coral reefs and sponge aggregations, which
provide three-dimensional structure associated with diverse
communities, and discrete areas of functional significance (e.g.,
necessary habitat for rare, threatened or endangered species of
the habitat, and/or the survival, function, spawning/reproduction
or recovery of fish stocks and particular life-history stages) (FAO,
2009).

Habitat suitability modeling (sometimes called species
distribution modeling) is a method for predicting the suitability
of a location for a species, or group of species, based on
their observed relationship with environmental conditions.
Habitat suitability modeling is being used increasingly to
predict distribution patterns of VME indicator taxa in the deep
sea, where data are particularly sparse, and such models are
considered useful for marine ecosystem management (Ross and
Howell, 2013; Reiss et al., 2014). Habitat suitability models have
been produced for numerous deep-sea taxa (see review by Vierod
et al., 2014), but the predicted distributions are dependent on
how the models are constructed. The quantity, quality, and
distribution of species presence records, the availability of true
absence records, and the environmental predictor variables
used can all influence the reliability of the models (Araújo and
Guisan, 2006; Guisan et al., 2006). Recent efforts to improve the
accuracy of habitat suitability models, and thus their usefulness
for the management of the impact of fishing on VMEs, have
included use of abundance data (as opposed to relying only
on presence-absence data), ground-truth model validation,
ensemble modeling, and estimates of model uncertainty (Rooper
et al., 2014, 2016; Anderson et al., 2016a,b; Robert et al., 2016).

Despite these improvements, models are still sometimes found
to be unsuitable for management purposes because they are
either at spatial resolutions that are too coarse, or because they
predict the presence of VME indicator taxa but not the VME
itself. These issues can be reduced if high-resolution multibeam
data and seafloor images are used in building habitat suitability
models (e.g., Howell et al., 2011; Rengstorf et al., 2012, 2013,
2014).

The aim of the present study was to produce high-resolution
habitat suitability models for VME indicator taxa, and VME
habitat, on seamounts of the Louisville Seamount Chain at the
scale of individual seamounts. These seamounts are located
within the SPRFMO Convention Area, and some are the subject
of bottom trawling for orange roughy by theNewZealand fishery.
SPRFMO has protection measures in place for VMEs, but the
efficacy of these measures has been questioned (e.g., Penny and
Guinotte, 2013), and additional and alternative measures are
being sought and considered by stakeholders. Currently, large 20-
min latitude/longitude spatial closures are implemented on some
seamounts for the New Zealand fishery, based on past fishing
history or the presence of a VME detected by the bycatch of VME
indicator taxa exceeding a particular threshold (Parker et al.,
2009; Penney et al., 2009). One possible alternative management
measure is to close small areas on individual seamounts that
have, or are likely to have, VMEs, and allow fishing elsewhere on
the seamount. High resolution, seamount-scale habitat suitability
models for VME indicator taxa would aid the design of such
within-seamount spatial closure measures.

In the present study we built such models for a species of
reef-forming stony coral, Solenosmilia variabilis and two taxa
that are considered useful indicators for the occurrence of coral
reef habitat; brisingid starfish and crinoids (Parker et al., 2009).
The present study builds on previous habitat suitability modeling
work in the region (Anderson et al., 2016a,b), and collectively
these models can be used to inform spatial management planning
for protecting VMEs in the seas around New Zealand, including
key bottom-trawling regions within the SPRFMO Convention
Area.

METHODS

Study Area and Seamounts
The Louisville Seamount Chain lies to the east of New Zealand
in the SPRFMO Convention Area, the region of the South
Pacific beyond areas of national jurisdiction. It is made up
of more than 80 seamounts and extends over 4,000 km from
the junction of the Pacific and Indo-Australian Plates (at
latitude ∼27◦ S) southeastwards into the central southwest
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Pacific (to latitude ∼47◦ S) (Figure 1). Many of the seamounts
in the chain are large guyots; flat-topped seamounts formed
by erosion and subsequent submersion of islands (Lonsdale,
1988). Parts of the Louisville Seamount Chain are subject to
bottom trawling, primarily for orange roughy (Hoplostethus
atlanticus) by the New Zealand deepwater fishing fleet (Clark
et al., 2016).

Seven large seamounts in the Louisville Seamount Chain were
selected for survey (Forde, CenSeam, Anvil, JCM, 39 South,
Ghost, Valerie) (Figure 1) with the aim to represent as wide a
geographic range as possible given the available survey time.
All seven seamounts have a vertical elevation of more than
1 km from the surrounding seafloor, and summary details for
each are given in Table 1. Among the chosen seamounts there
is a general gradient of increasing historical bottom trawling
from north to south. Bottom trawling has taken place on all
these seamounts and much of the area (excluding Forde and
CenSeam) remains open to fishing by New Zealand bottom
trawlers under SPRFMO regulations. These regulations control
fishing in designated 20-min latitude/longitude blocks by vessels
flagged to SPRFMO Member States. Regulations are based on
a “bottom fishing footprint” established during the 2002-06
SPRFMO reference period (SPRFMO CMM2.03, https://www.
sprfmo.int/), and for New Zealand vessels these are subject
to open, move-on, and closed rules (Penney et al., 2009)
(Figure 1).

Sampling
A random-stratified survey of benthic fauna and habitats using a
towed camera system and an epibenthic sledge was undertaken
on each study seamount to test the abilities of two broad-scale
models to predict the presence of reef-forming corals (Anderson
et al., 2016a). Data collected during this survey were also intended
to enable subsequent development of high-resolution habitat
suitability models at the scale of individual seamounts in the
present study. Clark et al. (2015) and Anderson et al. (2016a)
describe the survey design and sampling methodology in detail,
but some of this information is repeated here for completeness.

Prior to running photographic transects, a multibeam
echosounder (MBES) survey was conducted on each seamount
(except Anvil where existing data were available) using a
30KHz Kongsberg EM302, producing a data resolution of
25 × 25m. Each photographic transect was ∼1.4 km long
(mean± SD, 1.43± 0.27) and 2m wide, and some targeted
epibenthic sled deployments were made along the video transects
to collect physical samples for verification of visual identifications
and other research. Photographic transects were carried out using
NIWA’s deep towed imaging system (DTIS, Hill, 2009), which
incorporates high definition video (Sony HD 1080i format)
and still camera (Canon 10MP single lens reflex) systems, with
an ultra-short baseline positioning system (USBL, Kongsberg
HiPAP) for tracking and recording the precise seabed position
of the equipment (accurate under ideal conditions to within
1m). In total, 118 photographic transects were completed,
with 20, 22, 13, 1, 17, 29, and 16 on Forde, CenSeam, Anvil,
JCM, 39 South, Ghost and Valerie seamounts, respectively
(Figure 2).

Data and Data Processing
Identifications and counts of fauna observed in video transects
were made in real-time via a low-resolution video link to
the ship, and from later analysis of full-resolution video for
selected transects in which VME indicator taxa (primarily stony
corals) occurred. S. variabilis was the only significant habitat-
forming coral observed in the study area. Because much of
the S. variabilis matrix of colonies observed was evidently not
alive (dark colouration with no feeding polyps visible in high
resolution still imagery), occurrence of this taxon was recorded
in two ways: as percent cover of the seabed by intact coral
matrix (“intact coral”), and counts of distinct coral colonies or
“heads” with live polyps (“live heads”). The occurrence of non-
intact coral matrix (broken up coral colonies that can occur
around intact coral) was not recorded. Abundance data were
then extracted for the three study taxa: live heads of S. variabilis;
brisingid starfishes (Order Brisingida), and sea-lilies and feather
stars (Class Crinoidea). The first species belongs to the VME
indicator taxon Order Scleractinia, while the latter two are VME
habitat indicator taxa for coral reefs (sensu Parker et al., 2009).
Abundances were recorded as the number of individuals (or live
heads) per 25 m2 segment of video transect (∼2m transect image
width× 12m along the transect track).

A working definition of VME coral reef habitat, as opposed
to individual occurrence of S. variabilis, was derived from video
observations in the context of: (a) guidelines on identifying
“sensitive environments” in the New Zealand region (schedule 6,
Exclusive Economic Zone and Continental Shelf (Environmental
Effects—Permitted Activities) Regulations 2013 http://www.mfe.
govt.nz/marine/legislation/regulations-under-eez-act) and (b)
our intuitive evaluation of VME status from observation of
the seabed video imagery during the voyage and post-voyage
confirmation from high-resolution imagery. According to the
guidelines, “stony coral thicket or reef” habitat (Figure 3A) exists
where either live or dead colonies of a structure-forming coral
taxon cover more than 15% of the seabed over areas of >100 m2.
Using this as a starting point, for each 25 m2 video segment, we
calculated the proportion of the seabed identified as intact coral.
To approximate to ∼100 m2, we then identified areas along each
transect where any 3 or more segments in a 5-segment moving
window had more than 15% intact coral. We then compared a
number of possible formulations for VME definition (excluding
extensive areas of dead coral matrix), each incorporating different
measures of the numbers of live S. variabilis heads, against
our intuitive evaluation of VME status. The definition (“rule”)
that best matched our intuitive evaluation combined only two
criteria: (1) more than 15% intact coral present in 3 or more
segments of a 5-segment moving window, and (2) more than
one live S. variabilis head present in 3 or more segments of the
5-segment moving window. Having arrived at this definition of
VME habitat status, we then calculated the mean number of
live S. variabilis heads per VME habitat segment per transect
for each transect in which VME habitat occurred, and then
took the lowest mean value obtained (2.78 S. variabilis live
heads per VME habitat segment, transect #135) as a threshold
indicator of VME coral reef habitat (Figure 3B). This abundance
threshold value was applied to the outputs from the suitability
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FIGURE 1 | Location of the surveyed seamounts and guyots within the Louisville Seamount Chain. Dots mark the location of the seamount summit, boxes mark areas

open/closed to New Zealand bottom fishing. Inset image shows the location of the study area in relation to New Zealand.

TABLE 1 | Summary details of the surveyed seamounts.

Seamount name Latitude (S decimal

degrees)

Longitude (W decimal degrees) Depth range (m) Fishing effort

(#tows)

Open/Closed to fishing

(year last fished)

Forde Guyot 35.40 170.40 980–4,500 370 Closed (2005)

CenSeam Guyot 36.92 169.73 955–4,823 672 Closed (2007)

Anvil Seamount 37.56 169.15 1,036–4,648 205 Open (2007)

JCM Guyot 38.41 167.99 265–4,772 1,819 Open (2013)

39 South Seamount 39.10 167.40 878–3,750 1,134 Open (2014)

Ghost Seamount 40.70 165.35 620–4,500 3,865 Open (2014)

Valerie Guyot 41.45 164.25 750–4,500 1,826 Open (2013)

Fishing effort is for bottom trawling by New Zealand vessels for orange roughy (Hoplostethus atlanticus) targeted or caught, and covers the years 1992–2014. Open/closed refers to

New Zealand bottom fishing measures.

modeling (see below) to map the predicted distribution of VME
habitat.

A set of more than 100 topographical terrain variables was
derived from bathymetric data collected by the MBES survey
using Benthic Terrain Modeler in ArcGIS 10.3.1 (ESRI, 2015).
Terrain variables included those that have been shown previously
to be useful for predicting suitable habitat for VME indicator
taxa (e.g., Rengstorf et al., 2012). The continuous variables
were: depth; slope (steepest gradient to any neighboring cell);
aspect (direction of slope); curvature (change of slope); plan
curvature (curvature of the surface perpendicular to the slope
direction); and profile curvature (curvature of the surface in
the direction of slope). In addition, a further set of derivative

continuous variables were calculated using focal mean analysis
in ArcGIS for the standard deviation of depth, depth range,
standard deviation of the slope, and terrain ruggedness. Focal
mean analysis finds the average value of a variable within a
specified neighborhood centered on a given cell and outputs
these data to the corresponding cell location. Four different
neighborhood sizes (3 × 3, 5 × 5, 7 × 7, and 15 × 15 grid
cells) were computed to produce more generalized datasets. The
different neighborhood cell sizes were selected to mimic a range
of spatial scales at which seafloor bathymetry and topography
may affect the distribution of benthic communities (e.g., 3 × 3
cells= 75× 75m; 5× 5= 125× 125m; 7× 7= 175× 175m; 15
× 15= 375× 375m). Aspect, measured continuously in degrees,
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FIGURE 2 | Bathymetric maps showing the position of photographic transects on each of the study seamounts (number = station number). JCM seamount is not

shown because it was only partially surveyed and only one photographic transect was completed.

was transformed into a categorical variable representing the 16
sectors of the compass (i.e., N, NNE, NE, etc).

Backscatter data from the MBES survey were processed using
SonarScope (Augustin and Lurton, 2005). Processing consisted
of statistical compensation of the signal as a function of its
incidence angle on the seafloor, to attenuate the strong signal
from specular reflection at the nadir and the rapid decrease
of the signal strength with increasing incidence angle (Fonseca
et al., 2009). Backscatter strength (a continuous variable), which
measures the acoustic reflectivity of the seafloor, has been found

to be a useful surrogate for substratum type (Lamarche et al.,
2011). Substratum type influences the distribution of benthic
organisms, including the study taxa which typically occupy hard
substratum (high backscatter seafloor), and backscatter strength
has been related to the distribution of deepwater coral species in
previous studies (e.g., Georgian et al., 2014).

Because backscatter data were not available from the earlier
MBES survey of Anvil Seamount, this seamount was excluded
from modeling. JCM Seamount was also excluded because only
a part of the seamount was surveyed using MBES, and only one

Frontiers in Marine Science | www.frontiersin.org 5 October 2017 | Volume 4 | Article 335

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rowden et al. High-Resolution VME Habitat Suitability Maps

FIGURE 3 | (A) Seabed photograph showing coral reef habitat (live coral heads are lighter colored) and associated fauna including brisingids and crinoids (station

150, Valerie Guyot). (B) Illustration of VME habitat definition approach based on video transect observations, showing the occurrence of: all intact Solensmilia variabilis

colony matrix (“intact coral”); VME coral reef habitat as defined by a “rule” (“VME by rule,” see methods text), and an abundance indicator of VME coral reef habitat

(“live coral head threshold”) based only on a minimum threshold for live Solensmilia variabilis heads derived from their occurrence in the “VME by rule” areas. Black

lines show full video transect paths (numbers = station number). This example is from the northwest flank of Ghost Seamount.

photographic transect was completed on the feature. That is, only
models for five out of the original seven seamounts surveyed were
made. Some biological data from the two excluded seamounts is
presented later.

Model Types and Selected Model Settings
We selected three statistical modeling methods in common
usage for habitat suitability modeling; Boosted Regression
Trees, General Additive Models, and Random Forests. Model
predictions of habitat suitability across all seamounts were
restricted to a maximum depth of 2,000m (the depth limit of the
video survey) and a minimum depth of 265m (the summit of the
shallowest seamount).

Boosted Regression Tree (BRT)
Boosted Regression Tree (BRT) modeling is an approach which
can utilize both presence-absence data and abundance data,
and has been used previously to predict distributions of deep-
sea taxa in the study region (Anderson et al., 2016a,b). BRT
models incorporate recursive binary splits within a regression
tree structure to explain the relationship between the response
and predictor variables (Elith et al., 2008). BRT models were
fitted in R (R Development Core Team, 2016) using a standard
approach, including optimization of the learning rate and
number of trees by internal cross validation (Elith et al., 2008),
and setting tree-complexity to 3 to allow a level of interactions
between terms. The minimum number of trees for each model
was set at 700. For construction of presence-absence models
a Bernoulli (=binomial) distribution was assumed and for
abundance models (count data) a Poisson distribution was
assumed. Other model settings were left at default values.

A Generalized Additive Model (GAM)
A Generalized Additive Model (GAM) is a specific form of a
generalized linear model that estimates smooth, non-parametric
functions for each predictor variable (Hastie and Tibshirani,

1986). The distributions of a number of deep-sea species have
been successfully modeled using a GAM approach, including
corals (Rooper et al., 2014; Murillo et al., 2016), sponges (Rooper
et al., 2014; Murillo et al., 2016), and fish (Leathwick et al., 2006).
GAMs were developed in R using the “mgcv” package (Wood,
2006). For presence-absence models, a binomial distribution
was assumed during model construction. For abundance
models, a zero-inflated Poisson distribution with no data
transformation was selected after exploring several alternative
distributions (Gaussian, Poisson, quasi-Poisson, and Tweedie)
and transformations (log+1, log+1% of mean abundance, square
root, and fourth root) through analysis of residuals and model
deviance. For all models, predictors were fitted with smooth
terms allowing up to 4 degrees of freedom.

Random Forest (RF)
Random Forest (RF) modeling (Breiman, 2001) is a non-
parametric approach which builds classification trees (presence-
absence data) or regression trees (abundance data) using random
subsets of the input data. One potential benefit of random
forest over modeling approaches such as GAMs is the lack of
any underlying assumption of the distribution of the response
variable. RF models were constructed using the “randomForest”
package (Liaw and Wiener, 2002) in R. For all models, 501
trees were run, which was always sufficient to allow the
error rate to stabilize. Different values of “mtry,” the number
of variables used in each tree node, were explored during
initial model construction using the “tuneRF” function in the
“randomForest” package. Default values (square root of the
number of environmental variables for classification models, 1/3
the number of environmental variables for regression models),
consistently produced the best results and were used in all
models. Classification trees are highly sensitive to imbalances
in the response variable, as the model will minimize the overall
error rate at the expense of the error rate of the minority class
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(Chen et al., 2004; Evans et al., 2011). As our taxa data were
skewed (>10:1 ratio of absences to presences for all species), we
set the “cutoff” parameter in “randomForest” equal to species
prevalence for each presence-absence model (Guo et al., 2004),
which greatly reduced omission errors without affecting overall
model performance.

Model Performance and Precision
Model performance was assessed using a cross-validation
procedure in which models were trained using a random
partition of data (70%) and tested against the remaining portion
(30%). This cross-validation was carried out for 10 test datasets
derived from different combinations of extracted data. For
presence-absence models the area under the curve (AUC) metric
was assessed for each of the ten test datasets, and an average
calculated. In general, AUC values of ≥0.5 indicate better than
random performance, ≥0.7 indicate adequate performance, and
≥0.8 indicate excellent performance (Hosmer et al., 2013). For
abundance models, correlations (R2) between predicted and
observed values for the 10 test datasets were calculated, and
averaged. In addition, for both presence-absence and abundance
models (and ensemble models—see below), the correlation (R2)
between predicted and observed values was calculated for the
whole dataset. For presence-absence models this was achieved
by first converting model probabilities into a binomial form
comparable with the observed data using cut-offs which provided
an equivalent number of presences and absences. In all cases the
final models were constructed using all data.

In order to assess the relative confidence in predictions across
the model extent, we used a bootstrap technique for each model
type to produce spatially explicit uncertainty measures, after
Anderson et al. (2016b). Random samples of the input data, in
which presence and absence records were in equal proportion
and number to the original (for both presence-absence and
abundance models) were drawn with replacement, and models
constructed with the same settings as the original. Predictions
were then made for each cell of the model extent. This process
was repeated 500 times for BRT models and 200 times for GAM
and RF models (limited by processing capacity) resulting in
500 or 200 estimates for each cell. We then calculated model
uncertainties as the coefficient of variation (CV) of the bootstrap
output.

Ensemble Models
Fundamental differences in model structure among the three
models will inevitably result in different patterns of predicted
habitat suitability. Evaluations of different types of models are
often unable to demonstrate the unequivocal superiority of
any single type, and studies have shown that predictions by
alternative models can be so variable that they compromise
their use for guiding policy or decision making; a solution
to this issue is to use “ensemble” models (Araújo and New,
2007). Hence, for incorporation into decision-making tools for
spatial management planning (e.g., Zonation, Moilanen, 2007)
an ensemble model is a practical way to avoid dependence on
a single model type and better describe in general the predicted
spatial variation and uncertainties (Robert et al., 2016). To
incorporate the predictions and underlying assumptions of each
model into a single output grid we produced ensemble models

of presence-absence and abundance, by calculating weighted
averages of the relevant BRT, GAM, and RF models (after Oppel
et al., 2012 and Anderson et al., 2016b).

WB =
PSB

PSB + PSG + PSR
,WG =

PSG

PSB + PSG + PSR
, and

WR =
PSR

PSB + PSG + PSR
XE = XB ∗WB + XG ∗WG + XR ∗WR

CVE =

√

√

√

√

(CVB ∗ XB)2 ∗W2
B + (CVG ∗XG)2 ∗W2

G + (CVR + XR)2 ∗W2
R

X2
E

where PSB, PSG, and PSR are the model performance statistics
(AUC for presence-absence models and R2 values for abundance
models); XB, XG, XR, and XE the model predictions; and CVB,
CVM , CVG, and CVE the bootstrap CVs from the BRT, GAM, and
RF, and ensemble models respectively.

Precision estimates for the ensemble models were calculated
as the correlation (R2) between predicted and observed values
calculated for the whole dataset, as described above.

Predictor Variable Selection
The topographical terrain and backscatter variables derived from
the MBES survey formed the basis of the model predictor
variable set. Chemical and other water property variables,
including biological productivity variables available from various
global or regional climatologies, were not considered as none
were available with a native resolution similar to that of
the MBES-derived variables. Several of these variables (e.g.,
temperature, salinity, surface-derived production, and aragonite
saturation) are correlated with depth to varying degrees, and
so a depth variable in this case can act as a surrogate for the
changes in these parameters (Leathwick et al., 2006; Thresher
et al., 2014). The categorical variable seamount, identifying
the individual seamounts, was however added to MBES-
derived candidate variables. Seamount was used rather than
latitude and longitude to predict potential geographic-related
environmental differences in habitat suitability, because this
variable could also be used to reflect variables that may be
specific to a particular seamount that are not related simply to
geography.

The full set of candidate variables was initially reduced
by eliminating highly correlated variables, based on Pearson
product-moment correlation coefficients. Values for the
remaining variables were then determined for the midpoint
locations of each of the 25 m2 taxa presence/absence video
segments and used to build a set of single-variable presence-
absence GAM models for each of the three taxa, as well as
models using all of the variables together. The predictive
value of each variable was then assessed according to its
chi-square score in the all-variable models, and its AUC
score in the single-variable models. In order to further assess
the relative utility of the remaining candidate variables,
we considered relationships among them using a cluster
dendrogram, again using Pearson product-moment correlation
coefficients. In this way priority was given to variables that
had low correlations with other variables and occurred
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in unique clusters, so as to avoid losing information that
was not also provided by other variables, and to avoid
including only high-performing variables that provided
similar information.

Moran’s index was used, with the “spdep” package for R
(Bivand, 2011), to measure spatial autocorrelation in model
residuals compared with the raw presence-absence or abundance
data. This index measures the correlation between observations
as a function of the distance separating them, with values
between−1 (highly dispersed) and 1 (highly clustered).

In order to account for the inherent spatial autocorrelation
in the model data, where relationships between observations
are correlated with the geographic distances between them,
we created an additional predictor, the residual autocovariate
(RAC), representing the similarity between the residual from
initial models at a location compared with those of neighboring
locations. This method can account for spatial autocorrelation
without compromising model performance, and can easily
be implemented in most modeling approaches (Crase et al.,
2012).

Model Outputs
All model results [predicted probability of occurrence/suitable
habitat [0–1] and predicted abundance [number 25m−2] for each
model and taxon, and the corresponding coefficients of variation
(CV)] were mapped onto the newly derived bathymetry for the
seamounts using ArcMap 10.3.1 (ESRI, 2015) at the same spatial
resolution as the model environmental input data (25 × 25m).
Maps were drawn with a constant probability/abundance scale
between models and taxa so that visual comparisons can be easily
made.

As a measure of the utility of the two VME habitat indicator
taxa Brisingida and Crinoida for identifying the location of
stony coral VME habitat, correlations between the predicted
abundance of S. variabilis and the predicted abundance of
these taxa were calculated from the ensemble-abundance model
outputs.

RESULTS

Photographic Transects
The stony coral S. variabilis and brisingids were present in
less than 500 of the 12,504 25 m2 video segments observed.
Crinoids were two–three times more common across all
seamounts, but this taxon was represented by a greater
number of species than the other VME habitat indicator taxon
(Table 2, Figure S1). During the survey, at least 11 species
of crinoids were identified from samples collected using the
epibenthic sled (the comatulidsAglaometra incerta,Charitometra
basicurva, Florometra novaezealandiae, Glyptometra inaequalis,
Antedon sp., Crotalometra sp., Cyclometra sp., Porphyrocrinus
sp., Strotometra sp., and the hyocrinid Thalassocrinus, sp.
plus several unidentified comatulids), compared with three
species of brisingids (Novodinia novaezelandiae, Freyella sp., and
Hymenodiscus sp.).

Variable Selection
Related variables based on a single focal mean neighborhood size
(e.g., the range and standard deviation of curvature, curvature
aspect, and plan curvature) were often highly correlated (>75%).
Correlations between these variables and all remaining variables
were examined graphically to eliminate all but the least correlated
of them. Similarly, ruggedness was highly correlated with
standard deviation of slope, and the latter variable was eliminated
due to its higher correlation with other retained variables.
This logic was followed for all variable types and focal mean
neighborhood sizes to eliminate the most correlated variables,
reducing the set of more than 100 MBES-derived variables to 63.

Chi-square values for the GAM models based on all 63
remaining variables, and AUC scores for 63 single-variable
models (for each taxon) revealed a consistent set of eight variables
which showed a high level of explanatory power while covering
a range of the variable types derivable from MBES data. Cluster
dendrograms and correlation coefficients showed clustering of
these variables and no two variables were more than 70%
correlated (Figures S2, S3).

Separate RAC variables were constructed for each model type
(BRT, GAM, and RF), prediction type (presence-absence and
abundance), and taxon (S. variabilis, Brisingida, and Crinoidea),
based on the residuals from initial models constructed from the
eight MBES-derived variables. The final set of nine variables used
in each of the models is shown in Table 3.

Model Performance
Cross-validated AUC values were very similar for each of the
presence-absence models, ranging between 0.90 and 0.93 in
all cases except for the Brisingida GAM model which was
lower (0.87) but still considered excellent (Hosmer et al., 2013)
(Table 4). The generally similar AUC values among the three
model types for each taxon meant that there was a similar
weighting, and therefore a similar influence, for each model in
the ensemble models. Overall, and consistently across the three
taxa, RF models performed slightly better than BRT models, and
GAMmodels performed worst according to cross validated AUC.
Correlations (R2) between predicted and observed presence-
absence for all model data showed broad agreement with the
AUC performance measures, although they were consistently
slightly higher for BRT models (26.6–37.8%) than for RF
models (23.7–33.7%), and considerably lower for GAM models
(7.5–16.0%). Among the three taxa, the model performance
was highest for S. variabilis and Crinoidea, and lowest for
Brisingida, according to both the AUC and correlation statistics.
The performance measures (correlation only) for the ensemble
models reflect the mean performance of the three contributing
models, and do not directly assess their ability to predict outside
observed cells.

For the abundance models, cross validated correlations (Mean
CV R2) were lowest overall for Brisingida but similar among
the three model types (15.1–15.7%); they were more variable
for S. variabilis (from 12.7% for BRT to 24.2% for RF) and
consistently highest for Crinoidea (22.4–33.5%). By this measure
GAM and RF models performed similarly well, and consistently
better than BRT models. Correlations (R2) between predicted
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TABLE 2 | VME indicator and habitat indicator taxa, the number of presence and absence records, and for presence records, the minimum and maximum number of

records per video transect segment (25 m2).

Seamount Solenosmilia variabilis Brisingida Crinoidea

Presence records

(range)

Absence records Presence records (range) Absence records Presence records (range) Absence records

Forde 92 (1–33) 2,110 30 (1–11) 2,172 444 (1–40) 1,758

CenSeam 36 (1–2) 2,452 15 (1–2) 2,473 41 (1–4) 2,447

Anvil 75 (1–8) 1,155 12 (1–4) 1,218 85 (1–11) 1,145

JCM 4 (1–6) 135 5 (1–2) 134 7 (1–5) 132

39 South 95 (1–10) 2,060 37 (1–4) 2,118 96 (1–18) 2,059

Ghost 96 (1–18) 3,465 174 (1–17) 3,387 338 (1–33) 3,223

Valerie 146 (1–16) 1,813 68 (1–9) 1,891 165 (1–19) 1,794

Total 544 (1–33) 13,190 341 (1–17) 13,393 1,176 (1–40) 12,558

These data for all seven seamounts surveyed.

TABLE 3 | Final set of predictor variables used in the habitat suitability models.

Variable Description

Seamount Categorical variable indexing the six seamounts modeled

Slope Slope (degrees)

Aspect Aspect of slope based on a focal mean neighborhood size of 15 cells, in categorical form (equivalent to the 16 points of the compass)

Depth Depth of the grid cell (m)

Slope SD Standard deviation of slope values within a 7 x 7 grid of cells, based on a focal mean neighbourhood size of 7 grid cells

Curvature Mean curvature based on a focal mean neighbourhood size of 15 grid cells

Ruggedness Mean Vector Ruggedness Measure within a 5 x 5 grid of cells, based on a focal mean neighbourhood size of 15 grid cells

Backscatter Backscatter values (dB)

Residual Autocorrelation (RAC) Variable derived from residuals of initial models to account for spatial autocorrelation

and observed presence-absence for all model data were highest
for BRT models (56.9–67.1%) and similar for RF and GAM
models (18.7–36.4%). By this measure the models for Crinoida
again consistently performed better than those for the other two
taxa. The all-data correlation values were considerably higher
for abundance models compared with presence-absence models
for BRT and GAM models (24.5–67.1%), but similar for RF
models. By this measure BRT models (and the ensemble models)
performed better than RF and GAMmodels.

Predictor Influence
For all model types, autocorrelation in the residuals (measured
using Moran’s index) was substantially reduced with the
inclusion of the RAC variable. The RAC variable had the
greatest influence in all models except for the abundance model
for Crinoidea (Table 5). The most influential environmental
variable in all the BRT models was Aspect, with a tendency
for higher abundance and presence on westerly sector slopes.
In contrast, for the GAM and RF models there was no single
consistently important environmental variable for all indicator
taxa and the two types of models. The variable SlopeSD was
the most important for GAM presence-absence and abundance
models for S. variabilis, while Curvature and Slope were the
most important variables for Brisingida and Crinoidea GAM

models, respectively. Slope SD and Depth were the two most
important environmental variables for RF models of S. variabilis,
while Backscatter was more important for the abundance
model of this species. Slope SD and Curvature were the most
important environmental variables for RF models of Brisingida
presence-absence and abundance, respectively. For RF models
of Crinoidea, Slope was the most important variable. The least
important environmental variables also varied among BRT,
GAM, and RF models for VME indicator taxa and the two
model types, but Seamount, Backscatter and Aspect (with the
exception of the BRTmodels) weremost often the least important
variables (Table 5). See Figure S4 for details of the influence of the
predictor variables across their full range in the model data.

Habitat Suitability Predictions
Generally across all seamounts, the distribution of suitable
habitat (≥0.5 probability of occurrence for presence-absence
models and >0.5 live coral heads per 25 × 25m grid cell for
abundance models; thresholds = more likely to occur than not,
and relatively high abundance, respectively) was predicted to
be more extensive by the BRT models than either the GAM
or RF models, although the basic distribution patterns were
similar. Differences between the models were more pronounced
in the presence-absence models than the abundance models. The
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TABLE 4 | Comparison of performance statistics for four types of

presence-absence and abundance models for Solenosmilia variabilis, Brisingida,

and Crinoidea on seamounts of the Louisville Seamount Chain.

Model Taxon Presence-absence Abundance

Mean AUC R2 (%) Mean CV

R2 (%)

R2 (%)

BRT Solenosmilia variabilis 0.923 32.0 12.7 57.7

Brisingida 0.904 26.6 15.1 56.9

Crinoidea 0.922 37.8 22.4 67.1

GAM Solenosmilia variabilis 0.905 7.5 20.8 28.4

Brisingida 0.868 8.3 15.3 24.5

Crinoidea 0.913 16.0 32.1 34.3

RF Solenosmilia variabilis 0.930 27.1 24.2 27.9

Brisingida 0.926 23.7 15.7 18.7

Crinoidea 0.924 33.7 33.5 36.4

Ensemble Solenosmilia variabilis – 19.2 – 35.9

Brisingida – 14.9 – 38.1

Crinoidea – 29.1 – 50.1

Performance measures for presence-absence models are the mean test AUC from a

10-fold cross validation (Mean AUC) and the correlation (R2 ) between predicted and

observed vales for all model data; performance measures for abundance models are

the mean correlation (Mean CV R2 ) between predicted and observed vales from a 10-

fold cross validation procedure and the correlation (R2 ) between predicted and observed

values for all model data (see text for more details). BRT, Boosted Regression Tree; GAM,

General Additive Model; RF, Random Forest; –, not calculated.

distribution of suitable habitat predicted by the ensemble models
for all taxa reflected the underlying averaging principle of this
approach (e.g., Figures 4A,B for Forde Guyot; see Figure S5 for
comparison among model types for other seamounts).

Because the abundance models performed better than
presence-absence models, and ensemble models are practical for
spatial management planning purposes (to avoid dependence on
single model types), only the habitat suitability results of the
ensemble-abundance models are described in detail hereafter. All
the results of the other models are provided in Figure S5.

Suitable habitat for S. variabilis was generally predicted to
occur at the summit-slope break, and on ridge-like features
that extended down the flanks of the seamounts. Some areas
of the seamount flanks were predicted to have concentrations
of suitable habitat for this coral. Generally, these areas were on
the north and north-west flanks of the seamounts. Where they
occurred (particularly on Ghost Seamount), isolated knoll-like
features on the flat summits of seamounts were also sometimes
predicted to have suitable habitat for S. variabilis (Figure 5).

The distribution patterns of suitable habitat predicted by
ensemble-abundance models for crinoids and brisingids were
generally similar to those for S. variabilis across all seamounts
(i.e., summit-slope break, ridges on flanks). However, highly
suitable habitat for crinoids was more extensive than for
brisingids on the seamount flanks (particularly on Forde Guyot
where the mean number of crinoid observations per cell were
over three times higher than for other seamounts) (Figure 6).

Correlations varied between the ensemble-abundance models for
the VME indicator taxa S. variabilis and the two taxa that are
supposedly indicators of the habitat formed by the stony coral.
The correlation between the models for Crinoidea was relatively
high (R= 0.53), compared to that for Brisingida (R= 0.25).

Uncertainty
Spatial patterns of model uncertainty varied among BRT, GAM,
and RF models, but these patterns were generally similar
between presence-absence and abundance models. Highest levels
of uncertainty were generally associated with areas of highest
habitat suitability for BRT models (i.e., seamount flanks), low
habitat suitability at the deepest depths for GAM models
(i.e., base of seamount flanks), and low habitat suitability at
the shallowest depths for RF models (i.e., the flat seamount
summit). Uncertainty for ensemble models was lower overall
compared to the other models, and where areas of relatively
high uncertainty occurred for ensemble models they were
limited to small patches on the flanks of the seamounts
(e.g., Figure 7 abundance models for S. variabilis on Forde
Guyot; see Figure S5 for all models for other taxa and
seamounts).

Distribution Predictions for Coral Reef
VME Habitat
The ensemble-abundance models for coral reefs predicted that
this VME habitat was sparsely distributed on all seamounts
(Figure 8). Where it was predicted to occur at the summit-slope
break and ridges on the seamount flanks, the patch size of this
habitat was typically small with few relatively large patches (range
from 625 to 42,500 m2), and did not total more than 0.6 km2

or 0.09% of the modeled area of any single seamount (Table 6,
Figure 9).

DISCUSSION

The results of our study contribute to the growing number
of examples that demonstrate the potential for using high-
resolution habitat suitability models for the conservation and
management of VMEs in the deep sea. Our models predict
that suitable habitat for the stony coral VME indicator species
S. variabilis is found at distinct breaks in slope and on
elevated ridge-like features on seamounts. The general pattern of
distribution predicted by our models conforms to expectations
from previous observations of the distribution of stony corals at
seamounts, canyons and continental slopes, and the topographic-
related factors that are thought to control their distribution at
these locations (e.g., Frederiksen et al., 1992; Thiem et al., 2006;
Reveillaud et al., 2008). The predicted small-scale distribution
patterns for S. variabilis, and the topographic variables identified
as being important in these models (Aspect, Slope, SlopeSD,
Curvature), are similar to those resulting from previous habitat
suitability models for similar coral species found elsewhere
(e.g., Dolan et al., 2008; Howell et al., 2011; Rengstorf et al.,
2012).

Habitat suitabilitymodels for crinoids and brisingids, taxa that
are considered to be indicators of VME habitat (Parker et al.,
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TABLE 5 | Variable contributions to each type of habitat suitability model for each VME indicator taxon.

RAC Curvature Aspect Ruggedness SlopeSD Depth Slope Backscatter Seamount

PRESENCE-ABSENCE MODELS

S. variabilis

BRT 45.3 3.7 18.1 4.1 7.6 5.2 8.3 3.1 4.5

GAM 55.5 6.8 1.5 5.0 11.7 8.5 7.5 1.6 2.1

RF 26.0 9.3 8.8 9.8 11.5 11.6 9.3 10.3 3.5

Brisingida

BRT 42.6 8.4 16.1 8.4 8.8 6.4 5.1 2.3 2.1

GAM 39.6 15.9 0.5 16.2 14.7 5.7 6.2 0.7 0.5

RF 24.7 10.3 9.9 11.3 12.5 10.1 9.2 9.7 2.3

Crinoidea

BRT 40.2 6.6 12.8 6.9 5.0 6.8 10.4 2.2 9.1

GAM 38.9 10.7 0.2 8.3 12.4 9.2 16.7 3.5 0.0

RF 23.4 8.8 9.1 9.7 9.7 10.6 12.6 8.3 7.7

ABUNDANCE MODELS

S. variabilis

BRT 26.2 17.3 19.1 7.6 6.1 6.0 10.9 5.1 1.8

GAM 48.5 7.8 0.6 9.2 11.5 8.9 9.4 1.2 2.9

RF 28.0 9.7 7.4 10.8 10.4 8.5 10.7 12.0 2.6

Brisingida

BRT 32.0 16.4 15.6 11.8 9.6 7.1 5.1 2.1 0.4

GAM 47.7 16.7 0.1 16.6 11.2 3.1 3.9 0.3 0.3

RF 20.1 13.6 11.3 11.7 12.8 8.8 9.3 10.4 1.9

Crinoidea

BRT 23.4 9.1 28.0 4.8 5.4 8.4 7.8 5.3 7.8

GAM 52.4 8.7 0.3 8.0 9.3 7.9 11.0 2.4 0.1

RF 25.4 9.6 11.4 9.7 8.7 10.2 10.4 9.3 5.4

Values are the percentage influence of each variable in each model. See text for an explanation of how these values were calculated. BRT, Boosted Regression Tree; GAM, General

Additive Model; RF, Random Forest.

2009), were correlated with those for the stony coral S. variabilis.
However, the correlations were not strong, particularly for
brisingids. As such, in a habitat suitability modeling context,
these taxa are not likely to be useful model proxies for
the presence of coral habitat. Many observations suggest an
association between the occurrence of crinoids and brisingids
and the stony coral, and the contribution of their presence to
the “VME indicator score” used by observers on fishing vessels
operating the “move-on rule” (Parker et al., 2009) appears to be
supported to some extent by the present study. However, despite
their co-occurrence with stony corals in areas of high relief and
hard substrate, there is also a growing body of data showing that
both of these taxa can occur on bare rock surfaces, and that
Brisingids can occur on soft sediment seabeds.

Below we discuss the results of our study with particular
reference to improving high-resolution habitat suitability
modeling, identifying and mapping VME habitat, and
implications for spatial management in the SPRFMOConvention
Area. For discussion about the limitations of the model types
and general modeling methodology used in this study, please see
Anderson et al. (2016b).

High-Resolution Habitat Suitability
Mapping
The efficacy of habitat suitability modeling, using seafloor
camera imagery and bathymetric and backscatter data obtained

from multibeam surveys to make high-resolution predictive
distribution maps for benthic species of conservation or
management significance in the deep sea was first demonstrated
off SW Ireland by Dolan et al. (2008). Since then similar models
for VME indicator taxa have been made and developed for the
same area and elsewhere in the NE Atlantic Ocean (Guinan et al.,
2009; Howell et al., 2011; Rengstorf et al., 2012, 2013, 2014; Tong
et al., 2013; Robert et al., 2016). However, none of these studies
produced abundance-based models for VME indicator taxa, nor
used measures of abundance to model directly the distribution of
VME habitat.

Howell et al. (2011) modeled the distribution of the presence
of the stony coral Lophelia pertusa and coral reef habitat, but the
latter was based on data from the subjective identification of reefs
by eye. Nonetheless, this study demonstrated the importance
of distinguishing between models for VME indicator taxa and
VME habitat, and the authors suggested that “mapping efforts
should focus on the habitat rather than the species at fine (100m)
scales” (Howell et al., 2011). Robert et al. (2016) used quantitative
density data in their high resolution models but did so indirectly
by modeling the distribution of benthic assemblages (including
a L. pertusa-dominated assemblage) that were first identified
objectively using multivariate analyses based on abundance data
for individual taxa. Their models also used the occurrence of
coral and coral rubble substrata (classes derived from backscatter
data) as predictor variables, and thus appear to include a degree
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FIGURE 4 | (A) Forde Guyot. Model predictions of Solenosmilia variabilis habitat suitability (probability of presence) showing difference between model types (top left,

BRT; top right, GAM; bottom left, RF; bottom right, Ensemble). Color-coded model probabilities are draped over the MBES bathymetry obtained during the survey.

(B) Forde Guyot. Model predictions of Solenosmilia variabilis abundance (number of “live head” colonies per 25 × 25m model cell) showing difference between model

types (top left, BRT; top right, GAM; bottom left, RF; bottom right, Ensemble). Color-coded model abundance estimates are draped over the MBES bathymetry

obtained during the survey.

of circularity (at least for predicting the occurrence of the L.
pertusa-dominated assemblage). Rengstorf et al. (2014) used
species occurrence proportion data for L. pertusa (i.e., number
of presence records compared to the number of absence records
in a grid cell) as a measure of coral prevalence.While they did not
use abundance data in their models, they nonetheless found that
models that included the semi-quantitative proportional data
performed better than models based on presence-absence data,
had lower coefficients of uncertainty, and were considered more
reliable (Rengstorf et al., 2014).

Rengstorf et al. (2014) advocated the use of proportion
data because of the time-consuming nature of obtaining true
abundance data for benthic taxa from seabed imagery. However,
where abundance data are available, they can significantly
improve model performance and provide a more comprehensive
understanding of spatial patterns, as clearly demonstrated by the
present study.

Mapping VME Habitat
FAO (2009) notes that “merely detecting the presence of an
element itself (i.e., a VME indicator taxa) is not sufficient to
identify a VME.” Thus, as well as model improvements for
VME indicator taxa, abundance data also offer the prospect
of making distribution models for VME habitat based on a
density threshold for habitat-forming taxa, rather than using data
based solely on subjectively identifying VME habitat, or data
for benthic assemblages that act as a proxy for VME habitat.
However, VME habitat is not always or consistently defined by

the density of the habitat-forming taxa. For example, definitions
of coral reef habitat are not provided by FAO (2009) in their
initial list of VMEs, and the longer description of coral reef
habitats provided in support of the OSPAR List of Threatened
and/or Declining Species and Habitats does not indicate any
density or coverage thresholds (Hall-Spencer and Stehfest, 2009).
In the few studies where deep-sea coral reef habitats are identified
based on a particular density or coverage in a VME mapping
context, values differ depending on the type of coral habitat.
For example, Vertino et al. (2010) defined 20–40% coverage
of dead and/or live coral colonies per video frame (∼2.4 m2)
for “Coral framework and hardground” habitat compared with
>60% coverage for “Coral framework” habitat. These threshold-
based identifications of VME habitat often include both dead and
live corals, which reflects the typical composition of coral reef
habitats. The amount of dead coral can be extensive, as found
in the present study, by Thresher et al. (2011) off Tasmania,
and by Vertino et al. (2010) in the Mediterranean where they
noted live colonies rarely cover more than 30% of the seafloor.
In the present study we constructed predictive maps of VME
habitat based on the definition for coral reefs and thickets (as
“sensitive environments”) provided by the regulations associated
with New Zealand’s EEZ Environmental Effects Act. However,
this threshold-based definition is essentially a subjective regional
translation of the “you know it when you see it” descriptions
provided by the likes of OSPAR, rather than a density of corals
determined directly from study of the structural or functional
attributes that distinguish coral reefs as VMEs.

Frontiers in Marine Science | www.frontiersin.org 12 October 2017 | Volume 4 | Article 335

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rowden et al. High-Resolution VME Habitat Suitability Maps

FIGURE 5 | Predictions of Solenosmilia variabilis abundance (number of “live head” colonies per 25 × 25m model cell) for ensemble habitat suitability model.

Color-coded model abundance estimates are draped over the MBES bathymetry obtained during the survey.

While our attempt to predict the distribution of VME habitat
is currently defensible because no consensus exists about what
density of corals is necessary to generate the structural and
functional attributes of a VME, the lack of a robust density
threshold-based definition of VME habitat potentially limits
the acceptance of these maps for conservation and fisheries
management purposes (see below). Nonetheless, the results of
the present study are in line with the developments envisaged for
habitat suitability modeling in order that predictive distribution

maps can be better used for the spatial management of
VMEs (Ross and Howell, 2013; Reiss et al., 2014; Rengstorf
et al., 2014; Vierod et al., 2014; Robert et al., 2016). These
improvements include our use of an abundance-based multi-
model ensemble approach to produce high-resolution predictive
distribution maps, and presentation of spatially explicit measures
of model uncertainty for VME indicator taxa and VME habitat
across a group of seamounts that are targeted by a specific
fishery.
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FIGURE 6 | Predictions of brisingids (Left) and crinoids (Right) abundance (number per 25 × 25m model cell) for ensemble habitat suitability model. Color-coded

model abundance estimates are draped over the MBES bathymetry obtained during the survey.
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FIGURE 7 | Forde Guyot. Prediction of Solenosmilia variabilis (Left) abundance (number of “live head” colonies per 25 × 25m model cell) and (Right) uncertainty

(CV) for (from top to bottom) BRT, GAM, RF, and ensemble habitat suitability models. Color-coded model abundance estimates and CV are draped over the MBES

bathymetry obtained during the survey.
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TABLE 6 | Total seamount area within the modeled depth range (265–2,000m),

estimated area and proportion of VME coral reef habitat, and range of VME habitat

patch size.

Seamount Total area

(km2)

Area of VME

coral reef

habitat (km2)

Proportion of VME

coral reef habitat

area (%)

Patch size

range (m2)

Forde 253 0.202 0.080 625–30,000

CenSeam 348 0.032 0.009 625–3,750

39 South 725 0.176 0.024 625–22,500

Ghost 568 0.008 0.001 625–1,250

Valerie 678 0.578 0.085 625–42,500

On each seamount the smallest estimated patch is by default a single 25 × 25m model

cell (625 m2 ).

FIGURE 9 | Distribution of predicted VME coral reef habitat patch sizes on

individual seamounts and overall.

Implications for Spatial Management in the
SPRFMO Convention Area
New Zealand deepwater fishing stakeholders have proposed
that, because their bottom trawling occurs exclusively in relation
to seamounts in the SPRFMO Convention Area, and that
commercially viable fish concentrations vary within and between
seamounts, as do presumably the abundance of benthic species,
spatial management measures should be based on individual
seamounts (https://www.sprfmo.int/assets/Meetings/Meetings-
2013-plus/SC-Meetings/2nd-SC-Meeting-2014/Papers/SC-
02-INF-04-Management-by-Seafloor-Feature-of-Deepwater-
Fisheries-in-the-South-Pacific-Ocean-b.pdf). That is, open and
closed areas should be defined on an individual seamount basis,
with a sufficient fraction of each seamount closed to ensure
adequate protection of VMEs. Fishing stakeholders have argued

for this approach because they believe that spatial management
based on large, regular shaped areas (e.g., areas defined by
20-min of latitude and longitude) precludes them from fishing
areas within closed areas that are not suitable for VMEs, and
that it is not necessary to impose large closure areas that might
extend over most or all of a seamount. Furthermore, with the
accurate deployment of fishing gear using modern navigational
methods, it is possible to effectively avoid relatively small closed
areas where it is known that VMEs do occur on a seamount.
The fishing stakeholders accept that in order for this strategy
to be implemented it is necessary to map the distribution of
VMEs at high-resolution on each seamount within the broader
fishing area. As we have demonstrated through the present study,
habitat suitability modeling using multibeam data and seafloor
images can achieve this mapping goal.

The ensemble habitat suitability models for S. variabilis
predicted that concentrations of relatively high abundances
of this VME indicator taxon typically occur in the
north/northwestern areas of the seamounts, and sometimes
in southern areas. However, relatively high abundances of the
coral (>5 live heads 25 m−2) were predicted to occur around the
entire seamount at the summit-slope break, mostly on ridge-like
features that extend down slope from the flat top of the seamount
summit (860–2,000 m—maximum modeled depth). This result
suggests that only the flat topped and soft sediment summits
are relatively large and discrete areas of consistently low habitat
suitability for S. variabilis, and thus where bottom fishing could
occur with a low likelihood of encountering this VME indicator
taxon. However, these areas are not generally favored by fishers.
Fishing patterns revealed by logbook data and commercial
fishers plotter lines differ between seamounts, but indicate that
fishers tend to target either small localized hill features on the
summits (e.g., Ghost, 39 South), or the upper slopes and flanks
of seamounts (e.g., Valerie, JCM) where over 90% of tows occur
away from the summit plateau on the flanks to depths of 1,200m.
Our habitat suitability models predict that areas of relatively
high abundance of S. variabilis are likely to be encountered by
bottom trawling the seamount flanks. Based on the results of the
abundance models for this VME indicator taxon, and current
knowledge of the areas of interest to fishers, designing spatial
management measures on an individual seamount level would
be problematic.

The abundance models were also used to identify and predict
coral reef habitat. This VME was predicted to occur as relatively
small patches in only a few relatively isolated areas on seamounts.
This limited distribution and abundance of VME habitat on
seamounts conforms to the experience of the fishers, and thus
supports one of their arguments for reducing the size of closed
areas on seamounts, and adopting an individual seamount-
based spatial management approach for the Louisville Seamount
Chain. However, this conclusion is predicated on the veracity
of the threshold-based approach by which VME habitat was
identified in the present study. If predictive models are to be
used for designing spatial management at the within-seamount
scale, research is required to establish coverage and/or density
estimates that relate to the specific structural and functional
attributes that define a VME. For example, Cathelot et al. (2015)
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recently demonstrated that an area of 1,767 m2 dominated by
live corals with a density of visible live polyps of ∼33 per 100
cm2 can make a significant contribution to local ecosystem
function in the deep sea. Some of the predicted coral reef
habitat patches in the present study were greater than the size
examined by Cathelot et al. (2015) (0, 18, 27, 38, and 41%
of patches on the study seamounts were predicted to occupy
≥3 cells i.e., ≥1,875 m2) but most were smaller. So while it is
probable that some of the coral reef habitat on the Louisville
Seamounts Chain is providing important ecosystem function,
the significance of the more numerous smaller patches of coral
habitat is uncertain. The necessary patch size or polyp/live
head density to represent significant sites of benthic respiration
and organic carbon cycling, or significant habitat to support
biodiversity or juvenile fish is unknown. Thus, we recommend
that further research is needed to investigate and develop the way
in which VME habitats are identified and included in habitat
suitability modeling approaches (regardless of the resolution
or spatial scale of the models) for the purpose of informing
conservation and management. Such work should include multi-
modeling approaches that incorporate the functional traits of
species to improve the ecological interpretation of results, and
support a broader ecosystem approach to management.
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