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Artificial intelligence (AI) has become a progressively prevalent Research Topic inmedicine

and is increasingly being applied to dermatology. There is a need to understand

this technology’s progress to help guide and shape the future for medical care

providers and recipients. We reviewed the literature to evaluate the types of publications

on the subject, the specific dermatological topics addressed by AI, and the most

challenging barriers to its implementation. A substantial number of original articles and

commentaries have been published to date and only few detailed reviews exist. Most

AI applications focus on differentiating between benign and malignant skin lesions,

however; others exist pertaining to ulcers, inflammatory skin diseases, allergen exposure,

dermatopathology, and gene expression profiling. Applications commonly analyze and

classify images, however, other tools such as risk assessment calculators are becoming

increasingly available. Although many applications are technologically feasible, important

implementation barriers have been identified including systematic biases, difficulty of

standardization, interpretability, and acceptance by physicians and patients alike. This

review provides insight into future research needs and possibilities. There is a strong

need for clinical investigation in dermatology providing evidence of success overcoming

the identified barriers. With these research goals in mind, an appropriate role for AI in

dermatology may be achieved in not so distant future.

Keywords: artificial intelligence, barriers, contact allergens, dermatology, melanoma, nevi, psoriasis, machine

learning

INTRODUCTION

Dermatology is a field with the growing interplay of digitalization, telehealth, and informatics (1).
The increasing presence of artificial intelligence (AI) worldwide, has led to numerous attempts
to leverage this technology for dermatological applications (2). In a recent international survey
of 1,271 dermatologists, 85.1% of responders were aware of AI as an emerging topic in their
field yet only 23.8% had good or excellent knowledge on the subject (3). Moreover, 77.3% agreed
that AI will improve dermatologic care and 79.8% thought that AI should be a part of medical
training. Informing stakeholders on the current stance of AI is thus necessary to promote what
dermatologists themselves believe to be a growing, beneficial and potentially obligatory aspect of the
field. To date, many publications exist on specific AI topics in dermatology but few provide a basic
overview and address the wide landscape. In this article, we summarize the status of the literature
on AI in dermatology using three sections. First, we highlight the types of articles published on
this subject. We then focus on dermatologic diseases targeted by AI, and finally, we spotlight the
identified barriers impeding AI implementation.
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TYPES OF ARTICLES PUBLISHED

Original Research
The overwhelming majority of articles published to date are
original research articles. These describe the design of AI
applications that can perform dermatology-related tasks. For
example, articles have studied tools that can segment a psoriasis
lesion or differentiate between benign and malignant skin
lesions (4, 5). Although these AI tools have not yet been
implemented clinically, these papers describe their technological
feasibility and identify the potential clinical relevance should
they be further validated. Most of these studies are authored by
engineering researchers with few dermatologists as co-authors.
Although the number is increasing, relatively few papers involve
significant dermatologist collaboration in conceiving, designing
and interpreting the studies. To overcome known barriers to
clinical implementation, partnership with dermatologists is key.
Zakhem et al. highlight in their recent review of melanoma
screening applications, that when dermatologists were involved
in the study design, the AI applications leveraged significantly
larger patient datasets that were more representative of true
clinical scenarios (6). Another important form of collaboration is
conducting prospective clinical trials and very few of these exist
(7). One landmark study was conducted by Dreiseitl et al. (8).
In their protocol, patients with undiagnosed pigmented lesions
presented to a dermatology clinic and were assessed separately
by both non-expert physicians using an AI device and by expert
dermatologists. The study design therefore resembled a realistic
clinical practice scenario. The results indicated inferiority of the
automated system, and unfortunately, no similar studies have
been published to date. Whether the lack of similar studies is a
publication bias or a literature gap remains unclear.

Reviews
A small number of systematic reviews exist at this time.
Most of these cover the potential use of AI in differentiating
between benign and malignant skin lesions. For example,
studies have reviewed the specificities and sensitivities of
AI tools for melanoma screening (9). To the best of our
knowledge, only one systematic review has been published on
dermatological applications of AI in general, not limited to
neoplastic lesions (10).

Commentaries
An extensive amount of commentaries exist on the topic of AI in
dermatology. These papers either highlight the potential impact
of AI or stress the challenges of its implementation (11, 12).

DERMATOLOGICAL APPLICATIONS OF AI

Keratinocyte Carcinomas and Melanoma
There is an abundant and growing body of research
demonstrating the preliminary success of AI applications at
distinguishing between benign nevi vs.melanoma (5, 13–34). The
main principle behind these applications is that dermatoscopic
or non-dermatoscopic images of lesions can be broken down
into individual pixels for analysis. A representative example by
Jafari et al. describes an application that examines images pixel

by pixel and extracts 60 features from each to predict disease
classification (24). These applications are typically validated by
comparing their ability to correctly diagnose lesions to the ability
of certified dermatologists (32). One review of photo recognition
applications by Safran et al. included 48 melanoma-screening
tools and demonstrated a mean sensitivity of 87.60% and a mean
specificity of 83.54% (9). Interest toward this topic has grown
to the extent that an international skin imaging competition
was founded in 2016 and has been occurring annually since
(32, 35). Although these applications have become more robust,
prospective clinical trials are rare and known implementation
barriers are continuously debated.

An increasing number of original studies have also
begun classifying non-melanoma skin cancers (also known
as keratinocyte carcinomas) vs. benign and pre-malignant
lesions (36–44). For example, Spyridonos et al. developed an
AI model that could differentiate between actinic keratosis
and normal skin with a specificity of 89.8% and a sensitivity of
91.7% (37). Altogether, most of the research on the topic of skin
cancer demonstrates technological feasibility combined with the
growing evidence supporting clinical utility. What remains to
be demonstrated is whether such tools can be implemented and
relied upon in daily clinical practice.

AI has also been used beyond photo recognition. Rather than
processing image pixels, applications can also process numerical
values in various sequences and extract trends. For example,
Tan et al. described an application that predicted the complexity
of micrographic Mohs surgery based on variables assessed at
the initial evaluation visit such as tumor size and patient age
(43). They were able to create a preliminary model that could
theoretically be used to triage patients and prioritize Mohs
referrals. Although most of the research on AI and skin cancer is
based on photo recognition algorithms, other opportunities exist.

Ulcer Assessment
There is a growing body of research on diabetic and pressure
ulcer applications (45–48). Thus, far most studies demonstrate
methods for improving wound assessments using image
recognition (45).

Articles have described applications capable of measuring
precise wound boundaries, and differentiating between the types
of tissue involved (45–47, 49). For example, Dhane et al.
demonstrated an AI application’s ability to segment the area of
ill-defined ulcers with a sensitivity of 87.3% and specificity of
95.7% (47). Mukerjee et al. demonstrated an AI application’s
ability to classify granulation, slough and necrotic tissue with
87.61% accuracy (46). Risk prediction tools also exist. Alderden
et al. described a tool that leverages data in the electronic
health records of admitted patients, to predict their tendency to
develop pressure ulcers (50). Altogether, these applications have
preliminarily been shown to be technologically feasible, they have
not yet been validated extensively in clinically trials.

Psoriasis and Other Inflammatory Skin

Diseases
Several original research articles exist on AI applications for
inflammatory dermatoses. Most of these studies thus far have
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focused on improving psoriasis classification methods using
image recognition (4, 51, 52). A representative example is a
study conducted by Shrivasta et al., which compared the ability
of several applications at classifying the severity of psoriasis
lesions. The systems described achieved average sensitivities
between 93.81 and 99.76% and average specificities between 97
and 99.99% (4).

Emam et al. described a psoriasis application beyond image
recognition. They demonstrated a system’s ability to predict
psoriasis patient responses to biologic therapy using parameters
gauged at an initial visit such as patient’s weight and age of onset
of psoriasis (53). They were able to create a preliminary model
that could theoretically be used to optimize therapy for patients.

Beyond psoriasis, applications have been described classifying
acne, lichen planus, pityriasis lichenoides and dermatomyositis
(10, 54–58). Seite et al. developed a smartphone AI tool that
grades and classifies types of acne lesions (e.g., comedonal,
inflammatory, post inflammatory hyperpigmentation, etc.) (59).
Huang et al. developed a multi disease classifier that could
analyse 34 attributes (e.g., erythema, scaling, definite borders,
etc.) and differentiate several papulosquamous diseases such
as psoriasis, seborheic dermatitis, lichen planus, pityriasis, and
chronic dermatitis (58).

Although most of these experiments relied on images
of skin, one application assessed muscle ultrasound images
and differentiated between normal muscle, dermatomyosisits,
polymyositis, and inclusion body myositis with accuracies
between 76.2 and 86.6% (60). Altogether, the theoretical utility of
these applications for inflammatory diseases is significant, both
further technological validation and clinical experimentation
are needed.

Predicting Skin Sensitization Substances
Research is also accumulating on using AI to minimize exposure
to skin-sensitizing substances (61–65). A representative example
by Zang et al. described an application capable of analyzing
physiochemical properties of substances (e.g., melting point) and
determining whether the substance could be a sensitizer or not
(65). This application yielded an accuracy of 81% when the
substances were studied in a human cohort. Wilm et al. reviewed
current advances in skin sensitization testing and highlighted
several other examples, where AI has provided a method to
reduce animal testing (66). While this use of AI can have an
impact on a population wide level, significant technological and
clinical validation studies are necessary.

Novel Applications in Pathology and Gene

Expression Profiling
Applications have been described that can automate histology
image processing and classification (67–71). For example,
Arevalo et al. described a system that analyzes histopathological
images and can classify basal cell carcinoma with 98.1% accuracy
(67). Olsen et al. described a system that diagnosed dermal
nevi and seborrheic keratosis with high accuracies and may
serve as a future method to increase the efficiency of analyzing
these prevalent benign tumors (72). Algorithms have also been
described that can identify predictive genes and biomarkers for

diseases (73–83). A representative example by Reimann et al.,
described an AI model capable of diagnosing psoriasis vulgaris
based on the expression level of 4 genes with 96.4% accuracy
(78). In another study assessing genetic differences in psoriasis
genotypes, Patrick et al. used a combination of statistical learning
and machine learning to identify new loci and predict the
tendency of cutaneous psoriasis patients to develop psoriatic
arthritis symptoms (84).While these investigations are in an early
phase, the potential for their impact can be significant.

IDENTIFIED BARRIERS

Choice of Predictive Model
AI algorithms are continually being developed and each has
advantages and challenges. Beam et al. discussed the relationship
of AI compared to more classic statistical models (85). They
detail how predictive technologies can be viewed on a machine-
learning spectrum. Statistical models are lower on the spectrum
because humans impose assumptions and guide many aspects of
the algorithm. True machine learning is highest on the spectrum
because the algorithms evolve without human involvement. A
systematic review by Christodoulou et al. found no objective
advantage of machine learning compared to longitudinal
regression for binary clinical prediction (86). However, the
review does summarize various theoretical reasons why machine
learning may be superior to longitudinal regression in certain
instances such as processing data with a strong signal to noise
ratio (e.g., handwriting) or with a significant number of predictor
subcategories (e.g., images) (86). There are therefore many
unanswered questions regarding whether advanced forms of
AI are actually needed or if more primitive technologies can
accomplish the same tasks.

Generalizability
One of the main limitations to AI is that the decisions made
by these technologies are ultimately a reflection of the input
data used to train the system (87). This theoretically implies that
applications can only be used reliably in populations they were
trained to assess. If applications are trained in one population and
tested in another, the results are technically not generalizable and
are subject to systematic biases such as overfitting. For example,
Han et al. experimented with a skin cancer detection algorithm
and concluded that overall performance could be improved
if trained with a wide variety of data from multiple ethnic
populations (36). However, simply using more data does not
necessarily solve this problem. For example, Navarrete-Dechent
et al. took Han et al.’s established an AI algorithm that was
trained with a relatively diverse set of data and tested it in
a unique database of Caucasian Americans from the southern
United States. They found that the performance was suboptimal
compared to how it was reported originally (88). The issue of
generalizability is thus not simple to solve and may require
either unique or extended data depending on the composition
of the population being tested. This tendency for systematic bias
has numerous implications for dermatology given the various
demographic factors that affect making a diagnosis such as age,
gender, race, and ethnicity to name a few.
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Standardization
Even if the application is trained using data from the correct
population, images of new lesions need to be comparable. What
angle should the image be taken at? What lighting should the
room have? What should the background be? Are there pen
markings? These are factors that can affect decision-making by
AI. For example, a study by Winkler et al. showed that surgical
markings significantly interfered with the ability of a system
to correctly diagnose dermatoscopic images of melanoma and
increased the false positive rate (89). Artificial intelligence relies
on standardization and there are numerous non-standardized
aspects to dermatology unlike in other specialties (e.g., radiology)
(90). Although databases are intentionally large to account for
variability, factors such as these create an infinite possibility
for divergence.

Data Requirements
One large barrier is the prerequisite for copious quantities of data
of appropriate quality to power AI algorithms (91). A growing
effort in the United States has been to solve this barrier using
DataDerm, the American Academy of Dermatology’s electronic
health record system. Worldwide collaboration is likely required
to achieve the ideal scenario where all of the necessary data
categories are represented.

Interpretability
Artificial intelligence algorithms are formed, re-evaluated and
constantly changing without human input. This is why the
technology has often been termed a “black box” technology
(92). Although AI is therefore flexible and can theoretically
accomplish more than humans and human-guided statistical
algorithms, many aspects and certainly the logic behind the
decision-making is often not interpretable. When a certified
dermatologist conducts a personalized assessment and arrives
at a conclusion, that conclusion can be rationalized and
explained based on existing clinical evidence. At this time,
decisions made by AI cannot be interpreted in this way.
This is a strong limitation which influences whether society
and regulatory bodies will accept it in the daily practice
of medicine.

Acceptance
A proper history followed by a physical examination in a well-lit
examining room, while assessing for texture and eliciting specific
signs for a given lesion (e.g., Darier, dimple, buttonhole signs,
etc.) complemented by additional investigations/imaging or a
biopsy is a standard way to establish a diagnosis in dermatology.
Furthermore, it is accepted that while some diagnoses are clinical,
others rest solely on histologic findings or a combination of
clinical and histologic results correlation. This holistic approach
cannot be fully replaced by computer programs and this is felt to

be one of the most important barriers to implementing AI (93).
Many patients also want to see and partner with a physician who
is vested in helping them and may not be satisfied with isolated
computerized tools (12).

Liability
There is also the issue of liability (94). If AI is relied upon and an
adverse outcome ensues, is the dermatologist responsible? With
this in mind, a common belief is that AI will only become a
guidance tool and not an absolute diagnostic tool.

Next Steps
To address these barriers, several broad recommendations have
beenmade to date. One clear need is for prospective clinical trials.
If the question is whether AI can improve a dermatologic clinical
encounter then studies that revolve around the clinical encounter
are crucial (7). Dermatologist collaboration has also been
highlighted as essential (6). Systems need to be trained with the
full spectrum of human populations and clinical presentations
that challenge dermatologists in clinical practice (88). Systems
can also benefit from receiving inputs on other metrics available
to physicians such as anatomic location, duration of the lesion
and images of unaffected skin (88). Standardization practices also
need to be implemented for photographing new lesions. Finally,
given the lack of interpretability of many AI applications, we
hypothesize that improving the lay descriptions of the algorithms
and study designs can lead to improved acceptance by physicians
and society at large. This would also aid regulatory decision
makers who will need to adopt stances on liability.

CONCLUSION

AI is being increasingly studied in dermatology. Although most
applications involve analyzing and classifying images, there are
other tools such as risk assessment calculators. The most progress
thus far has taken place in the field of melanoma diagnosis,
followed by ulcer and psoriasis assessment tools, then followed
by numerous less frequently studied applications. However,
critical barriers and literature gaps exist that significantly limit
AI’s applicability to clinical practice at this time. For the less
common applications, technological papers and commentaries
are needed to improve capabilities and provoke interest. For
the more saturated topics, there is a larger need for clinical
trials providing evidence of clinical efficacy, while successfully
overcoming the identified barriers. With these research goals in
mind, an appropriate role for AI in dermatologymay be achieved.
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