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There is optimism that artificial intelligence (AI) will result in positive clinical outcomes,

which is driving research and investment in the use of AI for skin disease. At present,

AI for skin disease is embedded in research and development and not practiced

widely in clinical dermatology. Clinical dermatology is also undergoing a technological

transformation in terms of the development and adoption of standards that optimizes

the quality use of imaging. Digital Imaging and Communications in Medicine (DICOM)

is the international standard for medical imaging. DICOM is a continually evolving

standard. There is considerable effort being invested in developing dermatology-specific

extensions to the DICOM standard. The ability to encode relevant metadata and afford

interoperability with the digital health ecosystem (e.g., image repositories, electronic

medical records) has driven the initial impetus in the adoption of DICOM for dermatology.

DICOM has a dedicated working group whose role is to develop a mechanism to

support AI workflows and encode AI artifacts. DICOM can improve AI workflows

by encoding derived objects (e.g., secondary images, visual explainability maps, AI

algorithm output) and the efficient curation of multi-institutional datasets for machine

learning training, testing, and validation. This can be achieved using DICOMmechanisms

such as standardized image formats and metadata, metadata-based image retrieval,

and de-identification protocols. DICOM can address several important technological and

workflow challenges for the implementation of AI. However, many other technological,

ethical, regulatory, medicolegal, and workforce barriers will need to be addressed before

DICOM and AI can be used effectively in dermatology.
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INTRODUCTION

The Digital Imaging and Communications in Medicine (DICOM) standard (1) is a comprehensive,
international standard for medical imaging. DICOM defines a standard medical image file format
and a metadata model and network services for the storage, transmission, and query and retrieval
of objects. DICOM has also specified other network services to improve the efficiency of medical
imaging workflows.
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The most common DICOM data object is an image file.
A DICOM image file consists of metadata and the pixel
data of the image melded into a single file. The pixel data
may be encoded using the Joint Photographic Expert Group
format or other standard compression methods. The metadata
model is standardized by object type, meaning there are
different metadata models for, say, a magnetic resonance
image, and a photographic image. The metadata model is
described in an Information Object Definition (IOD). An
IOD consists of an amalgamation of modules, where each
module is a collection of patient, study, equipment, and image
metadata attributes.

Although DICOM is ubiquitous in some medical image-
producing specialties (e.g., radiology, cardiology, and radiation
therapy), to date, the use of DICOM for dermatological
imaging has been limited. There is, however, a growing
realization that the adoption of DICOM for dermatological
imaging is advantageous compared with other methods of
image management (2). Clinical imaging for dermatology can
be encoded using the existing, visible light photography IOD.
Dermatology-specific IODs for dermoscopy have been developed
and included in the DICOM standard. Future work items
proposal will be for total body photography and reflectance
confocal microscopy (3).

One of the primary motivations for adopting DICOM
for dermatology imaging has been interoperability with
digital health ecosystems such as electronic medical
records, picture archiving and communication systems
(PACS), and enterprise imaging repositories. In addition
to these interoperability benefits, DICOM adoption is also
likely to facilitate the use of artificial intelligence (AI) in
clinical dermatology.

The application of AI for dermatology most often uses
an image as input into a machine learning algorithm and
results in the algorithm outputting a diagnostic or risk
prediction of a disease condition. This use of AI is a form
of image classification, and convolutional neural networks
(CNNs) are becoming the most promising of AI algorithms
for dermatology image classification (4). Melanoma diagnosis
is a common application of dermatology image classifiers
for which several reader studies have found that under
experimental conditions, the diagnostic performance of
AI can match that of an experienced dermatologist (5–7).
Similar results have been reported for psoriasis (8) and
onychomycosis (9).

DICOM is an evolving medical imaging standard with
continual additions to the standard in the form of supplements
and corrections. The increasing interest in AI image classifiers
in medical imaging is, in turn, catalyzing the inclusion of
AI-specific content in the DICOM standard. The DICOM
Standards Committee has a dedicated AI working group
(WG 23). The role of this working group is to develop a
DICOM mechanism to support AI workflows and encode
AI artifacts (10). This paper aims to discuss the role of
DICOM in the AI in the context of dermatological imaging
and review the current status of AI-specific content in the
DICOM standard.

DERIVED OBJECTS

Preprocessing and post-processing of images for prediction
analysis by machine learning create derived image objects such
as resized or down-sampled images, segmentation images, visual
explanation (e.g., saliency maps) images, and the algorithm’s
output. Research has shown that the output of an AI

model influences the clinical decision of even experienced

dermatologists (7, 11). Hence, derived objects should form part
of the patient’s medical record if AI is used in clinical practice
to meet the health-care provider’s regulatory and legal obligation
to retain medical records. In addition to regulatory and legal
requirements to store derived objects, there are also ethical
aspects. The Joint European and North American Multi-society
Statement on the Ethics of AI in radiology (12) recommended
that the output of AI algorithms need to be stored in an auditable
format to permit the investigation of errors and the monitoring
over time to ensure there is no degradation of performance.

In practical terms, encoding the derived objects as DICOM
objects with the appropriate identifying and descriptive metadata
would allow them to be stored alongside the original image
files in the health-care organization PACS or enterprise
imaging repositories and visualized in conjunction with the
clinical images.

Further, the use of DICOM is likely to improve image
acquisition and image review workflows. AI has been shown
to substantially reduce the amount of time radiologists
spend on image review without compromising diagnostic
accuracy (13–15). The same potential exists in dermatology,
and the greatest efficiency gains are likely to be achieved
for dermatologists reviewing total skin imaging studies. In
hospitals, medical imaging infrastructure, including acquisition
devices and image repositories, nearly all use DICOM as
the underlying communication protocol. Speaking a common
language can improve the efficiency of workflows, for example,
automatic population of patient demographics at acquisition
or the automated storage of images to an image repository.
Implementing AI as a standalone product, as opposed to being
integrated within the medical imaging ecosystems, may negate
the diagnostic efficiencies afforded by using AI.

Original images often need to be resized to a fixed image size
before inputting into a CNN. In some instances, we have seen
dermoscopic images resized to a fixed resolution of 224 × 224
pixels (7). However, other datasets have reported using a fixed
resolution of 448 × 448 pixels (16) or 1,024 × 1,024 pixels (17).
Choosing the fixed resolution is a trade-off be computational
efficiency and predictive accuracy (18). Therefore, storing the
resized or down-sampled images can document the input into
the CNN in an auditable and reproducible format.

Visual explanation maps assign each feature in an image
a level of importance that the feature contributes to AI
algorithm output. An example of two common visual explanation
methods is Shapley additive explanation (SHAP) (19), and
Gradient-Weighted Class ActivationMapping (Grad-CAM) (20).
Examples of these visual explanations are shown in Figures 1, 2.
Visual explanation maps can be used by clinicians to help them
understand how the AI algorithm came to its output and to assess
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FIGURE 1 | Visual explanation images where AI algorithm correctly classified the skin lesion as melanoma (A) original image (B) SHAP visual explanation where green

indicates the most important area of contribution to the AI result and red indicates the least important area; and (C) Grad-CAM visual explanation image where red is

the most important area of contribution to AI result and blue is the least important part of the image to AI result. Image courtesy of Sally Shrapnel.

FIGURE 2 | Visual explanation images where the AI algorithm incorrectly classified the skin lesion as benign. Note the pigmented lesion was not considered an

important feature by either SHAP or Grad-CAM. Image courtesy of Sally Shrapnel.

the quality of the output (21). Therefore, visual explanation maps
can provide insight into potential sources of bias in AI algorithms
(22). For example, if an AI algorithm predicted a high probability
of melanoma but the visual explanation maps showed that the
area of pigmentation in the lesion was not of high importance
in determining this, then the clinician may be suspicious of the
accuracy of the prediction (see Figure 2).

Resized or down-sampled images can be encoded as
DICOM photographic or secondary capture objects. DICOM
segmentation objects can be used to encode both binary and
fractional segmentation images as multi-frame images. The
multiple frames include the referenced image instance and
segmentation image instances (Figure 3). Visual explanation
images can be encoded as parametric map objects. A current
proposal is to be able to link segmentation objects and parametric
map objects to DICOM Structured Reports (SR) for the
measurement objects (23). DICOM is also trialing the use of
Javascript Object Notation (JSON) for encoding the output of
AI algorithms (e.g., risk prediction of skin disease) in DICOM
SR format (24). The goal of this trial is to harmonize with
the machine learning community where JSON is the preferred
format for algorithm output. Additionally, JSON encoding will
achieve encoding of ground truth diagnosis that can be used to
train, test, and validate future machine learning algorithms.

METADATA

The current use of CNNs for image classification has relied

on image data as the only input. However, clinicians also rely
on metadata as part of the diagnostic process (4). To emulate
this, there have been several studies that have assessed the
inclusion of metadata along with images as input into machine
learning algorithms. One study found metadata resulted in a
small improvement (1–2%) in sensitivity. Improvements were
most noticeable in smaller, lower-performing models (25), which
may indicate that the metadata compensates for fewer pixel data.
A further study found the sensitivity and specificity improved
from 82.1 to 95.2% and 86.1 to 91.0%, respectively (26). Both of
these studies relied on simple metadata (age, sex, and lesion site).
When lesion characteristics of bleeding, pain, and itchiness were
added to age and the anatomical site as input, the accuracy of the
algorithm improved by around 7% (27).

As previously noted, the DICOM file format (28) is an
amalgamation of metadata with the pixel data of the image. The
metadata is stored in the DICOM file header. The standardized
metadata includes identifying and descriptive patient metadata
(e.g., age, sex) and studymetadata (e.g., lesion site).Most DICOM
viewers allow the metadata encoded in the DICOM file header to
be viewed in text format.
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FIGURE 3 | Segmentation images (a) referenced instance (b) binary segmentation instance (c) fractional segmentation instance.

The DICOM supplement for dermoscopy has proposed the
use of a skin cancer acquisition context. An acquisition context
is a method of embedding descriptors of clinical metadata in
the DICOM header using codes from standard lexicons [such
as SNOMED CT (29)] for both concepts and values (30). The
proposed skin cancer acquisition context includes rich clinical
metadata such as a personal and familial history of melanoma,
in situ melanoma, and other skin cancers; Fitzpatrick skin
type; the degree of ultraviolet damage; atypical mole syndrome;
and other relevant genetic conditions. Furthermore, the skin
cancer acquisition context also includes lesion-level metadata
such as history of growth, itch, erythema, and other relevant
patient-observed changes. As DICOM is extensible, there is the
ability to define acquisition contexts for different skin disease
classes (e.g., inflammatory disease). There is the potential that
using rich metadata stored in the acquisition context as an
AI algorithm input will improve the performance of machine
learning algorithms, perhaps more so than simple metadata.
However, at this time it remains untested. The use of metadata
is an area for further research, as it has been shown that not
all metadata improve the performance of skin lesion image
classifiers, and that selective metadata selection will likely be
necessary (31).

DATASETS

One of the main limitations of deep learning is the input
data used to train the system (32). AI models trained and
validated from the same dataset risk overfitting, which is a
phenomenon of “knowing the training data too well (33).”
Overfitting results in the predictive output of an AI model
only being reliable for the population on which the AI
model was trained. To overcome this limitation, external
validation or cross-validation is necessary and can be achieved
by training the AI model on datasets amalgamated from
multiple clinical sources, including different populations and
ethnicities. Having images from these disparate sources in a
standardized format facilitates the amalgamation of datasets
and reduces the cost and effort of dataset curation. The
lack of deployment of imaging and metadata standards in
dermatology has inhibited the development of large image
collections suitable for machine learning (34). DICOM is
a universally recognized standard for medical imaging and

would be ideal as a standardized image encoding to address
this challenge.

The use of metadata-based retrieval (30), using queries based
on DICOM metadata attributes, could also facilitate the creation
of machine learning datasets with high levels of granularity. For
example, to develop an AI algorithm specific to polarized light
dermoscopy, one could assemble an appropriate dataset using
query (based on DICOM attributes for the dermoscopy image
type and polarization) and retrieve images from the repository
where they are stored.

The amalgamation of datasets does increase the risk
of unauthorized access to patient-identifiable information.
DICOM’s de-identification profiles (35), which are used to
address privacy issues for multi-center clinical trials, can be
directly applied to the amalgamation of machine learning
datasets. The DICOM Attribute Confidentiality Profiles contain
a comprehensive list of attributes that potentially provide
identifying information and should be removed to protect
the patient’s privacy. Adopting an established de-identification
profile has many advantages, including avoidance of repeating
the same complex technical and legal consideration for de-
identification, being less error-prone for participating sites to
deploy, and implying a level of rigor that would potentially satisfy
ethics committees.

Excluding images from datasets where the DICOM attribute
Recognizable Visual Features (0028, 0302) is set is a further way
to enhance the privacy of a dataset for machine learning. The
Recognizable Visual Features flag is most often set when the
subject’s face is included in an image. In the forthcoming DICOM
supplement for dermoscopy, this attribute is set if the images
contain the patient’s fingerprints.

DISCUSSION AND CONCLUSION

The increasing use of imaging in dermatology is being
driven by many factors, including diagnostic imaging (as
opposed to documentary imaging) such as teledermatology,
sequential dermoscopic imaging, and melanoma screening
using total body photography (36). The ability of DICOM
to encode relevant metadata and afford interoperability with
the digital health ecosystem has driven the initial interest
in the adoption of DICOM for dermatology (2). DICOM
can improve AI workflows by encoding derived objects (e.g.,
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secondary images, visual explainability maps, AI algorithm
output) and the efficient curation of multi-institutional datasets
for machine learning training, testing, and validation. This can
be achieved using DICOM mechanisms such as standardized
image formats and metadata, metadata-based image retrieval,
and de-identification protocols.

Currently, the use of DICOM to manage dermatological
imaging is not widespread. Further, the use of DICOM to
support AI workflows in dermatology is likely more limited
still. There has, however, been a successful proof-of-concept trial
using DICOM to encode datasets for AI of skin disease (37).
DICOM adoption by dermatology may be more challenging
than for other medical specialties. Clinical photographs captured
on a mobile device constitute most imaging in dermatology.
This type of imaging lacks standardization (38). Cameras used
for clinical photography in dermatology are often commercial-
off-the-shelf products as opposed to dedicated medical devices,
hence, unlikely to support DICOM. As opposed to other
medical specialties where formal diagnostic reports are produced,
dermatology images can be simply viewed, which lessens the
importance of integration with PACS. There is a lot of enthusiasm
for AI in dermatology (32). More widespread understanding of
the role that DICOM has in facilitating the adoption of AI in
dermatologymay strongly influence the dermatology community
to adopt DICOM.

AI workflows for dermatology would require some
interoperable actors on a medical imaging network. A potential
workflow would be that images are acquired and stored in an
image archive using typical DICOM image acquisition and
storage workflows. Images could be automatically routed from
the archive to an AI evidence creator actor (e.g., CNN). The
evidence creator may undertake image post-processing to
produce resized or down-sampled images and/or segmentation
objects. These images would be encoded as DICOM objects and
be automatically stored in the image archive. The AI evidence
creator would analyze the image of the skin and create evidence

documents (e.g., DICOM SR) containing the risk prediction of
skin disease and potentially visual explainability maps. Again,
these derived objects would be encoded as DICOM objects
and automatically stored in the image archive using DICOM

network services. All derived objects created by the AI evidence
creator would use the same study identifier as the original
images to facilitate linkage. A dermatologist or other clinician
could use a DICOM viewer to subsequently query and retrieve
an imaging study and display the original images and derived
objects (e.g., a structured report containing algorithm output
and/or visual explainability maps) that would help with image
interpretation. DICOM-facilitated interoperability between AI
actors and other devices in a medical imaging network is likely to
facilitate workflow efficiencies. In addition to the transmission of
images and results, interoperability is likely to play a key role in
the continual adaptive learning of machine learning algorithms
(39). Interoperability will also allow health-care organizations to
use “best-of-breed” AI actors rather than being locked into an
existing vendor’s product.

The use of DICOM for the management of dermatological
images will not guarantee effective clinical use of AI
in dermatology. DICOM can address several important
technological and workflow challenges for the implementation
of AI. However, many other technological, ethical, regulatory,
medicolegal, and workforce barriers will need to be addressed
before DICOM and AI can be used effectively in dermatology.
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