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and Plant Health Agency-Weybridge, Addlestone, UK

Protein misfolding, protein aggregation and disruption to cellular proteostasis are key
processes in the propagation of disease and, in some progressive neurodegenerative
diseases of the central nervous system, the misfolded protein can act as a self-replicating
template or prion converting its normal isoform into a misfolded copy of itself. We
have investigated the sheep transmissible spongiform encephalopathy, scrapie, and
developed a multiple selected reaction monitoring (MSRM) mass spectrometry assay
to quantify brain peptides representing the “ragged” N-terminus and the core of ovine
prion protein (PrPSC) by using Q-Tof mass spectrometry. This allowed us to identify
pyroglutamylated N-terminal fragments of PrPS¢ at residues 86, 95 and 101, and
establish that these fragments were likely to be the result of in vivo processes. We
found that the ratios of pyroglutamylated PrPSC fragments were different in sheep of
different breeds and geographical origin, and our expanded ovine PrPSC assay was
able to determine the ratio and allotypes of PrP accumulating in diseased brain of
PrP heterozygous sheep; it also revealed significant differences between N-terminal
amino acid profiles (N-TAAPSs) in other types of ovine prion disease, CH1641 scrapie
and ovine BSE. Variable rates of PrP misfolding, aggregation and degradation are the
likely basis for phenotypic (or strain) differences in prion-affected animals and our mass
spectrometry-based approach allows the simultaneous investigation of factors such
as post-translational modification (pyroglutamyl formation), conformation (oy N-TAAP
analysis) and amino-acid polymorphisms (allotype ratio) which affect the kinetics of these
proteostatic processes.

Keywords: pyroglutamate, amyloid disease, prions, mass spectrometry, strain differentiation

Introduction

The mammalian prion protein (PrP®) is a di-N-glycosylated, glycophosphatidyl-inositol (GPI-)
tailed membrane protein of approximately 220-250 amino acids. In mammals of several gen-
era, aberrant isoforms of prion protein (PrP5¢) are associated with the class of neurodegen-
erative diseases called transmissible spongiform encephalopathies (TSEs), or prion diseases.
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TSEs can have different incubation times, rates of progression,
distributions of the PrP5 aggregates at the level of the whole
organism, tissue and cell, and differences in the protease resis-
tance of PrPS¢. Variable rates of PrP misfolding, aggregation, and
degradation are the likely basis for phenotypic (or strain) differ-
ences in prion-affected animals. For example, small differences
in the amino-acid sequence of PrP® are known to be associated
with variations in disease manifestation, which is particularly evi-
dent in inherited forms of the disease in humans (Kovacs et al,,
2005). Similarly, conformational differences (detected by variable
N-terminal proteolytic cleavage of PrP5¢) or post-translational
modification (the number of N-glycans) have been identified as
crude molecular indicators of biological type and potency.

Scrapie is the TSE of sheep and goats and the susceptibil-
ity and relative survival time of these small ruminants affected
by scrapie are associated with the amino-acid sequence of their
prion protein. In ovine PrP, there are three common polymor-
phisms of ovPrP in the domestic sheep population—at codon
136, valine (V) or alanine (A); at codon 154, histidine (H) or
arginine (R); and at codon 171, glutamine (Q), arginine (R), or
histidine (H). These are found in five most abundant combi-
nations or alleles VRQ, ARQ, ARH, AHQ, and ARR, and this
ranking of alleles mirrors their decreasing susceptibility to clas-
sical forms of scrapie when found in homozygous genotypes.
Scrapie can manifest itself as distinct isolates or strains with char-
acteristic and reproducible phenotypes (Bruce, 1993), and these
sheep phenotypes have been crudely classified by molecular typ-
ing of the protease-resistant core of PrP5 by Western blotting
(Hope et al., 1999; Everest et al., 2006). A more detailed knowl-
edge of the tertiary and quaternary structure of PrP5¢ would be
useful as an epidemiological tool to map the source and spread of
TSEs in a population, with the same precision as can be currently
inferred from RNA or DNA sequencing of viral and bacterial
isolate genomes.

We have previously reported the use of multiple selected reac-
tion monitoring (mSRM) mass spectrometry to quantify pep-
tides representing a number of specific sites of the “ragged”
N-terminus of PrP™®, obtained by treatment of sheep brain
tissue homogenate with proteinase K (PK). Four TSE isolate
types [CH1641, SSBP/1, the cattle TSE, bovine spongiform
encephalopathy (BSE), and one type of classical scrapie] were
characterized by this method, termed N-terminal amino acid
profiling (N-TAAP) (Gielbert et al., 2009). The relative abun-
dance (RA) of these N-terminal cleavages was found to allow dif-
ferentiation between TSEs. Subsequently we applied this method
as an epidemiological tool to identify TSE strains and subtypes
from a set of 29 naturally infected scrapie cases (Gielbert et al.,
2013). Our previous mSRM-based assay for ovine TSE differ-
entiation included 7 semi-tryptic peptides with N-termini G77,
G81, G85, G89, G94, G96, and W102 and C-terminus K109, of
the ovine prion protein representing seven potential PK cleav-
age sites of PrPS¢ (Gielbert et al.,, 2013). Since, for a number
of PrP™ preparations, the ratio of total N-TAAP peptide to
core- and C-terminal tryptic peptide concentrations was con-
siderably different from unity, we investigated whether more
N-terminal cleavage sites might exist than were represented in
the assay. This led us to identify pyroglutamyl-N-terminal PrP

peptides in scrapie-infected sheep brain and here we describe
our further investigation of peptides with this post-translational
modification.

While pyroglutamate (pE) formation can occur as an artifact
resulting from spontaneous conversion of N-terminal glutamyl
residues in weak acidic conditions and is a well-known phe-
nomenon in biological mass spectrometry (Carr and Biemann,
1984), it can also occur as the result of a biological conversion
by glutamyl cyclase (Mori et al., 1992; Garden et al., 1999; Cynis
et al., 2006). This has been demonstrated for a number of pro-
teins and peptides (Mandal and Balaram, 2007), for instance in
recombinant monoclonal antibodies (Chelius et al., 2006), and is
of particular interest in relation to amyloid formation (Momoi
et al., 1995; Schilling et al., 2006, 2008; Manuelidis, 2007; Cynis
et al.,, 2008; Schlenzig et al., 2009; Jawhar et al., 2011a; Nuss-
baum et al., 2012; Saul et al., 2013). Intriguingly, N-terminally
truncated and pE-amyloid § (AP) peptides have been identi-
fied by mass spectrometry as constituents of amyloid deposits
in Alzheimer’s disease (Mori et al., 1992; Portelius et al., 2010)
and postulated to have “prion-like” properties (Nussbaum et al.,
2012; Matos et al., 2014). Similarly, PrpSc fragments with N-
terminal pE may be formed in vivo and might be directly related
to the prion behavior of PrP%, while it is also possible that
pyroglutamyl PrP peptides are artifacts resulting from sample
preparation.

To establish whether this is an artifact or if such modifications
are a result of in vivo processes, we determined the rates of pE
formation under typical sample processing conditions. Knowing
the kinetics of in vitro pE formation allowed us to establish a work
flow for the detection of pE modifications in PrPS¢ obtained from
TSE samples before in vitro modification obscures these data. We
also expanded our ovine PrP peptide assay to include N-TAAP
peptides starting with any residue from G85, and many tryptic
peptides uncovered from both tissue and recombinant PrP full-
scan analyses. To define the increased discriminatory power of
this expanded assay in the study of ovine TSEs, we applied the
methodology to determine peptide profiles in ovine TSE samples
of various origins and report these data herein.

Materials and Methods
CNS Samples from TSE-Affected Sheep

All samples were prepared and processed in our laboratories
at UK Advisory Committee for Dangerous Pathogens (ACDP)
Containment Level 3 with derogation for TSEs. Frozen brain tis-
sue samples from sheep infected with TSEs were obtained from
the Animal and Plant Health Agency (AHPA) Biological Archive.
Natural classical scrapie (pons) samples originated from a flock
of mixed breed and genotype sheep at the AHPA in which scrapie
was endemic. There are potentially multiple scrapie types in this
flock given that it is populated by sheep exposed to scrapie-
affected animals from various sources imported into the flock
over several years (Ryder et al., 2004). Sheep in this flock were
either home bred or purchased into the flock. Brain stem (thala-
mus) samples were obtained from sheep (neutered male Cheviot,
AHQ/AHQ genotype) experimentally challenged with BSE (5g
oral dose) while experimental CH1641 scrapie samples (frontal
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cortex) were obtained from neutered male Cheviot, AHQ/AHQ
genotype, sheep (Gielbert et al., 2009).

All TSE-affected animals were euthanized following onset
of clinical signs of disease. Brain samples were collected post-
mortem, snap-frozen within 1h and stored at —80°C until
required. A diagnosis of TSE was confirmed by histo-pathological
examination of brain sections, and detection of abnormal prion
protein by immunohistochemistry and Western blotting, prior to
N-TAAP profiling by mass spectrometry.

All procedures involving animals were approved by the Home
Office under the UK Animal (Scientific Procedures) Act 1986,
and following internal ethical review processes as mandated by
the Home Office.

Preparation of PrP™* and Tryptic Peptides

All chemicals were of reagent grade or better and obtained from
Sigma-Aldrich unless otherwise stated. Brain tissues for Q-Tof
analysis (classical scrapie: 2.2 g brain stem from a VRQ/VRQ
genotype animal; experimental BSE: 0.5g brain stem from
an ARQ/ARQ animal; CH1641 scrapie: 1.2g cortex from an
AHQ/AHQ animal; 1.5 g brain stem from an ARQ/ARQ control)
were each homogenized in 16 ml 0.01 M PBS pH 7.4 containing
10% N-lauroyl sarcosinate, by mechanical shearing for 60s,
using an Omni GLH homogenizer (Omni International). Brain
tissues for chip-HPLC mSRM QQQ analysis (300 & 50 mg) were
homogenized to 20% in 0.01 M PBS pH 7.4 containing protease
inhibitor (cOmplete ULTRA tablets, Mini, EDTA free, Roche
Diagnostics) by grinding in a sample homogenizer (Bio-Rad)
at 6.5Hz for two 45s cycles. Subsequently, homogenates were
diluted to 10% by addition of 10% N-lauroyl sarcosinate in
0.01 M PBS pH 7.4. The 10% homogenates were first centrifuged
at 17,000 g for 2 min; subsequently the supernatant was selected
and centrifuged at 338,000 g for 30 min. Resulting pellets were
suspended in water (200 1) to which 15% KI in 0.01 M Tris-HCl
(pH 7.4) containing 1.5% sodium thiosulfate and 1% N-lauroyl
sarcosinate (400 1) was added. At this point, suspensions were
divided into 2 x 300 pl aliquots which were processed and
analyzed in parallel. To each 300 pl aliquot, 6 il Proteinase K
solution (39 units/mg, 2 mg/ml in water) was added. Following
incubation at 37°C for 30 min under agitation (Thermoshaker,
1000 rpm), 6 L] Pefablock solution (6 mg/ml) was added to stop
the reaction.

This solution containing PrP™ was processed further, either
(preparations for analysis by chip-HPLC full-scan Q-Tof) by
careful transfer of the solution onto a cushion of 20% sucrose
in iodide solution (0.9M potassium iodide, 9mM sodium
thiosulphate, 15 mM sodium phosphate, pH8 and 1% N-lauroyl
sarcosinate, 0.6 ml) in a 5 ml tube, topped up with iodide solution
and centrifuged at 176,000 g for 30 min at 10°C, or (preparations
for analysis by chip-HPLC mSRM QQQ) by addition of 300 .l of
a 1-propanol/1-butanol (1/1) mixture, following which suspen-
sions were vortex-mixed and centrifuged at 24,000 g for 30 min.
Pellets were suspended in water (100 1), 1 M NaCl was added
(900 1), then suspensions were vortex-mixed and centrifuged
for 10 min at 15,000 g.

Following solubilization of the pellets in guanidine hydrochlo-
ride (GuHCI, 100 pl, 6M in 50 mM Tris, pH 8.0), PrP™® in the
pellets was reduced with 2mM 1,4-dithioerythritol at 95°C for

20 min and alkylated with 4-vinylpyridine (10% in water, 1 ul)
for 10 min at ambient temperature. Insoluble material was dis-
carded following centrifugation (2min, 11,000g) and protein
was isolated from the supernatant following precipitation with
cold methanol (900 ul, —20°C) maintaining —20°C overnight
before centrifugation at 10,000 g for 10 min at —4°C. The super-
natant was discarded and the pellet resuspended in cold methanol
(100 w1, —20°C), centrifuged at 10,000 g for 2 min at —4°C and
after discarding of the supernatant the pellet was allowed to dry
at ambient temperature for 20 min. The pellet was suspended
in 10 pl freshly prepared urea (9M). Sample preparations for
analysis by chip-HPLC mSRM QQQ underwent ultrasonication
(60s at level 6, Misonix XL 2020 with cuphorn adaptor and
cooler, Misonix, Farmingdale, NY) to assist solubilization at this
stage and following the earlier solubilization in GuHCI. Sub-
sequently 10 pul of a buffer consisting of 150 mM Trizma base,
60 mM methylamine-HCl and 15 mM calcium acetated adjusted
to pH 8.3 with glacial acetic acid, and 2l of the synthetic
trypsin substrate boc-vla-leu-lys-7-amido-4-methylcoumarin (1
ng/nl) were added. Trypsin (sequencing grade, Promega) was
dissolved in buffer in accordance with the manufacturer’s instruc-
tions (100 ng/ul,) and 3pl was added to each PrP™® prepara-
tion. Following trypsin digestion at 30°C for 18h, the reaction
was terminated by addition of 12l 5% v/v formic acid (FA).
Thus, each 300 mg sample of brain gave rise to two replicates
of PK-treated and trypsin digested PrP™* preparations. Digests
that could not be analyzed by chip-HPLC mSRM within 18 h of
this final preparation step (see Results) were stored at —20°C
until analysis. As a control and to allow determination of tryp-
tic peptides without complications resulting from truncation or
glycosylation, 360 ng (16 pmol) recombinant ovine PrP (136A,
L141 154R, 171Q) was dissolved in water (50 1), precipitated
using nine volumes of methanol, and reduced, alkylated and
digested with trypsin using the same quantities of reagent as
above.

Chip-HPLC and Mass Spectrometry

Full scan mass spectrometry analyses were carried out using an
Agilent 6520 Q-Tof mass spectrometer interfaced with a Chip
Cube and Agilent 1200 nano-HPLC system (Agilent, UK). Prp*
tryptic digest samples were injected (1 1) onto an Agilent Ultra-
high Capacity chip, containing a 500 nl enrichment column and
a 150 mm x 75um analytical column custom packed with ACE
AQ, particle size 5 um (UHC-ACE AQ chip).

For N-terminal glutamine conversion rate determinations,
custom synthesized peptide standards with N-terminal glutamine
or pyroglutamate residues (min. 98% purity; Peptide Protein
Research Ltd., Eastleigh, UK) were diluted into post-trypsin
buffer (PTB, 5M urea in 25 mM Tris-methylamine pH 8.3) to
which half a volume 5% FA in water (PTB-FA), half a volume
5% HCI in water (PTB-HCI), half a volume water (PTB-water),
or just water, to a final concentration of 100 fmol/nl. Peptide
solutions thus prepared were placed in the HPLC autosam-
pler compartment set to 8°C, immediately injected (1 pl) onto
an Agilent ProtID chip with a 40 nl enrichment column and
a 150mm x 75um analytical column packed with Zorbax
300SB-C18 material. A HPLC-MS analysis sequence initially
consisting of eight cycles of analyses of N-terminal glutamyl or
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pyroglutamyl peptide mixtures in water, in PTB-FA and in PTB-
HCI, spaced by buffer blanks, was executed and the injection
times of individual analyses recorded; the total duration of the
sequence was approximately 20 h. Sequences consisting of four
cycles each were subsequently executed 144, 216, 288, and 384h
after the start of the original sequence and peptide mixtures in
PBT-water were included in the sequences from 216 h onwards.
For sample loading, a continuous flow (4 il/min) of 0.1% TFA
in water (LC-MS grade, Fisher Scientific) was used and the chip
injection flush volume set to 8 L. For analysis, a gradient was
used running from 3 to 40% solvent B [where solvent A was
0.1% v/v FA in water and solvent B was 0.1% FA in 90% acetoni-
trile (LC-MS grade) and 10% water] over 20 min at a flow rate of
500 nl/min. The capillary voltage was set to 1900 V. Both MS/MS
and MS-only spectra were acquired, in centroid mode over the
mass range of 250-3000 u and at a scan rate of 1 spectrum/s,
with the MS abs. threshold set to 200 and the MS rel. threshold to
0.010%. The Agilent ESI calibration standard at m/z 922.009798
was used as internal mass reference.

Analogs of other peptides representing relevant sequences of
ovine PrP (Figure 1) were also custom synthesized (min. 98%
purity; Peptide Protein Research Ltd) and used, without fur-
ther purification, for method optimization and as external cali-
bration standards for quantification. A multiplexed LC-MS/MS
method was developed using an Agilent 6410 triple quadrupole
mass spectrometer interfaced with a Chip Cube and Agilent 1200
nano-HPLC system (Agilent, UK). A dynamic mSRM method

was developed based on synthetic versions of each of the new
peptides to be included in the expanded ovine PrP assay; MS/MS
data were acquired for each peptide scanning an appropriate
mass range, and two to four precursor/product ion pairs (tran-
sitions) selected and optimized (Table S3).

Peptide calibration standards or tryptic digest samples were
injected (1 pl) onto an Agilent Ultra-high Capacity chip, contain-
inga 500 nl enrichment column and a 150 mm X 75pm analytical
column packed with Zorbax 80-SB-C18, particle size 5 jum. For
the loading pump 0.1% FA in water (LC-MS grade, Fisher Scien-
tific) was used (3 pl/min). The chip injection flush volume was set
to 8 pl. Analyte separation and elution into the mass spectrom-
eter was carried out in forward flush mode. A gradient was used
running from 3 to 50% solvent B [where solvent A was 0.1% v/v
FA in water and solvent B was 0.1% FA in 90% acetonitrile and
10% water (LC-MS grade, Fisher Scientific) over 25 min at a flow
rate of 400 nl/min]. The capillary voltage was set to 1900 V.

Retention times were determined using the PrP peptide stan-
dards and retention time windows set at 2 min for most peptides;
for peptides which tended to have wider peaks or peaks that
tended to shift as the assay progressed, up to 4 min were used.

Dilution series of calibration and quality control (QC) stan-
dards ranging between 0.02 fmol/pl and 1 pmol/pl were run at
the start of the sample batch; additional QC standards at the
end and, depending on the number of preparations analyzed,
mid-batch. To minimize carryover effects, duplicate injections
of 8l 70/30 (v/v) acetonitrile/water followed by two or more

trypsin
77 86 95 101 109
GQPHGGGW HGGGGWGQGGSH S OWNKPSKPKTNMK...

G77-K109 GQPHGGGWGQPHGGGGWGQGGSHSQWNKPSKPK

G81-K109 GGGWGQPHGGGGWGQGGSHSQWNKP SKPK

pE86-K109 PE PHGGGGWGQGG SHSQWNKPSKPK

H88-K109 HGGGGWGQGGSHSQWNKP SKPK

G89-K109 GGGGWGQGGSHSQWNKPSKPK

G90-K109 GGGWGQGGSHSQWNKPSKPK

G91-K109 GGWGQGGSHSQWNKP SKPK

G92-K109 GWGQGGSHSQWNKPSKPK

W93-K109 WGQGGSHSQWNKPSKPK

G94-K109 GQGGSHSQWNKPSKPK

Q95-K109 QGGSHSQWNKPSKPK

pE95-K109 PEGGSHSQWNKPSKPK

G96-K109 GGSHSQWNKPSKPK

G97-K109 GSHSQWNKPSKPK

S98-K109 SHSQWNKPSKPK

H99-K109 HSQWNKPSKPK

$100-K109 SQWNKPSKPK

Q101-K109 QWNKPSKPK

pE101-K109 PEWNKPSKPK

W102-K109 WNKPSKPK
FIGURE 1 | Ovine prion protein model showing the amino acid applicable are shown in the accompanying table, together with the sequence
sequence in the partially protease-sensitive region. Selected PK sites references used. The ovine PrP structure shown is for illustration only and
and the tryptic cleavage site are pointed out by the arrows. The resulting was captured from Protein Data Bank entry 1Y2S (ovine PrP fragment
N-TAAP peptides and their N-terminal pyroglutamyl analogs where V124-S234) using GLmol — Molecular Viewer (Version 0.47).
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blank runs were inserted after the highest concentration stan-
dards and between preparations from different samples. The limit
of detection (LoD) was defined as the concentration above which
peptides could be detected with a signal to noise ratio larger
than 3, or with a signal exceeding that in the second blank used
to minimize carryover effects, by a factor of 3, whichever was
higher. The lower limit of quantification (LloQ) was defined as
the concentration above which the mean concentration deter-
mined for three QC standards was within 20% of the expected
concentration (Table S4).

Data Processing, Analysis, and Calculations

The BioConfirm module in the Agilent Qualitative Analysis
software (B.06.00) was used to deconvolute MS-only spectra
using the “Find by Molecular Feature” method. Here, the “Small
Molecules (chromatographic)” extraction algorithm was used,
the input data range restricted to 250-2000 Da, peaks accepted
with heights >10 counts, H*, Na™, and K™ ions included, isotope
grouping peak spacing tolerance set to 0.0025m/z plus 7 ppm,
isotope model set to “peptides,” assigned charge states limit set to
15 and compound quality score >80. No other compound filters,
mass filters or mass defect filtering were selected. The resulting
candidate compounds were then interrogated for semi-tryptic
(n = 51) and tryptic (n = 100) PrP peptides (see Tables S1, S2)
using custom-defined protein digests of PrP fragments created
within the “Define and Match Sequences” method such that R-P
cleavages, missed cleavages and variations resulting from poly-
morphisms A/V136, L/F141, H/R151, and Q/H/R171 were taken
into account. The software option to include frequently encoun-
tered post-translational modifications such as oxidation, deami-
dation and decarbamylation was selected. MS match tolerance
was set to 10 ppm and MS score to 30. The results were care-
fully inspected, evaluated and the most likely peptide candidates
selected.

Q-Tof MS/MS data were processed using Distiller (Mascot
Server 2.4) and interrogated using Mascot MS/MS ion searches
[NCBI database, Taxonomy: All entries; Enzyme: Trypsin; Fixed
modifications: Pyridylethyl (C); Variable modifications: Gln->
pyro-Glu (N-term Q), Oxidation (M); Peptide mass tolerance £+
0.3 Da; Fragment mass tolerance =+ 0.3 Da; Peptide charge 2, 3,
and 4+; Instrument Agilent Q-Tof]. Approximate quantification
of proteins in PrP precipitates was carried out by spectral count-
ing using the Exponentially Modified Protein Abundance Index
(emPAI) (Ishihama et al., 2005) available in Mascot. The RA of
a given protein (x) was expressed as its percentage emPAI as
follows:

PAT
%emPAI(x) = M
> emPAI(i)

n=1

x 100%,

where emPAI(x) and emPAI(i) are the scores provided by Mascot
and n the total number of protein families at a set p-value; p = 0.1
was used here.

LC-mSRM data were acquired and analyte concentrations
calculated based on peak area, by interpolation from cali-
bration curves generated, using proprietary software (Agilent

MassHunter Quantitative Analysis version B.05.02). All analyte
and calibration standard peaks were manually verified and re-
integrated as necessary. Linear regression with none or a 1/x
weighting was used, whichever gave the better fit for a given
peptide (R? > 0.98). Lower limits of detection and quantifica-
tion (LoDs and LoQs) and imprecision of quantification were
established using synthetic peptide mixtures of known concen-
tration (QCs). The LoD was defined as the concentration above
which the signal-to-noise ratio exceeded 3. The LoQ was defined
for each peptide as the concentration above which the calculated
value was within 20% of the theoretical value (n = 2 or 3 depend-
ing on batch size). LoD and LoQ values for each peptide are given
in Table S4.

Calculated peptide concentrations, in duplicate for each sam-
ple, were transferred to GraphPad Prism v.6 for the production
of N-TAAP plots.

The RA was calculated as a percentage of the summed abun-
dance for 24 possible N-terminal tryptic peptides of Prp'
(including pyroglutamyl post-translational modifications), as
follows:

[Npep(x)]

RANpep(x) =
2 [Npep(i)]
i=1

x 100%,

where Npep(x) represents one of the seven N-terminal pep-
tides in the set and Npep(i) the concentration of a particular
N-terminal peptide.

Results

Full-Scan Analysis of PrPs¢ and PrP"* Digests
Reveals Pyroglutamate Amino Acid Residues
from the “N-TAAP” Region and Additional Tryptic
Peptides

MS-Only Analysis

New and previously encountered N-TAAP and core tryptic pep-
tides were revealed in Q-Tof data of three initial TSE tissue
preparations (one classical scrapie, one CH1641 scrapie and
one ovine BSE) and a recombinant PrP tryptic digest (Fig-
ures S1-S3). The data were acquired in MS-only mode and
analyzed using Bioconfirm algorithms. A number of the pep-
tide assignments were familiar from previous mSRM analy-
ses and their relative retention times supported the assigned
sequences. For the classical scrapie sample without PK treat-
ment, N-terminal cleavage sites H88, G89, G91, and pE95
and tryptic peptides R27-R51, H114-R139, H114-R151, P140-
R151, Y152-R159, E154-R159, Y160-K188, pE189-K197, G198-
K207, V212-R223, and E224-R231 were suggested. The N-
TAAP peptide G85-K109 was additionally found for the PK
treated sample. Analogous results were obtained for the prepa-
rations from CH1641 scrapie and ovine BSE, which addition-
ally revealed 1208-R211. N-terminal tryptic peptides K26-R40
and Y41-R51 were abundant in a digest of recombinant PrP, but
not in PrP5¢ purified from tissue, even when PK treatment was
omitted.
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Most notable amongst novel PrP fragment suggestions
were the pyroglutamyl post-translational modifications of pep-
tides with N-terminal glutamines. The presence of these
pyroglutamyl compounds was supported by the isotope pat-
terns of their most abundant charge states in mass spectra
summed over the time interval of their chromatographic peaks
(Figures 2A,C,E). A comparison to corresponding synthetic
standards (Figures 2B,D,F) gave similar retention times and iso-
tope distributions. Peptide pE95-K109 was identified at a reten-
tion time of 7.5min in CH1641 scrapie without PK treatment
(Figure 2C and Figure S2A). The BioConfirm assignment of
pE95-K109 to a peak at a retention time of 10.6min in the
data from the classical scrapie sample, appeared to be incorrect:
apart from the large discrepancy in retention time, the pE95-
K109 standard was found predominantly in the 4+ charge state
(Figure 2D), while the compound at 10.6 min was present in 2+
and 3+ charge states. The BioConfirm assignment of pE101-
K109 to a compound at 8.2 min in the CH1641 (Figure 2E and
Figure S2A) and BSE samples (Figure S3C) was supported based
on its synthetic peptide (Figure 2F). Although not revealed fol-
lowing Bioconfirm processing and analysis, signal corresponding
to peptide pE86-K109 was found in the full scan mass spectra
of the classical scrapie digest without PK treatment (Figure 2A)
with similar isotope pattern to the synthetic version (Figure 2B).

Pyroglutamyl modified tryptic peptides pE189-K197 (sam-
ples and recPrP, Figures S1-S4), pE189-K207 and pE189-R211
(recPrP, Figure S4) were also detected. Given that these peptides
were unlikely to be present prior to digestion with trypsin, these
were most likely to be acid-induced artifacts. While application of
the Bioconfirm algorithm facilitated the detection of many PrP-
derived peptides, identification of Q189-K197 was less straight-
forward, possibly due to interfering signal; hence this compound
is not displayed in the Bioconfirm-based extracted compound
chromatograms (Figures S1-S4). When we applied extracted ion
chromatogram searches for m/z 508.7727 and m/z 339.5177, cor-
responding to the doubly and triply protonated monoisotopic
ions of Q189-K197, we did manage to retrieve peaks at the
expected retention time.

MS/MS Analysis

In first instance, we seemed unable to identify ovine prion protein
in brain tissue preparations in individual data files obtained by Q-
Tof auto-MS/MS analysis. However, a multi-file Mascot database
search (p = 0.1) of all samples resulted in identification of ovine
prion protein in 26th place out of 36, with a Protein Family Sum-
mary score of 34 based on matches of G198-K207, V212-R223,
and E224-R231 (+PK samples) resp 52nd place out of 74, scoring
40 based on matches of V212-R223 and E224-R231 (—PK sam-
ples). This corresponded to a RA (%emPAI) of 0.89% and 0.38%,
respectively. The highest scoring protein families were Ig lambda
light chain (19%) and ferritin light chain (14% in the +PK samples
and beta-globin (22%) and ferritin heavy chain (9%) in the —PK
samples. A similar search of MS/MS analysis of recombinant PrP
resulted ovine PrP ranking top with a score of 244, based on
matches of eight PrP peptides, resulting in a sequence coverage
of 44% of the final protein product. Here its %emPAI was 63%,
that of trypsin 32% and keratin 4%. No prion protein could be

identified in the control tissue preparation; the most abundant
protein families were beta tubulin and beta globin (—PK) and
ferritin heavy and light chain (+PK).

In Vitro N-Terminal Pyroglutamyl Modification
can be Minimized by Rapid Analysis

To assess whether the identification of pyroglutamyl PrP pep-
tides in full-scan mass spectrometric analysis of PrP™ could be
a sample preparation artifact introduced by acidification alone,
we determined the rate of conversion for a number of PrP pep-
tides with N-terminal glutamine under acidic, non-buffered and
more basic (pH = 8) conditions, at a temperature of 8°C as rou-
tinely maintained in the autosampler compartment. Addition of
FA at the end of tryptic digestion results in a post-trypsin buffer
solution of pH = 3 (PTB-FA). Reasoning that perhaps a weak
acid such as FA but not a strong acid such as HCI might catalyze
the in vitro conversion of N-terminal glutamine to pyroglutamate
(Chelius et al., 2006), we wondered if adding 5% hydrochloric
acid, which would result in a solution of pH = 1 (PTB-HCI),
might reduce or prevent the in vitro conversion of glutamine
to pyroglutamate. In addition we determined conversion rates
in HPLC grade water (pH = 7) and tryptic digestion buffer to
which 0.5 volume water was added instead of acid (PTB-water).
Repeated analysis of synthetic peptide preparations in each of
these solutions allowed the corresponding conversion rates to be
determined (Figure 3 and Table 1).

While the abundance of peptides with N-terminal pE was
negligible immediately following addition of acid to buffers con-
taining N-terminal glutamyl peptides, this changed over time.
We found that in 400 h approximately 40% of glutamine was
converted to pE for peptide solutions to which FA had been
added, which corresponds to 3% over a 24-h period. For solu-
tions to which HCI was added, this conversion rate was increased
to 4.3% in 24h. Under non-buffered or basic conditions, con-
version rates remained under 0.1%. The MS response of pep-
tides dissolved in HPLC-grade water alone was much lower
than in any of the other solvents to the extent that no data
could be obtained for the longest N-TAAP peptide (Q86-K109).
Even though the HPLC loading, washing and elution solvents all
contained 0.1% FA, ion formation may have been considerably
poorer for water-dissolved standards compared to acidified and
non-acidified post-trypsin buffer or lack of buffer components
in the sample solvent may have made the peptides more prone
to strong adsorption within the HPLC system. Similar analy-
sis of mixtures of pyroglutamyl peptide standards did not show
changes such as reversion to glutamine in any of the same four
solvents.

The low conversion rates at pH = 8.0 suggests that in vitro
pE formation is unlikely to commence prior to the addition of
acid in the final step of the digest preparation. Thus, N-terminal
pyroglutamyl artifacts can be minimized by keeping the amount
of time between addition of acid and analysis of a preparation to
a minimum. To allow automated overnight HPLC MS, a limit of
18 h was set for the time preparations were allowed to spend in
the autosampler compartment following their acidification. This
corresponds to a 2.5% conversion of glutamyl into pyroglutamyl
peptides in PTB-FA. Acidified preparations that could not be
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FIGURE 2 | High resolution mass spectra of ovine PrP peptides
with pyroglutamate N-termini. Mass spectra are shown zoomed in

on the isotope distribution of (A,B) quintuply protonated pEPHGGGWG standards. Chip-HPLC Q-Tof mass spectra were obtained by integrating
QGGSHSQWNKPSKPK (pE86-K109) (A) suspected in prpSc digest from the total MS signal over the full width at base of the chromatographic
classical scrapie infected brain sample and (B) synthetic standard; (C,

quadruply protonated pPEGGSHSQWNKPSKPK (pE95-K109) and (E,F)
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m/z —»

triply protonated pEWNKPSKPK (C,E) suspected in prpSc digest from
an experimental CH1641 scrapie brain sample and (D,F) synthetic

D) peak of the peptide. Spectra (B,D,F) were based on 100 fmol on
column of each standard.
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(A) Post-trypsin buffer (PTB) to which 0.5 volume 5% formic acid was added
as by prpSc digest preparation protocol (final pH 3.0) (B) PTB plus 0.5
volume 5% HCI (pH 1.0) (C) PTB + 0.5 volume water (pH 8.0) (D) peptides
dissolved in pure water (pH 7.0). Q-pE conversion rates calculated from
these plots are given in Table 1.

TABLE 1 | N-terminal glutamine to pyroglutamate conversion rates (%/h) for PrP peptides (see Figure 1 for sequences) in various media at 8°C.

Q86-K109 Q95-K109 Q101-K109 Q189-K197 Q189-K207 Q189-R211
PTB-FA Slope 0.14 £ 0.01 0.13 £ 0.01 0.11 £ 0.003 0.08 £ 0.002 0.09 £ 0.003 0.08 £ 0.01
R? 0.8745 0.9692 0.9778 0.9673 0.9689 0.7083
PTB-HCI Slope 0.18 £0.01 0.18 £ 0.01 0.17 £ 0.01 0.14 £0.01 0.15 £ 0.005 0.21 £0.02
R? 0.9307 0.9428 0.8782 0.9529 0.9776 0.9109
PTB-water Slope —0.05+0.06 0.009 + 0.004 0.004 £ 0.001 0.002 + 0.003 0.001 £ 0.002 0.002 £ 0.008
R? 0.1004 0.2997 0.3031 0.02758 0.03721 0.005692
Water Slope No data 0.23 £ 0.02 0.01 £ 0.01 0.02 £+ 0.002 0.03 £ 0.002 0.13 £ 0.02
R? 0.8041 0.06837 0.7628 0.9538 0.5798

PTB, post-trypsin buffer.

analyzed within 18 h were stored at —20°C immediately follow-
ing acidification and placed in the autosampler compartment
shortly before analysis. Similarly, batches of calibration and QC
standards were aliquoted and stored at —20°C until required in
an assay.

The Relative Abundance of Pyroglutamyl N-TAAP
Peptides in Ovine TSEs is Different Between
TSEs and Animals of Different Geographical
Origins

Once the mSRM prion peptide assay was developed and
acidification protocols established, they were used to analyze

sample digests. The mSRM chromatograms (Figures S5-S7) of
the same PrPS¢ digests used in the analyses described above
were found to be comparable to the Q-Tof-based extracted
compound chromatograms (Figures S1-S3). The concentra-
tions of the PrP peptides were determined and N-TAAPs
(Figure 4) and tryptic peptide profiles (Figure S8) established.
Pyroglutamyl N-TAAP peptides were identified in these sam-
ples, albeit at relatively low abundance. Detection of specific
N-terminal cleavages in the preparations without PK treat-
ment was confirmed: G89, G90, G91, G92 were the four
most abundant N-terminal cleavage sites for classical scrapie
(Figure 4A) and S100, pE101, and W102 the three most
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FIGURE 4 | N-TAAPs from ovine TSEs. Graphs show calculated
concentrations (+SD) of N-TAAP peptides determined by chip-HPLC SRM
mass spectrometry of digest preparations from the brain stem of individual
animals. (A,B) Classical scrapie: VRQ/VRQ Swaledale, neutered male,
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homebred; (C,D) Experimental CH1641 scrapie: AHQ/AHQ Cheviot,
neutered male; (E,F) Experimental BSE: ARQ/ARQ Romney. (A,C,E) without
proteinase K treatment; (B,D,F) with proteinase K treatment. Asterisks are
used to point out the peptides with pyroglutamyl N-termini.

abundant ones for CH1641 scrapie (Figure 4C) and ovine BSE
(Figure 4E).

Peptide abundances were thus determined in sample digests
from a further six classical scrapie infected animals of various
breeds, genotypes and origin kept in the APHA experimen-
tal flock (Ryder et al., 2004). The resulting N-TAAPs showed
that, while the most abundant PK cleavage sites were gen-
erally in the region between G77 and G94, the RA of these
sites could vary considerably between the samples (Figure 5).
Three of the samples, from a homebred, ARQ/ARQ Swaledale
neutered male (Figure 5A), a homebred VRQ/VRQ Swaledale
female (Figure 5B), and a purchased ARH/VRQ Texel female
(Figure 5C), contained similar amounts of regular N-TAAP pep-
tides and small amounts of pyroglutamate N-terminal residues
pE86 and pE95, with pE86 being somewhat more abundant. In
these cases, the abundance of G90, G91, G92, and W93 was sim-
ilarly high. The profile for a homebred ARQ/VRQ white-faced
Dartmoor female (Figure 5D) was also similar, except for its
pE86 abundance which was notably higher. In contrast, the N-
TAAP profiles from two purchased ARQ/ARQ Vendeen females

(Figures 5E,F) contained relatively low amounts of pE86, G90,
G91, G92, and W93 N-termini, while the abundance of pE95
was remarkably high. Additional preparations of experimental
CH1641 scrapie and ovine BSE, from two animals each of the
same breed (Cheviot) and genotype (AHQ/AHQ), were also
analyzed. Cleavage sites pE95 (but not Q95), S98, Q101 and
pE101 were detected abundantly (Figures 6A-D). These sites
were found in addition to previously identified cleavage sites
G94, G96, S100, and W102 for these TSEs (Tang et al., 2012).
The N-TAAP profiles show that the distribution of pE cleav-
age sites for CH1641 and BSE is further toward the C-terminus
compared to classical scrapie, consistent with the general trend
that the ragged N-terminus is further C-terminal for these TSEs.
Q101 was robustly detected for both CH1641 scrapie and ovine
BSE. Although qualitatively similar, the abundances of most of
these cleavage sites were significantly different between CH1641
scrapie and BSE: unpaired ¢-tests carried out following calcu-
lation of the relative abundance (RA, Methods 2.4) of each of
the N-TAAP peptides compared between the TSEs, resulted in
the following p-values: G94: p < 0.0001; G96: p = 0.0340;
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FIGURE 5 | N-TAAPs from natural classical scrapie samples. Graphs
show calculated concentrations (+SD) of N-TAAP peptides determined by
chip-HPLC SRM mass spectrometry of digest preparations from the brain
stem of individual animals, obtained by processing 2 x 1.75ml of 10%
homogenate with PK treatment. (A) ARQ/ARQ Swaledale, neutered male,

homebred; (B) VRQ/VRQ Swaledale, female, homebred; (C) ARH/VRQ
Texel, female, purchased into flock from farm A; (D) ARQ/VRQ white-faced
Dartmoor, female, homebred (E,F) ARQ/ARQ Vendeen, female, purchased
into flock from farm B. Asterisks are used to point out the peptides with
pyroglutamyl N-termini.

S98: p = 0.048; S100: p = 0.0112; Q101:p < 0.0001; pE101:
p = 0.3387; W102: p = 0.0039.

Digests of the same BSE samples without PK treatment
(Figures 5E,F) showed pE95, S100, pE101, and W102 N-terminal
fragments, while cleavage sites G96 and Q101 were much less
abundant, confirming the results shown in Figure 4. Signal from
the other samples shown in Figures 5, 6 was insufficient to give
rise to N-TAAP profiles without PK addition; however, low-level
signal from pE95 N-TAAP peptides could be detected in the
samples where pE95 was also abundant following PK treatment
(Figures 4E,F).

Tryptic Peptide Profiles Allow Determination of
Allele Frequencies and Show R-P Bond Cleavage
Allele Frequencies

The relative involvement of the protein products of PrP alle-
les implicated in the susceptibility and survival time of sheep
exposed to prions has been speculated for decades but the lack of
allotype-specific mAbs or other methods of discrimination at the
protein level of allelic variants has hindered their investigation.
Our MS methodology now allows this to be resolved. Tryptic

peptides containing both A136 and V136 allotypes were observed
in the tryptic peptide profiles from PrP heterozygous animals,
while only V136 or A136 peptides were observed in samples from
homozygous animals (Figures S8, S9). In the samples from het-
erozygous animals (S9C and S9D), the ratios of the correspond-
ing peptides differed from unity: for the ARQ/VRQ sample (Fig-
ure S9D), V136 peptides were overall 7.5 times more abundant
than A136 peptides, while for the VRQ/ARH, V136 peptides were
5.8 times more abundant than A136 peptides. Interestingly, from
the same VRQ/ARH sample peptides containing Q171 were 3.0
times more abundant than those containing H171.

R-P Bond Cleavage

The cleavage of the arginyl-proline bond by trypsin in peptides
and proteins is considered rare but, in most of our prion protein
samples, the peptides H114-R139 and P140-R151 were detected
in good abundance, indicating that the R139-P140 bond is
cleaved with reasonable frequency. The RA of fragments cleaved
and not cleaved between R139-P140 was found to vary consider-
ably between samples and would presumably depend on the total
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breed, AHQ/AHQ genotype. (A,B) PK treated CH1641 scrapie
(Coombelands farm, Surrey); (C,D) PK treated ovine BSE (ADAS
Drayton, Warwicksire); (E,F) ovine BSE samples corresponding to (C,D)
without PK' treatment. Asterisks are used to point out the peptides with
pyroglutamyl N-termini.

amount of protein present. By contrast, cleavage between R167-
P168 was observed much less frequently: only very small amounts
of the peptide Y160-R167 could be detected, mostly in samples
with a high PrP%¢ content.

Discussion

Pyroglutamyl-modified QHTVTTTTK, which corresponds to
the peptide Q189-K197 in sheep PrP, had been identified previ-
ously by mass spectrometry following denaturation and endo-
proteinase Lys-C digestion of the protease-resistant core of ham-
ster PrP5¢ and was considered an in vitro acid-induced modifi-
cation without pathological significance (Baldwin et al., 1990).
We had ourselves observed a low-abundance pE189 peptides in
addition to Q189 peptides in freshly prepared tryptic digests of
ovine PrP™* (Figures S8, S9) and found that the abundance of
pE189 peptides increased when samples were repeatedly ana-
lyzed and, as described by others previously (Baldwin et al., 1990;
Stahl et al., 1993), we considered the Q189/pE189 ratio a use-
ful parameter to assess the level of in conversion of Q into pE.
During the development of our N-TAAP analysis methodology
and its use as an epidemiological tool to identify TSE strains and

subtypes from naturally infected scrapie cases (Gielbert et al.,
2013), we observed that the ratio of total N-TAAP peptides to
core- and C-terminal tryptic peptide concentrations was con-
siderably different from unity. Our subsequent investigation to
expand the N-TAAP system to map all possible N-termini of
PrP%, and improve its resolution as an indicator of tertiary and
quartenary structure led us to discover a much larger sub-set of
pyroglutamyl-N-terminal PrP peptides in scrapie-infected sheep
brain and prompted the question: natural or artifact? This led us
to investigate more closely the rate and conditions of N-terminal
glutamine cyclisation to a pyrrolidine carboxylate (pyroglutamyl)
residue.

In Vitro Studies

Using synthetic peptides, we found the in vitro conversion of N-
terminal glutamine to pyroglutamate residues, at a given buffer
composition, pH and temperature, to occur at a constant rate
independent of the peptide sequence or its amino-acid compo-
sition. This process may occur in the time lag following digest
preparation and analysis by HPLC-mSRM and when not kept
to a minimum could give rise to inconsistent results and arti-
facts. We found that the conversion rates were sufficiently low
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to give a window of analysis of several hours between acidifica-
tion and injection on column of tissue extracts and this allowed
us to develop a work process allowing the RAs of pE-peptides to
remain representative of the initial sample.

The conversion rates were found to be higher in buffer with
added HCI than in buffer with added FA; therefore the conver-
sion rate more likely correlates with the overall pH rather than
depends on the nature of the acid added. This differs from what
has been described in the literature (Chelius et al., 2006) but may
be a consequence of the fact that we used a buffer rather than HCI
alone. Use of ultrapure water alone as a solvent for the PrP pep-
tides gave very limited signal in the HPLC-MS analysis and we
found that buffering the analyte solution is important to facilitate
peptide detection by electrospray mass spectrometry even if this
gives a pH higher than neutral.

Analysis of pE-PrP Peptides from Sheep

The introduction of pE-PrP peptides into the N-TAAP analy-
sis allowed us to observe remarkable differences in the relative
amounts of pE-PrP in sheep with different types of TSEs. While
classical scrapie samples contained in a majority pE86- and pE95-
PrP fragments, pE95 and pE101 fragments were the most abun-
dant in CH1641 scrapie and ovine BSE samples. This is consistent
with previous work showing the PrP™* from PK-treated CH1641
scrapie and BSE digests is smaller in size to the PrP™* of classical
scrapie cases and more truncated at the N-terminus. Moreover,
different ratios of pE86 and pE95 N-terminal fragments were
present in scrapie samples from animals of different breed and
geographical origin which suggests that relative quantitation of
these peptides may be used as a more generic marker for TSE
typing.

No Q86-K109 and Q95-K109 N-TAAP peptides were found
above their detection limits for any of the TSE cases examined
but Q101-K109 could be detected in both ovine BSE and CH1641
scrapie PrP™* and provided a direct confirmation from our work
of the reported greater N-terminal sensitivity of the PrPS¢ of these
types of TSE compared to that from classical scrapie.

The variable but ubiquitous nature of these pE peptides sup-
port the idea that they might be directly involved in the prion-like
activity of PrP5¢ (by, for example, promoting or changing the
rate of protein aggregation) and that the RA of various pyroglu-
tamyl N-terminal cleavage sites could also be valuable parameters
in TSE discrimination. Variable rates of PrP misfolding, aggre-
gation and degradation are the likely basis for phenotypic (or
strain) differences in prion-affected animals and our Q-Tof MS
approach allows the simultaneous investigation of factors such
as post-translational modification (pE formation), conformation
(by N-TAAP analysis) and amino-acid polymorphisms (allotype
ratio, see below) which affect the kinetics of these proteostatic
processes.

General Identification of PrP Peptides by Q-Tof
MS and MS/MS Analysis

The PrP peptides we identified most frequently using auto-
MS/MS and database searching were Q189-K197, V212-R223,
and E224-R231, implying that these peptides are the most
proteotypic—the most likely to be identified by a particular

MS platform in quantitative proteomics of complex mixtures
(Mallick et al., 2007). Only MS/MS analysis of recombinant PrP
resulted in identification of additional peptides such as E155-
R159 and H114-R151. These and other PrP fragments could be
identified based on accurate mass only, by applying the propri-
etary deconvolution and search algorithms built in to Agilent
Qualitative analysis Bioconfirm software. The MS-only approach
allowed identification of additional peptides even if their frag-
mentation pattern was not amenable to identification by database
search. Using this process, we were able to assign nearly complete
sequence coverage for the recombinant PrP outside of the very
long peptide containing the N-TAAP region (Y52-K109).

MS/MS analysis of PrPS and PrP™ tryptic digests with
emPAl-based quantification indicated that the abnormal prion
protein was a relatively small fraction in our preparations. This
contrasts with findings by others, who if at all, report co-purified
proteins at much lower levels (Baldwin, 2001; Morel et al., 2007;
Howells et al., 2008) using mass spectrometry, where Prp'
appears to be a major component of the final preparation. Edman
N-terminal sequencing of hamster, mouse and cattle PrPS¢ and
PrP™ also identified the major component as abnormal prion
protein purified by differential centrifugation, gel filtration and
gel electrophoresis elution (Hope et al., 1986, 1988a,b) to be
the prion protein. These latter studies would not have detected
the pyroglutamyl-PrP in cattle, mouse or hamster brain, as
the Edman sequencing process is blocked by pyroglutamate N-
termini. Mass spectrometry-based analysis however is capable to
detect pyroglutamylated peptides.

The emPAl-based determination of PrPS¢/PrP™ abundance
in the preparations may be biased because the number of proteo-
typic peptides of PrP may be below average and this may have
been exacerbated by the high tissue/solvent ratios we have devel-
oped in our N-TAAP methodology compared to earlier stud-
ies. Nonetheless, good quantities of PrP peptides were generally
detected in our preparations particularly using mSRM meth-
ods. These were developed using peptide standards to determine
retention time, charge state and fragmentation pattern, even if
its fragmentation pattern makes it not particularly amenable
to identification by database searching. In our experience, very
short (<5 residues) or very long (>20 residues) tryptic peptides
provide insufficient proteotypic information while the N-TAAP
peptides with N-terminal glutamine residues predominantly lose
water in addition to a minor fragment. Nonetheless, based on
the combination of fragmentation and retention time features,
all these peptides were detectable using mSRM. This allowed
identification of nearly all PrP peptides even from tissue prepa-
rations, underlining the power of mSRM to allow determination
and quantification of peptides from complex mixtures.

The Q-Tof MS-only extracted compound chromatograms
(Figures S1-S4) and QQQ mSRM chromatograms (Figures S6-
S8) acquired from the same samples show most of the PrP pep-
tides at comparable elution times. Nonetheless, not all PrP pep-
tides detectable by mSRM could be extracted from the Q-Tof
MS-only data, particularly multiply protonated peptides such as
G77-K109 and G81-K109 (6 and 5+) and H114-R154 (6+), even
though up to 15 charges were allowed in the “find by molecular
features” algorithm. The combination of high charge state, low
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abundance, mass inaccuracies and noise may preclude these ions
from being recognized by the software.

LoDs and LloQs were found to vary for the different peptides,
their individual properties influencing their interaction with the
HPLC column, ionization response and fragmentation proper-
ties. LloQ for Q189-K197 was relatively high presumably because
its retention was not as reliable as that for more hydropho-
bic peptides, particularly when present at high concentration.
Peptides G77-K109 and G81-K109 are prone to tailing on elu-
tion from high performance column chromatography columns
as they are relatively long, with 33 and 29 residues respectively,
and contain 6 and 5 basic amino acid residues. Peptides H114-
R139, -R151, and -R154 are relatively hydrophobic and prone to
carry over between runs, again increasing limits of detection and
quantification.

Analysis of PrPs¢ and PrP"S, and their Tryptic
Peptides

While the highest abundance of N-TAAP fragments was found
in PK-treated samples (PrP™*), a notable number of N-terminal
fragments were identified in digests prepared without PK treat-
ment (PrP5). The N-TAAP patterns of PrP5 and PrP™ differ
even when prepared from the same TSE case. For the classical
scrapie sample (Figures 4A,B), PK treatment results in increased
abundance of G85, which corresponds to a cleavage further
N-terminal than the fragments present without PK treatment.
Similarly, for ovine BSE (Figures 6C-F), the PK treated digests
contain a higher proportion of G94, G96, and Q101, which are
on balance N-terminal to pE95, S100, pE101, and W102 present
in the -PK preparation. Safar and colleagues have shown that
variable proportions of abnormal prion protein in TSE-affected
brain may be proteinase-sensitive and these proportions vary
in brain infected by different strains of TSE (Kim et al., 2012);
similar strain-specific variability in the detergent-solubility of
PrP5¢ has also been described (Hope and Kirby, 2012) and our
detergent-based extraction of PrP5¢ and its analysis by N-TAAP
has the potential to type TSEs using these under-investigated
characteristics of the prion.

Q-Tof MS data of recombinant PrP gave good signals for K26-
R40 and Y41-R51 but little or none of these N-terminal tryp-
tic peptides were obtained from digests of PrPS¢ semi-purified
from brain tissue. Analysis by mSRM was unable to identify
much Y41-R51 from any sample, and the yield was certainly
much lower than the amount of tryptic peptides obtained from
the protease resistant core. We interpret this as evidence for
the continued action of endogenous tissue proteases in the tryp-
tic digestion of the semi-purified brain material which identi-
fies this stage of the process as a key point for further method
development.

Tryptic peptides H114-R139 and H114-R151 could be
detected both in PrPS¢/PrP™ isolated from TSE infected tissue
(Figures S1-S3) and in recombinant PrP (Figure S4). Tryptic
cleavage rates after arginine or lysine residues followed by proline
are generally much lower than when followed by any other amino
acid residue; however the R139-P140 site appears to be an excep-
tion to this rule. The RA of H114-R139 was found to be lower in
the recombinant PrP preparation. The nearly complete absence

of Y160-R167 (and P168-K188) compared to Y160-K188, in both
recombinant PrP and preparations from tissue, indicates that the
R167-P168 site is cleaved less frequently than R139-P140.

Quantification of core tryptic PrPS¢ and PrP™ peptides
allowed the determination of allotype ratios in abnormal prion
protein from PrP heterozygous sheep. In principle, the tryptic
peptide profiling assay can determine A/V136, L/F41, H/R154,
and H/Q/R171 ratios. In the present work, three A/V136 ratios
and one H/QI171 ratio were determined for classical scrapie.
Our A/V ratio, was 1/7.5 for ARQ/VRQ genotype samples, and
qualitatively similar, if quantitatively different, the 1/3 ratio deter-
mined using H}®O trypsin digestion and Maldi-Tof analysis cali-
brated by recombinant protein digests (Morel et al., 2007). The
quantitative differences may be due to the particular types of
classical scrapie examined, biological variation, or due to the bio-
chemistry: the frequency of trypsin cleavage at the R139-P140
site does not reproduce easily, particularly between recombi-
nant PrP protein standards and PrP5¢ purified from samples.
Interestingly, the A/V136 and H/QI171 ratios that we deter-
mined here for a VRQ/ARH genotype sample differed by a fac-
tor two. While these ratios might be expected to be equal, they
may differ because the tryptic peptide that includes H171 also
includes glycosylation site N184, and variable N-glycosylation
of N184 is expected to affect the yields of the H171 containing
peptide.

In summary, in this work we have determined the presence
of N-terminally pyroglutamylated PrPS¢ fragments in prepara-
tions of ovine scrapie-infected brain and demonstrated that the
rate of in vitro conversion of N-terminal glutamine to pyroglu-
tamate cannot on its own account for these. Pyroglutamylated
peptides were identified both under +PK and —PK conditions,
and therefore must have existed in vivo. Furthermore, not only
have differences in RA of various N-terminally truncated pyrog-
lutamylated residues been observed between known TSE strains,
but also between scrapie-infected animals of different origins and
possibly scrapie sub-types. To the best of our knowledge, this
is the first time that pyroglutamylated N-terminally truncated
PrP5¢ peptide fragments formed in vivo have been demonstrated
in TSE samples. While our data indicate that the RA of various
pyroglutamyl N-terminal cleavage sites could be valuable param-
eters in TSE discrimination, it would also be worthwhile, given
that pyroglutamylated fragments of amyloidogenic proteins have
been implicated in causing or accelerating protein aggregate for-
mation and aggravating disease symptoms (Momoi et al., 1995;
Schilling et al., 2006, 2008; Schlenzig et al., 2009; Wirths et al.,
2009; Jawhar et al., 2011b; Nussbaum et al., 2012; Saul et al,,
2013; Matos et al,, 2014), to investigate whether pE PrP frag-
ments may play a role in promoting or changing the rate of Prp5
aggregation.
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