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A thorough and reliable assessment of changes in sea surface water temperatures
(SSWTs) is essential for understanding the effects of global warming on long-term
trends in marine ecosystems and their communities. The first long-term temperature
measurements were established almost a century ago, especially in coastal areas, and
some of them are still in operation. However, while in earlier times these measurements
were done by hand every day, current environmental long-term observation stations
(ELTOS) are often fully automated and integrated in cabled underwater observatories
(UWOs). With this new technology, year-round measurements became feasible even in
remote or difficult to access areas, such as coastal areas of the Arctic Ocean in winter,
where measurements were almost impossible just a decade ago. In this context, there
is a question over what extent the sampling frequency and accuracy influence results in
long-term monitoring approaches. In this paper, we address this with a combination of
lab experiments on sensor accuracy and precision and a simulated sampling program
with different sampling frequencies based on a continuous water temperature dataset
from Svalbard, Arctic, from 2012 to 2017. Our laboratory experiments showed that
temperature measurements with 12 different temperature sensor types at different price
ranges all provided measurements accurate enough to resolve temperature changes
over years on a level discussed in the literature when addressing climate change effects
in coastal waters. However, the experiments also revealed that some sensors are more
suitable for measuring absolute temperature changes over time, while others are more
suitable for determining relative temperature changes. Our simulated sampling program
in Svalbard coastal waters over 5 years revealed that the selection of a proper sampling
frequency is most relevant for discriminating significant long-term temperature changes
from random daily, seasonal, or interannual fluctuations. While hourly and daily sampling
could deliver reliable, stable, and comparable results concerning temperature increases
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over time, weekly sampling was less able to reliably detect overall significant trends.
With even lower sampling frequencies (monthly sampling), no significant temperature
trend over time could be detected. Although the results were obtained for a specific
site, they are transferable to other aquatic research questions and non-polar regions.

Keywords: precision, accuracy, sensor selection, sampling scheme, environmental monitoring, Kongsfjorden,
long-term data, coastal waters

INTRODUCTION

Measuring changes in water temperature over time is important
for assessing climate change impacts. In this context, temperature
changes have a fundamental impact not only on the kinetic
energy in the system but can also affect the overall cross-
taxon structure of marine biodiversity and, therefore, the global
distribution of life in the oceans (Tittensor et al., 2010). Because
of this central role of temperature in aquatic ecosystem research,
regular measurements, especially of surface water temperature,
started two centuries ago. Two of the longest near-surface water
temperature measurements are a time series from Great Harbor,
Woods Hole, Massachusetts, which started in 1886 on a daily
basis (Nixon et al., 2004) and a time series from Helgoland in
the southern North Sea (54◦11.3′N, 7◦54.0′E), which started in
1873 with almost daily samples (Wiltshire and Manly, 2004).
At these stations, sampling was initially done manually using
the traditional bucket thermometer measurement (Nixon et al.,
2004), where water was sampled from the near-surface by
a simple bucket and temperature was measured immediately
with a mercury-in-glass thermometer, with a precision of
approximately 0.1◦C.

It was only at the end of the last century when watertight
temperature sensors became available off the shelf at an affordable
price and successively replaced most manual measurement
devices. Today, digital temperature sensors are available for
most in situ applications, covering a wide range of accuracy
and precision (JCGM, 2008), as well as price levels. The
rapid development of digital sensor technology not only for
temperature but also for most other environmental parameters,
as well as the rapid progress in automated sensor technology
for automated biota monitoring from lower eukaryotes (Baschek
et al., 2017) up to higher trophic levels, such as fish (Fischer et al.,
2007), has enabled science to intensify year-round monitoring
approaches, even in remote areas. Currently, fully automated
monitoring stations are established even in remote areas, such
as polar regions, and deliver a continuously increasing amount
of environmental information in real-time, year-round (Fischer,
2020). The importance of in situ sensors instead of sea surface
measurements derived by satellite and/or model-generated data
for coastal regions has been stressed by Smit and Schlegel
(2016). They pointed out that remotely sensed gridded sea
surface temperature data in coastal waters normally do not
approach a sufficient resolution to monitor short-term local
changes in temperature as those patterns can be highly dynamic
and significantly affected by varying levels of water exchange
in lagoons resulting in varying patterns in eutrophication,
sedimentation and turbidity. Furthermore, the precision of

gridded data is also often too low for climate-quality data to reveal
longer-term trends.

Remote in situ measurements of hydrographic and higher
trophic level variables opened an entirely new field of technology-
driven research in aquatic sciences (Baschek et al., 2017) with
the possibility of deriving and testing scientific hypotheses from
continuous real-time field observations, which were previously
only possible in terrestrial or atmospheric research. However,
there are some challenges that accompany these developments,
such as sensor maintenance, data flow management, (big) data
handling, and data interpretation, that need to be considered
(Buck et al., 2019; Fischer, 2020).

In addition to defining specific in situ sensor maintenance
intervals, data flow, and handling routines for permanent
aquatic monitoring stations, the overall setup of long-term
monitoring infrastructure for ecological and climate change-
related parameters will determine the scientific output and
relevance of such systems and, therefore, long-term financial
support. Two of the overall questions that scientists operating
sensor-based long-term in situ measurements are confronted
with are the required sensor accuracy and precision (JCGM,
2008) and the sampling frequency (Cabella et al., 2019), both
of which have a significant effect on the financial requirements
of the operations.

According to ISO 5725-1:1994,1 the term accuracy describes
the systematic deviation of a measurement from the “assumed”
true value from an accepted reference value (Figure 1).

In contrast, the term precision relates to the reproducibility
of measurements and their variability between repeated
measurements due to, for example, electronic or
resolution-based, variabilities of the measurements itself
(Figure 1).

Even though both accuracy and precision are defined in their
respective ISO standards, the precise meaning of these definitions
are debated (Behkamal et al., 2014). For the present work, for
accuracy, we strictly followed the definition of ISO 5725-1:1994.
This definition is synonymous with the term “semantic accuracy”
used in Behkamal et al. (2014), describing the correctness of
a data value in comparison to an actual real-world value. In
this context, Peralta (2006) defined accuracy as a “semantic
correctness factor,” providing the degree of correctness and
validity of the data in comparison to the real world or with
reference data agreed to be correct. Therefore, when using the
term accuracy in the sense of ISO 5725-1:1994, trusted reference
data that are assumed to represent the real data must be agreed
upon by the sensor user. This trusted data may be either the

1https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
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FIGURE 1 | Visualization of accuracy and precision according to ISO
5725-1:1994. The bell-shaped distribution describes a set of measurements
of a single parameter (e.g., water temperature) over time with a single sensor
or the distribution of synoptic measurements with multiple sensors. Higher
measurement accuracy means that the maximum of the distribution moves
closer to the reference value. The precision of a sensor refers to the width of
the bell-shaped distribution. The more precise a measurement is, the narrower
the bell shape of the distribution.

reference data provided by the manufacturer or it may be trusted
reference data provided by the user itself like, e.g., statistically
derived mean or median values from multi-sensor approaches or
other scientifically convincing procedures agreed upon to deliver
“real” values.

Compared to defining a sensor’s accuracy, the calculation of
precision seems to be much easier. According to ISO 5725-1:1994,
the precision of data depends only on the distribution of random
errors around an assumed statistical value, which is, however, not
necessarily the true value in the sense of the real value referred
to in the above accuracy section. Precision is usually expressed in
terms of imprecision and computed as the standard deviation of
the measured mean value, which is reflected by a larger standard
deviation or confidence limit (ISO/TC-69/SC-6, 1994).

Even though most sensor manufacturers provide lab-derived
accuracy values for new sensors, the meaning and consequences
of these parameters for in situ measurements are often
not completely clear to users in the scientific community.
Furthermore, the determination of accuracy and precision
often does not follow a common standard. More importantly,
the values provided are not the same as in situ, as values
significantly depend on factors such as sensor age, exposure time,
biofouling, and other external factors (Callow and Callow, 2011;
Androulakis et al., 2020).

Therefore, the in situ accuracy and precision values for sensors
that are in experimental or operational use in science are usually
not well known and are therefore not provided in many scientific
manuscripts. However, a reasonable estimate of both values
unquestionably improves the likelihood of finding significant
evidence if an environmental parameter, for example, changes
over time, or if it only fluctuates randomly without a real trend.

In the first part of this paper, we address the issue of sensor
accuracy, precision, and comparability of different commercially
available temperature sensors within the available price categories
between 200 and 15,000 EUR on the potential to measure
one or more environmental variables over a certain range as
accurately and precisely as possible. Therefore, we conducted
laboratory intercomparison experiments to compare the in situ
accuracy and precision ranges of different sensors and evaluate
the comparability between these sensors. This comparability is
particularly important as sensors are replaced after some time,
or data from different sensors are analyzed and interpreted
together in studies.

In addition to the above-described sensor-specific issues,
scientists are often confronted with the decision on how often
a sensor should sample per time unit to best assess possible
changes and dynamics of a focus parameter. Similar to the above-
described issue of accuracy and precision, there are also valid
and scientifically proven theoretical concepts to determine an
adequate sampling frequency for a certain monitoring task. One
of these concepts is the Shannon–Nyquist theorem (Nyquist,
1928), which states that the temporal dynamics of a continuous
signal (e.g., the water temperature) of any shape (e.g., daily
changes with tide or seasonal dynamics over the year) can
be reliably discriminated from random fluctuations only when
the sampling frequency is more than twice as high as the
frequency of the real signal (Lévesque, 2014). The Nyquist
effect can be illustrated by tidal temperature fluctuations in
coastal areas. To reliably measure the temperature dynamics
in a tidal area with a tide frequency of 12 h for a full
tidal cycle, the temperature must be measured at least every
6 h to understand the tidal influence on water temperature.
However, this concept holds true only if the underlying signal
(in this case, the tide) is strictly continuous with a fixed
temporal pattern. An inadequate (too low) sampling frequency
may produce deceptive patterns and eventually lead to aliasing
effects, and therefore to misinterpretations. Good examples of
such misinterpretations resulting from an insufficient sampling
frequency in ecological studies are given in Pearcy et al. (1989)
based on the Nyquist theorem (Nyquist, 1928). Although these
concepts are known in physics and signal processing, most
environmental studies do not strictly follow these theoretical
concepts when analyzing long-term monitoring datasets. This
is simply because ecologically interesting and relevant patterns
often only emerge after several years of observations at a specific
site and hence, the patterns are not known when initially
setting up a monitoring strategy. When reviewing literature on
statistical approaches to discriminate real long-term changes
in marine or limnic water temperatures from random water
temperature fluctuations over time, linear regression over time
is one of the most often used methodologies (Taylor et al.,
1957; Maul and Davis, 2001; Nixon et al., 2004; Wiltshire
and Manly, 2004; Smit and Schlegel, 2016; Niedrist and
Füreder, 2020). The main focus of this work is thereof not
the requirements of sampling frequency when trying to resolve
short-term changes in SSWT, for example, daily or seasonal
rhythms, but on the requirements of sampling frequency when
trying to discriminate real temperature changes in SSWT from
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random fluctuations over longer time periods (years) using
linear regression.

In the second part of the manuscript, we therefore address
the question of how different sampling schemes with different
sampling frequency (hourly, daily, weekly, or monthly) affect
the observed long-term temperature trend over a period of
5 years. For this analysis, we used a dataset from an Arctic
coastal observatory in Svalbard (Fischer et al., 2017; Fischer,
2020) of shallow water temperature changes in the Kongsfjorden
ecosystem from 2013 to 2017 (Fischer et al., 2018a,c,d,e,f).

This study is not intended to evaluate or develop standard
operating procedures (SOPs) to determine sensor accuracy and
precision and not to provide SOPs for the determination of the
sampling frequency for a specific monitoring approach as this
must be completed specifically for each experimental setup.
Rather, the goal of this study is to demonstrate how different
sampling schemes with respect to the sampling frequency and
use of sensors with different accuracy and precision values can
affect the outcome of monitoring programs. The results are thus
discussed considering: (1) the requirement to select suitable
sensors for long-term oceanographic measurements, including
cost-benefit considerations when using either expensive
oceanographic sensors, such as CTD or thermo salinometers,
compared to multiple relatively cheap temperature sensors
that are available off the shelf and (2) the possible effects of
different temporal sampling schemes on the results. The latter
considerations are essential when deciding how much money
and workforce should be invested for a long-term sampling
program to detect relevant changes in the target parameter (here
water temperature) with high reliability and accuracy without
exaggerating the sampling and data handling efforts.

MATERIALS AND METHODS

To test the influence of different sensors and sampling strategies
to observe a specific environmental parameter over longer
periods of time, we used the variable water temperature
as it is the most important hydrographic variable across
the aquatic disciplines in the context of climate change
(Tittensor et al., 2010). In two approaches, in vitro and in situ
setups, standard aquatic temperature sensors with different
manufacturer specifications for accuracy and precision were used
(Tables 1, 2).

In vitro Experiments
For the in vitro experimental setup, a 24 h experiment
was conducted as a joint experiment comprising the five
Helmholtz Institutes Alfred-Wegener-Institute, Helmholtz-
Centre for Marine and Coastal Sciences (AWI), Hereon (HZG),
Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR),
Helmholtz-Zentrum für Umweltforschung (UFZ), and
Deutsches GeoForschungsZentrum (GFZ) within the framework
of Modular Observation Solutions for Earth Systems (MOSES)
(Weber et al., 2021). The main goal of the experiment was
to compare different sensors as they came from different
cooperating research institutes, which are often involved in

comparative measurements during joint field campaigns.
Thereby, the main focus of the here presented experimental
approach was, if the different sensors provide comparable
results and not the numerical deviation of the single sensors
from an assumed “true” value. This latter topic can only be
addressed in a certified sensor calibration lab under strictly
controlled conditions.

In the in vitro experiments, 14 different temperature
sensors continuously measured the seawater temperature in an
experimental tank of 100 cm × 60 cm × 100 cm (600 L). The
sea water temperature in the tank was gradually lowered from
18.8 to 15.8◦C within a period of 13 h (Figure 2) by continuously
adding freshwater of a constant temperature of 15.8◦C. Complete
mixing in each basin was ensured owing to the circulation circuit.
Parallel rails were installed above the basins and the sensors were
deployed from them in the basin at the same depth of 60 cm.
The sampling frequency of each sensor was set according to the
sensor manuals to the highest frequency possible for the sensor
[Table 1, column “Max. Sampling Frequency (sec)”], as this is,
to our experience, the most applied sampling frequency set-up in
operational science.

For the data analysis, all data were averaged over 1 min to
reduce the bias toward sensors with a higher sampling frequency.
As the experiments targeted the interoperability of the sensors,
we used the median temperature of all 14 sensors as reference
data for each time step.

The sensors included low-cost water temperature data loggers,
water level loggers, instrument clusters, such as CTD probes, and
flow-through systems, such as FerryBoxes (4H Jena Engineering
GmbH). These sensors represent a price range between 200 and
15,000 EUR. The measurement principle of the different sensors
varied with different resolutions and accuracies (Table 1). The
sensors are usually applied to a wide range of environmental
research questions covering ground water, fresh water, coastal,
and marine compartments.

Pre-experiment sensor handling followed standardized
routines defined by the sensor manufacturers and individual
routines. All sensor operators prepared their sensors exactly,
as they normally do for standard scientific missions. Specific
across-institute concerted sensor preparation procedures were
explicitly not provided, as we wanted to focus on possible
variations of measurement between different standard sensors
under SOPs as applied by different scientific operators and
institutes. Therefore, we did not provide any guidelines
with respect to sensor calibration and routine maintenance
prior to the experiment, except that the routines must be
in full agreement with the respective institute guidelines
for good sensor handling practice prior to scientific
measurement campaigns.

In situ Data
Study Site and Sensors
As an in situ dataset for evaluating the effects of different
sampling frequencies, we used a dataset from January 01, 2013 to
January 31, 2017 from the Svalbard AWIPEV observatory close
to the Arctic research settlement in NyÅlesund (Figure 3).
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TABLE 1 | Sensor analysis in the intercomparison experiment.

Sensor ID Type Manufacturer Parameters
measured (1)

Price group (€) Resolution (◦C)* Accuracy (a)
Precision (b) (◦C)*

Stability (◦C)* Max. sampling
Frequency (s)

1 Multiparameter
probes

AML
Oceanographic

Ltd.

T, S >10.000 0.001 0.005–0.002 (a)
0.003 (b)

n.a. 1

2 Sea-Bird
Electronics, Inc.

T, C, P, O2 >10.000 0.0001 0.002 (5–35◦C)
0.01 (35–45◦C)

0.0002*
month−1

10

3 AML
Oceanographic

Ltd.

T, C, P >10.000 0.1 0.05 n.a. 0.1

4 YSI T, C, P, O2,
fDOM, turbidity

2.000–10.000 0.001 ±0.01
±0.05

n.a. 1

5 TriOs T, S, nitrate 2.000–10.000 n.a. n.a. n.a. 60

6 Satlantic T, S, nitrate 2.000–10.000 n.a. n.a. n.a. 60

7 FerryBox flow
system

4HJena T, C, Chl-a, O2,
turbidity

>10.000 0.0001 <5%/±0.005 ±0.0005 60

8, 9, 10 Logger Schlumberger T, C, P <2.000 0.01 ±0.1 n.a. 60

11, 12 HOBO T <2.000 0.02 at 25◦C ±0.21 0.1* year−1 60

The most common sensor parameters provided by the manufacturer are as follows: *Information provided by the manufacturer. n.a., not available (not provided by
manufacturer). The sensors with the ID 1–6 were multiparameter probes which do not only measure temperature but also other parameters, given in the column
“Parameters measured.” Sensor 7 was a “FerryBox” system which also measures additional parameters given in the column “Parameters measured.” In contrast to the
multiparameter probes, in this system the sample value, however, is pumped through for measurement cell for the respective parameter. Sensor 7–12 are logger systems
measuring fewer parameter as the multiparameter probes with no option to recalibrate the sensor by the user.
(1)T, temperature; P, pressure; C, conductivity; S, salinity; Chl-a, chlorophyll a; O2, oxygen.

TABLE 2 | Sensors, respectively, datasets available for the in situ approach.

Sensor ID Manufacturer Temporal resolution of source dataset Manufacturer accuracy and
precision

13 Teledyne WorkHorse 2.8e−4 Hz (one value per hour) Accuracy: 0.01◦C
Precision: ±0.4◦C

14 Aanderaa Optode 1.67e−2 Hz (one value per minute) Accuracy: 0.03◦C
Precision: not provided by manufacturer

15 SeaBird SBE38 1 Hz Accuracy: 0.001◦C
Precision: not provided by manufacturer

16 SeaBird SBE45 1.67e−2 Hz (one value per minute) Accuracy: 0.002◦C
Precision: not provided by manufacturer

qc Quality controlled dataset (see text) 2.8e−4 Hz (one value per hour) Accuracy: n.a.
Precision: calculated individually for
each value, see “Materials and
Methods”

The dataset comprised temperature data from four different
sensor types (Table 2) measuring the water temperature year-
round at a frequency of 1 s−1 to 1 h−1. The sensors were placed
a maximum of 1.5 m apart in a water depth of 11 m to 12
m ± 1.5 m tidal cycle and were operated continuously except
during maintenance and repair.

Overall Data Treatment
The data flow and handling of the raw data from the Svalbard
observatory is described in Figure 4 using R (R Core Team,
2021a,b) with the packages listed in Supplementary Appendix 1.
For the analysis, we used raw datasets from four different sensors
on which plausibility checks according to Silva et al. (2020)
were applied, classifying the data into good, probably good,
probably bad, and bad data (Figure 4, step 1). In the next step
(Figure 4, step 2), all data were visually inspected on a monthly

basis using an interactive Shiny (Chang et al., 2021) application
in R programming language (R-Studio Team, 2020). The data
point plausibility classification from step 1 was confirmed based
on expert knowledge. Data points that were obviously wrongly
classified as “good” were manually classified as “probably bad.”
The output of this step was used as single-sensor plausibility-
checked datasets for further analysis.

Quality Controlled Data Set
Additionally to the single sensor datasets, quality controlled
datasets from 2012 to 2017 were used which have been published
as yearly datasets in the Pangaea data repository (Fischer et al.,
2018b,c,d,e,f,g). Similar to the approach described by Henson
et al. (2010), for multiple satellite models targeting the same
parameter, we derived an integrated temperature dataset from
the single-sensor datasets described above. From these datasets,
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FIGURE 2 | Water temperature over time in a water basin for all of 12 sensors (inbox). Deviation to the calculated median (◦C).

FIGURE 3 | Location of the Bremerhaven experimental site for the lab
experiments and the COSYNA observatory in the Arctic Ocean, Svalbard
archipelago (78.93045◦N, 11.9190◦E), base map: Natural Earth (2018).

the sensor with the highest manufacturer accuracy and precision,
the least obvious outliers, and the lowest temporal drift in the
plausibility check procedure (Figure 4, steps 1–2) was defined as
the lead sensor. Missing data in this lead sensor were imputed
as far as possible (Figure 4, step 3) using the imputation routine
“Amelia” from the R package Amelia II (Honaker et al., 2011).
In the next step, using multiple linear regression, a model for
predicting the lead sensor values was applied using the other

sensor data as predictors (Figure 4, step 4). Using this model, an
as complete as possible dataset “predicted lead sensor values” was
created. The lead sensor and predicted lead sensor data were then
analyzed with respect to their goodness of fit by computer-aided
analysis (Figure 4, step 5). In this step, the residuals of the fitted
to lead sensor values were calculated and visually inspected. Lead
sensor values and associated predicted lead sensor values with
a numerical difference of more than 3 × studentized standard
deviation of the lead sensor were classified as probably bad. Using
the remaining “good” data of the lead sensor and the associated
predicted lead sensor, kernel density estimates (for details, see
Deng and Wickham, 2014) were calculated (Figure 4, step 6).
A kernel weight value of 1 was used for the lead sensor value.
For the associated predicted lead sensor value, a kernel weight
value of 0.7 was applied. Based on these parameters, the kernel
maximum values and their 90% confidence limits were calculated
as the assumed best fit for the in situ mean temperature and
the associated 90% confidence limits of the mean temperature at
a certain time. This dataset is referred to as “quality-controlled
dataset” in all subsequent steps.

For all further calculations, both the four single sensor
data sets and the quality-controlled dataset were averaged
(arithmetic mean) per hour so that mean hourly temperature
data were available.

Virtual Sampling Campaigns
Using these five time series, virtual sampling campaigns were
conducted from 2012 to 2017, simulating a realistic monitoring
program on SSWT in the Arctic. When setting up the sampling
frequency and procedure, we used our experiences of long-term
sampling programs with logistic support available on year-round
operated polar field stations. Based on these considerations,
the five source datasets with temporal resolutions of 1 h were
sampled in silico in four different temporal scenarios: full hourly
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FIGURE 4 | Data flow and handling from single sensor raw data sets to quality controlled data. Further explanations see text.

resolution, sampling once every day, once every week, and once
every month. As stated before, to follow as best as possible a
realistic field sampling scenario, sampling in the daily, weekly,
and monthly scenarios was performed during the workday
between 10:00 and 15:00. Within the temporal scenarios daily,
weekly, and monthly, three different sampling sub-scenarios were
performed (Table 3). All calculations and routines for the in silico
sampling were done in R-Studio (R-Studio Team, 2020) and are
available as R notebook at Github (Supplementary Appendix 1;
Fischer, 2021).

In the d-1 scenario, sampling was performed every workday
year-round with a random selection of the exact sampling time

between 10:00 and 15:00 every day. In the daily d-2 sampling
scenario, sampling was also performed every workday, but
exactly at 12:00.

For the different weekly sampling scenarios (Table 2,
w-1 to w-3), one sample was taken per week either
on any day of the week (w-1) including Saturday and
Sunday, only from Tuesday to Thursday (w-2), or only
on Wednesday (w-3). In the weekly scenarios, the exact
sampling time per day was always randomly selected between
10.00 and 15:00.

For the three-monthly sampling scenarios (Table 2, m-1 to m-
3), one sample per month was performed either on any day of the
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TABLE 3 | Overview of the temporal (hourly, day, week, and month) sampling
scenarios in the in silico sampling procedure.

Temporal
sampling
scenario

Sampling sub-scenario

Hour Hour The full dataset was used

Day d-1 Random selection of the sampling time between
10:00 and 15:00 h

d-2 Sampling every day at exactly 12:00 h

Week w-1 Random selection of one sampling day (Sunday to
Saturday) each week and the sampling time
between 10:00 and 15:00 h.

w-2 Random selection of one sampling day (Tuesday to
Thursday) and the sampling time between 10:00
and 15:00 h

w-3 Sampling on Wednesday with random selection of
the sampling time between 10:00 and 15:00 h

Month m-1 Random selection of one sampling day within each
month of the year and random selection of the
sampling time between 10:00 and 15:00 h

m-2 Random selection of one sampling day between
the 10th and the 20th of each month and random
selection of the sampling time between 10:00 and
15:00 h

m-3 Sampling on 15th of each month with random
selection of the sampling time between 10:00 and
15:00 h

month (m-1), only between the 10th and the 20th of each month
(m-2), or exactly at the 15th of each month (m-3). As in the
weekly scenarios, the exact sampling time per day was randomly
selected between 10.00 and 15:00 h.

Applying this sampling strategy, nine different virtual
sampling scenarios (Table 3) were analyzed using a comparative
approach. All five datasets (Table 2, sensor ID 13-17) were
analyzed with respect to significant temperature changes over
time from January 2012 to December 2017 and their potential to
detect significant changes over time.

Data Analysis
All analyses were performed with R-Studio (R-Studio
Team, 2020) and Python, and the packages are listed in
Supplementary Appendix 1. For the in vitro experiments, a
Bland–Altman analysis was performed to evaluate the agreement
between the two series of measured values. In particular, it
provides information about the influence of the height of the
measured values on the magnitude of the deviations/differences.
The Bland–Altman analysis is based on the quantification of
the agreement between two quantitative measurements by
determining the bias or mean difference as a measure of accuracy
and construct limits of agreement (LOA) as a measure of
precision (Altman and Bland, 1983; Bland and Altman, 1986).
This is used to evaluate the agreement between two different
instruments or two measurement techniques (Montenij et al.,
2016). For the in situ and in silico analysis of temperature
changes in water temperature in Svalbard over time, we applied
ANOVA with subsequent linear regression analysis (temperature
versus time). For all virtual samplings where the possibility

for a random choice of the sampling hour, day, or week was
given (all sampling schemes except for hour and d-2), 100
computer-generated repetitive samplings were performed. For
sampling scheme w-2, for example, the computer conducted 100
(virtual) repetitive samplings with a random choice of sampling
day (Tuesday, Wednesday, or Thursday) and sampling hour
(between 10:00 and 15:00). The results of these 100 samplings
were used as input variables for subsequent statistical tests on
the effects of the parameters “sampling time,” “sensor-id,” and
(in silico) “replicate sampling” on the possibility of detecting an
increase in water temperature over time. Furthermore, the 100
slopes of the “samplings” were used to calculate the predictive
capacity of a significant increase in temperature over time.

RESULTS

In vitro Data
In addition to evaluating the comparability of the tested sensors
with respect to sensor accuracy and precision, we also evaluated
whether specific sensors may be more appropriate for scientific
tasks based on measurement characteristics. We specifically
checked if there were sensors that were more appropriate for (1)
measuring the “true” temperature as accurately as possible or (2)
determining minimal small-scale temperature changes over time.
While task (1) has less strict requirements regarding the accuracy
of the measurements, task (2) requires a high precision of the
temperature measurements.

The median of all sensor data for each time step was
determined to analyze the accuracy of the different sensors
within the intercomparison experiment. Usually, sensor accuracy
is calculated using a “true” value. However, measurements of the
true value are extremely challenging, and reference techniques
can only provide an approximation. In this set-up, the real
“true” temperature was unknown. Therefore, the difference
between each measured data and the calculated median at
each time step was determined. Figure 2 displays the temporal
behavior of all the sensors and the deviation of each sensor
to the calculated median. Figure 2 indicates that data from all
multiparameter probes were below the median value, except for
DEV_3. In addition, FerryBox revealed warmer temperatures.
The loggers’ water temperatures were either very close to the
median value or above the median value. DEV_8–DEV_10
were of the same type, but DEV_8 measured colder than
the median water temperatures, while DEV_3 and DEV_10
measured higher water temperatures, indicating a high variability
of this type of sensor.

As described above, one aim was to find reasonable and
feasible metrics to select the most appropriate sensors for a
specific scientific task. It is essential to be certain that the sensor
of interest is as accurate as a reference or as an assumed “true”
value. Therefore, it is crucial to measure the agreement between
the two sensors.

One approach to evaluate the agreement is using Bland–
Altman analysis between two sensors, rather than validating
the sensors to a “true” reference. Bland–Altman analysis is
based on quantifying the agreement between two quantitative
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FIGURE 5 | Example of Bland–Altman analysis taking the median of the reference sensor and three different sensors (DEV_1, DEV_9, and DEV_12) and the
calculated reference as the median of all sensors; the light blue stripe indicates the mean difference of the device to the reference and represents the bias. The two
orange bars represent the confidence interval at 95%.

measurements by studying the mean difference and constructing
the LOA (Giavarina, 2015). The LOA is a confidence interval,
and it is commonly computed by ±1.96 × standard deviation
of the difference for each comparison. LOA describes how
far apart the measurements of two methods are likely to
be for most individuals. Here, Bland–Altman analysis was
performed using the median of all sensors as a reference to
determine the mean accuracy (bias) (Figure 5). The Bland–
Altman diagram in Figure 5 shows the differences between each
measuring device (DEV), the median of all sensors (REF) on the
Y-axis (DEV − REF), and the mean of these two parameters
[(DEV+ REF)/2]. Figure 5 shows that the means are different for
a bias = 0. A bias close to zero indicates an accurate sensor. The
sum of the distance of the upper and lower LOAs to 0 indicates
the precision (Figure 5).

In Figure 5, it can be seen that the sensors are precise
if the limits are close to the bias. In this example, DEV_9
was the most accurate and DEV_12 was the most precise in
relation to the median.

These percentage differences between the reference and the
sensor show that mean accuracy is the best benchmark to
find the sensor that measures the temperature as accurately or
“true” as possible. In Figure 6, the results indicate that within
the intercomparison experiment, DEV_7 (FerryBox System, in
Figure 6A1) and DEV_12 (logger, in Figure 6A2) are the most
appropriate. In addition, parameter precision is suitable for
selecting repeatable sensors and can record small temperature
changes. For the latter research questions (resolving small
temperature changes), DEV_6 (Multiparameter in situ probe,
in Figure 6P1), DEV_11, and DEV_12 (Logger, in Figure 6P2)
should be selected.

In situ Data
Figure 7 shows the base datasets of water temperature of the
Svalbard AWIPEV underwater observatory from 2012 to 2017
of the four single sensors and the quality-controlled data set.
The statistical analysis revealed a highly significant increase

(p < 0.001, lower right panel, column significance slope) in water
temperature over time for all five datasets, with a numerical range
of the temperature increase between 0.14 and 0.33◦C year−1

(lower right panel, column slope).

FIGURE 6 | Percentage difference between sensor and reference from the
Bland–Altmann analysis: (upper panel) bias or mean difference as a measure
of accuracy, if bias >0 then median >sensor and, as a result, the median
provides a bigger retention than the sensor and vice versa. A1–A3 are the
most suitable sensors for accuracy estimates; (lower panel) spread of limits of
agreement (LOA) to 0 as a measure of precision, P1–P2 are most suitable
sensors for precision estimates.

Frontiers in Marine Science | www.frontiersin.org 9 December 2021 | Volume 8 | Article 770977

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-770977 December 3, 2021 Time: 10:30 # 10

Fischer et al. Take Care of Your Data

FIGURE 7 | Water temperatures (temporal resolution 1 h) of the Svalbard AWIPEV underwater observatory from 2012 to 2017 for the four single sensors and the
quality controlled data set. In each plot, the available data of each sensor are shown after applying the plausibility control procedure (Silva et al., 2020). Additionally,
the linear regression fit for each sensor is plotted and the respective numerical slope value and slope significance class are shown in the lower right facet. ***p < 0.01.

This basic dataset (subsequently referred to as an “hourly”
dataset) was used for all subsequent virtual sampling campaigns.
Table 4 shows the results of hourly, daily, weekly, and monthly
sampling schemes, as well as the effects of a very strict
sampling plan with no free choice of the hour or day of
the sampling versus a liberal sampling plan where the station
personnel (here the computer) can schedule the hour or the
day of the sampling within the predefined range according
to their wishes.

The results in Table 4 show that in all sampling schemes,
“sampling time” and “sensor id” had a significant effect on
the temperature measurements. In contrast, “repetition” had
no significant effects. Furthermore, the interactions between
“sampling time × sensors_id” were highly significant (p < 0.01)
for hourly, daily, and weekly sampling schemes, indicating

that for these sampling frequencies, the measured temperature
change (slope) over time was significantly different among the
different sensors.

However, when sampling monthly, this difference between
the sensors over time could only be resolved with the restricted
sampling scheme when the monthly sampling was performed
exactly on the 15th of each month (m1) over the entire time
period and only with p = 0.05. In contrast, when sampling
monthly with the “half” or “full” sampling scheme (m2,
m3), no significant interaction between sampling time and
sensor was observed.

Finally, the interaction term including the factor replicate
(time × repetition as well as time × sensor × repetition) was
not significant in any sampling scheme, indicating that the
random selection of the sampling time or day in the 100 virtual
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TABLE 4 | ANOVA results on the statistical effects and interactions of the
parameters “sampling time,” “sensor-id,” “repetition,” and “sampling scheme” on
the increase of water temperature per year (slope).

Factor Sampling scheme

Hourly d-1 d-2 w-1 w-2 w-3 m-1 m-2 m-3

Sampling time *** *** *** *** *** *** *** *** ***

Repetition* – – n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Sensor_id *** *** *** *** *** *** *** *** ***

Sampling time × repetition – – n.s n.s n.s n.s n.s n.s n.s

Sampling time × sensor_id *** *** *** *** *** *** * n.s n.s

Sampling time ×
sensor_id × repetition

– – n.s n.s n.s n.s n.s n.s n.s

For details of the sampling scheme, see “Materials and Methods.” *The factor
“repetition” refers to the 100 repetitive virtual samplings in case a free choice of
sampling time or day was tolerated by the sampling scheme (see Table 3).
***, p < 0.01; *, p < 0.05; n.s, not significant.

sampling events within each time slot did not confound the
analysis with respect to hidden temporal patterns introduced by
the sampling scheme.

Figure 8 shows the predictive capacity of the different
sampling schemes in detail. For this analysis, 100 replicate
samples within one sampling scheme (d1, d2, w1, w2, w3, m1, m2,
m3) were analyzed. The percentage of 100 repetitive samplings in
each sampling scheme was calculated to detect the temperature
increase over time with the same significance level as that found
in the hourly sampling.

Our analyses show that daily sampling (either full random or
restricted, d1, d2) revealed identical results as hourly sampling for
all sensors and sampling times, and for the interactions between
sampling time and sensor ID.

Weekly sampling was similar except for the interaction term
“sampling time × sensor_id.” For this interaction term, the
predictive capacity dropped to 0% in the weekly restricted
sampling scheme. This shows that only daily sampling allows
statistical disentangling of the effects of sampling frequency
on the effects of sensor type when analyzing temperature
increase over time.

When switching to the monthly sampling scheme, the
predictive capacity dropped sharply. This means that with this
sampling scheme, it is no longer possible to reliably determine the
temperature increase over time from undirected signal noise. In
the 100 repetitive samplings, a statistically significant relationship
between temperature increase and time was found in only
40%, and the effect of the different sensors on the temperature
measurements was found to be less than 20%.

In the next step, we analyzed the temperature measurements
of each sensor in detail to focus on the effects of using different
sensor types to determine long-term temperature changes
(referring to the factor “sensor-id” and “sensor-id × sampling
time” in the above analysis). Figure 9 shows the calculated
mean temperature increase per year (slope) measured with the
different sensors from January 2013 to December 2017 for
the individual sampling schemes. Additionally, the standard
deviations of the slope measurements of the 100 replicate

samplings within each sampling scheme are shown. The analysis
revealed that the temperature increases per year (slope) measured
by the individual sensors were quite different. The highest
temperature increase per year was detected by sensor 13 with an
average increase of 0.34◦C per year, a minimum value of 0.31◦C
(±0.08◦C), and a maximum value of 0.39◦C per year (±0.01◦C).
With all daily and weekly sampling schemes, the temperature
increase measurements of this sensor were significantly higher
(p < 0.001) than those of all other sensors. When the sampling
frequency dropped to monthly, this difference was no longer
significant, and the p-value between the sensors dropped to
0.05 (Table 4), even though the numerical differences in the
temperature increase measurements of this sensor to all others
were still obvious.

In the last step, which is identical to the calculation of
the predictive capacity of the different sampling schemes, we
calculated the predictive capacity of each individual sensor to
discriminate a real increase in water temperature over time
from random temperature fluctuations (Figure 10). This analysis
revealed that when using a single sensor, reliable determination
of real temperature increase over time (100% detection) from
random temperature fluctuations was only possible with hourly
and daily sampling schemes. When switching to weekly sampling,
the predictive capacity dropped in almost all sensors to a value
of only 50% in the validated dataset, most sensors were even
below 40%. A higher value above 90% predictive capacity was
only shown by the ADCP temperature sensor, which, however,
showed significantly higher temperature increase values than all
other sensors. When finally switching to a monthly sampling
scheme, the predictive capacity of all sensors approached values
was close to or at 0.

FIGURE 8 | Predictive capacity of different sampling schemes compared to
hourly sampling. Hundred percent predictive capacity means that all 100
virtual repetitive samplings within a sampling scheme detected the
significance in temperature increase over the period found in the hourly
sampling. Zero percent predictive capacity means that none of the 100 virtual
samplings within a sampling scheme detected the significant temperature
increase over the period.
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FIGURE 9 | Calculated mean temperature increase per year (slope) from
January 2013 to December 2017 measured with the different sensors. Shown
are the mean slope values calculated from 100 virtual replicate sampling
within the individual sampling schemes. Additionally, the standard deviations
of the slope measurements are shown as whiskers.

FIGURE 10 | Calculated mean temperature increase per year (slope) from
January 2013 to December 2017 measured with the different sensors. Shown
are the mean slope values calculated from 100 virtual replicate sampling
within the individual sampling schemes. Additionally, the standard deviations
of the slope measurements are shown as whiskers.

DISCUSSION

Best practices and standards for aquatic monitoring have
gained increasing attention in recent years (Buck et al., 2019;
Pearlman et al., 2019). These discussions are highly valuable and
are required for setting up theoretical frameworks to achieve
good and FAIR data (Wilkinson et al., 2016), especially for longer
lasting monitoring programs.

According to our experiences, however, such frameworks are
sometimes not written in an operational way to allow easy

implementation in a concrete data workflow and, therefore, are
not used to their full effect in the ecological community. The
sometimes high level of abstraction prevents the implementation
of the often well-designed but theoretical procedures in
the data workflow, meaning that they do not make their
way to operational science as scientists are not able to
adapt the suggested procedures to their specific scientific
application. These problems in the translation process from
theoretical data quality considerations to operational science
can be observed at many levels of operational monitoring
and, unfortunately, sometimes prevent the comprehensive
implementation of described workflows on data quality in
operational scientific work.

In vitro Data
Our results from the in vitro experiments show that the simple
formula of “the more expensive a sensor is, the better is the data
quality” does not hold true. The intercomparison experiment
showed that the sensors used in the experiment span from sensors
with a high accuracy but a lower precision (example DEV 3) to
sensors with a lower accuracy but a higher precision (DEV 6).
Most interestingly, these sensor characteristics were not linked
to the sensor’s cost. A sensor with a high accuracy means that
the sensor measures are highly accurate with a low deviation
from the expected temperature. On the other hand, a sensor with
high precision can discriminate small-scale temperature changes
even though the absolute measured temperature may deviate
from the expected temperature more than in the highly accurate
sensor (JCGM, 2008). This discussion, however, becomes highly
complex especially when approaching the resolution limit of a
sensor. In this operational limit, it is almost impossible to decide
if small-scale temperature variations detected in a highly precise
but less accurate sensor are the result of real changes in the
field, or simply accuracy deviations generated in the sensor itself.
The rule of thumb could be that any validation of small-scale
variations in water temperature should be larger than the known
accuracy deviation of the particular sensor in question. Following
this argumentation, the precision of a sensor becomes a relative
value that depends also on its accuracy. The best choice to obtain
climate-quality SST data for instance would be to have both, a
highly accurate as well as highly precise sensor. These theoretical
considerations clearly show, that additional to comparative and
more operational experiments, as performed in this study, in
depth benchmark studies for each type of sensor are very useful
and required for researchers to make a choice according to their
available budget and objective of the measurements (e.g., short-
term local variations versus long-term global trends across a
range of sites).

The sensor systems used in our intercomparison experiment
varied in measurement technique and price, from high-end
FerryBox systems and multiparameter in situ probes to low-
cost single-parameter temperature loggers. Depending on the
scientific question and the local circumstances, scientists need to
decide whether a single expensive sensor with long-term high
frequency logging and multi-parameter measurement options
is more appropriate for their program than multiple cheaper
sensors or exchanging sensors every month when cheap sensors
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are available with similar or sufficient sensor accuracy and
precision. For instance, the low-cost loggers of HOBO (DEV 11
and 12) measured the temperature during our intercomparison
experiment with good accuracy and precision.

Another remarkable finding of the intercomparison
experiment was that the behavior of each sensor is sensor-
specific, and even sensors of identical type and manufacturer
sometimes do not show the same behavior or provide different
data under defined experimental conditions (e.g., DEV 8, 9,
and 10). It is often assumed that periodic calibration ensures
accurate and precise data, as a known reference standard with
high accuracy is used for the calibration. In our experiments,
all participants confirmed that their sensors were in a calibrated
state; thus, we assumed that all sensors were well calibrated
and ready for accurate use. The results of the experiments
indicate that even proper calibration has the potential to retain
errors. Calibrated sensors are assumed to be initially true and
have a bias less than their precision error. Our results clearly
show that calibrated sensors need to be checked against each
other frequently, especially for comparative measurements with
multiple sensors, for example, on joint cruises with different
ships or synoptic measurements at different places.

This also holds true for the accuracy and precision of new
sensors from manufacturer datasheets. These values are often
only valid for a brand-new sensor and sometimes do not reflect
the specific sensor, but only the sensor type. In this case,
the question arises if such reported manufacturer values are
trustworthy for field experiments. On the other hand, it has been
reported that in some sensors, the accuracy and precision actually
improve over time as the sensor stabilizes while in other cases it
was observed that the accuracy and precision deteriorates over
time, e.g., when the battery power decreases below a certain
threshold. This shows that intercomparison experiments as well
as proper sensor preparation prior to field campaigns should be a
standard routine to assess and document the sensor performance
prior to each campaign and that those operational “metadata” of
the sensor should be accessible for later data analysis.

Our experiments show that during the planning and
implementation phase of measuring or monitoring programs
with multiple (different) sensors and in programs where different
institutions with different sensor handling procedures are
involved, it is highly recommended to perform intercomparison
experiments. Such experiments are easy to perform, foster
information and knowledge exchange and transfer among sensor
operators, and help to select suitable sensors with regard to
resolution, accuracy, and price. Our analysis showed that even
low-cost sensors can be suitable and the low price allows the
implementation of a measurement array at the same cost as
a single, more expensive sensor. These kinds of considerations
including the respective accuracy and precision information have
to be properly documented in the data’s metadata especially
when submitted to global datasets. In this context, it must
be considered, however, that data of lower accuracy and
precision, even though sufficiently accurate and precise for local
scientific questions, may compromise global datasets obtained
by higher accurate and precise sensors. Therefore, data portal
administrators should be aware especially of such considerations

when accepting data from various institutions using different
sensor types and deployment methods.

In addition, the observed variability between sensors of the
same type from the same manufacturer in our experiments
supports the need for intercomparison experiments to assess
reliability across sensors of the same type. In particular,
larger research communities with different departments and
cooperation partners need to establish standardized facilities
to compare sensors and to carry out standardized calibrations
with defined reference values. This information on data
intercompatibility is necessary for data blending or common
analysis and interpretation, and therefore contributes to the
FAIR principles (Wilkinson et al., 2016) of scientific data.
Furthermore, such standardized sensor intercomparison and
calibration facilities also serve the goal of combining resources to
preserve financial and human resources by avoiding the repeated
re-examination of problems/issues across institutions.

In situ Data
In addition to proper sensor selection, the re-analysis of the
Svalbard dataset from 2012 to 2017 revealed that the overall
measurement strategy, in particular the sampling frequency, is
crucial for a possible statistical-reliable discrimination of long-
term interannual temperature changes. In particular, for long-
term field measurements over several years, setting up the
sampling scheme must include not only accuracy and precision
consideration of the sensors themselves but also the long-term
availability of the workforce on site for sensor maintenance,
possible weather constraints preventing sampling for some time,
and possible temporal or spatial restrictions with respect to
access to the area. While scientists often want to achieve a strict
sampling plan with fixed sampling days or even hours at as
high as possible temporal frequency, logistics station personnel
who have to conduct the sampling in the field prefer the
sampling plan to be as flexible as possible to fit their daily,
weekly, or monthly routines, as well as their preferred field
times. Unfortunately, such discussions are often not based on
an in-depth knowledge or evaluation of the consequences of
the proposed sampling scheme for data reliability and data
quality for a certain question, but rather follow the “experience”
factor either of the scientist or the “feasibility” factor of the
station personnel.

A proper long-term reliable sampling plan and the respective
preparation including all the above-mentioned technical, human,
and legal points will facilitate the long-term success of a
monitoring program and will better focus on the scientific
question, instead of technical or logistic issues.

Our experiments revealed that the sampling frequency is
most critical for the chance to determine long-term changes
in a parameter (here temperature) with a relevant statistical
significance. We detected average increases in temperature over
time in the shallow area of the Kongsfjorden ecosystem close
to the settlement NyÅlesund between 0.1 and 0.4◦C per year
depending on the sensor used. Using our best estimates based
on our quality control dataset, an average increase of 0.22◦C
per year was calculated. These values fit quite well with the
overall estimate of the effect of global warming in the Arctic
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realm. Recent studies have shown a significantly faster increase
in Arctic temperatures due to global warming than the global
average, with Svalbard lying in the global hot-spot area in recent
decades (AMAP, 2012, 2021). A recent study by Hop et al. (2019)
revealed an average increase of 0.14◦C year−1 in the deeper
water layers of the Kongsfjorden ecosystem, and AMAP (2021)
showed an average increase in air temperature of 3.1◦C year−1.
It is assumed that the shallow waters of the Kongsfjorden get
an additional temperature pulse from the atmosphere, explaining
the superior warming of the shallow water ecosystem compared
to the deeper water masses. Considering arctic amplification and
the global relevance of Arctic water mass temperature elevation
for climate change, it is most important to be able to assess
water temperature and the temperature increase over time as
accurately and precisely as possible. Our results show that,
depending on the sampling frequency per time, a measured
increase in water temperature was significant over time or not
and this was additionally dependent on the sensor in use. In our
experiment, we found significant data only when a daily sampling
scheme was applied. All sensors revealed that the temperature
increase over time was significant at a p level of at least 0.05,
independent of the time of sampling during the day. Hourly
or daily sampling, therefore, proved to be a robust sampling
scheme when attempting to prove the observed increase in water
temperature statistically over time. However, this result is, so far,
only validated for our Arctic dataset from Svalbard and it would
be interesting to test these findings for other non-Arctic long-
term data.

When looking at the ability to significantly prove the
observed increase in water temperature by weekly sampling,
the probability that the observed temperature increase over
time reaches a statistical significance (Figure 9, predictive
capacity of slope detection) dropped from 100% (as in the
daily sampling scheme) to lower values and became sensor-
dependent and partly erratic. While one sensor (Figure 9, sensor
13) detected a significant predicted increase in temperature
over time in almost all of the 100 simulated samplings
independent of the weekly sampling strategy (w-1, w-2, or w-
3), another sensor (sensor 16), had a detection rate less than
20% under identical conditions. Using the quality-controlled
dataset (qc), the detection rate of the weekly sampling scheme
also dropped to less than 60% in the w-3 sampling scheme,
meaning that the chance to prove a long-term increase in
water temperature statistically only reached less than 60%, and
therefore is almost random.

When shifting to a monthly sampling scheme, the chance
of detecting a significant increase over time was almost 0,
independent of the sensor used and if the sampling was done on
the same day of the month or on a random day of the month.

Summarizing these results, in our monitoring program, a
sampling frequency of less than “daily” is inappropriate for trying
to discriminate random fluctuations in arctic water temperature
from a directional change in temperature over time.

Wiltshire and Manly (2004) discussed the option of not
using mean values but rather minimum or maximum values,
and whether this may elevate the probability of detecting
significant changes in environmental parameters over time. In

an additional calculation (Supplementary Appendix 2), we tried
this approach for the Svalbard data and used the minimum
and maximum temperature values for the calculations. When
using maximum temperatures for data integration over time, the
calculated temperature increases are partly distinctively deviated
from the mean value approach. A temperature increase of up
to 0.41◦C year−1 was found when using maximum temperature
values integrated over months for sensor 13. In contrast, when
using the maximum temperature values per month for sensor 15,
a negative trend in temperature was identified at−0.06◦C year−1.
Thus, in our scenarios, the use of maximum or minimum
values is not recommended for calculating long-term trends in
temperature in shallow water areas.

Another interesting issue emerged when examining the results
of sensor 13. Independent of the sampling scheme, this sensor
revealed the highest temperature increase, with an average
of 0.33◦C year−1. Evaluating this value in the context of
all other sensors and the quality-controlled dataset strongly
suggests that this value is a sensor-specific overestimation of
the real temperature increase over time. This may be due
to the larger number of measurement gaps due to technical
failures. It is well known that data gaps can confound underlying
“real” trend signals in long-term datasets especially when the
covered overall time period is relatively short and data have
a pronounced seasonality (Slater and Villarini, 2016). The
observation that in this study, the highest warming trends
in the time-series is recorded by the sensor with the largest
gaps in the measurements seem to confirm this hypothesis and
underlines the overall importance of as complete as possible
datasets for monitoring programs in environmental trends
studies especially in highly dynamic coastal ecosystems. On
the other hand, larger gaps were also observed for sensor 15,
which showed an average increase of only 0.18◦C year−1. In
addition to the higher temperature increase identified by sensor
13, the probability that this temperature increase was statistically
significant was above 90% for all three weekly sampling schemes
(Figure 9). So, even though sensor 13 had large gaps and
showed a suspiciously high temperature increase over time,
the general trend of this sensor was the same as for the
other sensors, but the numerical value was most certainly a
distinct overestimation.

This result may be explained by the method of linear
regression, as the calculation of statistical significance of a slope
is done by analyzing the increase in the measured value after
time using t-statistics. Therefore, when the rate of the measured
temperature increase over time is comparatively constant over
time, even though it is too high for a specific area, the statistical
test will show a significant result, even though the absolute
numerical value is too high. This consideration, however, also
indicates that when the overall temperature increase rates over
time in a certain area are higher compared to our study site,
a weekly sampling strategy may also be valid and provide
reliable results.

In contrast, in integration scenarios m-1, m-2, and m-3,
almost all calculated slopes were insignificant, except for the
0.33◦C year−1 increase from sensor 13, which showed a p-value
of 0.05. This additionally can be taken into account when rating
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this sensor as suitable for such long-term analysis. Adding the
manufacturers metadata to this assessment, the user can extract
the information that even though the accuracy of this sensor is
0.01◦C, its precision is only 0.4◦C. This indicates that this type
of sensor may not be appropriate for measuring temperature for
long-term trend analysis as the expected changes over time are in
the same order of magnitude as the sensor precision. This kind
of information and background considerations should be a more
prominent part of any datasets metadata as there is a certain risk
that such data are used in science especially when available as
temperature data for a certain area in international databases.

Summarizing the observed patterns for the hourly, daily,
weekly, and monthly sampling schemes, a consistent picture
emerges. While hourly and daily sampling provided stable
results independent of the sensor and independent of the
aggregation procedure (minimum, mean, or maximum values),
weekly sampling may show significant results in long-term
temperature changes over time; however, these results are highly
sensor-dependent and are potentially associated with a high
probability of error. In our analysis, monthly sampling schemes
did not provide significant results for long-term temperature
changes over time, independent of the sensor used and the
sampling scenario.

Sampling aquatic environments, especially in remote areas,
is time-consuming and expensive. Our results showed that for
the Svalbard dataset, only hourly and daily sampling is a reliable
sampling strategy for monitoring long-term changes in water
temperature for climate change monitoring programs. Even
daily sampling programs based on discrete water samplings, for
example, with a small ship or even from a pier or any other
access point to the water, are not practical, even when considering
a year-round operated research base in the Arctic, such as the
AWIPEV research base in NyÅlesund used for our study. Winter
conditions with extreme outside temperatures and Arctic polar
nights make such a human-based sampling program not feasible.
Furthermore, measuring further environmental parameters such
as pH or chlorophyll a by discrete water sampling is also not
feasible on a daily basis, even in more friendly environments,
as the workload is too high and hiring extra personnel for
such programs is often not possible. Cable observatories are
often assumed to be expensive and technically demanding.
However, when considering the financial expense and workload
effort required for daily sampling based on human operation,
cabled observatories are often more cost-effective, not only in
remote areas. Cable connected fully automated sampling facilities
have become operational standards over the last decade, and
data handling procedures for quality control and storage have
been developed and established in most scientific institutions.
Considering these technological developments and the findings
from this study that at least daily sampling is most appropriate
and reliable in terms of statistical power to discriminate random
fluctuations in water temperature from directional changes over
time, observatory technology with sensors measuring at least
on a daily resolution is a cost efficient and reliable method for
environmental monitoring. Our results are transferable to other
aquatic research questions and non-polar regions. Increases in
surface water temperatures constitute a global challenge and are

monitored in many coastal and terrestrial regions. Hence, it is
important to evaluate sensor behavior and provide elaborate and
feasible sampling schemes.

However, these results do not address the problem that sensor-
based measurements have a higher potential for bias than discrete
water samples. Therefore, we propose a synergistic approach of
sensor-based measurements of at least a daily frequency, with
a regular discrete sampling scheme several times per year to
validate the sensor data and ensure a high accuracy of the
continuous sensor data. In our experience, such a validation by
discrete water samples must be done in pre-defined intervals,
depending on the variable and the environment, as well as on the
requirements of the data quality.

CONCLUSION

Our experiments show that differences in temperature
measurements with different sensors are within the order
of magnitude of the expected temperature increase in the
Arctic Ocean. Hop et al. (2019) found temperature increases
of 0.14◦C year−1 in deep water. Our experiments revealed that
water temperature increases in the same order of magnitude
ranged from 0.1 to 0.33◦C year−1 depending on the sensor used
and the sampling frequency. This finding clearly demonstrates
the importance of the sensor selection and sampling scheme
when conducting long-term climate research and modeling.

The paper shows that the selection of suitable sensors is
essential to meet previously defined scientific tasks. There
are two main scientific tasks that are very important for
sensor selection: distinguishing differences (high accuracy)
and distinguishing trends (high precision). Consequently, a
comprehensive evaluation of the accuracy and precision of
sensors is required, even after successful calibration. Usually,
sensors are assumed to be initially true and have a bias less
than their precision error after calibration. However, the sensor
characteristics depend also on the prevailing environmental
conditions, proper handling routines, and sensor age, and vary
within a specific range. With rapid changes in environmental
conditions, the functionality of sensors must be maintained
to provide data of consistently high quality. Furthermore, a
thorough theoretical knowledge of possible impacts of a sensor’s
accuracy and precision on the usability of a dataset for a specific
scientific question is required, as, e.g., a highly precise but
not very accurate sensor, e.g., may yield in numerically false
values for long-term trend studies while a highly accurate but
not very precise dataset may fail in discriminating smallest
scale temperature differences, e.g., in studies of a water
columns stratification.

Exact knowledge of the variability and influence of the
sensors used is important to ensure reliable data interpretation.
It is evident that the conversion from theoretical concepts
and corresponding data regarding sensor calibration from the
laboratory to operational monitoring is complex. Therefore,
intercomparison experiments provide an opportunity to
assess the variability of various sensors with changing
experimental conditions to provide valuable information
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for the decision process on which type of sensor is suitable for
a specific task.

The intercomparison experiment data discussed in this paper
indicate that low-cost sensors do not necessarily have lower
measurement quality than expensive sensors in terms of accuracy
and precision. Low-cost sensors may allow the exposure of
multiple sensors in sensor clusters, which is ideal in some
cases. In addition, the authors recommend that it may be
more effective to apply multiple sensors, even from different
manufacturers. There is discussion to be had over whether
multiple low-cost sensors are better than one expensive sensor
which, to a major part, depends on the primary scientific question
addressed with the measurements but also if the data shall be later
integrated into a global database with predefined accuracy and
precision requirements.

Our long-term data evaluation of Svalbard data shows that
when it comes to the reliability of statistical analysis, the sampling
scheme is more important than the sensor characteristics,
especially in terms of accuracy and precision. Hence, the
sampling frequency is the most sensitive attribute for detecting
long-term, statistically significant changes. In this context, it
is important to consider that although the highest possible
sampling frequency is desirable to enable maximum statistical
significance in the analysis of the target data set, in operational
practice, the sampling frequency can sometimes be limited
by technical aspects such as the lifetime of the batteries in
autonomous sensors. Especially in these cases, it is very important
to know exactly the statistical consequences of different sampling
frequencies for the later data analysis. Choosing a frequency
that is too low due to technical limitations may mean that
the scientific question cannot be answered at all with adequate
statistical significance and thus the entire sampling program
may have been in vain. A statistically justified determination of
the minimum sampling frequency should therefore always take
precedence over any technical framework conditions. Another
issue that has to be considered in this context is also the
continuity of data sets. Especially larger gaps in datasets may
considerably confound the statistical output of long-term trend
analysis. There is unfortunately limited research available on
the consequences of data gaps in environmental datasets but
Slater and Villarini (2016) stressed this topic and showed that
data gaps may have considerable consequences for a reliable
data analysis.

Regarding the definition of the sampling frequency, our
statistical analysis of the Svalbard data showed that with
an hourly and daily sampling rate, long-term temperature
trends could be detected reliably and accurately. Only hourly
and daily sampling delivered reliable, stable, and comparable
results with respect to temperature increase over time. When
sampling was weekly, a similar overall trend in temperature
increase was not evident and the uncertainty to detect this
trend was much higher. Random factors due to simple
sampling procedures may confound the results. With even
lower sampling frequencies, no significant temperature trend
could be predicted.

Nevertheless, suitable sensor selection is crucial. A slightly
lower temporal sampling resolution of 1 week, either using

discrete sampling data from single sampling events or integrated
sampling data with mean values, can have diverse results,
spanning from non-significant to highly significant, depending
on the sensor used. An increase in water temperature of
up to 0.33◦C year−1 was derived by selecting an unsuitable
sensor which means a 57% higher prediction of the long-
term temperature increase compared to an average increase
of 0.21◦C year−1 across all sensors. For climate projections,
this difference is significant and mitigating it is essential for
reliable interpretation.
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