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The formation of new neurons in the adult central nervous system (CNS) has been
recognized as one of the major findings in neuroanatomical research. The hippocampal
formation (HF), one of the main targets of these investigations, holds a neurogenic
niche widely recognized among several mammalian species and whose existence in
the human brain has sparked controversy and extensive debate. Many cellular features
from this region emphasize that hippocampal neurogenesis suffers changes with normal
aging and, among regulatory factors, physical exercise and chronic stress provoke
opposite effects on cell proliferation, maturation and survival. Considering the numerous
functions attributable to the HF, increasing or decreasing the integration of new neurons
in the delicate neuronal network might be significant for modulation of cognition and
emotion. The role that immature and mature adult-born neurons play in this circuitry
is still mostly unknown but it could prove fundamental to understand hippocampal-
dependent cognitive processes, the pathophysiology of depression, and the therapeutic
effects of antidepressant medication in modulating behavior and mental health.
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INTRODUCTION

Neurogenesis is the biological process through which new neurons are formed (Altman and
Das, 1965). Neural stem cells proliferate, migrate and differentiate during embryogenesis into
mature neurons that will eventually form the central nervous system (CNS; Angevine, 1965).
Although the original work of Santiago Ramón y Cajal stated that a similar process of neuron
proliferation in the mature brain was inexistent, studies on adult neurogenesis remained central
in the scientific community. The paradigm finally changed with cumulative evidence from
the second half of the 20th century, which saw the birth of new methods and techniques
that allowed the discovery of adult-born neurons in the brains of rodents (Altman, 1962),

Abbreviations: 5-HT, 5-hydroxytryptamine, serotonin; AD, Alzheimer’s disease; BDNF, brain-derived neurotrophic
factor; BrdU, bromodeoxyuridine (thymidine analog); CNS, central nervous system; DCX, doublecortin (neuroblast
marker); DG, dentate gyrus; FGF-2, fibroblast growth factor-2; GABA, gamma-aminobutyric acid; GR, glucocorticoid
receptors; HD, Huntington’s disease; HF, hippocampal formation; HPA, hypothalamic-pituitary-adrenocortical axis;
IGF-1, insulin-like growth factor-1; LTP, long-term potentiation; MRI, magnetic resonance imaging; PD, Parkinson’s
disease; PSA-NCAM, polysialylated neural cell adhesion molecule (migratory cell marker); PTSD, post-traumatic
stress disorder; RMS, rostral migratory stream; SGZ, subgranular zone, dentate gyrus, hippocampal formation; SSRI,
selective serotonin reuptake inhibitor (antidepressant group); SVZ, subventricular zone; TrkB, tyrosine receptor
kinase B (high-affinity receptor for BDNF); VEGF, vascular endothelial growth factor.
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primates (Gould et al., 1998) and humans (Eriksson et al., 1998).
This raised relevant questions on the ultimate significance and
impact of postdevelopmental neurogenesis, especially when only
three distinct and specific neurogenic areas were mapped in
the human brain (Ernst and Frisen, 2015): the hippocampal
formation (HF), the subventricular zone (SVZ) of the lateral
ventricles and the striatum.

Here, the discussion will be centered in the HF, as it remains
the most likely neurogenic niche to play a significant role in
brain function (Spalding et al., 2013). Although beyond the scope
of this review, the SVZ and the striatum could also display
remarkable features and there is still much to be explored in these
brain areas.

ADULT HIPPOCAMPAL NEUROGENESIS IN
HUMANS

The original study that established the presence of neurogenesis
in the adult human brain used a thymidine analog
incorporated into proliferating cells during DNA synthesis,
bromodeoxyuridine (BrdU), to demonstrate proliferation,
differentiation, and survival of cells in the dentate gyrus
(DG), in the HF (Eriksson et al., 1998). In the study, both
the granular layer of the DG and the adjacent subgranular
zone (SGZ) presented labeled cells, indicating the presence
of recently-generated neurons (Eriksson et al., 1998). This
phenomenon was apparently restricted to the DG, as no
other hippocampal region demonstrated such activity in man
(Eriksson et al., 1998; Knoth et al., 2010). This occurs similarly
to other mammals (Kempermann, 2012), making the SGZ
widely recognized as neurogenic (Altman and Das, 1965)
and standing as the putative source of neural progenitors for
the granular layer in primates (Kohler et al., 2011). Using
marmoset monkeys injected with BrdU (Gould et al., 1998),
results after 2 h showed labeled cells located in the SGZ with
the morphological characteristics of granule cells precursors.
After a 3-week post-BrdU injection period, most labeled cells
were now located in the granular layer and exhibited mature
phenotype. The same pattern of migration and differentiation
is seen in rodents and indicates that neurogenesis per se is
a property of the SGZ, not the granular layer (Kohler et al.,
2011).

Extent of the Neurogenic Activity
Recent data from human post-operative and post mortem
samples of the HF suggest a very different scenario from
the initial study. Using immunohistochemistry to identify
markers of proliferation and immature/young neurons, like
Ki67, doublecortin (DCX) or polysialylated neural cell adhesion
molecule (PSA-NCAM), it was found that either the SGZ
proliferative activity in the adult is similar to the regular
parenchyma, reflecting microglia (Dennis et al., 2016), or that the
SGZ is actually never formed as a consolidated germinal structure
at any point during fetal or postnatal development of the human
brain, unlike rodents and other primates (Sorrells et al., 2018).

The direct conclusion for both findings was the virtual absence
of neurogenesis in the adult human HF.

However, these results not only disagree on the existence
of a germinal SGZ in humans as they also conflict with
positive reports of adult neurogenesis using the same endogenous
markers (Knoth et al., 2010; Boldrini et al., 2018). For
instance, using the whole human HF and a more unbiased
stereology-based approach, thousands of neural progenitor cells
and double DCX-positive and PSA-NCAM-positive immature
neurons were found in the adult SGZ and granular layer (Boldrini
et al., 2018). In this study, a ‘‘psychological autopsy’’ was
performed to exclude brain specimens from donors potentially
affected by neuropsychiatric diseases or chronic illnesses, which
could affect neurogenesis and lead to potentially compromised
results in immunohistochemistry analysis (Boldrini et al.,
2018). Nonetheless, inconsistency between studies could also
arise from the methodology itself. Although BrdU staining
for new neurons might be less sensitive than DCX and
may produce false-positive results (Sorrells et al., 2018),
endogenous markers may be difficult to evaluate in adult
brain tissue and may suffer rapid molecular changes if not
quickly preserved and correctly fixated post mortem (Knoth
et al., 2010; Boldrini et al., 2018). The apparent loss of
neurons might instead reflect modification in marker expression.
Additionally, the assumption that these markers are evolutionary
conserved, and therefor identical in rodents and humans
in representing the same cell types, is not yet entirely
secure (Knoth et al., 2010; Göritz and Frisén, 2012; Snyder,
2018).

Despite the inherent controversy of using indirect ways
to study neurogenesis, more direct methods remain scarce.
Neural precursors have been identified and directly isolated
from the adult human HF and shown to mature as neurons
in vitro (Roy et al., 2000). However, this selective extraction
lacks quantitative analysis, therefore leaving doubts on the
extent of cell production (Eriksson et al., 1998; Boldrini et al.,
2018). Thus, even when successful, direct approaches normally
yield limited results and require complementary studies. For
instance, some reports focusing on neuroblast counts have
revealed small numbers of cells after the first postnatal year
(Knoth et al., 2010), which in fact could anticipate an almost
irrelevant extent of neurogenesis in the DG during adulthood
(Dennis et al., 2016; Sorrells et al., 2018). On the other hand,
carbon-14 assessment, which allowed retrospective birth dating
of neurons through quantification of the isotope concentration
in genomic DNA, demonstrated that even small numbers of
neuronal precursors were sufficient to give rise to significant
amounts of newly generated neurons (Spalding et al., 2013).
According to this study, 35% of hippocampal neurons are
continuously turning over, forming a self-renewing population
in the DG (Eriksson et al., 1998; Knoth et al., 2010; Spalding
et al., 2013). Since the DG contains only slightly more than
35% of hippocampal neurons, nearly all its neurons must
be subject to exchange in humans, with renewing rates of
1.75%/year (Spalding et al., 2013). These rates confirm that, in
spite of possibly small populations of neuroblasts, the number
of exchangeable neurons is high (700 new neurons/day) and
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allows an almost complete cell replacement in the granular
layer within human lifespan (Spalding et al., 2013). In contrast,
neurogenesis in rodents, although prominent among mammals
(Amrein et al., 2011), displays only a 10% renewability rate of DG
neurons during adulthood (Ninkovic et al., 2007; Imayoshi et al.,
2008).

Neurogenesis Throughout Age
These numbers demonstrate a remarkable extent of human
neuron production, but turnover dynamics must be analyzed
together with age-dependent changes for a complete
understanding of hippocampal neurogenesis (Bergmann
et al., 2015). In fact, in the early post-natal period, there is
a general consensus that a dramatic and exponential decline
in the population of cells with neuroblast markers occurs,
comparatively to numbers seen during fetal development (Knoth
et al., 2010; Spalding et al., 2013; Dennis et al., 2016; Sorrells
et al., 2018). Afterwards, hippocampal dynamics are disputed.

As previously mentioned, some studies showed that
DCX-positive neuroblasts may become undetectable after
infancy, suggesting that neurogenesis ceases in the adult HF
(Dennis et al., 2016; Sorrells et al., 2018).

Others found that neurogenesis occurs during adulthood and
that the number of DCX-positive cells and the neuronal turnover
rates (from the self-renewing fraction of HF neurons) present an
insidious parallel decline along basal values (Knoth et al., 2010;
Spalding et al., 2013), correlating with the neurogenic capacity of
the DG (Spalding et al., 2013).

Finally, the most optimistic results were rather surprising,
partially contradicting previous data from humans and
consistent data from rodents and primates. Although a general
decline in quiescent neural progenitors was observed in the
DG, there was a stable number of double DCX-positive
and PSA-NCAM-positive neuroblasts throughout aging
(Boldrini et al., 2018). This suggests that a finite pool of
early progenitors does not compromise the proliferative
potential of this cell lineage as a whole, which may be
supported in older age by late progenitors (Boldrini et al.,
2018). Unfortunately, this study failed to analyze such cell
markers in hippocampal samples from donors younger than
14 years of age, preventing a complete analysis for the total
human age spectrum.

Cell Count and HF Volume Dynamics
Neuroblast numbers and neuronal exchange rates could be
associated with variations in the neuron count and HF volume,
since the production of new cells could ultimately affect the
number of neurons and the dimensions of this specific CNS
region at each time point in human life. Indeed, there is
evidence of a net loss of neurons in the whole HF with age,
although stereological investigations have established that not
all hippocampal subdivisions are equally affected (West, 1993;
West et al., 1994; Simic et al., 1997). Neuroblasts occur in
the DG and, interestingly, this region seems to be the least
affected by the decrease in neuronal numbers (Bergmann et al.,
2015). In fact, there might not be any actual change in the
number of mature granule neurons in the DG (Boldrini et al.,

2018), suggesting neurogenesis is an effective process in humans
to oppose a basal rate of neuron depletion throughout aging.
Curiously, there was also no age-related change in the volume
of the DG in this study (Boldrini et al., 2018). However, others
have shown that, in spite of its neurogenic potential, the human
DG still presents a net loss of granule cells in adult life (Spalding
et al., 2013) and that the total volume of the neuron-containing
subdivisions of the HF, including the DG, decreases during
adulthood (Simic et al., 1997; Daugherty et al., 2016), describing a
scenario where neurogenesis is unable to prevent cell and volume
depletion. The impact of adult neurogenesis on the total number
of neurons in humans widely contrasts with the situation of
rodents, where neurogenesis is additive and leads to an increase
in granular layer volume and in the number of granule cells
with age (Bayer, 1985). Nevertheless, the correlation between
neurogenesis and hippocampal volume in humans is not yet
entirely clarified.

Apart from these results, an increase is expected in the
proportion of renewing neurons in the HF due to neurogenesis,
since non-renewing cells die without being replaced (Spalding
et al., 2013; Bergmann et al., 2015). The HF can be seen as a
dynamic structure that permanently loses cells initially formed
during development, with significant replacement in the DGwith
subgranular neuroblasts during adult life.

Further complexity in hippocampal cell dynamics is added
by the fact that adult-generated cells are also lost during
adulthood. In fact, within the renewing neuron population,
younger cells were found to survive less than cells originated
during development (Spalding et al., 2013). Unlike neurons from
other hippocampal regions, which originated from development
and are as old as the individual itself, the DG is composed
of neurons generated at different time points throughout life,
creating a complex mosaic where cell turnover is accompanied
by a preferential loss of adult-generated neurons. This deepens
the complexity of the HF neuron regulation and may possess
relevance for the functional purposes of adult neurogenesis
(Spalding et al., 2013).

REGULATORY MECHANISMS FOR ADULT
HIPPOCAMPAL NEUROGENESIS

Cell proliferation, neuronal differentiation and cell survival
(Christie and Cameron, 2006) are responsible for the division of
progenitor cells, selection of a neuronal fate rather than a glial
one and incorporation and maintenance of new neurons into
their final circuits, respectively. These three critical components
of neurogenesis can be modulated, being subject to ‘‘control’’ and
‘‘regulation’’ by multiple factors (Kempermann, 2011; Aimone
et al., 2014).

Both adult neurogenesis and developmental neurogenesis are
tightly ‘‘controlled’’ by genetic and molecular programs, which
grant a seemingly identical maturation process to adult-born
neurons and neurons formed during embryogenesis. This
explains the basis of the cytological organization seen in neuronal
tissue (Kempermann, 2011; Aimone et al., 2014). On the other
hand, there are ‘‘regulatory’’ intrinsic or extrinsic factors that
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could promote or suppress neurogenesis. These factors can
depend on human behavior or the surrounding environment
and, since they can actively up-regulate or down-regulate
the formation of new neurons during adulthood, they are
critical to understanding the relevance of adult neurogenesis
on a functional basis (Kempermann, 2011), either behaviorally,
cognitively or clinically.

Here, age, physical exercise and chronic stress will be
addressed in more detail although several other factors should
deserve similar attention, like diet (Cardoso et al., 2016) or sexual
activity (Leuner et al., 2010).

Age
As stated, there is a substantial decline in neuroblasts in the
DG from infancy to adulthood (Knoth et al., 2010; Sanai et al.,
2011), which contrasts with the uncompromised formation
of new glial cells within this region (Capilla-Gonzalez et al.,
2015). More studies are necessary to understand whether this
decrease actually reaches zero (Dennis et al., 2016; Sorrells
et al., 2018) or keeps basal values, with either low numbers of
neuroblasts declining at prolonged rates (Kempermann, 2011)
or considerable numbers of neuroblasts stable throughout the
lifespan (Boldrini et al., 2018). It is essential to comprehend
the mechanisms behind these unclear age-related changes, and
understanding senescence at a neuroanatomical level could be
necessary to distinguish physiological from pathological aging
and the associated cognitive impairment (Capilla-Gonzalez et al.,
2015).

For example, adding to the increased production of
inflammatory factors, senescence of the cellular neurogenic niche
may lead to a decrease in neurotrophic factors levels, turning the
milieu less suitable for precursor cell activity (Lucin and Wyss-
Coray, 2009; Aimone et al., 2014). Fibroblast growth factor-2
(FGF-2), insulin-like growth factor-1 (IGF-1) and vascular
endothelial growth factor (VEGF) can induce proliferation
of stem/progenitor cells in the DG in rodents and their
levels decline considerably by middle age (Shetty et al., 2005),
suggesting that age-related astrocytic changes could compromise
neurogenesis (Bernal and Peterson, 2011). Restoration of FGF-2
and IGF-1 levels by intracerebroventricular infusion significantly
promoted neurogenesis in adult rats (Lichtenwalner et al.,
2001; Rai et al., 2007). Another regulator of neurogenesis
brain-derived neurotrophic factor (BDNF), (Scharfman et al.,
2005; Li et al., 2008; Schmidt and Duman, 2010), is highly
associated to the induction of neuron survival and differentiation
of hippocampal stem cells (Shetty and Turner, 1998) and
presents decreased signaling in aging rodents accompanied by
the decline in high-affinity tyrosine receptor kinase B (TrkB
receptor) expression (Silhol et al., 2005). Although levels of
hippocampal BDNF remain stable with age in rodents, serum
BDNF is diminished in human adults and could mediate the
age-related decline in hippocampal volume (Erickson et al.,
2010).

Physical Exercise
The neurogenic capacity of an adult brain can be enhanced,
and the first evidence originated from a study where mice

were housed in artificially enriched environments (Kempermann
et al., 1997), granting sensory, social and motor stimulation
(Aimone et al., 2014). By isolating the environmental variables,
voluntary exercise was shown to be the primary condition behind
the increased newborn neuron survival and upregulation in
hippocampal neurogenesis (van Praag et al., 1999b; Ehninger and
Kempermann, 2003).

It was shown that running increased cell division and
enhanced survival and maturation of new cells on the HF
(van Praag et al., 1999b; van Praag, 2008). Additionally,
physical exercise was associated to DG plasticity, with a rise
in long-term potentiation (LTP; van Praag et al., 1999a), and
an increase of the complexity of the dendritic arborization
and of the number of spines in granule cells (Eadie et al.,
2005). Interestingly, LTP is more easily induced in younger
neurons, due to different active and passivemembrane properties
(Schmidt-Hieber et al., 2004). Since exercise enhances LTP
amplitude specifically in the DG (van Praag et al., 1999a), it
is possible that newborn neurons could have an essential role
in synaptic plasticity (Vivar et al., 2013; Duzel et al., 2016).
These neuroplastic changes may present relevant implications,
as exercise is known to facilitate learning and memory and to
decrease depressive symptoms, which are linked to cognitive
decline (Cotman et al., 2007; Hillman et al., 2008; Vivar et al.,
2016).

Another remarkable alteration induced by aerobic training,
inclusively seen in the adult human brain with magnetic
resonance imaging (MRI), is the increase in hippocampal volume
and the reversion of its 1%–2%/year decline (Erickson et al.,
2011). A neuroprotective effect of physical exercise has been
considered to fight brain atrophy and could protect against age-
and disease-related mental decline (Cotman et al., 2007). This
volume gain after physical exercise is apparently selective to the
HF, which suggests that neurogenic cell proliferation could be
at least partly responsible (Pajonk et al., 2010; Erickson et al.,
2011; Biedermann et al., 2016). In mice, a strong correlation was
found between the number of DCX-positive cells and the gray
matter volume of the DG (Biedermann et al., 2016). Additionally,
HF focal irradiation, which can nearly abolish neurogenesis,
is sufficient to block the effects of running on hippocampal
morphology (Fuss et al., 2014). Neurogenesis-related plasticity
seems to play a role in exercise-induced volume changes, but
other biological mechanisms could help explain such changes in
the CNS (Ho et al., 2013), like dendritic arborization complexity
(Eadie et al., 2005; Redila and Christie, 2006) or variations of the
cerebral blood volume (Pereira et al., 2007).

Many cellular and molecular mechanisms could influence
the positive effects of exercise in neurogenesis (Figure 1).
Levels of BDNF, for instance, increase with exercise in
humans (Ferris et al., 2007; Rasmussen et al., 2009) and
gene and protein expression in the HF can be elevated after
running in rodents (Neeper et al., 1995; Berchtold et al.,
2001). Ablation of the gene encoding TrkB in precursor cells
blocks the exercise-induced potentiation of neurogenesis (Li
et al., 2008). Interestingly, mice lacking BDNF have impaired
hippocampal LTP (Korte et al., 1995), which suggests this
factor may be behind exercise-induced synaptic remodeling and
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FIGURE 1 | Possible mechanisms for exercise-induced effects on hippocampal neurogenesis. Physical exercise may be a rewarding or a stressful activity and can
influence neurogenesis on the basis of a neuroendocrine balance. A predominant activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, with a
consequent increase in blood glucocorticoids (Droste et al., 2003), may overwhelm the stimulatory effects of exercise on neurogenesis by direct inhibition of the
hippocampal progenitor cells or indirectly through brain-derived neurotrophic factor (BDNF) signaling blockage (Suri and Vaidya, 2013). When the hedonic
component of a physical activity is more significant than the stress response, it may increase the levels of growth factors (BDNF, fibroblast growth factor-2 (FGF-2),
insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF)) and neurotransmitters (serotonin (5-HT)) in the hippocampal formation (HF) enough
to promote neurogenesis (Gomez-Merino et al., 2001; Schoenfeld and Gould, 2012, 2013; Klempin et al., 2013).

plasticity (Park and Poo, 2013; Duzel et al., 2016). Like BDNF,
neurotrophins FGF-2, IGF-1 and VEGF have been implicated
in adult neurogenesis, and their levels are increased in blood
after running, although recent studies have raised some doubts
(Voss et al., 2013; Maass et al., 2016). Serum IGF-1 uptake by
hippocampal neurons increases in response to exercise in rats,
and administration of a blocking IGF-1 antiserum impaired
exercise-induced stimulation of neurogenesis (Carro et al., 2000;
Trejo et al., 2001). By blocking the IGF-1 receptor in the HF,
the exercise-induced increase in BDNF was reversed, placing
IGF-1 as a possible upstream molecule of the BDNF regulatory
pathway (Ding et al., 2006). Consequently, peripheral IGF-1
may stimulate neurotrophic molecular cascades and influence
synaptic plasticity (Vivar et al., 2013).

This regulatory influence of physical exercise could also be
achieved through the blood. Exercise and the accompanying
increase in cerebral blood flow and blood-brain barrier
permeability may enhance the transportation of circulating
factors into the brain (Sharma et al., 1991; Van der Borght et al.,
2009; Aimone et al., 2014). Newborn hippocampal cells appear
to be closely associated with blood vessels, forming angiogenic
niches (Palmer et al., 2000). Interestingly, this microenvironment
seems to be regulated by the circulating neurotrophic factors
FGF-2 (Eppley et al., 1988), IGF-1 (Lopez-Lopez et al., 2004)
and VEGF (Krum et al., 2002), and the two latter may play
a central role in exercise (Lopez-Lopez et al., 2004; Bloor,
2005; Vivar et al., 2013). Like IGF-1, peripheral blockage of
VEGF prevents the expected exercise-induced amplification of

Frontiers in Neuroanatomy | www.frontiersin.org 5 June 2018 | Volume 12 | Article 44

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Baptista and Andrade Neurogenesis on the Adult Brain

hippocampal neuroblasts in rodents (Fabel et al., 2003). VEGF
may present a double action in this context, directly stimulating
neural progenitor cells (Jin et al., 2002) and altering their vascular
microenvironment (Fabel et al., 2003). Other evidence for this
neurogenesis-angiogenesis correlation exists. Although there are
contradicting results (Biedermann et al., 2016), studies have
shown that, unlike in other hippocampal regions, the density
of blood vessels in the DG rise in response to running in
mice (Clark et al., 2009; Van der Borght et al., 2009). Physical
activity selectively increases DG blood volume, both in mice
and humans, and changes in this parameter correlated with
post mortem evaluation of neurogenesis in rodents (Pereira
et al., 2007). Indeed, the proliferation of neural progenitor cells
may be dependent on the vasculature (Van der Borght et al.,
2009).

Finally, other mechanisms, independent of the hippocampal
vascular system, may additionally regulate the effects of exercise.
For example, serotoninergic inputs may lead to an increased
proliferation of granule cells and, during physical exercise,
extracellular levels of this monoamine in the rat ventral HF
are increased (Gomez-Merino et al., 2001). In mice lacking
brain serotonin (5-hydroxytryptamine, 5-HT), activity-induced
hippocampal proliferation was impaired (Klempin et al., 2013).
The importance of 5-HT in adult neurogenesis goes far beyond
physical activity since it might be fundamental to understand
the pathophysiology of depression and its connection to
environmental triggers and treatments (Mahar et al., 2014).

Chronic Stress
Stress is one of the most studied modulators of neurogenesis in
the mature brain. Like aging, stress leads to a general decrease in
the neurogenic function of the HF (Schoenfeld and Gould, 2012)
but, like physical exercise, it is a ‘‘regulatory’’ factor associated
to behavioral activity and environmental stimuli (Kempermann,
2011). Expectedly, understanding mechanisms behind stress and
its influence on the HF could be fundamental to study mental
disorders.

The biological stress system is an adaptive mechanism
that focuses the individual on detected environmental threats,
either of psychological, physical or biological nature, and
then attempts to regain homeostasis through neuroendocrine
pathways (Lucassen et al., 2015). While acute stress is the
consequence of a single stressful event, and can display
physiological adaptive advantages, chronic stress is caused by
multiple stressful events over a period of time (Aimone et al.,
2014) and can be associated to the development of maladaptive
responses (Aimone et al., 2014; Lucassen et al., 2015), like anxiety
and depression (Mineur et al., 2006).

Uncontrollable and unpredictable chronic stress can lead
to profound functional and morphological changes in the
brain. In experimental animals subjected to stressful stimuli for
extended periods, modification of presynaptic and postsynaptic
structures occurs, with a decrease in hippocampal LTP (Pavlides
et al., 2002) and dendritic arborization complexity (Magariños
et al., 1996). These changes could affect the strength of
excitatory synapses and information flow in the HF (Lucassen
et al., 2014). Additionally, although conflicting results exist

(Lucassen et al., 2014), evidence suggests that chronic stress
could lead to a reduction in hippocampal volume in rats,
although it might not be due to impaired neurogenesis
(Schoenfeld et al., 2017). Finally, the decrease in the neurogenic
capacity of the HF after chronic stressful experiences was
demonstrated in tree shrews and rodents by several studies,
using multiple stimuli like psychosocial subordination or
electric shocks (Czeh et al., 2001; Dagyte et al., 2009).
Methodological differences could justify the variability in results
but, in overall, there is a compromise in cell proliferation,
neuronal differentiation and survival (Schoenfeld and Gould,
2012).

Glucocorticoid hormones are traditionally viewed as
the central mediators of these downregulatory effects
(Schoenfeld and Gould, 2013). Stress involves both a rapid
autonomic nervous system-mediated reaction and a delayed
hypothalamic-pituitary-adrenocortical (HPA) axis-dependent
response (Lucassen et al., 2015). The elevation of blood
glucocorticoids allows a multi-systemic reaction that affects
the brain and HF, where large amounts of glucocorticoid
receptors (GR) exist (Wang Q. et al., 2013). In rats treated
with corticosterone, there was a significant suppression of
progenitor cell proliferation (Cameron and Gould, 1994;
Brummelte and Galea, 2010), differentiation of newly-formed
cells (Wong and Herbert, 2006) and post-mitotic survival (Wong
and Herbert, 2004). In contrast, adrenalectomy stimulated
hippocampal neurogenesis (Gould et al., 1992). Thus, stress-
induced increases in glucocorticoids could be responsible
for the stress-induced decrease in neurogenesis (Schoenfeld
and Gould, 2012). Indeed, by blocking the HPA axis with
mifepristone, a GR antagonist, the reduction in neurogenesis
caused by chronic stressful stimuli was normalized (Oomen
et al., 2007).

Despite the detrimental effect of stress and glucocorticoid
hormones on neurogenesis, there are paradoxical situations
(Egeland et al., 2015). Some behaviors and non-aversive activities
increase circulating stress hormones but are instead associated
with higher rates of adult neurogenesis (Schoenfeld and Gould,
2012). This is the case with voluntary physical exercise, where
complex changes in the HPA axis increases glucocorticoid levels
(Droste et al., 2003; Figure 1). Likewise, sexual experience
elevates circulating stress hormones but seems associated with
increases in cell proliferation in the rodent DG (Leuner et al.,
2010). Therefore, the presence of elevated plasma levels of
glucocorticoids may reflect the metabolic requirements of
activated tissues and should not be used to distinguish the
emotional component of a specific stimulus, since aversive
psychosocial stressors and positive sexual experiences originate
similar glucocorticoid responses (Buwalda et al., 2012). In this
case, some mechanisms during exercise and sexual activity must
protect the HF and allow neuronal growth despite HPA axis
stimulation. Both exercise and sex have an intrinsic hedonic
component and are generally rewarding experiences (Schoenfeld
and Gould, 2012, 2013). Stimuli associated with a rewarding
nature might unleash growth factors that counterbalance
the effects of glucocorticoids, protecting the hippocampal
neurogenic function (Schoenfeld and Gould, 2012, 2013). Some
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of these possible factors were previously mentioned, like BDNF,
which is upregulated after running and sexual activity (Berchtold
et al., 2001; Kim et al., 2013). This hypothesis could also help
explain why extended voluntary running actually inhibits cell
proliferation (Naylor et al., 2005). In fact, prolonged running,
even voluntary, can develop into a stressor further activating the
HPA axis, unbalancing the hormonal milieu and suppressing
the positive effects of exercise on neurogenesis (Droste et al.,
2003; Naylor et al., 2005; Lucassen et al., 2015). Additionally,
part of the glucocorticoid-mediated decrease in neurogenesis
and brain plasticity might also be caused by direct hormonal
inhibition of the BDNF signaling pathway (Suri and Vaidya,
2013), which is known to decline in stressful experiences (Smith
et al., 1995), thus establishing complex crosstalk between the two
systems.

Other mechanisms may be responsible for stress-induced
decreases in neurogenesis, like changes in neurotransmitter
activity. Positive effects of 5-HT were shown when ablation
of dorsal and medial raphe nuclei compromised serotoninergic
input to the HF, resulting in a decrease of newly generated
cells (Brezun and Daszuta, 2000a,b). The spontaneous firing
activity of these 5-HT raphe neurons can be inhibited by
chronic stressors in rats (Bambico et al., 2009), anticipating
a possible neural pathway by which stress downregulates
hippocampal neurogenesis. In fact, antidepressant treatment
with a selective serotonin reuptake inhibitor (SSRI) induced
increased levels of cell proliferation and reversed stress- and
glucocorticoid-induced hippocampal changes (Malberg et al.,
2000; Malberg and Duman, 2003; Qiu et al., 2007). These effects
are representative of a more complex interconnection between
monoaminergic transmission and stress-induced depressive
disorders, placing neurogenesis in the center of a clinical
paradigm.

FUNCTIONAL AND CLINICAL
CORRELATES OF ADULT-BORN NEURONS
IN THE HF

The inherent methodological difficulty in directly evaluating
hippocampal neurogenesis in human adults has led to the
construction of hypotheses regarding the functional relevance of
newborn neurons more based on theoretical considerations and
less on direct evidence from studies in man. Therefore, questions
remain whether neurogenesis is as paramount to humans as it
apparently is for rodents. Although restrictive, this approach
presents several correlations between human cognition or clinical
conditions and neurogenesis-related behaviors or interventions
that are worth exploring (Aimone et al., 2014; Mahar et al., 2014;
Anacker and Hen, 2017). For organization purposes, functions
attributable to new cells were divided into four groups (Figure 2).

Functional Properties of Young Adult-Born
Neurons
Newly-formed cells are not identical to mature granule cells. In
their process of integration in the preexisting circuitry, many
new neurons die within 4 weeks after birth (Kempermann

et al., 2003), where others survive this critical period thanks
to input-dependent and cell-specific neurotransmission (Tashiro
et al., 2006). Initially, adult-born neurons display increased
excitability, like reduced gamma-aminobutyric acid (GABA)
inhibition, and enhanced plasticity, with a lower threshold
for induction of LTP thanks to specific N-methyl-D-aspartate
receptors (Wang et al., 2000; Ge et al., 2007). Despite the intrinsic
excitability, immature cells also display reduced glutamatergic
innervation and functional synaptic inhibition, possibly limiting
spiking activity (Mongiat et al., 2009; Dieni et al., 2013).
Conversely, mature granule cells present sparse activity due
to hyperpolarized resting potentials and high tonic inhibition
from local GABAergic interneurons (Jung and McNaughton,
1993; Houser, 2007). Surviving new cells will eventually present
similar properties, inputs and firing behaviors as mature granule
cells around 8 weeks after birth, but they still enter the
hippocampal circuitry while transiently immature (Laplagne
et al., 2006; Deng et al., 2010; Toni and Schinder, 2015).
Since they also establish glutamatergic synapses with other
hippocampal neurons (Toni et al., 2008), the introduction of
their unique physiological cellular features in the neural network
possibly contributes to learning and memory (Deng et al.,
2010).

The Cellular Level: Primary Interactions of
New Neurons
Young adult-born neurons present primary interactions at a
cellular level that could explain their remaining general functions
in the HF, and that could sustain the basic principles of
information processing in this region.

Preferential Recruitment
Taking advantage of the transitory hyperexcitability state
(Anacker and Hen, 2017), it is hypothesized that new cells,
when compared to mature granule cells, are preferentially
recruited by new inputs arriving at the DG (Ramirez-Amaya
et al., 2006; Kee et al., 2007; Marin-Burgin et al., 2012;
Rangel et al., 2014). By studying immediate-early genes, whose
expression is acutely increased by neuronal activity associated
with learning and memory (Guzowski et al., 2005), it was
found that young neurons were more active in processing
new information (Kee et al., 2007). This differential selection
is probably also explained by the inherent ‘‘silent activity’’ of
mature granule cells (Jung and McNaughton, 1993; Aimone and
Gage, 2011). Young neurons may bypass inhibitory control and
have enough intrinsic excitability to compensate low excitatory
inputs, outstanding as preferential for neuronal activity (Marin-
Burgin et al., 2012). However, this ‘‘preferential recruitment’’
hypothesis has been contested by studies where granule cells,
regardless of their developmental or adult origin, presented
similar levels of activation (Jessberger and Kempermann,
2003; Stone et al., 2011; Dieni et al., 2013). Therefore,
doubts remain whether excitatory inputs are high enough to
trigger increased spiking activity in newborn neurons (Mongiat
et al., 2009; Marin-Burgin et al., 2012; Dieni et al., 2013,
2016).
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FIGURE 2 | Dimensional levels of adult-born neuron functions in the HF. The distinct physiological properties of young adult-born hippocampal neurons sustain their
specific interactions at a cellular level, like preferential recruitment of new inputs to these cells and changes to the remaining DG activity through mature cell inhibition
and synaptic modulation. Such neurogenesis-induced intercellular connections inside the HF condition the neuronal circuitry as a whole, mainly in its role in context
encoding of the surrounding environment and of new and old experiences. In other words, pattern separation, pattern integration, temporal integration and clearance
of old associations in the network are modulated by neurogenesis. These hippocampal functions at the network level are necessary for some of the hippocampal
functions at cognitive and emotional levels, which are fundamental for learning and memory and for mood and stress regulation. This might be a route by which
ongoing neurogenesis may influence higher functions in humans.

Synaptic Modulation
After genetically increasing the number of adult-born neurons
in mice, a decrease in excitatory postsynaptic currents and
spine density was seen in mature granule cells but without
changing global measures of synaptic transmission (Adlaf et al.,
2017). The proposed mechanism to explain these findings was
‘‘synaptic redistribution,’’ where synapses were not formed
to accommodate new cells but instead were deviated from
surrounding mature cells, possibly compensating initial weak
excitatory inputs (Dieni et al., 2016; Adlaf et al., 2017). This
strengthens reports suggesting that newborn neurons target
afferent connections of mature neurons in a competitive process
(Toni et al., 2007; Lacefield et al., 2012; McAvoy et al., 2016;
Adlaf et al., 2017), eventually leading to a rewiring of the DG.
Additionally, this could be a mechanism explaining the inverse
relationship between the number of immature neurons and the
excitability of the overall network (Ikrar et al., 2013), since
competition from new cells might decrease input stimulation of
mature cells and thus contribute to their sparse activity (Lacefield
et al., 2012; Adlaf et al., 2017).

Mature Cell Inhibition
Another primary interaction new neurons developed in the DG
is related to modulation of granule cell activity itself (Anacker
and Hen, 2017). After optogenetic stimulation, it was found

that new cells in the DG activate local GABAergic interneurons,
which in turn inhibit mature granule cells (Drew et al., 2016). It
also explains that reducing the number of new neurons allows
an increase of overall excitability while enhancing hippocampal
neurogenesis leads to a decrease in the strength of neuronal
activation of the DG (Ikrar et al., 2013).

The Hippocampal Network Level: Context
Encoding
Considering the above-mentioned functions and interactions of
immature adult-born neurons at a local cellular level, it is now
necessary to understand their relevance as a distinct cellular
population for the functioning of the DG.

Pattern Separation and Pattern Integration
Pattern separation is a network process responsible for the
transformation of overlapping inputs into less similar outputs
and has long been associated to the DG both in rodents
(Gilbert et al., 2001) and humans (Bakker et al., 2008).
In its role in forming distinct representations of different
contexts, the HF uses pattern separation tominimize interference
and to enhance discrimination when overlapping information
is received from similar contexts, but not when they are
substantially different (McHugh et al., 2007; Sahay et al., 2011b).
Most inputs arrive from the entorhinal cortex and, in order
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to distinguish them, two non-mutually exclusive processes
may occur: differential neuronal firing rates and recruitment
of non-overlapping groups of neurons for each individual
input (McAvoy et al., 2015). In concordance with the latter,
since recipient granule cells outnumber afferent entorhinal
cortex neurons, information is projected to a densely cellular
‘‘higher-dimension space’’ which facilitates discrimination (Deng
et al., 2010). The DG tonic inhibition and low activity
also contribute to the generation of sparse codes, where a
small subset of active neurons is used for encoding (Wiskott
et al., 2006). These are ideal to reduce overlap by facilitating
recruitment of different granule cell populations, making each
input represented in non-interfering small and distinct groups
of cells (Jung and McNaughton, 1993; Leutgeb et al., 2007;
Deng et al., 2010, 2013; McAvoy et al., 2015). Curiously,
increasing the activity levels of the DG impairs formation of
sparse patterns, disrupting context encoding (Kheirbek et al.,
2013).

This highly tuned hippocampal mechanism of context
encoding is also thought to depend on immature adult-born
neurons. Mice subjected to hippocampal neurogenesis ablation
had impaired spatial discrimination (Clelland et al., 2009) and
disability in disambiguating two different contexts (Tronel et al.,
2012). Conversely, inducible genetic expansion of the adult-born
neuron population improved performance in differentiating
overlapping contextual representations, making increased levels
of neurogenesis sufficient for pattern separation improvement
(Sahay et al., 2011a).

Several hypotheses have been proposed to explain these
findings, and important correlations with functions at the cellular
level exist. Young adult-born neurons may promote pattern
separation by achieving a sparse activation of the DG (Sahay
et al., 2011b; Aimone et al., 2014; McAvoy et al., 2015; Adlaf
et al., 2017), considering synaptic redistribution and inhibitory
feedback on mature cells. Ablating neurogenesis increases
spontaneous network activity (Lacefield et al., 2012), making
mature granule cells repeatedly available for responding to
incoming inputs. This generates increasingly overlapping cellular
representations for similar inputs, contrary to the functional
properties the hippocampal network may need to separate and
disambiguate patterns (Aimone et al., 2014).

By adding encoding units, neurogenesis also increases the
subset of different neurons available to create new codes in
the DG. Their hyperexcitability additionally attracts new inputs
to new cells, effectively separating two contexts in different
hippocampal cellular representations (Aimone et al., 2014;
Figure 3).

On the other hand, hyperexcitability is associated to a
lower tuning specificity, making young neurons less suited
for sparse encoding and more suited for responding broadly
and indiscriminately at entorhinal inputs (Aimone et al.,
2009; Danielson et al., 2016). Therefore, some hippocampal
models place these immature cells at the frontline of ‘‘pattern
integration,’’ encoding most features of the afferent impulse,
identifying novel elements and/or associating similar events
with each other (Aimone et al., 2009; Marin-Burgin et al.,
2012; Kropff et al., 2015). Paradoxically, while responsive to

FIGURE 3 | Hippocampal neuronal network for engram encoding.
Oversimplification of the hippocampal network, defined by a layer of encoding
units (gray circles). These do not illustrate neurons, but instead cellular
representations for information encoding and engram storage. White circles
stand for the added encoding units to the network (neurogenesis). (A) When
initial information (input 1) arrives at the DG, it is represented in a specific
pattern (engram 1, in red) now stored in the HF. (B) If neurogenesis is low, the
hippocampal circuitry will be more stable and previously stored information
can be recalled by partial cues evoking the correspondent engram, which was
not affected by neurogenesis-dependent network remodeling (Frankland et al.,
2013). (C) If neurogenesis is high, like during infancy, new neurons will alter the
circuitry due to synaptic modulation and mature cell inhibition, changing the
connections between encoding units (Frankland et al., 2013; Adlaf et al.,
2017; Anacker and Hen, 2017). As a consequence, the same partial cue might
not be enough to evoke the correspondent engram properly. If the engram
was disrupted by neurogenesis, memory recall is compromised, and input 1 is
forgotten. (D) When new information (input 2) is conflicting or similar to
previous ones (example: a similar drawing but with a slightly different pattern),
high neurogenesis may prevent the DG from creating identical engrams. In
other words, two different yet similar inputs will be coded as different thanks to
neurogenesis, which reinforces cellular representations available for pattern
separation and facilitates recruitment of new cells. This leads to the formation
of a second engram (engram 2, in green) different from the first one, in order to
store input 2. According to the cognitive flexibility hypothesis, clearance of the
old engram may also lead to the better encoding of the new one, reducing
proactive interference (Epp et al., 2016; Anacker and Hen, 2017).
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a wide range of inputs, young neurons could benefit pattern
separation in novel contexts, by supporting the association
encoding of target stimuli with new features in the environment
in a densely sampled representation, then highlighting details
of the novel inputs to favor discrimination (Deng et al., 2010;
Aimone et al., 2011; Kropff et al., 2015; Danielson et al.,
2016).

Considering the hypothesis that new neurons might not
present sufficient intrinsic excitability to compensate for the lack
of glutamatergic inputs (Dieni et al., 2013), it is possible that
they can actually benefit pattern separation through ‘‘low afferent
sampling.’’ In this case, facing reduced synaptic connectivity,
broad responsiveness is tampered, and young cells now sample a
smaller fraction of entorhinal inputs than mature cells, encoding
with high fidelity particular features of a given context with low
overlap between representations of other neurons (Dieni et al.,
2016).

Temporal Integration
Pattern separation and integration have been considered from
a static perspective. However, neurogenesis is a dynamic
process of continuous addition of new neurons to the DG,
making time a critical variable. Considering their preferential
recruitment, and since the immature granule cell population
is in continuous change, new inputs are being received by
continually different subsets of new neurons (Aimone et al.,
2006). As a consequence, inputs separated by long timescales
recruit different non-overlapping immature cells while closely-
related inputs are encoded by the same newborn neuron
population (Aimone et al., 2006; Rangel et al., 2014). In
this way, neurogenesis could be sufficient for temporally
proximal events to be coded as different thanks to pattern
separation but with significant pattern overlap due to ‘‘temporal
integration’’ associating them together (Aimone et al., 2006,
2014). Indeed, it was demonstrated in rats that colchicine-
induced lesions to the DG, which also destroy immature
cells, were capable of disrupting the formation of temporal
associations for events occurring closer in time (Morris et al.,
2013).

Clearance of Old Associations
If immature neurons present preferential recruitment, they
should be expected to better encode novel information (Aimone
et al., 2009), while mature neurons would remain responsible
for older and familial information, possibly matching the
environment at the time of their maturation (Aimone et al.,
2009). With ongoing neurogenesis, integration of new neurons
alters the circuitry through the development of multiple synaptic
connections and through granule cell inhibition, as seen in
the cellular level (Toni et al., 2007, 2008; Epp et al., 2011;
Akers et al., 2014; Adlaf et al., 2017; Anacker and Hen, 2017).
This, however, could potentially compromise recall of learned
information, which depends on the same neuronal network
that existed at the time of encoding (Frankland et al., 2013;
Figure 3). The ability to recall patterns previously stored in
the network by the detection of partial cues is called ‘‘pattern
completion,’’ and it can be effectively impaired due to this

network remodeling (Frankland et al., 2013; Akers et al., 2014).
Computational models predict that new contexts are better-
retained thanks to neurogenesis but that old patterns are affected
by interference caused by the birth and integration of adult-born
neurons (Weisz and Argibay, 2012). The proposed advantage
of neurogenesis in this model could be easing the encoding
of new information by weakening old conflicting information
(Epp et al., 2016). ‘‘Proactive interference’’ is the name given
when previously learned patterns preclude learning new ones
with similar content. Neurogenesis can thus be regarded as
a process that, when increased, leads to the better encoding
of new information and disintegration of old associations,
which reduces proactive interference but compromises pattern
completion (Frankland et al., 2013). By decreasing integration
of new adult-born neurons, pattern completion is preserved
while proactive interference is increased (Frankland et al.,
2013).

These proposed functions for neurogenesis at the
hippocampal network level indeed contribute to context
encoding of overlapping information. By enhancing
neurogenesis, acquisition of conflicting information is facilitated
by pattern separation (Sahay et al., 2011a) and temporal
integration (Aimone et al., 2006), which ease distinction between
spatially and temporally overlapping content, but also by
destabilizing associations that are similar and already stored
in the HF (Anacker and Hen, 2017). All this could lead to
better adaptation to the new environment at both cognitive and
emotional levels.

The Cognitive Level: Learning and Memory
The HF presents a functional segmentation, where different gene
expression and neural pathways separate a more anterior
portion (ventral, in rodents) from a distinct posterior
portion (dorsal, in rodents; Fanselow and Dong, 2010;
Figure 4). Unlike its ventral counterpart, the dorsal HF
primarily establishes cognitive functions and participates in
declarative memory, spatial navigation and contextual learning
(Fanselow and Dong, 2010; Kheirbek et al., 2013; Tanti and
Belzung, 2013). Integrating young cells into these neuronal
circuits is thought to influence hippocampal-dependent
learning and memory (Deng et al., 2009; Wu and Hen,
2014).

Declarative and Spatial Memory
The HF contributes to integration and consolidation of
declarative memory, a long-term process responsible for
remembering events and facts. This role might be even more
critical in the formation of the contextual component of these
memories, through conjunctive encoding association of spatial
and non-spatial information (Aimone et al., 2014; Kitamura
and Inokuchi, 2014). Neurogenesis has been regarded as a
process with a specific function here since it was shown that
reducing the number of newly generated neurons compromised
hippocampal-dependent forms of associative memory (Shors
et al., 2001; Deng et al., 2010). Experimental observations have
approached this hypothesis and the most common strategies
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FIGURE 4 | Functional divisions of the HF. Histological sagittal section of the adult mouse brain, intercepting the HF along its ventral-dorsal curvature. Accordingly to
its anatomical configuration, the HF may be represented as a conjunction of two major networks with differential connections. The main afferent and efferent regions
are seen in the figure. In this respect, there might be a functional segmentation where the dorsal HF mostly mediates cognitive processing of spatial information,
memory and exploratory behavior, and where the ventral HF mainly coordinates responses to psychosocial stress and emotional experiences and regulates affective
states (Fanselow and Dong, 2010; Tanti and Belzung, 2013; Anacker and Hen, 2017). CB, cerebellum; CP, caudoputamen; CTX, isocortex; dCA1, dorsal CA1 field;
dCA2, dorsal CA2 field; dCA3, dorsal CA3 field; dDG, dorsal dentate gyrus granular layer; dHF, dorsal hippocampal formation; TH, thalamus; vCA3, ventral
CA3 field; vDG, ventral dentate gyrus granular layer; vHF, ventral hippocampal formation. Image credit of the brain section: Allen Institute.

focused on the effects of new neurons either before or after
learning.

Neurogenesis is expected to present anterograde effects
on memory, by which the addition of new neurons is
significant before learning new contexts. For example,
suppressing immature adult-born neurons in mice leads to
a deficiency in forming long-lasting spatial memories and in
adopting spatially precise learning strategies in mazes (Deng
et al., 2009; Garthe et al., 2009). By depleting adult-born
granule cells, overall results show impairments in cognitive
performance, but results were inconsistent (Deng et al., 2010).
Nevertheless, neurogenesis seems to be required for some
hippocampal-dependent tasks, but not for hippocampal-
independent ones (Deng et al., 2010). Pattern separation,

for instance, not only is enhanced when neurogenesis is
upregulated but also gives individuals greater capacity in
distinguishing overlapping contextual representations (Sahay
et al., 2011a). This benefits both episodic and spatial memory.
Indeed, ablating neurogenesis in mice impairs association
between multiple spatial cues in order to solve mazes,
due to deficiencies in the pattern separation process and
interference from similar spatial information (Dupret et al.,
2008).

Conditioning neurogenesis after learning shows the
retrograde effects on memory. New neurons are also
fundamental for temporal integration in the HF and, by
encoding temporally different contexts, these cells are well suited
for separating contextual and episodic memories (Rangel et al.,
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2014). By preferentially ablating mature adult-born neurons
after training specific tasks, memory expression was disrupted,
and performance on those tasks was impaired, consistent with
context and spatial memory deficits (Arruda-Carvalho et al.,
2011). These results suggest that adult-born neurons become
committed to memory traces and that neurogenesis is necessary
to provide cellular representations called engrams for encoding
novel information (Arruda-Carvalho et al., 2011; Anacker and
Hen, 2017). This also points to the hypothesis that mature
adult-generated granule cells respond preferentially to inputs
they were exposed to during their immaturity and that, by
specifically inhibiting these neurons, engram and memory
reactivation is impaired (Tashiro et al., 2007; Anacker and Hen,
2017).

Forgetting
The hippocampal network clearance of old associations means
that neurogenic stimuli change the neuronal circuitry in
such a manner that previously effective cues to recall old
memories can no longer trigger the corresponding stored
pattern (Frankland et al., 2013), which was ‘‘forgotten’’
(Figure 3). However, since established memories may conflict
with the integration of similar new ones, forgetting may
be as crucial as memory and essential to react to the
changing environment, allowing more efficient encoding of
novel information (Frankland et al., 2013; Epp et al., 2016). Mice
previously trained for spatial memory in a maze struggled to
remember the solution of the same maze after exercise-induced
neurogenesis but, remarkably, they were able to learn more
readily the new solution when the maze was changed (Epp
et al., 2016). This process seems to be specific for conflicting
memories since neurogenesis did not facilitate encoding of
associations not conflicting with the original learning (Epp et al.,
2016).

Cognitive Flexibility
Cognitive flexibility is a process by which individuals use
previous associations for learning when new challenges appear,
allowing the selection of the most appropriate response
(Kempermann, 2008; Burghardt et al., 2012). For instance,
contextual memories are formed when mice learn the position
where the shock zone on a rotating platform is located.
Although ablating neurogenesis beforehand did not compromise
learning this initial rule and finding the safety location, it
impaired the ability to avoid a new shock zone when it
was changed (Burghardt et al., 2012). Avoiding this new
shock zone requires cognitive flexibility to suppress the
initial response and to select a new behavior. If reversing
a previously learned rule requires formation of adult-born
neurons, then reduced levels of neurogenesis may be insufficient
to prevent proactive interference between the old memory
and the conflicting new information, in this case, the new
location of the safety zone (Burghardt et al., 2012; Anacker
and Hen, 2017). Pattern separation and clearance of old
associations (by inhibiting established engrams) are responsible
for reducing proactive interference and supporting cognitive

flexibility during learning (Sahay et al., 2011a; Burghardt et al.,
2012).

Integrating the Role of New Neurons on Learning and
Memory
Neurogenesis can be regulated by learning itself (Gould
et al., 1999; Kempermann, 2011). Although evidence has been
contested, hippocampal-dependent learning about space and
time seems to support integration and survival of immature
granule cells during their critical period (Gould et al., 1999).
This could be considered the starting point for the role adult
neurogenesis plays in cognition. In other words, production of
new neurons could be stimulated after learning, could promote
forgetting of previous associations through competition with
already incorporated neurons, and could facilitate new memory
formation through coding of incoming inputs and subsequent
consolidation of engrams, either in the HF or by transferring
them to the cortex (Arruda-Carvalho et al., 2011; Burghardt
et al., 2012; Josselyn and Frankland, 2012; Frankland et al., 2013;
Kitamura and Inokuchi, 2014; Epp et al., 2016).

Cognitive Impairments With Age and Disease
Age itself has an exuberant influence on neurogenesis, making
infancy and old age distinct periods of higher and lower
rates of neuron formation, respectively (Knoth et al., 2010;
Spalding et al., 2013). Curiously, humans and some rodents
present ‘‘infantile amnesia,’’ a process that prevents the recall
of declarative memories from early childhood. For example,
human adults are unable to remember events from their first
2–3 years of life (Josselyn and Frankland, 2012). Neurogenesis
has been proposed as a neurobiological substrate of infantile
amnesia (Josselyn and Frankland, 2012), since the integration
of elevated numbers of new neurons during the initial postnatal
period may impede stability of the hippocampal memory
storage (Frankland et al., 2013). As circumstantial evidence, the
exponential decline of postdevelopmental neurogenesis occurs at
the same time as the beginning of long-term memory retention
(Josselyn and Frankland, 2012). Interestingly, using genetic
and pharmacological approaches in infant mice, treatments
that suppressed neurogenesis after memory formation reduced
forgetting and, therefore, infantile amnesia (Akers et al., 2014).
However, recent data suggest this may not be a process of
memory erasure but rather of latent storage (Travaglia et al.,
2016), leaving doubts on the role neurogenesis might play here.

The other extreme of the age spectrum also presents essential
correlations with neurogenesis. Increasing age brings higher
prevalence of cognitive decline and memory impairments,
and these may parallel a progressive decline in neuroblast
numbers (Bishop et al., 2010; Gil-Mohapel et al., 2013). Indeed,
pattern separation is less efficient in older adults, leading to
worse performances in recognition memory tasks (Toner et al.,
2009). Using functional MRI scans, the same tasks revealed
hippocampal hyperactivity in the elderly, which could be a
sign of age-related modifications that impair the encoding
mechanism of pattern separation (Yassa et al., 2011) and possibly
related to changes in neurogenesis (Sahay et al., 2011b; Aimone
et al., 2014). It is plausible that interventions that improve
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neurogenesis may be useful to treat hippocampal dysfunctions
seen during normal aging (Sahay et al., 2011a). A behavioral
intervention like physical exercise enhances neurogenesis and
improves spatial memory and pattern separation in rodents (van
Praag et al., 1999b; Creer et al., 2010). Running is also capable
of reversing age-related memory impairments and neurogenesis
decline (van Praag et al., 2005; Kronenberg et al., 2006; Cotman
et al., 2007; Vivar et al., 2013; Duzel et al., 2016). A cause-
effect relationship has not been established, but increasing
neurogenesis may be behind some of the positive effects of
exercise on learning, memory and general brain health, including
in older individuals (van Praag, 2008; Sahay et al., 2011b; Duzel
et al., 2016).

When aging becomes pathological and neurodegenerative
diseases lead to progressive neuron depletion by the
accumulation of misfolded proteins, cognitive decline and
memory loss are substantially more severe (Kempermann,
2015). Alzheimer’s disease (AD) is a significant cause of
dementia (Bishop et al., 2010) affecting the HF (Mu and
Gage, 2011), and there might be a role for hippocampal
neurogenesis in the pathophysiology of the disease. Indeed,
transgenic animal models show dysfunctional adult-born
neuron formation even before global neuronal loss (Winner
et al., 2011) and proteins associated to the disease, like amyloid
precursor protein and apolipoprotein E, were shown to regulate
neurogenesis (Lazarov et al., 2010; Mu and Gage, 2011).
Whether decreased neurogenesis is just a neuroanatomical
manifestation of the disease or functionally contributes to
memory impairment and cognitive decline is not known,
and significant variability in experimental results prevents
a clear correlation (Mu and Gage, 2011; Winner et al.,
2011). Interestingly, in non-demented individuals with AD
neuropathology, neural stem cells were preserved, when
compared to symptomatic AD subjects, and correlated with
cognitive capacity (Briley et al., 2016). Physical exercise can
be proposed as a protective intervention for maintenance of
neuroplasticity and cognition in AD, and neurogenesis can be
a possible underlying mechanism (Mu and Gage, 2011; Duzel
et al., 2016). Recent studies on neural stem cells also raise
some hope for new effective treatments. In mouse models,
intrahippocampal transplantation of human neural stem cells
improved cognition by enhancing synaptogenesis (Ager et al.,
2015), showing that the brain supports engraftment and
differentiation of transplanted cells, even in aged subjects (Shetty
and Hattiangady, 2016). These promising results highlight
transplantation therapy as a possible intervention for AD (Apple
et al., 2017b).

Overall, results on the interaction of adult-born neurons with
neurodegenerative diseases are still controversial (Pino et al.,
2017), but altered neurogenesis is a common finding (Winner
and Winkler, 2015). Both Parkinson’s (PD) and Huntington’s
disease (HD) frequently include cognitive impairment, and
excessive α-synuclein, a hallmark protein in the pathophysiology
of PD, leads to a decrease in hippocampal neurogenesis (Winner
and Winkler, 2015), although it is likely that dopaminergic
denervation also compromises precursor cell proliferation
(Hoglinger et al., 2004). In HD, on the other hand, both

hippocampal and striatal neurogenesis are reduced (Ernst et al.,
2014; Winner and Winkler, 2015).

The Emotional Level: Mood and Stress
Regulation
The ventral HF plays significant roles in stress and modulation
of emotional behavior, and it is thought to regulate the HPA
axis (Fanselow and Dong, 2010; Kheirbek et al., 2013; Tanti
and Belzung, 2013; Figure 4). Immature adult-born neurons also
present this regional differentiation and, as a result, neurogenesis
might actively participate in limbic functions and influence
anxiety and depression by modulation of the stress response
(Kheirbek et al., 2013; Wu and Hen, 2014).

Regulation of the HPA Axis
The ventral HF projects efferents to the bed nucleus of the stria
terminalis, which in turn inhibits production of corticotropin-
releasing hormone by the hypothalamic paraventricular nucleus.
This hippocampal control of the HPA axis also presents
feedback regulation, with glucocorticoids acting on the pituitary,
hypothalamus, and HF (Anacker et al., 2011). Whether
neurogenesis can be part of the hippocampal effects on the
HPA axis is the missing link in this neuroendocrine chain.
Indeed, by suppressing neurogenesis, the hormonal stress
response is increased after exposure to a stressful stimulus
and, afterwards, glucocorticoid levels present a slower recovery
(Schloesser et al., 2009; Snyder et al., 2011). Neurogenesis
might be necessary for the ventral HF to maintain inhibitory
control over the hypothalamus and to regulate the usual
endocrine response during stressful experiences, but not in
basal conditions (Anacker and Hen, 2017). Predictably, when
stress becomes pathological, hippocampal neurogenesis could be
excessively inhibited, resulting in hyperactivity of the HPA axis
with exaggerated responsiveness to future stress, propagating a
negative cycle (Snyder et al., 2011).

Contextual Encoding of Emotions
Adult neurogenesis displays activity in pattern separation and
clearance of old associations at the hippocampal network level,
but their exact roles on the emotional regulation attributable to
the HF are not fully understood. However, the HF is known
to be involved in pattern separation of emotional information,
and this neurogenic region uses emotional inputs to differentiate
between similar experiences (Leal et al., 2014). Also, lesions in
the basolateral amygdala suppress neurogenesis and prevent new
neurons from responding to fear-conditioning tasks, suggesting
a meaningful connection that provides emotional information
to the HF (Kirby et al., 2012). An integrative view of cognition
and emotion might then partly explain regulation of the stress
response by adult-born granule cells in the HF. For example,
when adult neurogenesis is down-regulated, pattern separation is
impaired and old engrams are not cleared from the hippocampal
network (Clelland et al., 2009; Frankland et al., 2013; Anacker
and Hen, 2017). This leads to two significant consequences.

First, cognitive flexibility is unable to work correctly, and an
increase in proactive interference with preservation of pattern
completion is expected (Frankland et al., 2013). As a result,
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engrams of past stress-associated experiences are preserved
in the hippocampal network. If that particular context no
longer presents stressful stimuli, reduced numbers of newborn
neurons may be insufficient to replace the previous stress-
related association with current and conflicting information
that the context is now safe (Anacker and Hen, 2017). Here,
the perception of fear persists, and chronic stress may develop
(Anacker and Hen, 2017). The immature granule cell population
may thus be responsible for the extinction of fear memories seen
in rodent experimental protocols (Deng et al., 2009).

The second consequence is that due to inefficient pattern
separation, decreased neurogenesis leads to overgeneralization
of external contexts, prompting the organism to respond in
the same way to similar yet different stimuli (Sahay et al.,
2011b). This lack of discriminatory capacity might be adaptive
in stressful environments, where neurogenesis is downregulated,
and generalization of all contexts as fearful leads to active
avoidance of potential harms (Sahay et al., 2011b; Kheirbek et al.,
2012). When maladaptive, like in chronic stress, this mechanism
leads to overwhelmed stress responses facing innocuous new
experiences, incorrectly perceived as aversive (Sahay et al., 2011b;
Egeland et al., 2015). In this case, the stress response to the new
stimulus is influenced by the negative emotional load of similar
past experiences, giving new experiences a generalized stress-
associated emotional context (Egeland et al., 2015).

Affective Regulation and Disease
Modulation of the stress response by adult-born neurons
may be achieved by controlling the HPA axis and encoding
emotional contexts and, when correctly regulated by adequate
levels of neurogenesis, they may allow suitable affective states.
If neurogenesis is suppressed, like during chronic stress, a
vicious cycle may occur leading to continuous maladaptive stress
responses and, possibly, reinforcing a disease state of chronic
psychopathology like anxiety or depression (Gold, 2015; Anacker
and Hen, 2017).

Anxiety-related behaviors may result from dysregulation
of specific brain circuits. The ventral HF was shown to be
responsible for some of these behaviors since DG granule
cell activity suppresses innate anxiety (Kheirbek et al., 2013).
Although ablation of new neurons does not affect basal levels
of anxiety, animal models where neurogenesis was inhibited
presented more often avoidance behaviors in the face of
novel environments, denoting an increased negative impact
of potentially threatening situations (Revest et al., 2009).
These neurogenesis-related changes could reflect the impaired
regulation of the HPA axis stress response (Snyder et al.,
2011). They could also result from the cognitive impairment in
the contextual encoding of emotions, with overgeneralization
and incorrect assessment of risk-related information based on
previously encountered aversive events, often associated to
anxiety syndromes like post-traumatic stress disorder (PTSD;
Revest et al., 2009; Lissek et al., 2010; Sumner et al., 2010; Sahay
et al., 2011b; Kheirbek et al., 2012; Egeland et al., 2015).

Stress is also currently acknowledged as a causal factor
in major depression, especially when psychological demands
are higher than the capacity to cope with stressful stimuli

(Mahar et al., 2014). Depression, as an heterogeneous disease,
may have contributions to its etiology from multiple neural
regions, and the HF has been one of the most extensively
studied (Sahay and Hen, 2007). Macroscopically, MRI scans
found decreased hippocampal volume in depressed subjects
(Videbech and Ravnkilde, 2004), with the magnitude of this
reduction correlating with illness duration in patients with
multiple episodes (MacQueen et al., 2003). The possibility that
hippocampal neurogenesis could help explain depression and its
intrinsic changes to the CNS has prompted multiple studies and
remains an open field of investigation.

The ‘‘neurogenic hypothesis’’ states that a reduced production
of new DG cells is related to the pathophysiology of depression
(Samuels and Hen, 2011) and several animal models of the
disease have shown decreased neurogenesis (Sahay and Hen,
2007). In post mortem studies in humans, it was also found that
untreated individuals with major depressive disorder presented
smaller numbers of mature granule cells and reduced granular
layer volume, specifically in the anterior HF (Boldrini et al.,
2013). Additionally, younger age of disease onset was associated
to even fewer granule neurons at observation (Boldrini et al.,
2013). Since there was no apparent decrease in the number of
neural progenitors in depressed patients (Boldrini et al., 2009),
mood disorders could affect neurogenesis in the maturation
and/or survival phases (Boldrini et al., 2013).

However, the central question here is whether decreased
hippocampal neurogenesis is merely an epiphenomenon, a
‘‘neuroanatomical symptom’’ of depression, or is actually
involved in hippocampal functional deficits seen in these
patients, including not just mood dysregulation and inefficient
responses to stress but also cognitive and memory impairments
(Lee et al., 2013; Figure 5). On the one hand, although
anhedonia-like behaviors have been provoked in neurogenesis-
deficient mice (Snyder et al., 2011), ablating neurogenesis
in healthy experimental animals mostly failed to induce
depressive/anxious phenotypes, suggesting depletion of
adult-born neurons in the HF is insufficient to trigger the
complete pathophysiology of the disease (Petrik et al., 2012;
Eliwa et al., 2017). On the other hand, experimental protocols
studying chronic treatment with antidepressants in rodents
showed an increase in hippocampal neurogenesis (Malberg
et al., 2000), which might be necessary for their behavioral
effects since abolishing neurogenesis blocks behavioral responses
to medication in mice (Santarelli et al., 2003; Samuels and
Hen, 2011). Pharmacologically-inducible neurogenesis may
thus outweigh stress-induced hippocampal cell depletion and
general atrophy (Malberg et al., 2000), possibly contributing to
the positive effects of antidepressant therapy by reestablishing
a functioning HF neuronal network at both emotional and
cognitive levels. In spite of this, intact neurogenesis appears to
be necessary for antidepressant efficacy only in some behavioral
paradigms (David et al., 2009) and drug proliferative effects were
dependent on the mice strain (Holick et al., 2008). This points
to complementary neurogenesis-dependent and neurogenesis-
independent actions and raises doubts on the need of an intact
neurogenic HF for antidepressant treatment efficacy (Petrik
et al., 2012).
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FIGURE 5 | Hippocampal deficits in proposed neurogenesis-related conditions. Diagram showing aging and some diseases potentially associated with a chronic
loss of adult newborn neurons in the HF. The horizontal axis is organized according to hippocampal deficits, with cognition and mood regulation at opposite ends. In
the vertical axis, brain physiology and neurodegeneration are at opposite ends. Units are arbitrary. Although depression is the hallmark of affective disorders, it is
intrinsically associated to cognitive decline. On the other hand, Alzheimer’s disease is a predominantly debilitating dementia but depressive or anxious symptoms are
common. Therefore, regardless of the pathophysiology involved, no hippocampal condition can actually be separated in either of the deficit groups, and
neurogenesis may be a mechanism underlying such clinical spectrum.

This regulatory action of antidepressant drugs appears to
occur during proliferation, maturation and survival of newborn
neurons (Eliwa et al., 2017) and there is consistency between
the latency of antidepressant effects and the duration of
the maturation period for new cells (Sahay and Hen, 2007).
Many drugs with antidepressant actions, or commonly used
in depressed patients, have been studied from this neurogenic
perspective.

Most antidepressants available today in clinical practice
stimulate monoaminergic transmission in the CNS (Mahar et al.,
2014; Eliwa et al., 2017). 5-HT, a neurotransmitter widely
recognized as central in the pathophysiology of mood and
anxiety disorders, is known to increase adult neurogenesis in
mice and its blockage decreases proliferation of progenitor cells
(Brezun and Daszuta, 1999; Schmitt et al., 2007; Apple et al.,
2017a). Indeed, SSRI drugs selectively increase 5-HT levels,
and chronic treatment with fluoxetine in rodents as showed
reversion of hippocampal neurogenesis inhibition and reversion
of behavioral changes associated to depressive states (David
et al., 2009). In humans, SSRI-treated individuals with major
depressive disorder presented greater amounts of amplifying
neural progenitor cells than controls in the anterior HF (Boldrini
et al., 2009) and, unlike untreated patients, had a granule
cell count comparable to healthy subjects, with numbers that
correlated well with DG volume in post mortem analysis
(Boldrini et al., 2013). A possible reversion of hippocampal
damage as a result of antidepressant therapy has also been
seen in PTSD patients, where treatment with paroxetine lead
to an increase in MRI-measured hippocampal volume and
was effective in ameliorating symptoms and improving verbal
declarative memory (Vermetten et al., 2003).

In an attempt to increase selectiveness of these serotoninergic
drug effects, the 5-HT1A receptor was studied and discovered
to mediate fluoxetine’s effects in mice, both neurogenic and
behavioral (Santarelli et al., 2003). The receptor is located
postsynaptically in the HF and, remarkably, is associated to
polymorphisms that may predispose to mental illnesses like
anxiety and depression (Le François et al., 2008). Buspirone is
commonly used for the treatment of generalized anxiety and
in depressive states and, as a 5-HT1A direct partial agonist,
soon became a target of investigation in the field. Curiously,
buspirone effectively enhances hippocampal neurogenesis in
the mammalian brain (Grabiec et al., 2009). A drug with
similar mechanism of action, tandospirone, also increases basal
hippocampal neurogenesis dose-dependently (Mori et al., 2014)
and prevents anxiety-related behavior provoked by psychosocial
stress in rodents, while additionally protecting the DG from
neurogenesis downregulation (Murata et al., 2015).

Other therapeutic options for depression include tricyclic
drugs, which encompass multiple neurotransmitter modulating
actions and, therefore, more side effects. Still, they remain in
common clinical use. Imipramine, for example, was still effective
in fluoxetine-resistant 5-HT1A knock-out mice (Santarelli et al.,
2003) and its influence on the noradrenergic system may be
crucial, since noradrenalin also stimulates the early stages of
neurogenesis (Eliwa et al., 2017). Treatment with imipramine
can reverse neurogenic deficits in rat models of depression (Van
Bokhoven et al., 2011).

If standard antidepressants fail to induce clinical remission,
other therapeutic solutions must be proposed. This is the
case with atypical antipsychotics, which can be considered
in refractory major depressive disorder (Papakostas et al.,
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2007). Apart from being dopamine D2 receptor antagonists,
they also convey modulating actions in serotoninergic and
noradrenergic receptors. Possibly for this reason, clozapine
promoted an increase in hippocampal neurogenesis and
was effective in reverting stress-induced behavior in rodent
models of depression, with additional positive results in
behavioral flexibility tasks (Morais et al., 2017). Similarly,
as an augmentation agent in fluoxetine-resistant rodents,
quetiapine improved depressive behaviors while increasing the
number of adult-born hippocampal neurons (Wang Y. et al.,
2013). Clozapine and quetiapine are in great contrast to
typical antipsychotics, like haloperidol, which is incapable of
ameliorating depressive-like phenotypes in mice and, in fact,
has negative effects on hippocampal neurogenesis (Morais et al.,
2017).

By promoting a normal neurogenic function in the HF, drugs
with antidepressant activity are seen as capable of reestablishing a
more physiological neuronal network in depressed subjects. This
may break the negative ‘‘vicious cycle,’’ with the HF regaining
control over the stress response, and possibly the HPA axis.
Chronic stress impairs the hippocampal-dependent inhibition
of this endocrine pathway, generating hyperactivity alongside
glucocorticoid hypersecretion, common in depressed patients
(Nemeroff et al., 1984; Rubin et al., 1987; Surget et al., 2011; Zhu
et al., 2014). These changes are relevant for disease progression
since improved HPA axis regulation is associated with better
outcomes in depression treatment and remission (Appelhof et al.,
2006; Ising et al., 2007). At least part of the neurogenesis-
dependent effects of antidepressant drugs might be achieved
by recruiting new neurons to restore hippocampal-dependent
inhibition of the HPA axis, thus enabling recovery (Surget et al.,
2011; Eliwa et al., 2017).

Cognitive functions related to the hippocampal network
might also play a role in affective regulation. Stress-related
disorders and depressive-like traits are associated with a
negative cognitive bias, where ambiguous situations are
interpreted pessimistically (Enkel et al., 2010). Depression is
also associated with a decrease in declarative memory and to
worse performances on hippocampal-dependent tasks, including
pattern separation (Dere et al., 2010; Shelton and Kirwan, 2013).
Altogether, memory impairments and altered interpretation of
ambiguous contexts may be related to a decrease in hippocampal
neurogenesis (Gandy et al., 2017). Indeed, impaired cognitive
flexibility and pattern separation inefficiency, which leads to
overgeneralization (Sahay et al., 2011b), are commonly seen in
depressed patients (Sumner et al., 2010; Belzung et al., 2015). The
‘‘neurogenic hypothesis’’ brings an enthusiastic but still remote
possibility that modulating hippocampal neurogenesis could
benefit cognitive impairments and aid recovery in depression
(Sahay and Hen, 2007; Kheirbek et al., 2012; Eliwa et al.,
2017). Chronic treatment with antidepressants might act in
the full extent of the HF, not just in the ‘‘emotion-centered’’
anterior/ventral portion, possibly modulating the cognitive
component of the stress response (Eliwa et al., 2017). However,
central links are still missing here, specifically evidence on
5-HT and the reversal of decreased pattern separation with
antidepressants in depressed subjects (Eliwa et al., 2017).

Just like mood disorders may compromise cognitive
functions, neurodegenerative diseases are also prone to cause
anxiety or depression-like symptoms (Winner and Winkler,
2015; Figure 5). This essential interplay between diseases of
cognition and emotion may withstand as a ‘‘clinical argument’’
in favor of the integrative role for new neurons in the brain,
as one of the mediators of hippocampal functional regulation
of learning, memory, mood, and stress. Thus, conditions that
affect the HF may be expected to perturb neurogenesis and
possibly lead to both types of disability. Age itself is associated to
cognitive and emotional dysregulation, and growing knowledge
on the neurogenic effects of antidepressant drugs launched an
important debate for future investigations in the field of healthy
aging, among others (Boldrini et al., 2018).

CONCLUSION

For the past half-century, adult neurogenesis has been extensively
studied in an attempt to characterize the neurogenic areas of
the mature brain and to determine its controlling and regulatory
factors. Perhaps the most relevant question, that yet remains to
be fully answered, is the one regarding the role new neurons play
in the functional activity of the mature brain and whether these
cells display any clinical relevance. There are still doubts on the
extent of neuronal production in the human adult, and recent
data (Dennis et al., 2016; Sorrells et al., 2018) has questioned
the very existence of such a process. However, positive results
identifying adult neurogenesis (Eriksson et al., 1998; Knoth
et al., 2010; Spalding et al., 2013; Boldrini et al., 2018) cannot
be entirely refuted and more optimistic studies, that enhance
the role of adult-born neurons in numerous pathways (Aimone
et al., 2014; Kempermann, 2015), contrast with the more skeptic
view. So far, the greatest necessities in this field of science are
more accurate approaches, cell markers and human imaging
protocols that can efficiently study neurogenesis and reconcile
discrepant results. Although contradictory evidence exist, the
proposed hypothesis and subsequent clinical correlates represent
the ongoing research and are essential to understanding one
of the possible neuroplastic events that ensures the continuous
modification of the CNS during adulthood.
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