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The distribution and activity of endomorphins (EMs), which are endogenous µ-opioid
receptor (MOR) ligands in the gastrointestinal tract (GI), are yet to be elucidated. The
current study aimed to shed light on this topic. EM2 was expressed in the enteric neurons
in the myenteric plexus of the mid-colon. Of the EM2-immunoreactive (EM2-IR) neurons,
53 ± 4.6%, 26 ± 4.5%, 26 ± 2.8% and 49 ± 4.2% displayed immunopositive staining
for choline acetyl transferase (ChAT), substance P (SP), vasoactive intestinal peptide
(VIP) and nitric oxide synthetase (NOS), respectively. A bath application of EM2 (2 µM)
enhanced spontaneous contractile amplitude and tension, which were reversed by β-FNA
(an antagonist of MOR) but not NG-nitro-L-arginine methyl ether (L-NAME, a non-selective
inhibitor of NOS) or VIP6-28 (an antagonist of the VIP receptor) in the colonic strips. EM2
significantly suppressed inhibitory junction potentials (IJPs) in 14 of the 17 examined
circular muscle cells, and this effect was not antagonized by preincubation in L-NAME.
EM2 was widely expressed in interneurons and motor neurons in the myenteric plexus
and presynaptically inhibited fast IJPs, thereby enhancing spontaneous contraction and
tension in the colonic smooth muscle.

Keywords: endomorphin-2, myenteric plexus, µ-opioid receptor, inhibitory neuromuscular transmission, colonic
motility

INTRODUCTION
Opioids play a significant role in mediating intestinal smooth
muscle activity via the µ-opioid receptor (MOR). Previous stud-
ies have shown that MOR is expressed in distinct neuronal
populations, including Dogiel type I myenteric neurons such as
motor neurons and interneurons responsible for gastrointestinal
(GI) motility in the myenteric plexus (Bagnol et al., 1997; Ho
et al., 2003; Sternini et al., 2004; DeHaven-Hudkins et al., 2008).
The activation of MOR in the enteric nervous system (ENS)
leads to decreased GI propulsive activity (Holzer, 2004; Web-
ster et al., 2008). Orally administered morphine, a non-selective
exogenous MOR agonist, typically inhibits GI propulsive activity,
thereby resulting in constipation (Pappagallo, 2001; Camilleri,
2011; Kapoor, 2012; Labianca et al., 2012). A substantial body of
evidence has demonstrated that colonic retention time is 80% of
the oroanal transit time in animals, including humans, suggesting
that morphine-induced constipation is likely of colonic origin
(Banta et al., 1979; Arhan et al., 1981). However, the mechanism
underlying this side effect of morphine has yet to be adequately

elucidated, and no therapy to antagonize this side effect has
been approved to date (Nishiwaki et al., 1998; Holzer, 2007,
2009; DeHaven-Hudkins et al., 2008; Leppert, 2010; Camilleri,
2011; Diego et al., 2011; Wein, 2012; Bader et al., 2013; Rauck,
2013).

Endomorphin-1 (Tyr-Pro-Trp-Phe-Nh2, EM1) and
endomorphin-2 (Tyr-Pro-Phe-Phe-Nh2, EM2), the two
endogenous ligands of MOR, were isolated from the bovine
and human brain in 1997 (Zadina et al., 1997). EM1 and EM2
selectively bind to MOR at a high affinity (Zadina et al., 1997).
EM1-immunoreactive (IR) and EM2-IR neuronal cell bodies
are principally located in the hypothalamic nuclei, the nucleus
tractus solitarii, the dorsal root ganglia (DRG) and the vagal
ganglia in the CNS and the peripheral nervous system (PNS;
Barr and Zadina, 1999; Martin-Schild et al., 1999; Pierce and
Wessendorf, 2000; Niu et al., 2009). Both EM1 and EM2 are
involved in the regulation of somatic and visceral information
transmission. µ-opioid receptor is the most abundantly expressed
opioid receptor in the GI tract, especially the colon (Banta et al.,
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1979; Nishimura et al., 1986). However, the distributions of
EM1 and EM2 in the ENS and their effects on colonic motility
are yet to be determined (Sternini et al., 2004). The cellular
mechanisms by which MOR modulates intestinal motility also
require further elucidation. Our pilot immunofluorescence
histochemical staining experiments revealed that myenteric
neurons in the rat colon express EM2 but not EM1. Organ
bath measurements revealed that exogenous EM2 exerts two
direct effects on colonic motility: EM2 enhances spontaneous
contractile amplitude and tension and suppresses electrical
field stimulation (EFS)-evoked twitch contraction in colonic
preparations. Elucidating the mechanism by which EM2
stimulates colonic motility was the primary aim of the present
study. We hypothesized that EM attenuates or facilitates colonic
motility via the activation of opioid receptors in myenteric nerve
cells. Therefore, we investigated the effects of endogenous opioids
on colonic motility to enhance our understanding of EM-evoked
bidirectional modulatory mechanisms and to provide novel
insight into a potential therapeutic strategy in the treatment of
GI dysfunction.

MATERIALS AND METHODS
ANIMALS
Male Sprague-Dawley rats weighing 220–250 g were provided by
the Experimental Animal Center of the Fourth Military Medical
University (Xi’an, China). All protocols described below were
approved by the Committee of Animal Use for Research and
Education of the Fourth Military Medical University. All efforts
were made to minimize the number of animals used and their
suffering in accordance with the ethical guidelines for animal
research (Zimmermann, 1983). After the rats were anesthetized
using ether, the mid-colons between the right and left flexures
were removed.

IMMUNOFLUORESCENCE HISTOCHEMISTRY
For whole-mount colonic preparations, the mucosa, submucosa
and inner circular muscle layer from the tissues were separated
from the outer longitudinal muscle layer, which was attached to
the myenteric plexus.

Whole-mount colonic preparations from seven rats (n = 7)
were processed for immunofluorescence histochemical double-
staining for EM2 and neuron-specific enolase (NSE), choline
acetyl transferase (ChAT), substance P (SP), vasoactive intestinal
peptide (VIP) or nitric oxide synthetase (NOS, the key enzyme
for the synthesis of nitric oxide). The whole-mount sections were
sequentially incubated in the following solutions: (1) a mixture
of rabbit antiserum against EM2 (AB5104, 1:200; Chemicon,
Billerica, MA, USA) and mouse antiserum against NSE (MAB314,
1:200; Chemicon), goat antiserum against ChAT (IHCR1008-6,
1:500; Chemicon), rat antiserum against SP (MAB356, 1:500;
Chemicon), mouse antiserum against VIP (SC-25347, 1:200;
Santa Cruz, Santa Cruz, CA, USA) or mouse antiserum against
NOS (N2280, 1:2000; Sigma, Saint Louis, MO, USA) in 0.01 M
phosphate-buffered saline (PBS, pH 7.4) containing 5% (v/v)
normal goat serum (NGS), 0.3% (v/v) Triton X-100, 0.05% (w/v)
NaN3 and 0.25% (w/v) carrageenan (PBS-NGS, pH 7.4) for
72 h at 4◦C; (2) a mixture of biotinylated donkey anti-rabbit

IgG (BA-1000, 1:200; Vector, Burlingame, CA, USA) for EM2
and Alexa 594-labeled donkey anti-mouse IgG (A21203, 1:500;
Invitrogen, Grand Island, NY, USA) for NSE, VIP or NOS,
Alexa 594-labeled donkey anti-goat IgG (A-11058, 1:500; Invit-
rogen) for ChAT- or Cy3-labeled donkey anti-rat IgG (AP189C,
1:200; Chemicon) for SP in PBS-NGS for 6 h at 4◦C; and
(3) fluorescein isothiocyanate (FITC)-labeled avidin D (A-2001,
1:1,000; Vector) in PBS containing 0.3% Triton X-100 (PBS-
X, pH 7.4) for 4 h at room temperature. Finally, the sections
were cover-slipped using 0.01 M PBS containing 50% (v/v)
glycerin and 2.5% (w/v) triethylene diamine (an anti-fading
reagent).

CONTROL EXPERIMENTS
The rabbit antiserum against EM2 was prepared against the
synthetic peptide Tyr-Pro-Phe-Phe-NH2 from full-length EM2
conjugated to BSA. We evaluated the specificity of this antibody
by incubating it in either 2 µM EM2 or 2 µM EM1 peptide, as
previously described (Huidobro-Toro and Way, 1981; Niu et al.,
2009). Normal mouse sera were used to confirm the specificities
of the mouse antibodies against NSE, VIP and NOS. Normal goat
and rat sera were used to confirm the specificities of the goat anti-
body against ChAT and the rat antibody against SP, respectively,
via replacement tests. In the present study, when the EM2 anti-
body was pre-absorbed using either homologous or heterologous
synthetic peptides and when normal mouse, goat or rat sera were
used to replace the mouse, goat or rat antibodies against NSE, VIP
and NOS, ChAT and SP, respectively, no immunopositive staining
was detected in our preparations. Therefore, the antibodies were
considered to be specific and reliable (data not shown).

CELL COUNTING
After immunofluorescence histochemical staining, all of the
fluorescence-labeled sections were observed under a confocal laser
scanning microscope (Olympus FV1000; Tokyo, Japan) using the
appropriate filters for FITC (excitation 490 nm; emission 520 nm)
and Alexa 594 (excitation 590 nm; emission 617 nm). To estimate
the extent of co-localization between EM2 and NSE, as well as
VIP or NOS, three sets of representative whole-mount sections
from the mid-colon were selected (n = 7). Plexuses were randomly
selected for this analysis from each specimen. A ganglion that
displayed a clear boundary and a neuronal cell body outline was
randomly selected from each specimen for this analysis. In each
specimen, approximately 6–7 ganglia were selected to count the
number of various neuronal cell bodies; the total number of
ganglia was approximately 35 in each set. Within each plexus,
we determined the number of EM2-IR neuronal cell bodies, the
number of neuronal cell bodies IR for other markers, and the
number and percentage of neuronal cell bodies that expressed
both markers.

MECHANICAL EXPERIMENTS
The isolated mid-colon (1.0 cm) was rapidly transferred to a dish
for dissection. This colon segment was opened along the mesen-
teric border and pinned (mucosa side up) to a Sylgard base (Dow
Corning, Midland, MI, USA). The mucosa layer was removed,
and the preparations were sliced into muscle strips in the circular
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or longitudinal axis. These test strips were placed in 10 ml of
organ bath containing modified Krebs solution bubbled with 95%
O2 and 5% CO2 at 37.0 ± 0.5◦C, which was replaced every
20–30 min. An isometric force transducer (Harvard VF-1 Harvard
Apparatus, Holliston, MA, USA) connected to a computer via an
amplifier was used to record the motility of the muscle strips.
These data were digitalized (25 Hz) using the Data 2001 software
(Panlab, Barcelona, Spain) coupled to an A/D converter and were
stored in the computer. The tension was set to 1 g to minimize
local reflex stimulation of the bowel, and the strips were allowed
to equilibrate for 1 h. Electrical field stimulation (0.5 ms, 10 Hz,
and 0.5 mA) was applied using platinum electrodes connected via
stimulus isolation units (Grass SIN5) to a square wave stimulator
(Grass 588, Grass, Quincy, MA, USA). The concentration of all
reagents is presented as the final concentration in 10 ml of organ
bath.

INTRACELLULAR MICROELECTRODE RECORDINGS IN CIRCULAR
MUSCLE
The intracellular electrophysiological recording methods were
previously described (Wang et al., 2007). In brief, “sharp” glass
microelectrodes were used to record stimulus-evoked inhibitory
junction potentials (IJPs) in the circular muscle coat of the
mucosa-free preparations in which a portion of the circular
muscle bands was removed to expose the myenteric plexus for
the placement of the stimulation electrode. The preparations were
pinned to Sylgard resin at the bottom of a 2.0-ml recording cham-
ber. The chamber was perfused at a rate of 10–15 ml/min with
Krebs solution warmed to 37◦C and gassed with 95% O2–5% CO2

to buffer this solution at pH 7.3–7.4. During electrophysiological
recording, 1 µM nifedipine and scopolamine were added to the
Krebs solution to suppress muscle movements. The microelec-
trodes, which displayed resistances of 80–120 MΩ, were filled with
KCl (2 M) or potassium acetate (4 M). For the intraneuronal
injection of electrical current, the preamplifier (M-767; World
Precision Instruments, Sarasota, FL, USA) was equipped with
a bridge circuit. The Grass SD9 stimulator (Grass Instrument
Division, Astro-Med, Warwick, RI, USA) injected rectangular
constant-current pulses. The electrometer output was amplified
and observed using oscilloscopes (Tektronix 3012, Tektronix,
Beaverton, OR, USA). Digital charts of the synaptic events and
membrane potentials were recorded on the computer using the
Data Acquisition System and LabChart software (ADInstruments,
Colorado Springs, CO, USA). The bipolar insulated tungsten
stimulating electrodes were connected via stimulus isolation units
(Grass SIN5) to the Grass SD9 stimulator and were placed per-
pendicularly to the longitudinal axis of the preparation. In the
myenteric plexus, the focal electrical stimulation of intergan-
glionic fiber tracts induces neuromuscular junction potentials.
The stimulus parameters were single pulses at an amplitude of
0.2 mA and a duration of 2 ms.

SOLUTIONS AND DRUGS
The composition of Krebs solution was (in mM): 120 NaCl,
6 KCl, 2.5 CaCl2, 1.2 MgCl2, 1.35 NaH2PO4, 14.4 NaHCO3,
and 11.5 glucose. The reagents used in this study were EM2
and β-FNA hydrochloride (Sigma), NG-nitro-L-arginine methyl

ether, hydrochloride (L-NAME, Sigma), nifedipine, scopolamine
(Sigma), tetrodotoxin (TTX, Taizhou Kante Biological Co., Ltd.,
Taizhou, Jiangsu, China), and the VIP fragment VIP6-28 (Sigma).
The preparation of all stock solutions and their subsequent dilu-
tions was performed using 0.9% saline. All concentrations are
expressed as their final concentration in the organ bath and the
perfusing chamber for intracellular recording.

DATA ANALYSIS
Statistical comparisons of the data sets were performed via
ANOVA followed by Dunnett’s post hoc test, and “n” indicates
the number of samples. Student’s t-test was used to determine
significance, and P < 0.05 was considered to be significant.

RESULTS
IMMUNOFLUORESCENCE HISTOCHEMICAL STAINING
The EM2-IR products were predominantly localized to the cyto-
plasm of the neuronal cell bodies in the ganglia and in the nerve
fibers surrounding the ganglia. EM2 expression was detected
at both of these sites in the myenteric plexus of the rat mid-
colon. EM2-IR markers were also detected outside the plexus.
The EM2-IR nerve fibers formed a dense network between the
neuronal cell bodies of the ganglia, and both varicose and non-
varicose fibers ran along the internodal strands between the
bowel muscle and the myenteric plexus (Figure 1A). The EM2-
IR neurons typically displayed an oval cell body in which many
thick dendrites protruded from the somata with a long axonal
process that extended for a distance of 100 µM or longer. A few
EM2-IR neuronal cell bodies outside the primary meshes of the
plexus were occasionally identified. The areas of these neuronal
cell bodies were 35.5 ± 10.8 µM (length) by 17.8 ± 4.6 µM
(width) (Figure 1B). Approximately 10.55± 4.2 EM2-IR neurons
were detected in each ganglion.

Antisera against the general neuronal marker NSE (Mulderry
et al., 1988) were used to label all neuronal components of
the myenteric plexus, including the neuronal cell bodies and
the varicose and non-varicose nerve fibers. Of the NSE-IR neu-
rons, 57% were stained with EM2 in the myenteric ganglia
(Figures 1C–E; Table 1). Next, we examined the co-localization
between EM2 and ChAT, SP, VIP and NOS. ChAT-IR was pre-
dominantly localized to the somata and the nerve fibers, and
53 ± 4.6% of the EM2-IR neuronal cell bodies were co-labeled
with ChAT. EM2-IR fibers ran near the ChAT-IR neurons, and
some of these fibers were even distributed around the ChAT-
IR neuronal cell bodies (Figure 2A; Table 1). SP-IR was intense
in the nerve fibers, which ran amid the EM2-IR neuronal cell
bodies. Approximately 26 ± 4.5% of the EM2-IR neurons were
co-labeled with SP (Figure 2B; Table 1). VIP-IR neuronal cell
bodies were occasionally detected in the myenteric plexus. The
VIP-IR neurons displayed a slightly oval-shaped cell body and
one long process as well as several short and lamellar processes
surrounding the perikarya; 26 ± 2.8% of the EM2-IR neuronal
cell bodies were co-labeled with VIP (Figure 2C; Table 1). The
NOS-IR products displayed a homogeneous distribution in the
neuronal cell bodies without nuclear labeling, and 49 ± 4.2%
of the EM2-IR neurons were co-labeled with NOS (Figure 2D;
Table 1). Based on immunofluorescence histochemical staining
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FIGURE 1 | Immunofluorescence histochemistry of whole-mount
sections of the myenteric plexus from the rat colon. (A) EM2-IR fibers
formed a network between the ganglia. (B) EM2-IR neurons typically
extended a distinctive long process, as indicated by the arrows. Double-label

immunofluorescence staining revealed the colocalization of EM2 (C) with
NSE (D). The composite images show neurons co-labeled with EM2 and NSE
(E). The arrows indicate typical neurons that expressed both EM2 and NSE.
Scale bar: A = 180 µM; B, C, D and E = 30 µM.

(except for that in the EM2-IR neurons), only the NOS-IR pro-
cesses at their origins could be detected, although these pro-
cesses may not have extended far. Additionally, some EM2-IR
nerve cell bodies were surrounded by VIP-IR and NOS-IR
varicosities and terminals (Figures 2A,B). EM2 immunoreac-
tivity was detected in 74 ± 4.7% of the ChAT-IR neurons
(Figure 2A; Table 1) and in 88 ± 2.5% of the SP-IR neurons
(Figure 2B; Table 1). Among the VIP-IR and NOS-IR neu-
rons, nearly all displayed EM2 immunoreactivity (Figures 2C,D;
Table 1).

EFFECTS OF EM2 ON COLONIC MOTILITY
The colonic muscle strips were mounted in an organ bath
chamber to determine the effects of EM2 on intestinal motil-
ity. Regular cyclic spontaneous contractions occurred after
incubation in Krebs solution for one half hour (24 prepa-
rations/6 rats). Bath application of EM2 (2 µM) enhanced
the amplitude of the spontaneous contractile waves in six
circular and six longitudinal muscle strips (Figures 3, 4A,B).

The positive effects of EM2 on spontaneous contractions
were not altered in the presence of 300 µM L-NAME, a
non-selective inhibitor of NO synthase, or 0.5 µM VIP6-28,
a VIP receptor antagonist. The application of the selec-
tive MOR antagonist β-FNA (5 µM) reversed the pos-
itive effects of EM2 on colonic contraction (Figures 3,
4A,B). Tetrodotoxin (1 µM), a Na+ channel blocker, com-
pletely blocked the effects of EM2 on the muscle strips
but partially suppressed spontaneous motility (results not
shown).

Electrical field stimulation evoked twitch contractile waves in
the colonic strips (Figures 3, 4Aa). The exposure of the strips
to EM2 (2 µM) partially suppressed the EFS-evoked contractile
waves (n = 16; Figures 3, 4Ab). The depressive effect of EM2 on
the EFS-evoked contractile waves was abolished by β-FNA (5 µM;
Figures 3, 4Ae,C). Preincubation in either L-NAME (300 µM)
or VIP6-28 (0.5 µM) did not significantly alter the suppressive
effects of EM2 on EFS-evoked twitch contraction (Figures 3,
4Ac,d,C).
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FIGURE 2 | Double-label immunofluorescence of whole-mount sections
showing the colocalization of EM2 (A, B, C, D) with ChAT (A’), SP (B’),
VIP (C’) or NOS (D’). The composite images show neurons co-labeled with

EM2 and ChAT (A”), SP (B”), VIP (C”) or NOS (D”). The arrows indicate
neurons expressing EM2 and ChAT (A’), SP (B’), VIP (C’) or NOS (D’). Scale
bar = 30 µM.

Frontiers in Neuroanatomy www.frontiersin.org December 2014 | Volume 8 | Article 149 | 5

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Li et al. Neurochemical function of endomorphin2 in colon

Table 1 | Percentage of the co-localization of EM2 with various markers in myenteric neurons.

Marker pairs Numbers of myenteric ganglion Numbers of doubly labeled Percentages (%) (mean ± S.E.M)
neurons (mean ± SD) ganglion neurons (mean ± SD)

ChAT (n1)/EM2 (n2) 7.23 ± 3.6/9.85 ± 3.8 ChAT of EM2 (n1/n2) 53 ± 4.6
EM2 of ChAT (n2/n1) 74 ± 4.7

NOS (n3)/EM2 (n2) 6.67 ± 2.5/13.89 ± 4.8 NOS of EM2 (n3/n2) 49 ± 4.2
EM2of NOS (n2/n3) 100.0

NSE (n4)/EM2 (n2) 20.45 ± 5.9/11.45 ± 3.6 NSE of EM2 (n4/n2) 100.0
EM2 of NSE (n2/n4) 57 ± 4.1

SP (n5)/EM2 (n2) 2.62 ± 1.3/8.77 ± 2.9 SP of EM2 (n5/n2) 26 ± 4.5
EM2 of SP (n2/n5) 88 ± 2.5

VIP (n6)/EM2 (n2) 2.5 ± 0.8/10.4 ± 3.8 VIP of EM2 (n6/n2) 26 ± 2.8
EM2 of VIP (n2/n6) 100.0

INTRACELLULAR RECORDINGS IN CIRCULAR MUSCLE CELLS
To explore the cellular mechanisms by which EM2 modulates
colonic motility, intracellular recordings were performed to
examine the synaptic responses of neuromuscular junctions and
the potential changes in the circular muscle of seven colonic
myenteric preparations. Both spontaneous excitatory junction
potentials (EJPs) and IJPs were detected in the colonic cir-
cular muscle cells in the presence of Krebs solution lacking
nifedipine (an L-type calcium channel blocker) and scopolamine

(a competitive antagonist of M-type muscarinic receptors). Per-
fusion with EM2 (2 µM) suppressed either EJPs or IJPs in
22/26 circular muscle cells from nine colonic myenteric prepa-
rations. Nevertheless, the recordings did not remain stable in
the muscle cells for an extended period (commonly <10 min)
because strong muscle movement resulted in the dislocation of
the microelectrode from the recorded muscle cells. Under these
recording conditions, EFS also evoked rapid and strong move-
ments that terminated the recordings. Because previous evidence

FIGURE 3 | Effects of EM2 on the motility of circular muscle
strips from the colon. (A) Spontaneous contractile amplitude and
EFS-evoked contractions (a). A bath application of EM2 enhanced
the spontaneous contractile amplitude and slightly suppressed
EFS-evoked contractions (b). The presence of both L-NAME (an

antagonist of NO) and VIP6-28 (a VIP receptor antagonist) did not
significantly alter the effects of EM2 (c,d). β-FNA (an antagonist of
MOR) blocked the EM2-induced changes in the strips (e).
(B) Summary of the effects of EM2 on spontaneous contractions.
(C) Summary of EFS-evoked contractions. *P < 0.05.
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FIGURE 4 | Effects of EM2 on the motility of longitudinal muscle strips
from the colon. (A) Spontaneous contractile amplitude and electrical field
stimulation (EFS)-evoked contractions (a). Exposure of the strips to EM2
inhibited EFS-evoked contraction but did not appear to affect the spontaneous

contractile amplitude (b). The presence of both L-NAME and VIP6-28 did not
significantly alter the effects of EM2 (c,d). β-FNA blocked the EM2-induced
changes in the strips (e). (B) Summary of the effects of EM2 on spontaneous
contractions. (C) Summary of EFS-evoked contractions. *P < 0.05.

has demonstrated that opioids inhibit intestinal movement via
presynaptic MORs to reduce acetylcholine release (Fichna et al.,
2007), the present investigation focused on the effects of EM2
on inhibitory neuromuscular transmission in these muscle cells.
When Krebs solution containing nifedipine (1 µM) and scopo-
lamine (1 µM) was employed to inhibit muscle movement, EFS-
evoked IJPs were stably recorded from the circular muscle cells.
The application of EM2 (2 µM) significantly suppressed the
amplitude of the EFS-evoked IJPs at an IC50 of 0.35 ± 0.13 µM
(n = 16; Figures 5A,B). The pre-application of β-FNA (10 µM)
markedly ameliorated the inhibitory effect of EM2 on these IJPs
(Figures 5A,B). However, the application of β-FNA (10 µM)
alone did not exert any clear effect on the IJPs. To examine
the effects of EM2 on the nitric oxide- and VIP-mediated slow
phase of the IJPs, the NOS inhibitor L-NAME and the VIP
receptor antagonist VIP6-28, respectively, were used. Neither L-
NAME (300 µM) nor VIP6-28 (0.2 µM) exerted a significant effect
on the EM2-mediated inhibition of the IJPs (Figures 5A,B).

DISCUSSION
Neurons in the myenteric plexus are located between the cir-
cular and longitudinal muscle layers. Myenteric neurons extend
projection fibers to the circular and longitudinal muscle layers
(Grider and Foxx-Orenstein, 1999), forming a widely distributed
neuronal network that regulates intestinal muscle tension and
propulsion (Sarna, 2006). Gastrointestinal tract motility disorders
induced by opioids are likely of colonic origin and mediated
via MOR, such that EM, a potent endogenous MOR agonist,
may participate in the modulation of GI motility. However, the

mechanisms by which EM modulates GI motility are yet to be
identified despite recent morphological and functional findings
(Fichna et al., 2007). In the present study, we tested the hypothesis
that EM inhibits colonic motility via the activation of opioid
receptors in myenteric neurons by combining immunostaining,
organ bath and intracellular recording methods to obtain mor-
phological, physiological and pharmacological data. It is helpful
to understand the mechanism by which EM2 modulates colonic
motility. The major findings in the present study include the
expression of EM2 in myenteric neurons and the EM2-mediated
suppression of colonic motility via the activation of presynap-
tic MORs to inhibit inhibitory and excitatory neuromuscular
transmission.

DISTRIBUTION AND CHARACTERISTICS OF EM2-IR NEURONS IN THE
MYENTERIC PLEXUS OF THE RAT COLON
In the present study, immunofluorescence histochemical staining
revealed that most (57%) EM2-IR neuronal cell bodies and fibers
formed a dense network that was restricted to the colonic myen-
teric plexus. These EM2-IR neurons are also immunopositive for
ChAT, SP, VIP or NOS.

Previous studies showed that ChAT-expressing neurons corre-
spond to ascending excitatory motor neurons that innervate the
muscle and that some populations of ascending and descend-
ing interneurons also express ChAT (Costa et al., 1996). Sub-
stance P acts on smooth muscle directly or indirectly by mod-
ulating the release of excitatory transmitters from nerve fibers
(Scheurer et al., 1994). VIP-IR is localized to both ascend-
ing and descending interneurons, as well as to descending
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FIGURE 5 | EM2 inhibits inhibitory neuromuscular transmission in
the circular muscle of the colon. (A) A bath application of EM2
significantly suppressed IJPs. The effect of EM2 on the IJPs was
antagonized via pretreatment with β-FNA but not L-NAME. The

application of VIP slightly reduced the IJPs, which was reversed via
pretreatment with VIP6-28. (B) Summary of the inhibitory effect of EM2
on electrical stimulation-evoked IJPs in the circular muscle of the colon.
*P < 0.05 and **P < 0.01.

inhibitory motor neurons (Costa et al., 2000; Lomax and Fur-
ness, 2000; Smith et al., 2007). Additionally, NOS has been
detected in both circular and longitudinal inhibitory motor neu-
rons and in descending interneurons (Schemann and Neunlist,
2004). ChAT-IR, VIP-IR and NOS-IR neurons in the myen-
teric plexus (Fickel et al., 1997; Benabdallah et al., 2008) but
not the smooth muscle of the rat intestine (Fickel et al.,
1997; Porcher et al., 1999; Fichna et al., 2007) expressed
MORs (Fickel et al., 1997; Ho et al., 2003). At the cellular
level, MORs are predominantly localized to the cell surface
of motor neurons and interneurons and to the nerve fibers
that innervate the longitudinal and circular muscles (Ho et al.,
2003). Our morphological findings indicated that EM2 colo-
calized with both VIP and NO in the perikarya of myen-
teric neurons, suggesting that EM2-IR neurons correspond
to a subpopulation of myenteric interneurons and/or motor
neurons.

EFFECTS OF EM2 ON COLONIC MOTILITY
In the current study, we demonstrated that EM2 partially inhib-
ited EFS-evoked contraction waves and that this was reversed by
the MOR antagonist β-FNA. Enteric excitatory motor neurons
are commonly thought to release excitatory transmitters, such
as cholinergic and tachykininergic neurotransmitters (Nedialkova
et al., 2011). The finding that EM2 suppresses EFS-evoked colonic
twitch contraction also suggests that EM2 plays an inhibitory
role in the release of excitatory transmitters from these motor
neurons.

However, EM2 enhanced the spontaneous contractile ampli-
tude, which was also reversed by the MOR antagonist β-FNA.
This finding suggests that EM2 directly activates MORs on motor
neurons to suppress neurotransmitter release into the colonic

strips. We also found that TTX, a neuronal Na+ channel blocker,
completely blocked the effects of EM2 on the muscle strips but
did not abolish its effects on spontaneous contraction, indicat-
ing that the effects of EM2 on colonic motility involve neu-
rogenic modulation. The spontaneous contractions of colonic
segments are induced and maintained by an increase in the
tonus (Benabdallah et al., 2008), which is regulated by non-
cholinergic non-adrenergic neurotransmitters, including NO and
VIP (Benabdallah et al., 2008). Tonically released NO from myen-
teric neurons inhibits increases in spontaneous motility both in
vitro and in vivo (Gil et al., 2010), and VIP inhibits the sponta-
neous mechanical activity induced by the cyclic depolarization
of the circular muscle (Plujà et al., 2000). The NO-induced
inhibitory tone contributes to rhythmic contractions, which pro-
duce the mixing and propulsive movements in the fasting and the
postprandial states (Sarna, 2006). L-NAME and VIP6-28 exerted
no clear effect on the EM2-induced enhancement of spontaneous
muscle strip contractions. These results suggest that the effect of
EM2 on colonic motility is not due to the neuronal or muscular
activities of NO or VIP. Accumulating evidence has demonstrated
that non-cholinergic non-adrenergic inhibitory neuromuscular
transmission contains purinergic, nitrergic and VIP-ergic compo-
nents and that the purinergic component plays the primary role
in inhibiting transmission (Sarna, 2006; Wang et al., 2007).

µ-opioid receptors are known to modulate pre-and post-
synaptic neurotransmission, thereby inhibiting neural activity in
the ENS. The present study is the first to report that EM2 activates
MORs to enhance colonic motility in rats; this is consistent with
other findings from mice (Yu et al., 2007; Wang et al., 2008). The
dual effects of EM2 to attenuate and facilitate bowel contractions
suggest that EM2 performs a bidirectional modulation of colonic
motility.
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INTRACELLULAR MICROELECTRODE RECORDINGS IN CIRCULAR
MUSCLE
The electrophysiological results of the present study demonstrated
that exogenous EM2 significantly suppressed fast IJPs but did not
significantly affect slow IJPs. The pre-application of the selective
MOR antagonist β-FNA reversed the inhibitory effects of EM2
on the IJPs. Immunohistochemical evidence indicates that MORs
are expressed in myenteric neurons (Fickel et al., 1997; Ho et al.,
2003) but not in intestinal smooth muscle (Fickel et al., 1997;
Porcher et al., 1999). Previous morphological evidence is consis-
tent with our results that EM2 exerts no direct effect on smooth
muscle in the bowel but plays a neurogenic regulatory role in
intestinal motility. The activation of presynaptic MORs has been
reported to inhibit the release of acetylcholine and ATP in the
intestinal submucosal plexus (Yun et al., 2004). We found that
EM2 not only inhibits EFS-evoked fast and strong contractions
but also enhances spontaneous contractile waves and tension in
the bowel strips. Elucidating this facilitative effect of EM2 and
its underlying mechanism were the primary aims of the present
study. To explore these cellular mechanisms, neuropharmacology
and electrophysiological recording were performed to examine
neuromuscular transmission in the rat mid-colon. Pre-incubation
in the MOR antagonist β-FNA specifically reversed this inhibitory
effect of EM2. The present electrophysiological and neurophar-
macological results demonstrated that the facilitative effect of
EM2 on colonic motility occurs via a presynaptic mechanism,
i.e., the suppression of the release of inhibitory transmitters,
to augment smooth muscle contraction and tension. Previous
evidence has shown that IJPs are generally biphasic and consist of
an initial large-amplitude and rapidly activating component (fast
IJP) followed by a smaller and more slowly activating component
(slow IJP). The slow IJP is abolished by treatments that block the
synthesis of nitric oxide. However, purinergic neurotransmitters
(via activating P2Y1 receptors) are responsible for the primary
fast component of non-cholinergic non-adrenergic IJPs (Wang
et al., 2007; Gallego et al., 2012; Hwang et al., 2012; Goyal et al.,
2013).

Taken together, the present results indicate the following:
(1) EM2 acts as an endogenous opioidergic neurotransmitter
in the rat colon; (2) EM2 activates MORs that are localized to
ENS neurons and nerve terminals in the smooth muscle coat
to modulate colonic motility; and (3) EM2 inhibits EFS-evoked
muscle contractions, potentially by suppressing the release of pre-
junction excitatory neurotransmitters, and suppresses inhibitory
ligand release to enhance spontaneous colonic contractions and
tension. These inhibitory ligands do not include NO or VIP but
may include purinergic inhibitory transmitters.

In conclusion, EM2-IR was found to be widely localized to
the cell bodies of enteric neurons that also display immunore-
activity for ChAT-, NOS-, SP- or VIP in the myenteric plexus
of the rat colon. EM2, an endogenous opioid, inhibits intestinal
motility in accordance with our hypothesis and enhances colonic
smooth muscle movement by decreasing or reducing inhibitory
transmitter release into the bowel neuromuscular junction. This
EM2-mediated bidirectional modulation of colonic motility may
provide new insight into the mechanisms underlying GI protec-
tion and dysfunction, which may help us to establish a novel

understanding of the opioidergic system in the GI tract and new
therapeutic strategies for GI diseases.
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