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The proportion of signal elements embedded in noise needed to detect a signal is a
standard tool for investigating motion perception. This paradigm was applied to the shape
domain to determine how local information is pooled into a global percept. Stimulus
arrays consisted of oriented Gabor elements that sampled the circumference of concentric
radial frequency (RF) patterns. Individual Gabors were oriented tangentially to the shape
(signal) or randomly (noise). In different conditions, signal elements were located randomly
within the entire array or constrained to fall along one of the concentric contours.
Coherence thresholds were measured for RF patterns with various frequencies (number
of corners) and amplitudes (“sharpness” of corners). Coherence thresholds (about 10% =
15 elements) were lowest for circular shapes. Manipulating shape frequency or amplitude
showed a range where thresholds remain unaffected (frequency ≤ RF4; amplitude ≤ 0.05).
Increasing either parameter caused thresholds to rise. Compared to circles, thresholds
increased by approximately four times for RF13 and five times for amplitudes of 0.3.
Confining the signals to individual contours significantly reduced the number of elements
needed to reach threshold (between 4 and 6), independent of the total number of
elements on the contour or contour shape. Finally, adding external noise to the orientation
of the elements had a greater effect on detection thresholds than adding noise to their
position. These results provide evidence for a series of highly sensitive, shape-specific
analysers which sum information globally but only from within specific annuli. These
global mechanisms are tuned to position and orientation of local elements from which
they pool information. The overall performance for arrays of elements can be explained
by the sensitivity of multiple, independent concentric shape detectors rather than a single
detector integrating information widely across space (e.g. Glass pattern detector).
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INTRODUCTION
It is well-established that neurons at the early stages of cortical
visual processing only respond to small fractions of the visual
scene. At the first cortical level (V1), these neurons act like fil-
ters tuned to contour orientation and scale (Hubel and Wiesel,
1962). At subsequent stages along the ventral processing stream
(Ungerleider and Mishkin, 1982; Goodale and Milner, 1992)
neurons become selective for more complex features including
contour curvature, angles, and contour arcs (Dobbins et al., 1987;
Hegde and Van Essen, 2000; Pasupathy and Connor, 2001). At
the highest stages within the ventral stream [inferotemporal cor-
tex (IT) and lateral occipital complex (LOC)], neurons have been
shown to be selective for extended and highly complex stimuli
including faces and objects (Goodale and Milner, 1992; Tanaka,
1996). If cells at the early stages of the visual system are selective
for simple features like contour orientation, the question arises
as to how this local information is integrated to represent more
complex object properties at subsequent stages.

Field et al. (1993) proposed a paradigm that has been used
widely to investigate a first stage of this integration process. This
paradigm required observers to detect a contour path of aligned
Gabors in an array of randomly orientated Gabors. Field et al.

(1993) demonstrated that detection is strongly dependent on the
relative orientation between adjacent elements that make up the
path. If the orientation of neighboring elements exceeds about
30◦, the path becomes invisible. Lateral connections between cells
with similar orientation preferences in V1 have been suggested as
a plausible neuronal substrate for these results (Li and Gilbert,
2002).

Beyond the connections between neurons with adjunct recep-
tive fields in V1, studies have looked at how the visual system
integrates information over wider distances to represent more
extended patterns. One popular approach has been to determine
the minimum number of signal elements required to detect the
presence of a global pattern embedded in arrays of noise elements.
Determining coherence thresholds has been used successfully in a
range of studies on motion (Newsome and Pare, 1988; Braddick
et al., 2000), texture (Dakin, 1997; Wilson et al., 1997; Wilson
and Wilkinson, 1998) and form perception (Braddick et al., 2000;
Achtman et al., 2003). One aim of the current study was to investi-
gate the strategy used by the visual system to detect form structure
in noise. A potential strategy involves the use of texture detectors.
Glass patterns (Glass, 1969) have been used frequently to investi-
gate signal integration in texture perception (Dakin, 1997; Wilson
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et al., 1997; Wilson and Wilkinson, 1998; Dakin and Bex, 2002).
Glass patterns are composed of an array of randomly positioned
dot pairs. The spatial relationship (orientation given by the invis-
ible line connecting dot pairs) can be used to define the geometry
of the global texture. If dot pairs falls on horizontal lines, the
resulting pattern contains parallel (translational) horizontal tex-
ture. If the orientation of the dot pair is tangential to concentric
circles, rotational texture is perceived. It has been shown that
sensitivity is highest for concentric/rotational Glass patterns, fol-
lowed by radial and hyperbolic arrangements and lowest for
parallel texture (Wilson et al., 1997; Wilson and Wilkinson, 1998;
cf. Dakin and Bex, 2002). Given the arrangement of the dots, the
overall geometry of the textures cannot be detected on a purely
local level. The visual system must firstly group dots and com-
pute local orientations and then combine the local information
across space to yield the global structure. The extent over which
signals are pooled across space has been shown to depend on
the type of texture. Concentric and radial Glass patterns are inte-
grated across extended regions, more widely than parallel patterns
(Wilson et al., 1997).

In a modification to the classical Glass pattern, dot pairs were
replaced by oriented Gabors (Braddick et al., 2000; Achtman et al.,
2003); this avoids the need for local orientations to be com-
puted by grouping dots. In this paradigm, about 10% of signal
elements are required to detect circular concentric patterns, how-
ever, coherence thresholds rise for radial and spiral configurations
(Achtman et al., 2003). Introducing orientation jitter increases
coherence thresholds but thresholds are impervious to manip-
ulations of the number, contrast, spatial frequency, polarity, or
position of elements. Given the insensitivity to the local position
of the elements, Achtman et al. (2003) proposed that the under-
lying mechanism pooled signals from anywhere within its large
receptive field, similar to the mechanism proposed for concentric
Glass patterns (Figure 1A; Wilson and Wilkinson, 1998).

An alternative strategy for the detection of form structure in
noise is the recruitment of shape processes. In contrast to tex-
ture, global shape mechanisms are sensitive to signal position
(Keeble and Hess, 1999; Levi and Klein, 2000). Radial frequency
(RF) patterns are a class of stimuli that have been used widely
to study global shape processing (Wilkinson et al., 1998; Loffler,
2008). RF patterns can be used to represent a variety of natural
shapes, including fruits and face contours (Wilson and Wilkinson,
2002; Wilson et al., 2002; Loffler et al., 2003). A number of
studies have provided compelling evidence that RF patterns are
processed globally by integrating information from the entire
contour (Wilkinson et al., 1998; Hess et al., 1999; Loffler et al.,
2003; Bell et al., 2007; Dickinson et al., 2012; Schmidtmann et al.,
2012). Imaging (fMRI) and physiological studies have implicated
extra-striate area V4 in the processing of these types of shapes
(Wilkinson et al., 2000; Pasupathy and Connor, 2001).

Models for RF shape processing propose that information is
integrated across the circumference of a circular contour as long
as the local orientations are tangential to the shape (Figure 1B;
Wilkinson et al., 1998; Poirier and Wilson, 2006). These RF
shape models differ in a fundamental way from Glass pattern
detectors (Figure 1A). Whereas the RF shape detector constrains
both element orientation and position, the Glass pattern detector

Σ
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Σ

FIGURE 1 | Schematic models of global signal integration for

concentric circular structures in noise. The gray images show an
example of the stimuli used in this study. (A) Glass pattern detector (Glass,
1969) selective for global texture. Local contour orientations are processed
across the visual field by a bank of V1 cells (illustrated by the triplet of white
and black ellipses, which represent on and off regions) and their outputs are
summed (�) by the global detector (the Glass pattern detector shown here
is selective for concentric/rotational texture). Provided that their preferred
orientations are perpendicular to radii emerging from the pattern center, the
global texture detector integrates information independent of the local
position of each individual filter. (B) Global shape detector (Wilkinson et al.,
1998). Information from local orientation detectors is pooled by a global
process as long as their preferred orientations are tangential to the shape
(circles in this example) and their positions fall on the circumference of the
contour. Both global detectors constrain local orientation preference but
only the shape detector poses additional constraints on the location of the
local signals. Note that for clarity, the diagrams omit details including
rectification and computation of local curvature (Wilkinson et al., 1998;
Poirier and Wilson, 2006).

requires element orientations to be concentric but is insensitive
to position. The first aim of the current study was to investi-
gate the nature of the mechanism that limits performance when
concentric contours are embedded in a background of randomly
oriented elements and to distinguish between these two strategies.

The second aim was to determine how the process of signal
integration depends on the global shape of the sampled contours.
To study a range of shapes we employed circular contours as well
as RF patterns with varying number of lobes (e.g., circular or pen-
tagon shapes with 5 lobes) and sharpness (e.g., pentagon with
rounded corners or five-sided star shapes).

MATERIALS AND METHODS
OBSERVERS
Four experienced observers participated in the experiments; one
was naïve as to the purpose of the experiments. All observers had
normal or corrected-to-normal visual acuity. Experiments were
carried out under binocular viewing conditions. No feedback was
given either during practice or during the experiments.

APPARATUS
Stimuli were generated within the MatLab environment and pre-
sented on a LaCie “electron22blueII” monitor (mean luminance
of 65 cd/m2) with a spatial and temporal resolution of 1024 × 768
pixels and 85 Hz, respectively. The monitor was gamma-corrected
by defining the color lookup in a way that minimizes lumi-
nance non-linearities employing routines from the Videotoolbox
(Pelli, 1997). A chin and forehead-rest was used to maintain a
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constant viewing distance of 120 cm. At this distance, one pixel
subtended 0.0177◦. A circular cardboard mask with a diameter of
12◦ was positioned in front of the monitor to minimize reference
cues. All experiments were carried out under dim background
illumination.

STIMULI
Stimuli were presented within square windows (8.9◦ × 8.9◦) and
consisted of multiple, concentric shapes, which were sampled by
oriented Gabors (Figure 2). The shapes (RF patterns; Wilkinson
et al., 1998) were defined by sinusoidal modulations of a radius in
polar coordinates:

r(θ) = rmean · (1 + A · sin(ωθ + ϕ)) (1)

where rmean represents the mean radius (size), ϕ the phase (orien-
tation), ω the frequency (number of cycles or corners), and A the
modulation amplitude (pointedness of each corner). Icons at the
top of Figure 2B illustrate a range of RF frequencies (e.g., ω =
0 = circle; ω = 5 = pentagon shape; ω = 13 = 13-lobed star);

icons at the top of Figure 2A illustrate a range of RF amplitudes
for the case of an RF5 pattern (e.g., A = 0 = circle; A = 5% =
pentagon shape without concavities; A = 20% = five-sided star).

Shapes were sampled by Gabor elements, where each element
is given by:

G = c · e
− (x2 + y2)

2σ2 · cos(2πf (x cos φ + y sin φ) + δ) (2)

The position of a Gabor is given by (x, y) and its orientation by φ.
Its phase, δ, was set to 0 (cosine phase) and the peak spatial fre-
quency, f, set to 6 c/◦. The circular-symmetric Gaussian envelope
of the Gabors had a standard deviation of σ = 0.1◦. The contrast
(c) was 98%.

The Gabor elements in each stimulus array were positioned
according to a polar coordinate system. The radial dimension
was given by the circumference of multiple, concentric RF shapes
(three concentric circles are shown in red in the left-hand icon
in Figure 2A) and the angular dimension by a regularly spaced

FIGURE 2 | Stimulus arrays used in this study. Stimuli consisted of
arrays of Gabors placed on a polar grid. Gabors sampled various
concentric shapes and were positioned on their circumference. The
continuous contours show examples of the sampled radial frequency
shapes, varying either in the number of lobes (B: Shape Frequency) or
the pointedness of each lobe (A: Shape Amplitude). The Gabor arrays
directly underneath the shapes show the corresponding stimuli presented
to the observers. The arrays nominally consisted of multiple concentric

shapes. The red contours superimposed on two of the arrays illustrate
the concentric nature of the stimuli. Gabor orientation was either
tangential to the shapes (signal) or random (noise). In all cases shown
here, the coherence level is 50%, i.e., half the elements are oriented
tangential to the shapes. Note that it becomes increasingly difficult to
perceive the signal with increasing shape frequency and amplitude. The
arrays are not to scale and contain fewer elements than in the actual
experiments. See text for further details.
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radial grid. To achieve an approximately equal inter-element spac-
ing throughout the array, the number of Gabors per RF contour
and their radii (rmean) were co-varied. For all stimulus arrays,
irrespective of the shape of the sampled contours, the number
of elements on each ring was fixed. The innermost shape had
a radius of 0.72◦ and was sampled by 6 elements. The radius
increased by 0.72◦ for each successive concentric shape; the num-
ber of samples increased by 6. This resulted in 6, 12, 18, 24, 30,
and 36 elements for the innermost 6 concentric shapes (rings),
all of which were visible within the square array (they are not
all visible in Figure 2). This arrangement resulted in an average
inter-element spacing between a Gabor and its four closest neigh-
bors of 0.72◦. The total number of elements contained within the
square window depended on the shape of the concentric contours
and ranged from 140 to 160. The concentric contours for any
stimulus array were always matched in shape (i.e., same RF fre-
quency, amplitude, and phase). Gabors were spaced equally along
each shape but angular positions across concentric shapes were
randomized to avoid any obvious regularity within the arrays.
All elements were calculated individually for each presentation.
Consequently, the position of elements varied randomly between
trials. The arrays were presented at the center of the screen with a
small, random positional jitter of ±10 pixels (0.177◦).

Element position was hence determined by the shape to be
tested. Orientation determined whether a Gabor element was sig-
nal or noise. Signal elements were oriented tangential to the RF
shape, at the point where they were centered. The orientation of
noise elements was allocated at random between 1 and 360◦. In
experiment 1, signal and noise elements were assigned randomly
within the entire array. In experiment 2, signal elements were con-
strained to fall on one of the concentric shapes, however, their
position within that shape was selected randomly. This selection
results in an interruption of collinear contour elements for all but
the 100% coherence levels. For instance, for a contour sampled
by 24 elements (ring 4), for a coherence level of 20%, there were,
on average, 4 randomly oriented noise elements between any two
signal elements.

PROCEDURE
Using a 2AFC paradigm with a method of constant stimuli,
observers were asked to detect which of two successively pre-
sented stimulus arrays contained concentric contours. One of
the stimuli contained a variable fraction of signal elements,
the other contained noise only. Note that the positions of the
Gabors within the signal-carrying and noise-only stimuli did not
differ apart from the randomizations described above. Hence,
observers could not use element position as a cue to the task.
Subjects indicated their choice by pressing a key on a computer
keyboard. Subsequent trials were initiated by pressing another
key. Presentation time was 400 ms. In each experimental block,
six levels of coherence (ratio between number of signal ele-
ments and the total number of elements) were randomly pre-
sented. Each coherence level was presented 30 times, in random
order, for a total of 180 trials per condition. Percent correct
responses were calculated and the resulting data fit by a Quick
function using a maximum-likelihood procedure (Quick, 1974).
Coherence detection thresholds were defined as the point on

the function at which observers performed at the 75% correct
level. The coherence levels selected were appropriate for each
condition and each observer. The progression between coher-
ence levels was set to 2 dB. Observers completed short practice
runs prior to data collection and repeated each condition at
least twice, on separate occasions. Thresholds were averaged
across runs. Different shape conditions were run in separate
blocks.

RESULTS
EXPERIMENT 1—DEPENDENCE OF DETECTION THRESHOLDS
ON SHAPE
Coherence thresholds were tested for arrays consisting of differ-
ent concentric RF shapes. In the first condition, the RF frequency
(ω, number of corners/lobes) was manipulated. Observers were
presented with either an RF0 (circular shape), RF2, RF3, RF4,
RF5, RF6, RF8, RF10, or RF13. In order to test non-circular con-
tours the amplitude of all patterns, apart from the circle, was
set to A = 0.05. This corresponds to approximately 10–15 times
the threshold required for normal observers to discriminate sin-
gle, continuous RF shapes from a circle (Wilkinson et al., 1998;
Loffler et al., 2003). Thus, the contours were clearly visible as non-
circular shapes. Icons at the top of Figure 3 show the appearance
of equivalent closed contour RF shapes.

Figure 3A shows average detection thresholds as well as indi-
vidual data for four observers defined as the percentage of signal
elements required to achieve 75% correct performance as a func-
tion of shape frequency. The coherence threshold for circular
contours (RF = 0) was 10.6%. This is in line with previous reports
(Achtman et al., 2003). About 10% of all Gabors (∼15 elements
here) need to be oriented tangential to the concentric circles for
observers to detect the interval with the signal. This level of per-
formance was independent of shape for frequencies of up to RF4
but thresholds increased for higher radial frequencies. A repeated
measures ANOVA with shape frequency as factor showed a main
effect [F(8, 24) = 43.74; p < 0.001]. Throughout the document,
we conducted Fisher’s least significant difference tests (LSD) to
assess differences between individual conditions. According to
this, coherence thresholds for RF ≥ 5 are significantly elevated
compared to the data for a circle (p < 0.05). For the highest
RF pattern tested (13), thresholds were almost four times those
for circles (38% = 57 signal elements). Coherence thresholds
increased approximately with the square of the shape frequency
(R2 = 0.99).

In a second condition, we measured the dependence of detec-
tion thresholds on the shape modulation amplitude (A) for one
frequency (RF5): A = 0 (circle), 0.05, 0.1, 0.2, 0.3. There was
a negligible difference between the circular shapes (A = 0) and
the RF5 pattern with an amplitude of A = 0.05 (Figure 3B).
A repeated measures ANOVA with the modulation amplitude
as factor showed a main effect [F(4, 12) = 58.684, p < 0.001],
but post-hoc tests revealed no significant difference between cir-
cle and A = 0.05 (p = 0.112). Detection thresholds above A =
0.05 increased approximately linearly with increasing modulation
amplitude (R2 = 0.99; dashed line in Figure 3B). Taken together,
there appears to be a range where shape has little effect on detec-
tion thresholds. This is the case for shape amplitude (A = 0.05)
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FIGURE 3 | (A) Dependence of detection thresholds on shape frequency.
The graphs show the individual (colored data points) and average (black
filled circles) detection thresholds (the percentage of signal elements
relative to all elements in the array) as a function of (A) radial frequency
and (B) amplitude. Four subjects participated; observer GK (orange
circles) was naïve as to the purpose of the experiments. The icons
above the data illustrate the general shape of the concentric contours
that were sampled by Gabors and embedded in noise. (A) Shape
frequency: the amplitude of the shapes was fixed at A = 0.05. Detection
thresholds for low RF patterns were ∼10% and remained largely
unaffected up to RF4 but rose for higher RF patterns (the dashed lines

represent the 95% confidence intervals for the circular contours; RF0).
Thresholds increased approximately with the square of the shape
frequency (solid gray line). (B) Shape amplitude (“sharpness” of the
lobes) had a negligible effect on performance for low amplitudes but
decreased approximately linearly (dashed line) when amplitudes were
increased beyond about A = 0.05. The solid gray line shows the
predicted dependence of thresholds on amplitude based on the curvature
maximum of the contour (see Discussion). The error bars here and
elsewhere represent the standard error of the mean across observers.
As is evident from the graphs, there is no quantitative or qualitative
difference between the naïve and the informed observers.

as well as frequency (ω ≤ 4). Increasing the number or sharpness
of lobes beyond this decreases sensitivity.

EXPERIMENT 2—STRATEGY OF SIGNAL INTEGRATION
The aim of the second experiment was to distinguish between
two plausible mechanisms underlying the signal integration in
this task (see Figure 1). The first candidate is a mechanism that is
tuned for contour shape and requires local information to be spe-
cific with regards to the position and orientation of local signals
that feed into it (Figure 1B). The second candidate mechanism
is a texture detector (Glass pattern detector), which is tuned to
orientation but insensitive to local position (Figure 1A).

To distinguish between global texture and global shape mech-
anisms, we manipulated the location of signal elements, either
spreading them randomly across the stimulus region or con-
straining them to fall along individual concentric rings. A global
texture detector should be insensitive to the location of signal ele-
ments within its receptive field and hence the performance for
the two manipulations should be the same. On the other hand, a
global shape detector that only sums information along the con-
tour for which it is tuned would require fewer signal elements if
they fell on the contour than if they were spread randomly.

In experiment 1, signal elements were randomly allocated to
any of the Gabors in the array. In the experiment here, signal
elements were constrained to individual contours (i.e., one of
the concentric shapes). Sensitivity was measured for four radii
(rings) (Figure 4): ring 2 (second innermost of the sampled
concentric contours), which contained 12 elements, ring 3 (18
elements), ring 4 (24 elements), and ring 5 (30 elements). Signal
elements were randomly selected from the respective ring ele-
ments. Performance was also measured when the signal elements

were randomly selected from any of these four rings (84 ele-
ments). Data are reported as the number of signal elements to
reach threshold rather than the coherence levels as in experiment
1, to simplify the comparison between rings. Performance for the
four rings was measured in a single block as four, randomly inter-
leaved conditions. Thus, observers were unable to predict where
signal elements would occur on a trial-to-trial basis. Thresholds
were measured separately for two sets of concentric shapes: a
circle and an RF5 pattern with A = 0.05.

For the circle, neither the size of the contour, nor the total
number of elements on it, correlated monotonically with the
number of signal elements needed to detect the target ring
(Figure 4B). The number of signal elements at threshold was
5.20 ± 0.49 (95% confidence intervals; CI) for the contour with
12 elements and a radius of 1.44◦ and 6.44 ± 1.56 for the con-
tour with 30 elements and a radius of 3.60◦. The fewest elements
were required for an intermediate ring (3.56 ± 0.54 for ring 3
with 18 elements and a radius of 2.16◦). A repeated measures
ANOVA with contour rings as factor showed a significant effect
[F(4, 12) = 22.43, p < 0.001]. Post-hoc tests revealed no signif-
icant differences between any of the rings with the exception
of ring 3, which required fewer elements than the other rings
(p < 0.05).

More importantly, compared to each individual ring, signif-
icantly more elements are needed when signals were randomly
distributed across the entire array (15.25 ± 2.21; “all Rings” in
Figure 4B) or across the four rings (9.62 ± 1.02; “[2,3,4,5]”). This
argues against a mechanism that integrates information linearly
across the entire display (texture detector) and instead suggests
that information is integrated most efficiently when signals fall
on individual contours. We calculated the number of predicted
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FIGURE 4 | Effect of signal element distribution. (A) Examples of stimuli
used to investigate strategies of signal integration. Performance was
compared between conditions where signals were randomly positioned
across rings ([2,3,4,5]) to conditions where signals were constrained to fall
on individual rings. Individual rings contain different number of elements
(12 for ring 2; 18 for ring 3; 24 for ring 4; and 30 for ring 5). The graphs
(B,C) show the individual (colored data points) and average (gray bars)
detection thresholds (number of signal elements). Four subjects were
tested; GK (orange circles) was naïve. (B) For circular contours, few signal
elements were required when they fell on individual rings (between 3.56
and 6.44). Significantly more elements were needed to reach threshold

when signal elements were randomly spread across the entire array (“all
Rings”) or across the four rings ([2,3,4,5]). The prediction of probability
summation over multiple, independent concentric detectors, each
integrating information along individual contours (dashed line) correctly
predicts increased thresholds for the spread condition but slightly
underestimates actual sensitivity. The prediction of a perfect linear
integrator is indicated by the solid horizontal line. It is obvious that the
data for the spread condition are inconsistent with this prediction. (C) The
same pattern was seen for a different shape (RF5; A = 0.05). The asterisks
indicate significant differences (p < 0.05) between any of the four
individual rings and the data where elements were spread.

signal elements for the condition where the signal elements are
spread randomly, based on the actual performance for the indi-
vidual rings. The calculation assumed that four independent
detectors simultaneously process the entire display, each sum-
ming information within an annular region, i.e., along a contour.
If a global process could sum the outputs from such detectors
linearly prior to their individual thresholds, the same signal ele-
ments would be required to reach threshold, regardless of how
they are distributed. This mechanism makes the same prediction
as the texture detector (Figure 1A; black horizontal line), incon-
sistent with the data. An alternative prediction can be based on
the assumption that individual contour detectors are subject to
independent noise sources, and the overall performance is given
by probability summation of their outputs (Graham and Robson,
1987; Morrone et al., 1995; Loffler et al., 2003). We calculated the
prediction of probability summation, assuming 4 independent
contour detectors, each limited by its own noise, in the following
way:

SProbSum =
[

N∑
i = 1

(Si)
β

] 1
β

(3)

SProbSum is the predicted sensitivity when elements are spread
across the array, Si is the sensitivity of the i-th contour detector
(calculated as the inverse of the signal-to-noise ratio at threshold),

N is the number of detectors (4 in this case) and β is the average
slope of the psychometric function. For the current experiments
β was close to 3, in agreement with similar studies (Morrone et al.,
1995; Loffler et al., 2003). This equation is a general form of:

SPred = k · Ar1/β (3a)

where k is an arbitrary constant and Ar corresponds to stim-
ulus area. This equation has been widely used to describe the
modest improvement in sensitivity with increasing stimulus area
(Graham and Robson, 1987; Morrone et al., 1995; Loffler et al.,
2003), under the assumption of equal sensitivity of local detec-
tors. We applied Equation 3 to the data given that the sensitivity
for individual contour rings cannot be assumed equal in our
case. The prediction, shown by the dashed line in Figure 4B, is
close to but slightly underestimates performance when signals are
spread across rings (“[2,3,4,5]”). However, probability summa-
tion is a sub-ideal strategy to combine information from multiple,
independent sources (Macmillan and Creelman, 1991). Other
strategies (e.g., integration rule—Macmillan and Creelman, 1991;
information summation—Machilsen and Wagemans, 2011; opti-
mal Bayesian integrator—Nandy and Tjan, 2008; Gold et al.,
2012) predict slightly better performance in a compound condi-
tion. Analysis (e.g., for an optimal Bayesian integrator by setting
β = 2 in Equation 3; Nandy and Tjan, 2008; Gold et al., 2012)
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shows that this can account for the performance in the spread
condition. Irrespective of the strategy used, it is clear that a
single, global process that linearly sums information across the
entire display is inconsistent with our data. Instead, the perfor-
mance when signals are spread across rings (“[2,3,4,5]”) argues
in favor of multiple, independent contour detectors. Each of
these detectors integrates information only within an annular
region.

This pattern of results was independent of contour shape:
repeating the experiment with concentric RF5 contours yields
very similar data (Figure 4C). The data for individual rings
ranged between 4.37 ± 1.48 (CI) and 6.08 ± 1.24 signal elements
compared to 10.08 ± 1.79 when signals are spread across rings
(“[2,3,4,5]”). Statistical analysis [F(4, 12) = 18.12, p < 0.001]
showed a significant difference (p < 0.05) between each individ-
ual ring and the spread condition. As for the circular shape, the
prediction of probability summation over independent contour
detectors (in this case with shapes given by an RF5) is close,
but slightly underestimates the performance for the condition
where elements are spread across the array. This suggests that the
visual system may engage a more efficient strategy than proba-
bility summation to combine the information from individual
rings. Irrespective of the details of the strategy, the significantly
higher thresholds for the condition when elements are spread
across rings compared to when they are constrained to individual

rings show that signal integration across rings is different and
gives poorer performance than signal integration within rings.

EXPERIMENT 3—TUNING CHARACTERISTICS
Effect of orientation jitter
The aim of the final experiment was to investigate the tuning
characteristics of the mechanisms responsible for sampling local
information along contours by adding external noise to the sig-
nal elements. In the first part, noise was added to the orientation
of the signal elements. Detection thresholds were measured in
the presence of a series of orientation jitter levels for two shapes
(circles and RF5 with A = 0.05). Stimulus arrays were created in
the same way as in experiment 2, with signal elements selected
randomly from individual rings and thresholds determined sepa-
rately for each of four contour rings (ring 2 to ring 5), randomly
interleaved in a single block. This time, instead of signal elements
being oriented tangentially to the contour (experiment 1 and 2),
here orientations were selected from a uniform distribution with
a mean of 0 (tangential to the contour shape) and spreads of 0◦
(no added orientation jitter), ±13, ±25, or ± 45◦ (Figure 5). As
in experiment 2, sensitivity was defined as the number of signal
elements required to detect the signal array.

Detection thresholds show little dependence on orientation
jitter for variances of ±13◦. Differences in performance were
analysed with a repeated measures ANOVA, with shapes (circle,

Var = 13deg Var = 25deg Var = 35deg Var = 45deg
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FIGURE 5 | Dependence of detection of circles (red line and circular

symbols) and RF5 shapes (blue line and squares) on random orientation

variation added to the signal elements. The icons at the top show
examples of contours with different amounts of orientation variance. The
examples are for circular shapes and for ring 5 (fifth contour from the
stimulus center). All 30 elements of that ring are signal elements in these
icons with their orientations drawn from a uniform distribution centered at

the tangential orientation with different amounts of variance. With sufficient
orientation variance (Var = ±45◦), the circular contour is difficult to see even
if all elements are nominally signal. The data (averaged across observers and
rings) show that a small orientation variance of ±13◦ did not affect detection
thresholds but performance deteriorated with higher variances (±25, ±35,
and ±45◦ ). This was independent of shape. Data for a circle and the RF5
pattern were essentially indistinguishable.
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RF5), rings (2, 3, 4, 5) and orientation jitter (0◦, 13◦, 25◦, 35◦,
45◦) as factors. This showed no significant difference between
the two shapes [F(1, 24) = 2.170, p = 0.279] or the individual
rings [F(3, 24) = 2.741, p = 0.136], but a significant main effect
for orientation jitter [F(4, 24) = 318.1, p < 0.001]. Post-hoc tests
revealed no significant differences between orientation jitters of
0◦ and ±13◦ (p = 0.358), however, performance significantly
decreases for higher jitters (p < 0.05).

This suggests that the underlying mechanisms are insensitive
to moderate amounts of orientation noise and that elements with
orientations within ±13◦ of being tangential to the contour are
globally integrated.

Effect of positional jitter
In the second part of experiment 3, positional noise was added
to the signal elements. Detection thresholds were determined for
signal elements with orientations tangential to a circle but with
radial jitter added to their positions. To retain a regular array and
avoid element overlap with increasing amounts of radial noise,
the position of all array elements were selected to fall on circum-
ferences of RF5 shapes with varying amplitude (0.05, 0.1, 0.2, and
0.3) corresponding to radial variations of 5, 10, 20, and 30% of the
radius of each concentric circle (Figure 6). As before, thresholds

for individual rings were tested separately but interleaved within
experimental blocks.

Detection thresholds showed a significant dependence on
position noise [F(4, 8) = 47.74; p < 0.001]. Subjects required on
average 5 signal elements to detect the shape when element
positions were sampled from a smooth circle (0% position vari-
ance). Post-hoc tests revealed no significant differences up to
5% positional jitter (p = 0.271), suggesting that the underlying
mechanism is insensitive to this amount of positional variance.
Even for the highest positional noise tested (30%) only around 14
signal elements were needed to detect the target despite the fact
that this completely eliminated the contour path of a circle.

The number of signal elements required for detection in the
presence of positional noise may be predicted by probability
summation. Assuming that multiple, concentric, shape detectors
simultaneously encode the stimulus arrays, each independent and
limited by its own noise, the two thin lines in Figure 6 illustrate
the predictions for 2 (solid) and 4 (dashed) detectors, respectively.
Therefore, when elements are spread radially and are considered
to fall into the receptive fields of adjacent concentric detectors
tuned to different sizes, this prediction provides a reasonable
explanation for the subtle increase in detection thresholds with
increasing amounts of positional jitter.
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FIGURE 6 | Dependence of detection threshold on radial noise added to

the position of the elements. The icons at the top show examples of
different amounts of positional variance added to a circular shape (ring 4). All
24 elements of that ring are signal elements in these icons. The signal
orientations are tangential to the circular contour but their positions are
sampled from RF5 shapes with varying amplitudes (A = 0.05; 0.1, 0.2, and
0.3) corresponding to radial variations of 5, 10, 20, and 30% of the contour
radius. For a variance of 0◦, signal elements are positioned on a circle with
orientations sampled from a circle (data re-plotted from Figure 3A). Positional

jitter of 5% did not significantly increase detection thresholds but larger
positional variance reduced detectability. The thin horizontal lines are the
predictions for the case of multiple, independent, concentric shape detectors
that encode the stimulus array simultaneously. Based on the threshold for
the baseline condition (0% positional variance), if elements were spread
across a number of independent detectors, the total number of elements
required to reach thresholds can be calculated by probability summation. The
two lines illustrate the predictions for 2 (solid) and 4 (dashed) independent
detectors respectively.
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DISCUSSION
DEPENDENCE OF SHAPE DETECTION ON CONTOUR SHAPE
In the first part of this study, we addressed the question of how
the detection of Gabor-sampled concentric contours depends on
the shape of the contours. In line with earlier results (Achtman
et al., 2003), an average of about 10% of signal elements was
required to detect circular shapes. These coherence thresholds
were somewhat lower than those reported for rotational Glass
patterns, which fall in the range of around 15% (Wilson and
Wilkinson, 1998; Dakin and Bex, 2002). Substituting the circle
for various RF shapes had a systematic effect on coherence thresh-
olds. Whether manipulating shape frequency or amplitude, there
is a region where thresholds were unaffected (frequency: ≤RF4;
amplitude: ≤0.05). Increasing either parameter beyond that crit-
ical value causes thresholds to rise. Thresholds increased with the
square of shape frequency and approximately linearly with shape
amplitude above the crucial value. Compared to the circle, thresh-
olds are increased by about a factor of four for an RF13 and a
factor of five for A = 0.3.

It is tempting to argue that the effect of RF on coherence
thresholds may be due to sampling effects. The classical Nyquist
limit requires at least two sampled elements per sinusoidal cycle
of the RF pattern, resulting in a limit of RF3, 6, 9, 12, 15, and 18
for the 6 innermost rings with 6, 12, 18, 24, 30, and 36 elements.
The Nyquist limit is typically derived for the values (positions) of
a function. In our patterns, the position of elements was always
on the sampled contour. Signal elements were defined by their
orientations (being parallel to the contour). Hence, the signal
elements carry two pieces of information: position and orienta-
tion (i.e., the functional value and its derivative at each sample
point). This would double the Nyquist limit and guarantee suf-
ficient number of elements for all tested radial frequencies with
the single exception of RF ≥ 8 and the innermost ring. It is also
clear that sampling limits did not affect the measurements for dif-
ferent shape amplitudes. The sampling limit does not change as
a function of amplitude but the data show a strong dependence
(Figure 3B). Moreover, the investigation of the performance for
individual rings focused on rings 2 to 5, which are above the
classical sampling limit for the shapes tested (RF0 and RF5).
Considering these facts, it is seems unlikely that sampling limits
have affected our data.

The dependence of coherence thresholds on shape frequency
is consistent with the proposal that low RF patterns are processed
more globally than high RF patterns. Psychophysical studies have
repeatedly demonstrated that certain continuous and sampled
RF patterns are globally processed (Wilkinson et al., 1998; Hess
et al., 1999; Loffler et al., 2003; Bell et al., 2007; Dickinson et al.,
2012; Schmidtmann et al., 2012). Global summation has been
reported for low RF patterns (RF3, 5 and to some extent for
RF10) but not for high RF patterns (e.g., RF24: Loffler et al.,
2003; RF20: Schmidtmann et al., 2012). That detection thresh-
olds in this study are similar for low RF patterns and increase
for higher RF patterns supports the notion that signals from
different parts of a contour are more efficiently pooled for low
compared to high RF patterns. On average, twice as many signal
elements are required to detect an RF10 pattern than e.g., an RF4
pattern.

Our data on shape detection like those obtained in studies
on shape discrimination (typically with single closed contours)
also show a dependence on shape amplitude. RF pattern discrim-
ination thresholds have been shown to increase with increasing
modulation amplitude (Bell et al., 2009; Schmidtmann et al.,
2012). Thresholds for an RF5 pattern, with amplitudes in the
range of those tested here, follow a power-law relationship with
a slope of 0.55 (Bell et al., 2009). For shape detection, fit-
ting a power law function to the data in Figure 3B (A ≥ 0.05)
resulted in a slope of 0.77 ± 0.13 (CI), steeper than for RF
discrimination.

THE ROLE OF LOCAL STRATEGIES: (1) CONTOUR STRINGS
The dependence of detection thresholds on shape frequency and
amplitude may be the result of a range of shape mechanisms that
integrate information more or less efficiently along the circum-
ference of the contour to which they are tuned. Other alternatives
should, however, be considered. One feature that changes with
increasing frequency and amplitude is the relationship between
the orientations of adjacent elements along a contour. Given that
the ability to detect a string of elements in noise has been shown
to depend strongly on the relative orientation of neighboring ele-
ments (Field et al., 1993), it seems important to consider whether
this feature can explain the current data. The orientation differ-
ence between adjacent elements on a circular contour depends on
the number of elements that sample it. For example, in our exper-
imental setup, a circle of radius 3.6◦ is sampled by 30 elements
(ring 5) and each element differs in orientation from its two
neighbors by 12◦. If this orientation difference was responsible
for shape detection, we should expect to see different coherence
thresholds for circles sampled by different numbers of elements.
This is clearly inconsistent with the data (Figure 4). Coherence
thresholds for circles sampled by 12, 18, 24, and 30 elements
(rings 2, 3, 4, and 5) yield similar thresholds despite their elements
differing in orientation by 60, 20, 15, and 12◦, respectively. Thus,
a 2.5 fold change in inter-element orientation difference between
the small and large circle is not reflected in the thresholds. This
also holds for the RF5 data (Figure 4C).

A further argument against the role of inter-element orien-
tation difference follows from the observed effect of increasing
shape frequency and amplitude. Orientation difference increases
by a factor of 1.7 when comparing a circle and an RF13 and by 1.9
when comparing a circle and an RF5 pattern with A = 0.3. The
corresponding thresholds (Figures 3A,B) increased by factors of
4 and 5, respectively.

It has recently been proposed that RF discrimination may
be linked to contour orientation. This suggestion is based on
the observation that RF discrimination thresholds co-vary with
the maximum orientation difference of an RF from circular
(Dickinson et al., 2012). Dickinson et al. found that RF dis-
crimination improves with shape frequency (cf. Wilkinson et al.,
1998; Dickinson et al., 2012); in the present experiment, shape
detection degraded with frequency. While there was no unmod-
ulated circle for comparison in our experiments, we nevertheless
examined whether local orientation difference between RF pat-
terns and unmodulated circles could account qualitatively for
our data.
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The maximum orientation difference is a function of both
shape amplitude (A) and frequency (ω), with the following rela-
tionship (Dickinson et al., 2012):

max

[
�ori (θ) = arctan

(
rmean · A · ω · cos (ω · θ)

r (θ)

)]
(4)

with θ being the angular component of the polar coordinate
system and rmean and r (θ) from Equation 1.

Fitting this function to the data for shape frequency or ampli-
tude (Figure 3) provides a poor fit, arguing against the maximum
orientation difference between an RF pattern and the correspond-
ing circle as an explanation for the dependence of coherence
thresholds on shape in our detection task.

It therefore seems unlikely that either the relationship between
the orientations of adjacent elements or how much they differ
from a circle are critical factors. Accordingly, we think it is doubt-
ful that the rules derived from the psychophysical data on the
grouping of adjacent elements into contour strings (Field et al.,
1993) play a fundamental role in the detection of the sampled,
closed contours in noise in our experiments. Any applicability
of the association field model to our data is further compli-
cated by the fact that the model requires neighboring elements
to be linked into a contour. Interspersed noise elements with
orientations differing from the contour path would dramatically
reduce the visibility of the path. Our stimuli typically contained
a number of randomly oriented noise elements between any two
signal elements, an arrangement which disrupts the continuity of
the contour. For the case of a circle, with average thresholds of
between 4 and 5 elements for individual rings, this results in, for
example, 5 signal elements per 24 elements on ring 4 at thresh-
old. This is equivalent to 1 signal element per 4 noise elements or,
on average, 4 noise elements separating two signal elements along
the contour.

As pointed out by a reviewer, the possibility remains that
some trials will contain adjacent signal elements along a contour
ring. Observers could potentially use this as a cue. To directly
investigate this possibility, we replicated experiment 2 but this
time precluded the possibility of adjacent Gabors carrying sig-
nal. Consecutively numbered elements on each ring were divided
nominally into odd and even numbered elements and signals
randomly assigned to one of the groups. This guaranteed that
two signal elements were separated by at least one noise element
(up to the point of 50% coherence which was well above thresh-
old for all tested conditions). All other experimental properties
were identical to experiment 2. The results for two observers
for circular and RF5 shapes and rings (2, 3, 4, 5) were com-
pared to the data in the initial experiment. A repeated measures
ANOVA with the two shapes (circle, RF5), various rings (2, 3, 4,
5) and the two configurations (with and without the possibility
of adjacent signal elements) as factors revealed no significant dif-
ferences between the two experimental configurations [F(1, 3) =
4.388, p = 0.284]. Hence, imposing at least one noise element
between any two adjacent signals does not negatively affect
performance.

An additional possibility is that observers may use extended
albeit interrupted contour segments. The main difference

between this hypothesis and one that pools information across
entire rings is the extent of global integration. There are two
empirical arguments in favor of summation along the entire con-
tour. Firstly, the number of signal elements at thresholds is small
(e.g., 5 out of 30) and with it the probability of obtaining local
signal strings. Secondly, the probability of obtaining local strings
decreases with increasing number of elements on the ring but
such a dependence of thresholds on ring radius is not reflected in
the data. On balance, the evidence favors summation along entire
contours.

Hence, despite a lack of contour strings, the contours are
detectable, which can only be explained by highly global processes
that have access to information from any part of the contour, and
which do not rely on the relationship between adjacent element
orientations.

THE ROLE OF LOCAL STRATEGIES: (2) LOCAL CURVATURE
The relationship between adjacent elements also affects local cur-
vature. Increasing the shape amplitude or frequency entails an
increase in local curvature (convex and concave) and the change
of curvature at points of inflections becomes more prominent.
The important role of curvature extrema in object perception
has been shown psychophysically (Attneave, 1954; Biederman,
1987) and been supported by physiological studies (Pasupathy
and Connor, 2001). By showing that RF discrimination thresh-
olds increase disproportionately when introducing small gaps at
the peaks of RF patterns, Loffler et al. (2003) suggested that
points of maximum convex curvature play a key role in RF
discrimination. Findings from lateral masking experiments are
consistent with the hypothesis of maximum curvature dominance
(Habak et al., 2004) although other studies have highlighted
a non-trivial role of other parts of the contour (Poirier and
Wilson, 2007; Hancock and Peirce, 2008; Bell et al., 2010). If
local curvature maxima were relied upon, one may expect shape
detection sensitivity to increase with increasing shape amplitude
and frequency as these manipulations increase the maximum
curvature, but this is inconsistent with the data (Figures 3A,B).
For detecting smooth contours in noise, a more appropriate
assumption would be for local curvature to have the opposite
effect, i.e., that coherence sensitivity is inversely proportional
to the magnitude of curvature. The maximum curvature of
an RF pattern is given by (Wilkinson et al., 1998; Bell et al.,
2009):

κ =
(

1 + A + A · ω2

rmean(1 + A)2

)
(5)

Fitting this equation to the data provides a good fit for shape
frequency (R2 = 0.99; Figure 3A; gray line). It also predicts
the observed dependence of coherence thresholds on amplitude
(R2 = 0.98; Figure 3B; gray line) for amplitudes above the critical
value of A = 0.05.

The existence of a range of shape frequencies and ampli-
tudes, over which thresholds remain unaffected, can also be
explained on the basis of local curvature. RF patterns with low
amplitudes, such as those that are typically used for RF discrim-
ination, contain only convex curvature. The amplitude at which
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an RF contour goes from only convex to contain a point of zero
curvature is given by (Dickinson et al., 2012):

A =
(

1

1 + ω2

)
(6)

Hence, where this transition occurs depends on both shape fre-
quency and amplitude. Increasing amplitude and/or frequency
beyond this point results in the contour containing concavities.
For an amplitude of A = 0.05 (Figure 3A), the critical shape fre-
quency for this transition is ωcrit = 4.36. For a frequency of RF5,
the critical amplitude Acrit = 0.038. Both values are close to the
data points where coherence thresholds relative to a circle start to
increase (ω ≤ 4; A ≤ 0.05; Figure 3), suggesting that the transi-
tion from convex to concave may be an important factor in the
processing of RF shapes (Kempgens et al., 2013).

It should be noted, however, that the design of our stimuli ren-
ders direct access to local curvature information largely unusable.
This is because at least two adjacent signal elements are required
for local curvature to be extracted from the display whereas sig-
nal elements will typically be separated by a number of noise
elements. Hence, it is statistically unlikely that points of any par-
ticular curvature (e.g., maximum convex or concave, minimum)
are covered by signal elements. Even when avoiding adjacent sig-
nal elements, performance is not negatively affected (see Control
Condition above).

Overall our data show a dependence of coherence thresh-
olds on the maximum curvature of the shapes to be detected.
Increasing curvature by increasing shape frequency or amplitude
inversely affects sensitivity. However, given the design of the stim-
uli, it is unlikely that the visual system is actually using local
curvature directly. Rather, it suggests that the sensitivity of the
global mechanisms underpinning shape detection in noise arrays
has an inverse dependence on curvature.

TEXTURE vs. SHAPE DETECTOR
To distinguish between two putative mechanisms that may under-
lie detection in this task, a texture detector or a shape detector (see
Figure 1), we designed stimulus arrays in which signal elements
were constrained to fall on one of a number of rings (Figure 4).
For the example of a rotational texture mechanism, its threshold
would be reached independent of the actual location of the sig-
nal elements within its receptive field as long as the orientations
were concentric. The results of experiment 2, by contrast, show
that if signal elements are constrained to specific annuli, the num-
ber of signal elements at threshold is lower than when they are
spread across the display. This led us to hypothesize that multiple,
concentric shape detectors, each tuned to a different diameter,
underlies the high sensitivity seen for “textured” multi-element
arrays such as the one used here and in previous studies (Braddick
et al., 2000; Achtman et al., 2003).

This hypothesis can be tested by predicting performance when
signal elements are spread randomly across the array based on
the sensitivity when they are constrained to individual contours.
If multiple, independent shape detectors, each limited by their
own uncorrelated noise, were processing these arrays, the per-
formance in the random positioned case should be predicted

by the sensitivities of individual shape detectors. Assuming that
their outputs are combined according to probability summa-
tion (Graham and Robson, 1987), this prediction is close to, but
marginally underestimates performance (Figure 4) for circular as
well as concentric RF5 shapes. As probability summation is a sub-
ideal way of combining independent information, the results sup-
port a slightly more efficient strategy (Macmillan and Creelman,
1991; Nandy and Tjan, 2008; Machilsen and Wagemans, 2011;
Gold et al., 2012). Irrespective of the details of the strategy, the
data provide evidence for global shape mechanisms that integrate
local information along contours rather than within a circular
region.

It is possible that the different performance for the isolated
and spread conditions may be in part due to lateral masking or
attentional effects. Habak et al. (2004) measured RF pattern dis-
crimination thresholds in the presence of larger masking patterns
(lateral masking). Masking effects were strongest when the mask
RF matched the test RF with regards to RF and phase (orien-
tation). One might argue that such lateral masking effects may
explain part of the decrease in performance when signal elements
are distributed across four rings [2,3,4,5] compared to when they
are restricted to individual rings (experiment 2). This is, however,
unlikely for the circular contours. Circles have a limited mask-
ing effect on RF shapes (Habak et al., 2004) and it is unclear if
lateral masking occurs for circular tests. Circles lack overall orien-
tation and extreme points of curvature. Given that masking was
shown to require curvature extrema of test and masking shapes to
be aligned, one would expect little masking for circles. Based on
the lack of lateral masking for circles and the similarity between
the data for the circular and RF5 shapes (experiment 2), it seems
unlikely that lateral masking has a significant effect on the con-
ditions tested here. It remains therefore a possibility that lateral
masking can impact negatively on the sensitivity of mechanisms
that underlie contour discrimination but not contour detection.

Dickinson et al. (2009) have recently shown that selective
attention can modulate sensitivity to circular Glass pattern detec-
tion: performance depends on observers’ knowledge of the loca-
tion of signal elements and is better when the location is known
prior to the experiment. Our experiments were designed to
avoid prior knowledge of signal location. Randomly interleav-
ing conditions within a single block made it impossible for
observers to know where signals would occur on individual tri-
als. Consequently, observers were forced to attend to the entire
stimulus array on every trial. This allowed direct comparisons to
be made between performance when elements are located within
individual rings and when elements are spread across rings,
without the confound of an attentional advantage. It remains a
possibility that the integration area for shapes embedded in noise
is variable and under attentional control, as it is for Glass patterns
(Dickinson et al., 2009).

A recent study, employing stimuli similar to ours, showed
global signal integration for spiral textures. Webb et al. (2008)
sampled spirals as well as concentric and radial forms. Global
integration was evident for all tested forms. Backward masking
had a selective effect on sensitivity and was strong when the
form of the mask matched that of the target. This dependence
was explained by a model consisting of multiple detectors, each
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broadly tuned to a specific spiral type. Apart from the concentric
arrangement in Webb et al. (2008), which is similar to our cir-
cular condition with elements spread across rings, it is unclear if
and how the other spiral configurations would tap into the mech-
anisms responding to the range of RF shapes tested here. Further
studies are required to clarify if the same mechanisms are utilized
for detecting spiral form and RF shapes. This said, the results
from the earlier study confirms what our data here and others
(Achtman et al., 2003) have shown: global pooling is effective for
a range of sampled shapes and textures embedded in noisy arrays.

Overall, our data imply global shape detectors. The presence
of a number of such mechanisms can explain the performance
for a “textured” array. This is not to argue against the existence
of texture mechanisms such as those proposed for Glass patterns
(Wilson and Wilkinson, 1998). Rather, it suggests that texture
mechanisms may have a lower sensitivity than shape detectors
and that performance to “textured” Gabor arrays can, depending
on the arrangement of the elements, be limited by multiple shape
processes. The role of concentric shape detectors in the processing
of Glass patterns remains a topic for future investigation.

TUNING CHARACTERISTICS
Only about 5 signal elements were required to detect a contour
embedded in ∼150 noise elements. This was largely independent
of the size of the contour and its shape (circle and RF5; Figure 4).
This is a remarkably low number of elements and equates to a
coherence level of 3%, substantially lower than what has been
reported for detecting texture in noise (about 10%; Achtman
et al., 2003), Glass patterns (15%; Wilson and Wilkinson, 1998;
Dakin and Bex, 2002) or motion (10%; Newsome and Pare, 1988;
Braddick et al., 2000). The fact that the absolute number and not
the proportion of signal elements remains constant for contours
of different sizes is also surprising. Intuitively, one would expect
to find a constant signal-to-noise ratio of the elements within an
annulus to which a particular detector is tuned. This would result
in an increased number of signal elements with increasing radius
as the number of total elements increases with size. Why the num-
ber of elements at thresholds is constant is unclear. One possibility
is that sensitivity also depends on the average curvature of the
shape, which is given by its radius, i.e., how flat or steep the con-
tour is. If threshold signal-to-noise ratios were determined by the
total number of elements on a contour as well as the average cur-
vature, increasing the number of elements by increasing the size
of the contour would be counter-balanced by lowering its cur-
vature, resulting in a constant number of signal elements. This
kind of effect, where two factors that each affect sensitivity can-
cel each other when co-varied, has been reported with circles (in
this case number of elements and circle radius; Levi and Klein,
2000).

To further investigate the properties and tuning characteris-
tics of putative shape mechanisms, orientation, and positional
noise was added to the elements (experiment 3). Adding orien-
tation jitter of ±13◦ had little effect on detectability suggesting
that the underlying mechanism is insensitive to variations within
this range. Further increasing orientation noise raised thresholds.
These data are consistent with a mechanism that is broadly tuned
to the orientation of local elements. The overall sensitivity of the

mechanism is affected by the number of signal elements, as well
as their orientations.

It is tempting to argue that the insensitivity to small changes
in element orientation can explain why changes, within a cer-
tain range, in shape amplitude and frequency have no effect on
performance (Figures 3A,B). Assume a single, general mecha-
nism responsible for detecting a range of quasi-circular shapes
(e.g., circle and RF5). Such a mechanism could be conceived as
a global integrator that sums information from elements posi-
tioned broadly within an annular region and orientations that are
approximately tangential to a circle. This process would respond
equally well to circular contours and a range of RF shapes, as long
as their frequencies and amplitudes were sufficiently low. A sin-
gle mechanism responsible for the detection of a range of shapes
is not, however, supported by the data. Consider an RF5 pattern
with A = 0.05 (Figure 5). Depending on the precise location of
an element, the orientations of the elements of an RF5 pattern
differ from the orientations of corresponding elements on a cir-
cle. The orientations will differ most from a circle at the inflection
points of the RF pattern, and be the same as that of a circle at
corners and sides. For the amplitude tested in the experiment
(A = 0.05), the orientations differ from those of a circle by up
to ±14◦. If a “circle” mechanism broadly tuned to local element
orientation were confronted with an RF5 pattern, its sensitivity
would be reduced in the same way as when adding orientation
noise to the elements of a circle. Hence, one would expect the
data for an RF5 pattern with A = 0.05 to be similar to those for a
circle with added orientation noise of ±14◦. Adding orientation
noise to the RF5 pattern should further decrease sensitivity and
the curve for orientation noise added to an RF5 pattern should be
given by that for the circle shifted horizontally to the left by 14◦ in
Figure 5. This is evidently not the case; instead the curves for the
circle and the RF5 pattern are superimposed. Rather than a single
mechanism responding to a range of shape, this argues in favor
of separate shape mechanisms, each tuned to a particular shape
with a similar, broad tuning profile for local orientation. The exis-
tence of multiple RF shape channels has support from studies on
shape discrimination. Evidence from empirical results on sub-
threshold summation (Bell et al., 2008), adaptation (Anderson
et al., 2007; Bell et al., 2008), and masking (Habak et al., 2004),
as well as computational modeling (Poirier and Wilson, 2006), is
converging in support of a number of narrowly tuned RF shape
channels.

Applying positional jitter (experiment 3b; Figure 6) also
affects detection. While low degrees of positional noise of up
to 5% of the contour’s radius left thresholds unaffected, largely
eliminating any smooth contour path (radial variation of ±30%)
lowered thresholds by about a factor of 3. The latter performance
is similar to the condition where elements are randomly spread
within the stimulus array (Figure 4 “all Rings”). This is consistent
with the proposal that once the radial jitter exceeds the limit of the
positional tuning of a mechanism, sensitivity will be given by the
probability summation of multiple, independent detectors. The
relatively stronger tuning for element orientation compared to
position makes an interesting prediction. If elements were taken
from an RF5 pattern and placed on the circumference of a circle,
they should be perceived as an RF5 pattern rather than a circle.
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This prediction has recently been verified experimentally (Day
and Loffler, 2009).

SIMILARITIES AND DIFFERENCES BETWEEN RF DISCRIMINATION AND
RF DETECTION
There are a number of theoretical and experimental findings
that question whether the data on detecting sampled RF shapes
embedded in noise presented here are directly comparable to data
on discriminating continuous RF shapes in the absence of exter-
nal noise. For example, the detection of sampled RF shapes in
noise shows a dependence on RF whereas RF discrimination does
not (Wilkinson et al., 1998). Lateral masking affects RF discrim-
ination (Habak et al., 2004) but no such effect is evident for RF
detection (see above). One problem when comparing detection
with discrimination data is related to the global pooling for RF
shapes (Hess et al., 1999; Loffler et al., 2003; Bell and Badcock,
2008; Dickinson et al., 2012; Schmidtmann et al., 2012). For RF
discrimination, the high sensitivity typically seen (in the hyper-
acuity range) requires information from different parts of the
contour to be integrated. There has been a recent discussion
as to whether sensitivity for RF discrimination improves gradu-
ally with the amount of contour information (e.g., Loffler et al.,
2003; Dickinson et al., 2012) or requires information from all
parts to be available simultaneously (Schmidtmann et al., 2012).
Irrespective of this, it is clear that information from all parts
of an RF contour is necessary to explain the exquisite sensitiv-
ity for RF discrimination. When measuring detection of sampled
RF shapes in noise, this situation would only be available at
a 100% coherence level. As detection thresholds are about an
order of magnitude lower, observers are never presented with
such a stimulus. Hence, if it was assumed that the mechanism
governing RF discrimination was also responsible for RF detec-
tion, it would inevitably be stimulated sub-optimally within the

measured range of coherence. The different sensitivities for RF
detection and RF discrimination can be quantified by compar-
ing our data from experiment 3 with those on RF discrimination.
Adding orientation variance to the signal elements of up to ±13◦
did not adversely affect detection. When discriminating a contin-
uous RF5 from a circle, the maximal difference in local contour
orientation between the two shapes at threshold is less than 1◦
(assuming a threshold of A = 0.004; Dickinson et al., 2012). This
equates to a 10-fold difference in orientation sensitivity between
RF detection and discrimination. It is therefore unclear if the
two tasks, detection and discrimination, are limited by differ-
ent mechanisms or the same mechanism that operates in quite
different regimes. It is, however, clear that both tasks are under-
pinned by global pooling of local information. In the case of
RF discrimination, global pooling is required to account for the
hyperacuity sensitivity. In the case of RF detection, global pool-
ing is required to account for observer ability to detect patterns
on the basis of a very small number of signal elements sep-
arated by multiple noise elements. Common to both, a range
of mechanisms, tuned to different RF shapes, are required to
explain behavioral data. Whether the same detectors are used for
discriminating and detecting shapes or whether different or addi-
tional mechanisms are engaged, remains a question for future
investigations.

In summary, for displays with sampled circular and non-
circular contours, neither local inter-element interactions (associ-
ation field), nor a texture mechanism (e.g., Glass pattern detector;
Glass, 1969, Figure 1A), are sufficient to capture our data. Instead,
our results are consistent with the existence of a range of highly
sensitive, shape-specific analysers, which sum information glob-
ally but only within specific annuli (Figure 1B). These global
mechanisms are tuned to the position and orientation of the local
elements from which they pool information.
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