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Decision-making is an ethologically adaptive construct that is impaired in multiple
psychiatric disorders. Activity within the mesocorticolimbic dopamine system has been
traditionally associated with decision-making. The endocannabinoid system through its
actions on inhibitory and excitatory synapses modulates dopamine activity and decision-
making. The aim of this brief review is to present a synopsis of available data obtained
when the endocannabinoid system is manipulated and dopamine activity recorded. To
this end, we review research using different behavioral paradigms to provide further
insight into how this ubiquitous signaling system biases dopamine-related behaviors to
regulate decision-making.
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SCOPE AND INTRODUCTION

When presented with several alternatives and when deciding which course of action to take,
organisms have to integrate different pieces of information. These pieces of information
include, but are not limited to the size of the reward, risk, physiological states and expected
time to obtain a reward. After the integration of these pieces of information, it is anticipated
that the organism will choose the option with the highest value. Given the combination
of different variables at the moment of making a decision, the value of the reward rarely
represents its objective properties, it represents subjective desirabilities. The representation of
idiosyncratic values of different goal objects is encoded in different neural systems (Kable
and Glimcher, 2007). Numerous studies on decision-making have shown that dopamine
(DA) plays a critical role in the representation of multiple variables underlying the perceived
reward value and reward-seeking. This is not surprising, given the array of structures to
which DA neurons project and the different modalities of DA release. For some researchers,
DA phasic firing encodes reward value (Tobler et al., 2005; Kobayashi and Schultz, 2008).
Others have emphasized the role of DA release in different brain areas in the modulation of
different processes involved in reward valuation. For example, in the modulation of reward
sensitivity (Wise and Rompre, 1989) or reward-gain (Hernandez et al., 2010; Hernandez and
Cheer, 2012), in the modulation of effort cost and vigor (Niv et al., 2007; Salamone et al.,
2007); whereas others have put an emphasis on the role of DA release in incentive salience
(Berridge and Robinson, 1998).

Given the profusion of processes that DA firing and release is involved, it is of great
interest to understand how other brain networks alter the DAergic system activity. One system
that is pivotal in the modulation of different circuitries is the endocannabinoid (eCB) system.
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The eCB system, through its interaction with excitatory and
inhibitory afferents to the ventral tegmental area (VTA), has
proven to be critical in fine-tuning decision-making processes
(Melis and Pistis, 2012). Here, we will review the effects
of activation and inactivation of eCBs on diverse appetitive
behavioral paradigms and how these manipulations alter the
behavior and accompanying DA dynamics.

BRIEF INTRODUCTION TO THE eCB
SYSTEM

Ever since the cloning of the central cannabinoid receptor CB1R
(Matsuda et al., 1990) and the isolation of the first endogenous
cannabinoid (eCB) (Devane et al., 1992), the eCB system has been
of great interest to neuroscientists. CB1Rs are the most abundant
Gi/o coupled receptors found in the brain (Herkenham et al.,
1991; Howlett et al., 2002) and they modulate a wide array of
functions and processes, ranging frommotor control to decision-
making.

The eCB system is comprised of cannabinoid receptors
(CB1R, CB2R), their endogenous ligands and the enzymes
that degrade them. The ligands most thoroughly studied and
characterized are anandamide and 2-arachidonoyl glycerol
(2-AG). eCBs are lipid-derived metabolites that are produced
‘‘on-demand’’ by postsynaptic cells and immediate released. The
signal that the cell uses to start the biochemical cascade for
eCBs synthesis is, in general, an enhancement in intracellular
Ca2+ concentration. This increase in Ca2+ is due to cell
depolarization or mobilization of intracellular Ca2+ stores (for a
detailed review on the synthesis of eCBs; see Di Marzo, 2006).
Once produced and released, eCBs act retrogradely mostly onto
CB1R localized on excitatory (glutamatergic) and inhibitory
(GABAergic) terminals (Elphick and Egertová, 2001; Wilson
and Nicoll, 2001; Alger, 2002). The activation of these receptors
produces molecular changes leading to the closing of Ca2+

(N- and P/Q type) channels (Twitchell et al., 1997) and/or
opening of K+ channels (Mackie et al., 1995). The effect of
these changes at the cellular level is to reduce the probability
of neurotransmitter release (Maejima et al., 2001; Lupica and
Riegel, 2005) thus, influencing both short- and long-term forms
of synaptic plasticity (Alger, 2002). After eCBs reach their
target, they are rapidly degraded. Specifically, fatty acid amide
hydrolase (FAAH) participates in anandamide degradation (Di
Marzo et al., 1994) whereas monoacylglycerol lipase (MAGL)
degrades 2-AG (Dinh et al., 2002; De Petrocellis et al., 2004).

eCB ACTIONS IN THE
MESOCORTICOLIMBIC REWARD SYSTEM

eCBs modulate decision-making in part by curbing the activity
of excitatory and inhibitory neurotransmission along the
mesocorticolimbic pathway. eCBs are an important neural
substrate involved in decision-making processes (Wise and
Rompre, 1989; Koob, 1992; Chao and Nestler, 2004) and in
the processing of rewarding stimuli (Wise and Rompre, 1989;
Salamone and Correa, 2002; Schultz, 2010; Hernandez et al.,

2012). eCB activation of CB1Rs at the level of the ventral
tegmental area (VTA), the site of origin of the mesocorticolimbic
dopaminergic (DA) neurons, increases DA burst firing (French,
1997; Gessa et al., 1998; Wu and French, 2000). As consequence,
it facilitates DA release in terminal areas such as the nucleus
accumbens (NAc) and the prefrontal cortex (Chen et al., 1990;
Pennartz et al., 1994; Tanda et al., 1997; Cheer et al., 2007a;
Oleson et al., 2012). Such change in DA excitability is significant
because empirical evidence implicates these neurons in the
encoding of the subjective value of the reward (Tobler et al., 2005;
Roesch et al., 2007; Kobayashi and Schultz, 2008; Roesch and
Bryden, 2011; Lak et al., 2014).When the size or delay of a reward
aremanipulated, DA neurons fire at a higher rate for the cues that
predict the subjective more valuable reward (i.e., larger reward
or shorter delay; Roesch et al., 2007). When effort and delay
to obtain a reward are manipulated, phasic DA release in the
NAc is higher at the cue that predicts lesser exertion. Phasic DA
release also increases at cues that predict an immediate reward
(Day et al., 2011). Importantly when DA signaling is disrupted,
changes in the behavior ensue so that subjects no longer adapt
their behavior according to changes in reward contingencies
(Cardinal et al., 2001; Ghods-Sharifi and Floresco, 2010; Stopper
et al., 2014).

Given that DA neurons do not express CB1Rs (Herkenham
et al., 1991; Matsuda et al., 1993; Julian et al., 2003), the
modulation of their activity and release by eCBs comes indirectly
from the activation of CB1R present on afferents to DA cell
bodies. Under conditions of relatively high neural activity, DA
neurons release eCBs (Alger, 2002; Melis et al., 2004). These
molecules retrogradely bind to CB1R on presynaptic terminals
to dampen the activity of DA afferents. This reduction in the
activity of DA inputs allows DA neurons to regulate their
activity levels (Melis et al., 2004, 2006; Marinelli et al., 2007).
The precise mechanism by which eCBs facilitate DA burst
firing in a behaving animal remains to be fully established.
One possibility is that DA burst firing is the result of the
net effect of eCBs on the combined probabilities of glutamate
and GABA release (Lupica and Riegel, 2005; Melis and Pistis,
2007). Under normal resting circumstances, approximately 50%
of DA neurons are under inhibitory GABAergic drive (Grace
and Bunney, 1984) rendering them insensitive to excitatory
inputs. Direct activation of CB1R on GABA neurons reduces
inhibitory drive on DA neurons, making them more susceptible
to excitatory inputs and therefore, more prone to fire in bursts
(Overton and Clark, 1997; Zweifel et al., 2009). Nonetheless,
activation of CB1R on glutamatergic neurons also reduces the
probability of glutamate release. This reduction would have
a dual effect; it would diminish the excitatory inputs to DA
neurons (Melis et al., 2004), which would curtail burst firing,
but it could also reduce GABAergic inhibitory drive onto DA
neurons. Indeed, glutamate plays amajor role in themaintenance
of DA inhibitory drive by acting on NMDA receptors located in
GABA neuronsmost likely through GluN2A receptors (Bergeron
and Rompré, 2013; Hernandez et al., 2015). A reduction in
glutamate release probability, therefore, adds to an overall
decrease in DA inhibitory drive. Although eCBs can lower
the probability of glutamate release, the effect is limited due
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to the greater relative presence of CB1R on GABAergic vs.
glutamatergic terminals (Mackie, 2005). The combined effect
of decreased glutamate release and CB1R-induced activation
of GABA neurons would result in a net reduction in the
number of DA neurons firing in a slow tonic manner. Under
these conditions, DA neurons are ready to fire in bursts
once NMDA receptors are activated (Overton and Clark, 1997;
Zweifel et al., 2009; but see Lobb et al., 2010 for an alternative
mechanism).

eCB-induced disinhibition of DA neurons in the VTA can be
produced intrinsically by acting on GABAergic interneurons or
extrinsically via GABAergic afferents (Lupica et al., 2004). This
distinction is possible by the general type of GABA receptor
involved. GABAergic interneurons preferentially target GABAA
receptors located on VTA DA neurons; whereas GABAergic
afferents target preferentially GABAB receptors (Johnson and
North, 1992; Sugita et al., 1992). In vitro experiments show that
the excitatory effect of the CB1R agonist HU-210 is occluded
by application of the GABAA receptor antagonist bicuculline
or the CB1R antagonist rimonabant to the slice (Cheer et al.,
2000). Similarly, perfusion of the CB1R agonist WIN55, 212–2
decreases electrically evoked inhibitory postsynaptic currents
(IPSCs) in a GABAA receptor-dependent manner (Szabo et al.,
2002); whereas application of the CB1R antagonist rimonabant
prevents this effect. In addition to this intrinsic mechanism
for the eCB dependent disinhibition of VTA DA neurons,
an extrinsic disinhibition mechanism has been hypothesized
which acts predominantly on GABA afferents targeting GABAB
receptors (Riegel and Lupica, 2004). Here, the application
of CB1R agonist WIN55, 212–2 decreases the amplitude of
the GABAB mediated IPSCs, in a CB1R-dependent fashion.
However, immunocytochemical investigations have not yet
identified the origin of such VTA GABA afferents (Mátyás et al.,
2008). Further electrophysiological research points towards the:
(a) NAc, a critical brain area mediating appetitive behaviors
via the integration of inputs from cortical and limbic structures
(Mogenson et al., 1980); (b) ventral pallidum, a region that plays
a part in the differentiation of wanting, liking, and prediction
components of a reward (Smith et al., 2011); and (c) rostromedial
tegmental nucleus (RMTg), a small node that plays a pivotal role
in processing both aversive and appetitive stimuli (Jhou et al.,
2009b).

The projection of medium spiny neurons (MSN) of the NAc
to the VTA was one of the first afferents proposed (Walaas
and Fonnum, 1980; Sugita et al., 1992; Kalivas et al., 1993).
It was hypothesized that these axon terminals converged onto
DA neurons and directly inhibited DA activity (Einhorn et al.,
1988; Rahman and McBride, 2000). However, recent evidence
using genetic and optogenetics tools is at odds with this notion.
Optical activation of NAc MSN demonstrated that these axons
mainly synapse onto non-DA neurons, and these connections
are fast–inhibitory neurons mediated by GABAA receptors (Xia
et al., 2011). Moreover, it was demonstrated that CB1 expressing
neurons in the NAc are fast-spiking interneurons, not MSNs.
A conclusion obtained via the use of a knock-in mouse line in
which CB1-expressing neurons also expressed the fluorescent
protein td-Tomato (Winters et al., 2012). These results imply that

synaptic projections from the NAc to the VTA should not be
affected by CB1R signaling, although further research utilizing
more sophisticated retrograde labeling techniques is needed.

In vivo electrophysiological studies show that GABA
projections coming from the VP (Aguilar et al., 2015) and
RMTg (Lecca et al., 2011, 2012) are sensitive to cannabinoid
manipulations, and they modulate VTA DA neural firing.
Inhibiting the degradation of eCBs in the VP decreased VTA DA
neural activity observed following chronic treatment with the
NMDA glutamate receptor antagonist phencyclidine (Aguilar
et al., 2015). Likewise, manipulation of the RMTg nucleus has
a profound effect on DA neural firing. The RMTg receives
dense, mostly glutamatergic inputs from the lateral habenula
(Jhou et al., 2009a,b), an area that encodes aversive stimulation
(Matsumoto and Hikosaka, 2009). This nucleus mediates the
inhibitory effect of the lateral habenula on midbrain DA neurons
(Jhou et al., 2009a,b). The RMTg neurons that project to the
VTA form inhibitory synapses, so that activation of this input,
via electrical stimulation, inhibits DA firing (Lecca et al., 2011).
Systemic injections of CB1R agonist produces a long-lasting
decrease in the firing rate of GABA neurons located in the
RMTg. The administration of a CB1R antagonist, which on
its own is devoid of effects on firing rate of GABA neurons,
minutes before the agonist, prevents the inhibition of RMTg
GABA neurons. In vitro recordings, demonstrate that the
reduction in the amplitude of excitatory postsynaptic currents
is the mechanism underlying the inhibition of GABA neurons.
In addition to a decrease in excitatory postsynaptic currents,
CB1R agonist produced a significant increase in paired-pulse
ratio, suggesting that the CB1R agonist produced a reduction
in glutamate release through activation of presynaptic receptors
(Lecca et al., 2011). As expected, the inhibition of GABA neurons
in the RMTg correlates with an increase in firing of DA neurons
in the VTA (Lecca et al., 2011, 2012).

These electrophysiological studies suggest that eCB
modulation of afferents to the VTA potently regulate DA activity
via multiple mechanisms. The modulation of DA responses
has important implications for decision-making processes. If,
by their phasic firing and release, DA neurons integrate the
subjective reward value (Lak et al., 2014) then eCB signaling
is crucial during reward evaluation and can alter the weight
of the variables used during goal assessment. Once different
alternatives are weighted, and different goals are assessed,
subjects have to start an action according to their assessment;
such course of action is believed to represent the option with
the highest expected subjective preference. Thus, reward-seeking
can be used as a proxy to infer the subjective reward value and
changes in decision-making. In the following section, we will
review empirical evidence that shows how altering DA signaling
via CB1R manipulations biases goal-directed behavior.

eCBs AND BSR

Several organisms will deliver electrical pulse trains to different
brain areas via insulated macro electrodes (Olds and Milner,
1954; Olds, 1962; Shizgal and Murray, 1989). The effect
of the electrical stimulation that leads organisms to seek and
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reinitiate the stimulation is called brain stimulation reward
(BSR). Since its discovery, BSR has become the paradigm
of choice for studying the neural reward circuitry and goal-
directed responses. The rewarding signal that arises as a
result of the delivery of electrical pulses shares properties
with natural rewards. BSR can compete with, summate with
natural rewards (Conover and Shizgal, 1994) and BSR can
be degraded in a similar way as natural rewards (Hernandez
et al., 2011). These characteristics strongly suggest that the
behavior maintained by pulses of electrical brain stimulation is
far from being rigid or habitual responding (Hernandez et al.,
2011), but denotes the subject’s integration of different pieces of
information regarding the value of different outcomes. During
intracranial self-stimulation (ICSS), the experimental subject
has to choose between pressing the lever to trigger electrical
pulses or engage in competitive activities, i.e., exploring the box,
sniffing or resting. The time allocated to each activity by the
experimental subject will depend on the perceived value of the
stimulation.

Can the reward induced by the electrical pulses change by
altering DA neurotransmission? ICSS was the first paradigm
implemented to study different reward substrates and the
role of DA in reward (Crow, 1972a,b). Indeed, the electrical
train pulses injected by the electrode produce an increase in
DA cell firing and DA release (Moisan and Rompré, 1998;
Hernández and Shizgal, 2009). A large body of evidence
shows that reward induced by electrical brain stimulation is
highly sensitive to changes in VTA DA neurotransmission, as
measured by the curve-shift paradigm. In this experimental
preparation, a series of stimulation parameters (pulse frequencies
or currents) that drives response rate from a maximal to a
minimal level in an S-shaped manner are used (Miliaressis
et al., 1986). Drugs that enhance DA levels such as DA
transporter blocker GBR12909 produce a leftward displacement
of the curve that relates operant performance to stimulation
parameters (Rompré and Bauco, 1990). Thus, it is inferred
that these drugs boost the rewarding effect of electrical brain
stimulation. Opposite effects are obtained with DA receptor
antagonists like haloperidol and raclopride (Nakajima and Baker,
1989).

What are the consequences of manipulating CB1Rs on
ICSS? Since CB1R agonists increase DA output (Ng Cheong
Ton et al., 1988; Chen et al., 1990); it was expected that
they would potentiate the rewarding signal that arises from
the electrical stimulation; whereas CB1 receptor antagonists
would do the opposite. However, research from different groups
yielded inconsistent evidence. The first reports using ∆9-THC,
showed a reward enhancement effect that was dependent on
the rat strain, such differences in rat strain correlated with
differences in DA efflux in the NAc. Lewis rats showed the larger
behavioral effect as well as, the higher DA release following the
administration of ∆9-THC. In contrast, Fisher and Sprague-
Daley rats showed a minimal behavioral effect and modest DA
increments (Chen et al., 1991; Lepore et al., 1996). Several other
studies using Long-Evans or Sprague-Daley rats have found
a decrease in reward pursuit or no effect (Stark and Dews,
1980; Vlachou et al., 2007); whereas others have found different

results depending on the dosage of ∆9-THC used. At low
doses (0.1 mg/kg) a facilitation on reward is seen; whereas at
a higher doses (1 mg/kg) a hindrance on reward is obtained
(Katsidoni et al., 2013). Similar puzzling effects were observed
with other CB1R agonists (Arnold et al., 2001; Antoniou et al.,
2005). Using indirect agonists such as inhibitors of the enzymes
that degrade eCBs (Vlachou et al., 2006; Kwilasz et al., 2014),
has yielded a lack of effect or a decrease in reward pursuit
(Arnold et al., 2001; Deroche-Gamonet et al., 2001; Vlachou et al.,
2006).

These disparate results obtained in ICSS experiments using
the curve-shift paradigm could be due to genetic differences
as Gardner’s experiments suggest (Chen et al., 1991). Another
explanation could be that systemic injections of these compounds
produce an indiscriminate activation of all brain areas containing
CB1Rs. Given that CB1Rs are the most abundant G-protein-
coupled receptors in the brain (Herkenham et al., 1990)
such broad activation is problematic for studying the neural
underpinnings of reward evaluation and reward-seeking. These
processes most likely require the activation of eCB synthesis and
release to be region, neuron or even synapse-specific (Solinas
et al., 2008). Thus, a wide activation of CB1R might give rise
to negative or dysphoric effects that counteract their positive
action on reward-seeking (Panagis et al., 2014). However, these
explanations do not resolve why when using other experimental
testing procedures (i.e., progressive ratio) CB1R agonist and
antagonist produce behaviorally consistent results, even when
using systematic injection and dose ranges similar to the ones
used in ICSS experiments.

An alternative possibility relies on findings that the effects
of CB1R agonists on DA release in the NAc are moderate at
best when contrasted with other DA agonist or DA receptor
blockers. Such modest DA release is problematic for traditional
curve-shift paradigms used in ICSS experiments. The curve-
shift paradigm lacks the dimensionality to differentiate between
changes in the relative reward strength, the only dimension
measured in this experimental preparation from changes in
costs (opportunity and effort), to obtain a goal object. All
these variables contribute to goal evaluation, and different
researchers have shown the modulation of these by changes
in DA efflux (Wise and Rompre, 1989; Salamone and Correa,
2002; Hernandez et al., 2012). So when using a two-dimensional
perspective, non-measured changes on the ‘‘hidden’’ dimension
can be misconstrued as an effect the subjective reward
intensity.

Why is this methodological distinction important? If DA
release does not modulate the relative value of a reward, then
moderate changes in DA release would produce unreliable
changes in curves relating behavior and stimulation intensity; as
it is the case with CBRs agonist. When using the ‘‘mountain-
model’’ (Arvanitogiannis and Shizgal, 2008) a testing paradigm
that measures opportunity cost in addition to changes in
stimulation strength, CB1R antagonists produce consistent
decreases in opportunity cost. This reduction correlates with a
consistent decrease in DA release (Trujillo-Pisanty et al., 2011).
This effects mimics that of DA receptor antagonists (Trujillo-
Pisanty et al., 2013), and it is consistent but of opposite direction
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with results obtained with non-specific and specific DA transport
blockers (Hernandez et al., 2010; Hernandez and Cheer, 2012).

eCBs AND MOTIVATION

When electrical stimulation is used to study the effects of
different manipulations on the eCB system, the results appear
contradictory. With the inclusion of a third variable in the
measuring paradigm, these are reconciled with the rest of the
scientific research implicating CB1Rs in reward modulation,
relating the motivation for obtaining different classes of rewards
evaluated by several schedules of reinforcement. One of these is
the progressive ratio where the requirements to acquire a single
reward is exponentially increased, within a single session until
the experimental organism stops responding. ‘‘Breakpoint’’ is the
ratio at which the subject stops responding. It is assumed that
this schedule measures the relation between response effort and
the value of a particular reward (Hodos, 1961). Thus, inferences
about the willingness of the organism to work to obtain a goal
object can be drawn.

If cannabinoid agonists are used in conjunction with this
schedule, they increase breakpoints. Thus, the experimental
subjects are willing to lever-press more for a single reward. This
effect has been consistent across different classes of rewards
(Higgs et al., 2005; Solinas and Goldberg, 2005; Ward and
Dykstra, 2005; Gamaleddin et al., 2012; Jones and Kirkham,
2012; Oleson et al., 2012) and equally consistent but opposite
effects have been obtained with CB1R antagonists (Solinas and
Goldberg, 2005; Ward and Dykstra, 2005; Maccioni et al., 2008;
Rasmussen and Huskinson, 2008; Xi et al., 2008; Gamaleddin
et al., 2012; Hernandez and Cheer, 2012). Recent research
shows that inhibiting 2-AG degradation, but not anandamide
increases breakpoints. Moreover, intra-VTA inhibition of 2-AG
degradation facilitates reward-seeking and DA phasic release
(Oleson et al., 2012).

eCBs AND DISCOUNTING

The value of a goal object depends on how distant in the
future it is. When an organism is deciding among different goal
objects, it has to consider into its computations how distant
in the future different goals objects are and take a decision
based on the best-perceived alternative. At the decision point, the
organism will select the option with the highest perceived value.
Temporal discounting can bemeasured by allowing experimental
subjects to choose between two alternatives: one that delivers an
immediate but small reward vs. another that delivers a larger but
delayed reward. Under this arrangement, and when questioned
about future choices humans and non-humans subjects show
a preference for the larger distant reward over the immediate
small one. However, as time passes the difference between the
small and large reward becomes less prominent and preference
switches (Ainslie, 1975), this change occurs because immediate
rewarding outcomes have a greater subjective value than delayed
ones. Self-control is exercised when the delayed option is still
preferred, whereas impulsivity takes place if the immediate
option is chosen (Rachlin and Green, 1972).

DA firing and release are critically important for temporal
discounting. DA phasic firing correlates positively with the
magnitude of reward and decreases in a hyperbolic fashion
with reward delay (Kobayashi and Schultz, 2008). Similarly, DA
release in the NAc shows patterned release at the cue that predicts
different delays. It shows a decrease that correlates with the
length of the delay (Saddoris et al., 2015). When phasic DA
release is measured at reward delivery DA release is higher for
the larger reward at small to moderate delays, and then decreases
to a level comparable to that of the small immediate reward
(Hernandez et al., 2014).

By pharmacologically manipulating the DA system, during
intertemporal choice tasks, different studies have shown that
acute challenges with drugs that increase DA availability produce
an increase in self-control. Experimental subjects choose more
often the large delayed reward over the immediate small one
(Cardinal et al., 2000; Wade et al., 2000; Winstanley et al., 2003,
2005; van Gaalen et al., 2006; Bizot et al., 2007). Conversely,
drugs that interfere with DA availability produce an increase
in impulsive choice (Wade et al., 2000; van Gaalen et al., 2006;
Floresco et al., 2008). Experimental subjects choose more often
the small immediate reward over one large delayed one. As a
modulator of the DA system, eCB signaling produces remarkable
results. Acute activation of CB1Rs with ∆9-THC leads to
increased self-control that is blocked by CB1R antagonists.
Interestingly, CB1R antagonists attenuate the effect of DA
agonists (Wiskerke et al., 2011). When given alone CB1R
antagonists do not exert a significant influence on self-control.
These results suggest that the eCB system does not play a role in
baseline temporal discounting (Pattij et al., 2007; Wiskerke et al.,
2011; Hernandez et al., 2014).

Although acute increases in DA release increase self-control,
the opposite happens when subjects have chronic experience
with different drugs of abuse that directly or indirectly alters
DA neurotransmission (Di Chiara and Imperato, 1988). Chronic
drug exposure produces plastic changes in the mesolimbic
circuitry and other brain areas and neurotransmitters that
underlie addiction (Nestler, 2001; Everitt and Robbins, 2005;
Kalivas and Volkow, 2005). As stated above, eCBs participate in
the modulation of synaptic plasticity in the VTA (Melis et al.,
2004; Haj-Dahmane and Shen, 2010); where they modulate DA
neuron excitability (Lupica and Riegel, 2005; Maldonado et al.,
2006). eCBs play a critical role in the increase of phasic DA
release observed after the administration of different types of
drugs of abuse (Cheer et al., 2007b). They are necessary for
the development and expression of sensitization (Viganò et al.,
2004; Corbillé et al., 2007; Azizi et al., 2009; Li et al., 2009;
Blanco et al., 2014; Mereu et al., 2015). Also, eCB signaling is
required for conditioned drug seeking and relapse (De Vries
et al., 2001; De Vries and Schoffelmeer, 2005; Maldonado et al.,
2006) as well as cue-induced reinstatement (De Vries et al.,
2001, 2003; Xi et al., 2006). Therefore, the eCB system is
likely to play a role in impulsive behavior observed in drug
addiction.

Our laboratory recently found that eCB signaling is
a canonical component in the development of impulsive
choice caused by chronic cocaine exposure. Specifically, after
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experimental subjects were sensitized to the effects of cocaine
they behaved impulsively in an intertemporal choice task
(Mendez et al., 2010; Hernandez et al., 2014; Smethells
and Carroll, 2015). The pattern of DA release in the NAc
during the task correlates with behavioral performance. Before
sensitization, higher DA release is observed for the larger
reward when the delay is below 10-s. After sensitization has
taken place, phasic release for the small immediate reward
is comparatively higher regardless of the delay. Importantly,
blockade of CB1Rs before cocaine exposure prevented not only
impulsive choice, but it also eliminated maladaptive patterns
of phasic DA release. More importantly, from a therapeutic
perspective, CB1R blockade reverted changes in self-control
observed following cocaine sensitization (Hernandez et al.,
2014).

FUTURE DIRECTIONS

The research showcased in the present review demonstrates that
the eCB system, via modulation of phasic DA release, plays
important roles in decision-making processes. eCB signaling
is critical for adjudicating value to different rewards as well

as for activating, organizing and maintaining goal-directed
behaviors. This happens under normal circumstances and is
usurped when decision-making processes are compromised.
However, the current state of this body of research is only
a first step that will lead to a better understanding of the
potential reach of the eCB system in decision-making processes.
To further our knowledge, it is important to map each
eCB action in all of the relevant circuits thoroughly. This
requires elucidating the exact localization of CB1 receptors
and their active ligands on cell-type specific nodes and under
temporally-resolved circumstances. Such a targeted approach
will greatly enhance our current understanding of the anatomical
frameworks engaged in decision-making processes. With this
information in hand, it will be possible to create models
that more accurately predict changes in the behavior and the
underlying neurochemistry.
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