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We propose a computational model of Precision Grip (PG) performance in normal subjects
and Parkinson’s Disease (PD) patients. Prior studies on grip force generation in PD patients
show an increase in grip force during ON medication and an increase in the variability of the
grip force during OFF medication (Ingvarsson et al., 1997; Fellows et al., 1998). Changes
in grip force generation in dopamine-deficient PD conditions strongly suggest contribution
of the Basal Ganglia, a deep brain system having a crucial role in translating dopamine
signals to decision making. The present approach is to treat the problem of modeling grip
force generation as a problem of action selection, which is one of the key functions of
the Basal Ganglia. The model consists of two components: (1) the sensory-motor loop
component, and (2) the Basal Ganglia component. The sensory-motor loop component
converts a reference position and a reference grip force, into lift force and grip force
profiles, respectively. These two forces cooperate in grip-lifting a load. The sensory-motor
loop component also includes a plant model that represents the interaction between two
fingers involved in PG, and the object to be lifted. The Basal Ganglia component is modeled
using Reinforcement Learning with the significant difference that the action selection
is performed using utility distribution instead of using purely Value-based distribution,
thereby incorporating risk-based decision making. The proposed model is able to account
for the PG results from normal and PD patients accurately (Ingvarsson et al., 1997; Fellows
et al., 1998). To our knowledge the model is the first model of PG in PD conditions.
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Abbreviations: AG/E/N , Gains of Go/Explore/NoGo components of GEN equation
in Equation (23); BG, Basal Ganglia; CE, cost function to evaluate the perfor-
mance of lift; CEGEN, Cost function for optimizing GEN parameters; DAhi and
DAlo, thresholds at which dynamics switches between Go, NoGo and Explore
regimes; DM, decision making; DP, Direct Pathway; EL, position error; expt, exper-
iment; Ff , frictional force; FG, grip force; FGref, reference grip force; FL, Lift force;
Fslip, minimum force required to prevent the object from slipping; g, accelera-
tion due to gravity; GEN, Go-Explore-NoGo; GPe, Globus Pallidus externa; GPi,
Globus Pallidus interna; h, risk function; IP, Indirect Pathway; KP,L, KI,L, and
KD,L, the proportional, integral and derivative gains of the Lift force controller; M,
mass (subscript “O” and “fin” denote object and finger, respectively); Mp, max-
imum peak value of the response curve; PD OFF, Off medicated PD subjects;
PD ON, On medicated PD subjects; PD, Parkinson’s disease; PG, Precision Grip;
PID, Proportional-Integral-Derivative controller; r, reward; RBFNN, Radial Basis
Function Neural Networks; RL, Reinforcement Learning; SGF, Stable Grip Force;
sim, simulation; SM, Safety margin; SNc, Substantia Nigra pars compacta; SNr,
Substantia Nigra pars reticulata; STN, Subthalamic Nucleus; T, simulation time
in milliseconds; t, trial; Tp, peaking time of the response curve; U, Utility func-
tion; V, Value function; X/Ẋ/Ẍ, position/ velocity/acceleration (subscript “O” and
“fin” denote object and finger, respectively); X̄, mean position (subscript “O” and
“fin” denote object and finger, respectively); Xref, reference position; α, weight fac-
tor combining the value and the risk functions; δ, reward prediction error; δLim,
clamped value of δU ; δMed, added δU due to medication; δU , change in Utility func-
tion; δU , gradient of the Utility function; δV , Temporal difference in value function;
ζ, damping factor; λG/N , sensitivities of the Go/NoGo component in Equation 23;
μ, friction coefficient; μm, means of RBFNN; ν, uniformly distributed noise; ξ,
risk prediction error; π, policy; σE , standard deviation used for the Explore com-
ponent in Equation (23); σm, standard deviations for RBFNN; φ, feature vector; ψ,
random variable uniformly distributed between -1 and 1; ωd , the damped natural
frequency; ωn, natural frequency.

INTRODUCTION
Precision grip (PG) is the ability to grip objects between the fore-
finger and thumb (Napier, 1956). Successful performance of PG
requires a delicate control of two forces (grip force, FG, and lift
force, FL) exerted by two fingers on the object. In a grip-lift task
FG is kept sufficiently high to couple FL with the object via the
agency of friction between the object and the fingers. An optimal
FL is also required to overcome the object’s weight and lift it off
the surface of the table on which it rests. These forces (FL and
FG) are thought to be generated in parallel by different subsys-
tems in the brain (Ehrsson et al., 2001, 2003). The critical FGat
which the object slips is called the slip force (Fslip) and the differ-
ence between the actual steady state FG(SGF), used in a successful
lift, and Fslip is known as the safety margin (SM = SGF − Fslip).
Johansson and Westling (1988) demonstrated the SM in controls
to be 40–50% of slip force (Johansson and Westling, 1988). A high
SM is employed to prevent the object from slipping due to inter-
nal (accelerations due to arm motion) (Werremeyer and Cole,
1997) and external (random changes in object load) perturba-
tions (Eliasson et al., 1995)—motor activity is optimized for the
internal perturbations and this optimality is lost on the addition
of an external perturbation external perturbation (Charlesworth
et al., 2011; Sober and Brainard, 2012; Wolpert and Landy, 2012).
An excessive SM is undesirable as it would cause muscle fatigue
and may even lead to crushing of the object.
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SM in grip force is a crucial and defining parameter of PG per-
formance. Fslip serves as the threshold below which the object
cannot be lifted. Human subjects operate at FG that is much
higher than Fslip; operation at a small SM makes the gripping
unstable. Therefore, this need to operate sufficiently far from the
border of instability may be regarded as a strategy for minimizing
risk. The need for a large SM indicates that concepts from the-
ories of risk-dependent decision making (DM) may be applied
to understand PG performance (Bell, 1995; D’Acremont et al.,
2009). By definition, risk is the variance in reward outcome (Bell,
1995; D’Acremont et al., 2009). In the context of PG performance,
a reward may be thought to be associated with successful lifts.
The risk is maximum close to Fslip and expected reward (value)
saturates for grip forces much greater than Fslip. Optimal PG con-
sists of maximizing average reward while minimizing risk. The
present study approaches the problem of PG in terms of risk mini-
mization and describes it within the framework of Reinforcement
Learning (RL). The model is used to explain PG performance in
both controls and Parkinson’s disease (PD) patients.

PG studies in PD patients show a remarkable difference in
SM patterns between PD patients and controls (Ingvarsson et al.,
1997; Fellows et al., 1998). PD patients were shown to be capa-
ble of storing and recalling previous lift parameters (Muller and
Abbs, 1990; Ehrsson et al., 2003). This allows them to scale FG

when the load force on the object changes (Gordon et al., 1997;
Fellows et al., 1998). Interestingly, even though FG scaling is
preserved, scientific community is divided on the question of
sensory deficits in PD patients being a cause for their altered
SM. A sensory deficit would lead to suboptimal sensory-motor
coordination. Some studies support the above theory of sensory
deficit in PD (Moore, 1987; Schneider et al., 1987; Klockgether
et al., 1995; Jobst et al., 1997; Nolano et al., 2008) and others
(Gordon et al., 1997; Ingvarsson et al., 1997) reject it. Ingvarsson
et al. (1997) demonstrated that the controls and PD OFF patients
generated nearly similar SGFs. A higher SGF was generated in
PD ON (L-Dopa Medication) case when the lifted object was
covered with silk, suggesting a higher safety margin in PD ON
condition (Ingvarsson et al., 1997). It has been suggested that
this increase in SGF may be due to L-Dopa induced hyperkine-
sias (Ingvarsson et al., 1997; Gordon and Reilmann, 1999). In
another study, Fellows et al. (1998) observed that PD ON sub-
jects show a higher SGF than controls, but there was no mention
of PD OFF results (Fellows et al., 1998). Reports also suggest a
considerably higher SGF variance in PD OFF condition when
compared to controls and PD ON condition (Ingvarsson et al.,
1997). This may indicate the importance of the concepts of risk
sensitivity in understanding the SGF in controls, PD ON and
PD OFF conditions. Furthermore, recent evidence suggests that
risk-takers are less prone to Parkinson’s disease (Sullivan et al.,
2012). PD medications such as L-Dopa (Ehrsson et al., 2003)
and dopamine agonists (Claassen et al., 2011) increase impulsiv-
ity and risk-seeking behavior in PD patients. PD subjects under
medication tend to show less sensitivity to negative outcomes
and therefore tend to make risky choices (Wu et al., 2009). The
effect of PD medication (dopamine agonist) in enhancing risk-
seeking tendency was also confirmed using the Balloon Analog
Risk Task—an elegant assay for risk-related behavior (Claassen

et al., 2011). The impairment of risk-processing in PD patients
(Ehrsson et al., 2003; Wu et al., 2009; Claassen et al., 2011), and
altered SM in PD, makes a risk-based motor control approach to
PG performance even more compelling.

None of the previously explained computational models for
PG lift tasks (Kim and Inooka, 1994; Fagergren et al., 2003; de
Gruijl et al., 2009) explain the grip force levels used by controls
and PD patients. Hence, a computational model to explain grip
forces in controls and PD forms the motivation for the present
work.

Drawing from the aforementioned presentation of facts, we
propose to model PG performance, and its alterations in PD con-
dition, using the mathematics of risk. We use the concept of
utility function, a combination of value and risk components,
embedded in the framework of Reinforcement Learning (RL)
(Bell, 1995; Long et al., 2009; Wu et al., 2009; Wolpert and Landy,
2012). Concepts from RL have been used extensively in the past
to model the function of the Basal Ganglia (BG) in control and
PD conditions (Sridharan et al., 2006; Gangadhar et al., 2008,
2009; Chakravarthy et al., 2010; Krishnan et al., 2011; Magdoom
et al., 2011; Kalva et al., 2012; Pragathi Priyadharsini et al., 2012;
Sukumar et al., 2012). In a recent modeling study, we used the
utility function to model the role of the BG in reward, pun-
ishment and risk based learning (Pragathi Priyadharsini et al.,
2012).

We now present a computational model for human PG
performance in controls and PD subjects in (ON/OFF)
medicated states. Using risk-based DM to model PG per-
formance, we show the alteration of FG in PD patients
(Wolpert and Landy, 2012) in a modified RL framework.
Modeling results match favorably with experimental PG
performance.

The paper is organized as follows. Section “Model” presents
the model. Section “The Precision Grip Control System” presents
PG control system. Section “The Utility Function Formulation
and Computing U(FGref)” presents the utility function formu-
lation and Section “Modeling Precision Grip Performance as
Risk-Based Action selection” presents a model of the BG based
on the same (Magdoom et al., 2011; Pragathi Priyadharsini et al.,
2012; Sukumar et al., 2012). In the results section, the model
of the BG is used to explain PG performance of PD patients
described by Ingvarsson et al. (1997) and Fellows et al. (1998).
A discussion of the proposed model and modeling results is
presented in the final section.

MODEL
THE COMPLETE PROPOSED PRECISION GRIP MODEL IN A NUTSHELL
1. We first define a closed-loop control system in which the

plant (the finger and object system) is controlled by two
controllers—a FL controller and a FG. There are two inputs
to the entire loop—a reference grip force (FGref) and a refer-
ence position (Xref). The reference position, the position to
which the object must be lifted, is predefined for a given task
by the experimenter. We are now left with FGref as the crucial
parameter that determines the PG performance of the con-
trol system. FGref is given as a step input to the FG controller;
the output of the controller, FG(T), is used to grip the object
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(‘T’ denotes simulation time in milliseconds). The challenge
consists of finding FGref that leads to successful lifts.

2. We then construct the Utility function, U(FGref), consist-
ing of both value and risk components, as a function of
FGref using a modified RL approach. The problem of find-
ing the optimal FGref is then treated as an action selection
problem in the BG. In previous studies, we introduced the
Go-Explore-NoGo (GEN) (Magdoom et al., 2011; Sukumar
et al., 2012) method as a model of action selection in
the BG. In the present study, we apply GEN on U(FGref)
to simulate PG performance results for control and PD
condition.

3. Using the gradient of the Utility function, δU (representing the
dopamine signal), as a key signal in control of action selec-
tion, we simulate the PG performances of controls and PD
subjects in the experimental tasks by Ingvarsson et al. (1997)
and Fellows et al. (1998).

THE PRECISION GRIP CONTROL SYSTEM
PG performance consists of two fingers and an object interact-
ing through friction (represented by friction coefficient μ). A free
body diagram showing the various forces acting on the fingers and
the object are shown in Figure 1. The fingers, shown in two parts
on either side of the object, represent the index finger and the
thumb. For simplicity we assume that the two fingers are identical
in mass and shape.

FG is the grip force applied on the object horizontally acting in
opposite directions. FL is the lift force acting at the finger-object
interface, lifting the object up. By the action of the FG pressing on
the object, and due to the friction between the finger and object,
FL gets coupled to the object. The forces thus emerging between
the finger and object are shown in Figure 1B. The frictional force
Ff acts on the object in the upward direction, with Ff /2 on either
side of the object.

FIGURE 1 | (A) A free body diagram showing the forces acting on object
and finger. FG , FL, Ff , Fn stands for Grip, Lift, frictional, and normal forces,
respectively. (B) The Figure showing the coupling between the finger and
the object.

Figure 2A illustrates the interaction of FL and FG in control-
ling the position of the object (Xo). The model consists of two
controllers (FL and FG controllers) and a plant. Inputs to the plant
are FL and FG while the outputs are the object position (Xo), fin-
ger position (Xfin) and their derivatives (Ẋo, Ẍo, Ẋfin, Ẍfin). The
objective of the control task is to lift the object to a reference posi-
tion, Xref. The model receives FGref and Xref as the inputs and the
Xfin (position of finger), Xo(position of object), Ẋfin (velocity of
finger), Ẋo (velocity of object), Ẍfin (acceleration of finger) and Ẍo

(acceleration of object) as outputs. The plant is described in detail
in Appendix A.

The following sections describe the design of the controllers
(FG and FL) followed by their training method, respectively.

The grip force (FG ) controller
The FG controller (designed as a second order system) is used
to generate the FG which couples the fingers to the object.
Typical FG profiles of human subjects show a peak and a
return to a steady state value, resembling the step-response of
an underdamped second order system, thereby justifying the
choice of an underdamped second order system as a minimal
model. The FG controller for a step input (FGref) is given in
Equation (1).

FG = ωn
2

(s2 + 2ωn ζs + ωn
2)

(1)

In order to determine the values of natural frequency, ωn and
damping factor, ζ, maximum overshoot (Mp, defined as the max-
imum peak value of the response curve) and time to peak (Tp,
peaking time of the response curve) are required. Using prior
published experimental values (Johansson and Westling, 1984)
for MP and Tp, FG controller parameters are obtained using
Equations (2, 3) (Ogata, 2002).

Mp = e−(ζωn/ωd)π (2)

Tp = π

ωd
(3)

FIGURE 2 | Block diagram showing (A) the interaction of the various

components and their corresponding inputs and outputs. X, Ẋ , and Ẍ
are the position, velocity, and acceleration; subscript “fin” and “o” denote
finger and object, respectively; (B) the control loop used for FL controller
design. The grip force in the full system of panel (A) is set to a constant
value of 10N.
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where ωd the damped natural frequency is given as,

ωd = ωn

√
1 − ζ2 (4)

See “Controller Training from the Model of The Precision Grip
Control System” for the details of the above calculations.

Lift force (FL) controller
The FL controller, which is a Proportional-Integral-Derivative
(PID) controller [Equation (5)], takes the position (EL) as input
[Equation (6)], and produces a time-varying FL profile (FL,PID) as
output [Equation (5)] which in turn controls the object position.

FL, PID = KP,LEL + KI,L

∫ T

0
EL(τn)dτn + KD,L

dEL

dT
(5)

EL = Xo − Xref (6)

Here the KP,L, KI,L and KD,L are the proportional, integral and
derivative gains, respectively, for the FL controller.

PID controller output is non-zero initially which is not real-
istic since the initial value of FLmust be zero. Hence, FL,PID is
smoothened using Equation (7).

τs
dFL

dT
= −FL + FL,PID (7)

where FL (T = 0) = 0.
In order to design the FL controller, we simplify the full system

of Figure 2A as a FL controller with a high constant FG (10 N)
to prevent the slip (Figure 2B). Note that if a constant and high
value of FG is assumed, slip is completely prevented, and the
FG controller is effectively eliminated from the complete system
(Figure 2B). The FL controller design now involves lifting a sim-
ple inertial load straight up from an initial position (Xo = 0 m) to
a final position (Xo = 0.05 m).

Performance of the lift is evaluated using the cost function, CE,
[Equation (8)]. This Cost function comprises of (1) average posi-
tion difference between the finger (X̄fin) and the object (X̄o) at
the end of the trial and (2) the difference in position between the
desired and actual average position of the object.

CE (FGref) = 0.5

(
X̄fin − X̄o

X̄fin

)2

+ 0.5

(
Xref − Xo

Xref

)2

(8)

The FL PID controller parameters were then optimized for
cost function (CE) using Genetic Algorithm (GA) (Goldberg,
1989; Whitley, 1994) (refer Figure 3 for block diagram and for
parameters refer Supplementary Material A) keeping FG constant
(=10 N) at a sufficiently high value so that the object does not
slip.

The FL controller described above is designed assuming a con-
stant and high grip force. But, when both FG and FL controllers
are inserted in the full system (Figure 2A) the system may behave
in a very different manner due to gradual FG buildup starting
from zero. When a step input of magnitude FGref is given to
the FG controller, the FG starts from 0, then approaches a peak
value and stabilizes at a steady-state value known as Stable Grip

FIGURE 3 | Block diagram showing the training mechanism of the FL

controller.

Force (SGF). Even with the trained controllers, for low values
of FGref, the object may slip. But once the FGref is sufficiently
high, slip is prevented and the object can be lifted successfully.
Therefore, for a successful lift, an optimal value of FGref needs
to be determined. The optimal FGref, which is related to SGF
needed for a successful grip/lift performance, varies with the
experimental setup, skin friction etc. (Ingvarsson et al., 1997;
Fellows et al., 1998). It is here that we use concepts from RL
and the utility function formulation for searching the FGref state
space.

THE UTILITY FUNCTION FORMULATION
The optimality of a decision is measured by the rewards fetched
by it. Selection of an optimal choice providing the maximum
expected value of the rewards (value) is known as optimal
decision making (DM). DM can be seen in stock exchange,
corporates and even our daily lives (which may or may not
involve explicit monetary rewards). A lot of DM is carried
out subconsciously when the person is unaware of the reason
for choosing ones decision (Ferber et al., 1967). Non-human
primates also show DM capabilities (Lakshminarayanan et al.,
2011; Leathers and Olson, 2012). A mathematical framework
is essential to empirically understand subjective DM behavior.
Various independent studies confirm the role of value (aver-
age reward) and risk (variance in the rewards) in DM (Milton
and Savage, 1948; Markowitz, 1952; Hanoch and Levy, 1969;
Kahneman and Tversky, 1979; Bell, 1995; Lakshminarayanan
et al., 2011).

A search for components of DM in the living world lead
to identification neural correlates of value and risk in human
and non-human primates (D’Acremont et al., 2009; Schultz,
2010; Lakshminarayanan et al., 2011; Leathers and Olson, 2012).
Human DM process takes account of the risk in addition to the
mean rewards that the decisions fetch. Furthermore, many neu-
robiological correlates of risk sensitivity are found in support of
risk-based DM in humans (Wu et al., 2009; Schultz, 2010; Zhang
et al., 2010; Wolpert and Landy, 2012).

An important instance of risk-based DM model is the utility
function formulation, which is a combination of value and risk
information (D’Acremont et al., 2009). The utility function used
in the current model of PG performance derives from (Bell, 1995;
D’Acremont et al., 2009) study that uses the concept of utility (U)
as a weighted sum of value (V), which represents expected reward,
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and risk (h), which denotes variance in the reward. The weight-
ing factor, λ, involved in the linear sum of V and h, denotes risk
preference [Equation (9)].

U = V − λ
√

h (9)

We here introduce few terms from RL used in our study, following
a policy (π) is associated with an expected value (V) of the state
(s) at trial (t) is given by Equation (10).

V(t) = Eπ

(
r(t + 1) + γ r(t + 2) + γ2 r(t + 3) + . . . |s(t) = s

)
(10)

where, E is expectation and γ is the discount factor denoting the
myopicity in the prediction of future rewards, and the reward is
denoted by “r.” The V update is by Equation (11).

V(t + 1) = V(t) + ηVδ(t) (11)

where ηV is the learning rate for V and “δ” is the temporal
difference error or the reward prediction error, and is given by
Equation (12)

δ(t) = r(t + 1) + γ V(t + 1) − V(t) (12)

Similarly, the risk prediction error, “ξ(t)” is denoted by
Equation (13).

ξ(t) = δ(t)2 − h(t) (13)

where, the risk function denoted by (h) is the variance in the
prediction error [Equation (14)]

h(t + 1) = h(t) + ηrisk ξ(t) (14)

Here ηrisk is the learning rate for risk. We now introduce a
modified version of Utility (U) [Equation (9)], as follows,

U(t) = V(t) − α sign(V(t))
√

h(t) (15)

where “α sign(V(t))” is the risk preference (Pragathi
Priyadharsini et al., 2012).

The sign(V) term achieves a familiar feature of human deci-
sion making viz., risk-aversion for gains and risk-seeking for
losses (Kahneman and Tversky, 1979). In other words, when V
is positive (negative), U is maximized (minimized) by minimiz-
ing (maximizing) risk. We now use the above basic framework for
modeling the Utility as a function of FGref.

COMPUTING U(FGref)
We now explain how the above-described Utility function formu-
lation is applied in the present study. The Utility function, U, and
its components V and h, are expressed as functions of FGref, which
is taken as the state variable. A given value of FGref results in either
slip or successful lift of an object. The measure of performance is
expressed by CE [Equation (8)].

The value “V” and risk “h” are computed as a function of
FGref by repeatedly simulating lift for a range of values around
FGref. This helps us to analyze the possible variability caused
on the performance of the PG task with FGref. A range of val-
ues were obtained by adding uniformly distributed noise (ν:
refer Table 1) to FGref [Equation (16)]. We modeled ν to pro-
portionally represent the Fslip i.e., the value of ν is increased for
a low μ.

F̂Gref = FGref + ν (16)

For the given value of FGref, VCE was drawn from the performance
measure [Equation (8)] and is generated using the cost function
CE as [Equation (17)]. Refer Figure 4 for the block diagram for
determining VCE.

VCE

(
F̂Gref

)
= e

−CE
(

F̂Gref

)
(17)

There is no explicit reward in the present formulation. VCE rep-
resents a reward-like quantity, the average of which is linked
to value. Value [Equation (18)] and risk [Equation (19)] were
calculated as the mean and variance of the VCE,

V (FGref) = mean
(

VCE

(
F̂Gref

))
(18)

h (FGref) = var
(

VCE

(
F̂Gref

))
(19)

FIGURE 4 | Block diagram showing the generation of error function

(VCE ) for the input FGref.

Table 1 | Parameters used in simulation: Mass of the object (Mo), friction coefficient (μ) and noise added (ν) for different cases simulated in the

study.

Ingvarsson et al. (1997) silk Ingvarsson et al. (1997) sandpaper Fellows et al. (1998)

Mo (in kg) 0.3 0.3 0.33

μ 0.44 0.94 0.44

ν Uniformly distributed ∈ [−3,3] N Uniformly distributed ∈ [−1.5,1.5] N Uniformly distributed ∈ [−3,3] N

Conditions simulated Controls, PD OFF, PD ON Controls, PD OFF, PD ON Controls, PD ON
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We now have a set of numerical values of FGref and the corre-
sponding V and h values. These numerical values are used to
construct V and h as explicit functions of FGref using Radial Basis
Function Neural Networks (RBFNNs) explained in Appendix B.
The above mentioned Equations (18, 19) is general to all the trials.
These processes are summarized in Table 2.

Specifically, for a FGref chosen at trial, t, U(FGref(t)) is a com-
bination of the V(FGref(t)) and h(FGref(t)). Utility, U(FGref(t))
[Equation (20)], is then obtained in terms of V and h, as shown
below:

U (FGref(t)) = V (FGref(t)) − α
√

h (FGref(t)) (20)

Decisions are made by choosing actions that maximize
U(FGref(t)). Increasing the value of α makes the decision more
risk aversive, while the decisions are more risk-seeking for smaller
values of α. Maximizing U(FGref(t)) is done by a stochastic hill-
climbing process called the “Go/Explore/NoGo” (GEN) method.
This method is inspired by dynamics of the BG and was described
in greater detail in earlier work (Magdoom et al., 2011). We now
present a brief account of the GEN method.

MODELING PRECISION GRIP PERFORMANCE AS RISK-BASED ACTION
SELECTION
The key underlying idea of the proposed model is to treat the
problem of choosing the right FG as an action selection problem
and thereby suggest a link between the action selection function
of the BG and PG performance. Impairment in action selection
machinery of the BG under PD conditions is then invoked to
explain FG changes in PD ON and OFF conditions.

In line with the tradition of Actor-Critic approach to model-
ing the BG (Joel et al., 2002); we recently proposed a model of
the BG in which value is thought to be computed in the striatum.
Furthermore, we hypothesized that the action selection function
of the Basal Ganglia is accomplished by performing some sort
of a stochastic hill-climbing over the value function computed
in the striatum. We dubbed this stochastic hill-climbing method
the “Go/Explore/NoGo” (GEN) method (Magdoom et al., 2011;
Kalva et al., 2012), which denotes a conceptual expansion of the
classical Go/NoGo picture of the BG function. As an extension
of the above model, we had recently proposed a model of the

Table 2 | Steps to train value = V (FGref) and risk = h(FGref).

• FGref is randomly chosen between [1N 10N].

• Choose noise “ν” (uniformly distributed in [−1.5,1.5] N for μ = 0.94,
and [−3,3] N for μ = 0.44).

• Calculate F̂Gref as F̂Gref = FGref + ν [Equation (16)] at a particular
trial, t.

• Obtain error CE[F̂Gref(t)] using Equation (8) for 2500 instances of
simulated precision grip (model of section “The Precision Grip
Control System”) performance using F̂Gref.

• Calculate V [FGref(t)] and h[FGref(t)] using Equations (18) and (19),
respectively.

• Train two separate RBFNNs to generate V[FGref(t)] and h[FGref(t)]
with FGref as input (see Appendix B for details).

• Utility is calculated using Equation (20).

BG in which the striatum computes not just value but the Utility
function (Pragathi Priyadharsini et al., 2012). Action selection is
then achieved by applying the GEN method to the Utility func-
tion. In the present study, we apply the GEN method to the Utility
function and estimate grip forces in control and PD conditions.

Neurobiological interpretation of the GEN method in controls
We now present some background and neurobiological inter-
pretation of the GEN method in connection with functional
understanding of the BG, following which details of the GEN
method will be provided.

The BG system consists of 7 nuclei situated on two parallel
pathways that form loops—known as the direct pathway (DP)
and the indirect pathway (IP)—starting from the cortex and
returning to the cortex via the thalamus. Striatum is the input
port of the BG, which receives inputs from the cortex. The Globus
Pallidus interna (GPi) and the Substantia Nigra pars reticulata
(SNr) are the output ports that project to thalamic nuclei, which
in turn project to the cortex, closing the loop. The DP consists
of the striatum projecting directly to GPi/SNr, while the IP con-
sists of a longer route starting from the striatum and returning to
GPi/SNr via Globus Pallidus externa (GPe) and the Subthalamic
Nucleus (STN) in that order. The striatum receives dopaminer-
gic projections from the Substantia Nigra pars compacta (SNc)
(Mink, 1996; Smith et al., 1998). Striatal dopamine levels are
thought to switch between DP and IP, since the DP (IP) is selected
for higher (lower) levels of dopamine (Sutton and Barto, 1998;
Frank, 2005; Wu et al., 2009) (Figure 5).

In classical accounts of the BG function, the DP is known
as the Go pathway since it facilitates movement and the IP is
called the NoGo pathway since it inhibits movement. Striatal
dopamine levels are thought to switch between Go and NoGo
regimes (Albin et al., 1989). We have been developing a view of the
BG modeling in which the classical Go/NoGo picture is expanded
to Go/Explore/NoGo picture, wherein a new Explore regime is
inserted between the classical Go and NoGo regimes (Kalva et al.,

FIGURE 5 | The Basal Ganglia network with DP (Direct Pathway) and IP

(Indirect Pathway) specified.
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2012). This explore regime corresponds to random exploration of
action space which is a necessary ingredient of any RL machinery.
Kalva et al. (2012) show that the Explore regime arises natu-
rally due to the chaotic dynamics of the STN-GPe loop in the IP.
The three regimes together amount to a stochastic hill-climbing,
which we describe as the GEN method. The GEN method has
been used in the past to describe a variety of functions of the
BG, in control and PD conditions, including reaching movements
(Magdoom et al., 2011) and spatial navigation (Sukumar et al.,
2012).

Magdoom et al. (2011) used the GEN method to hill-climb
over the value function (Magdoom et al., 2011). δV (t) is defined
as a temporal difference in value function [Equation (21)].

δV (t) = V(FGref(t)) − V(FGref(t − 1)) (21)

where “t” is not “time” but “trial number.”
The GEN method used in Magdoom et al. (2011) can be

summarized using the following Equation (22),

if(δV (t) > DAhi)

�FGref(t) = +�FGref(t − 1) − “Go′′ (a)
else if(δV (t) > DAlo ∧ δV (t) ≤ DAhi)

�FGref(t) = ψ − “Explore′′ (b)

else (δV (t) ≤ DAlo)

�FGref(t) = −�FGref(t − 1) − “NoGo′′ (c)

(22)
where, ψ is a random vector, and ||ψ|| = χ, a positive constant.
DAhi and DAlo are the thresholds at which dynamics switches
between Go, NoGo and Explore regimes [Equation (22)]. The
underlying logic of the above set of Equations (22a–c) is as fol-
lows. If δV (t) > DAhi, the last update resulted in a sufficiently
large increase in V ; therefore continue in the same direction in
the next step. This case is called the “Go” (Equation 22a) regime.
If δV (t) ≤ DAlo, the last update resulted in a significant decrease
in V ; therefore proceed in the direction opposite to the previous
step. This case is called the “NoGo” (Equation 22b) regime. If
DAlo < δV (t) ≤ DAhi, there was neither a marked increase nor
decrease in V ; therefore Explore (Equation 22c) for new direc-
tions. This case is called the Explore regime. In Magdoom et al.
(2011) we assumed a simple symmetry between DAhi and DAlo,
such that DAhi > 0 and DAlo = −DAhi.

However, in the present study we introduce a small vari-
ation of the above formulation of the GEN method. Instead
of V, we perform hill-climbing over the Utility landscape.
The three separate Equations (22a–c) can be combined into
a single Equation (23) [as in Sukumar et al. (2012)],
as follows:

�FGref(t) = AG log sig (λGδU(t)) �FGref(t − 1)

−AN log sig(λNδU(t)) �FGref(t − 1)

+AEψ exp(−δ2
U(t)/σ2

E)

(23)

where,

δU(t) = U (FGref(t)) − U (FGref(t − 1)) (24)

And,

logsig(n) = 1

1 + exp(−n)
(25)

�FGref is the change in FGref and ‘t’ is the trial number; AG/E/N

are the gains of Go/Explore/NoGo components, respectively;
λG/N are the sensitivities of the Go/NoGo components, respec-
tively; ψ is a random variable uniformly distributed between
−1 and 1 and σE is the standard deviation used for the Explore
component.

Just as TD error is interpreted as dopamine signal in classi-
cal RL-based accounts of the BG function, we interpret δU as
dopamine signal in the present study. In Equation (23) above,
the first term on the RHS corresponds to “Go” regime, since it
is significant for large positive values of δU (since AG and λG are
positive). The second term on the RHS of Equation (23) above
corresponds to “NoGo” regime, since it is significant for large
negative values of δU (due to AN > 0 and λG < 0). The third term
on the RHS corresponds to “Explore” regime, since it is dominant
for values of δU close to 0.

Neurobiological Interpretation of the GEN Method in PD
PD being a dopamine deficient condition, a natural way to incor-
porate Parkinsonian pathology is to attenuate the dopamine
signal, δU . In (Magdoom et al., 2011; Sukumar et al., 2012), PD
pathology was modeled by clamping the dopamine signal, δU , and
preventing it from exceeding an upper threshold. The rationale
behind such clamping is that with fewer dopaminergic neurons
left, SNc may not be able to produce a signal intensity that exceeds
a certain threshold. In the present case of PG, such a constraint is
applied to δU . If [a,b] is the natural unconstrained range of val-
ues of δU for controls, then for PD OFF simulation, a clamped
value of δLim changes the δU range to [a, δLim] where δLim < b.
Furthermore, to simulate the increase in dopamine levels in PD
ON condition, due to administration of L-dopa, a positive con-
stant is added to δU , thereby changing the range of δU in PD ON
condition to [a+ δMed, δLim + δMed] [Equation (26)].

δU(t) =
⎧⎨
⎩

[a, b] (a) for controls
[a, δLim] (b) for PD OFF
[a + δMed, δLim + δMed] (c) for PD ON

(26)

where δLim + δMed < b and a < b.

Training the GEN parameters
The output of the GEN system is FG from which SGF is cal-
culated as average FG between 4000 and 5000 ms of simulation
time, the mean and variance of which must match with the mean
and variance of SGF obtained from PG experiments under con-
trol and PD conditions (Ingvarsson et al., 1997; Fellows et al.,
1998). The parameters to be trained are AG/E/N [gains of the
Go/Explore/NoGo terms in Equation (23)], λG/N [sensitivity of
Go/NoGo terms in Equation (23)] and σE [sensitivity of Explore
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term in Equation (23)]. Determination of the GEN parameters is
done by optimizing a cost function CEGEN given as.

CEGEN = 2
(
SGFexpt − SGFsim

)2 + (
σexpt − σsim

)2
(27)

SGF is the stable grip force generated and σ is the variance in the
error. Subscripts expt and sim denote experimental and simulated
values, respectively. CEGEN is formulated such that more weigh-
tage is given to the SGF error and lesser to the variance in the error
[Equation (27)].

The six model parameters (AG/E/N , λG/N , and σE) of the
GEN method [Equation (23)] are trained to capture the follow-
ing experimental conditions: Controls and PD ON conditions
are obtained from Fellows et al. (1998), whereas controls, PD
ON and OFF from Ingvarsson et al. (1997) for both sandpaper
and silk surfaces. However, the parameters AG/E/N , λG/N , and
σE are not all trained separately for every experimental condi-
tion. Initial parameter values for AG/E/N , λG/N , σE, and α were
determined (Figure 6A) by matching the SGF results for controls
of Fellows et al. (1998); this matching is achieved by optimizing
CEGEN [Equation (27)] using GA (Figure 6A). This initial train-
ing of GEN parameters is a kind of calibration of the parameters
for a given experimental setup. Once an initial estimate of param-
eters was obtained, AG/E/N , λG/N , and σE were fixed and optimal
values of α, δLim, and δMed were obtained using GA for the PD
conditions, of Fellows et al. (1998). Similarly, for Ingvarsson et al.
(1997), the initial parameter values for AG/E/N , λG/N , σE, and α

were determined by matching the SGF results for controls using
Equation (27). For the cases of PD ON and PD OFF (Ingvarsson
et al., 1997), the search space was limited to α, δLim, δMed, by hav-
ing fixed the values of AG/E/N , λG/N , σE obtained from controls
(Ingvarsson et al., 1997).

The model was tested (Figure 6B) using the trained GEN
parameters to determine if the model generated outputs are close
to the experimental values.

RESULTS
We now apply the model described in the previous section
to explain the experimental results for two published studies

FIGURE 6 | Block diagram showing (A) training of GEN parameters

using CEGEN; (B) model testing using trained GEN parameters.

(Ingvarsson et al., 1997; Fellows et al., 1998). For simplicity we
used only constant weight trials (i.e., only the trials where only
one load was repeatedly used for lifting). The friction coefficient
was calculated as load force/slip force (Forssberg et al., 1995)
[Equation (28)].

μ = Mog/Fslip (28)

Fellows et al. (1998) investigated 12 controls, 16 PD patients and
four hemi-parkinsonian patients. All the PD subjects were in
medication ON state. The subjects were asked to lift the object
to a height of 4–8 cm. The study comprised of two loads 3.3 N
and 7.3 N. Various combinations of these two loads were used
to give rise to “light,” “heavy,” “unload,” and “load” condition.
In our study, we simulated only the experimental results for the
“light” condition (which featured lifting the 3.3 N object for all
the trials) with a desired object lift height of 5 cm.

Ingvarsson et al. (1997) investigated the role of medication in
10 controls and 10 PD subjects under two object surface con-
ditions (silk and sandpaper). The task required the object to be
PG–lifted to a height of 5 cm above the table. The entire exper-
iment was divided into 3 parts (a) coordination of forces, (b)
adaptation to friction and (c) rapid load changes. “Coordination
of forces” required the object to be lifted to 5 cm height, and
maintained at that position for 4–6 s using PG. “Adaptation to
friction” required the subjects to gradually reduce the grip force
on the object thereby causing slip Fslip is calculated. Finally, in the
“rapid load changes” task a plastic disk was dropped in a padded
plate thereby causing abrupt changes in FL.

In the present study, we use the Fslip for determining the
friction coefficient which is used to match the experimentally
obtained grip force values under silk and sandpaper condition
for coordination of forces case. Ingvarsson et al. (1997) reported
the results in median ± Q3 quartile format. Hence for simplicity
the results are assumed to be normally distributed with mean =
median and Q3 = mean + 0.6745 standard deviation. The entire
text reports the results in terms of mean and variance.

We now describe the simulation results starting from con-
troller training to simulation of results from Ingvarsson et al.
(1997) and Fellows et al. (1998).

CONTROLLER TRAINING FROM THE MODEL OF THE PRECISION GRIP
CONTROL SYSTEM
The FG controller
In the present model the grip force controller is designed as ref-
erence tracking controller which receives FGref as the input and
generates a time-varying FG(T) as the output. So in the pro-
posed configuration the FG controller is only affected by the
input (FGref) it receives. Using the overshoot ratio, Mp = 1.25,
[Equation (2)] and time to peak, Tp = 530 ms, [Equation (3)]
as design criteria [Mp and Tp values obtained from Johansson
and Westling (1984)], we determined ωn = 6.4 and ζ = 0.4
as the parameters for transfer function of the FG controller
[Equation (1) in The Precision Grip Control System; Ogata,
2002]. Figure 7A shows the grip force profile (for T = 5000 ms)
for the input FGref = 10 N. Since the FG controller is modeled as
a transfer function which is dependent only on the FGref value,

Frontiers in Computational Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 172 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gupta et al. Modeling Parkinsonian precision grip performance

FIGURE 7 | Figure shows a single trial simulated output obtained from

model. (A) The typical FG profile for the input FGref = 10 N. The object and
finger position for (B) Ingvarsson et al. (1997) silk (μ = 0.44, Mo = 0.3 kg);
(C) Ingvarsson et al. (1997) sandpaper (μ = 0.94, Mo = 0.3 kg); (D) Fellows
et al. (1998) (μ = 0.44, Mo = 0.33 kg) are shown. Note that in generation of
(B–D), the FGref is kept constant at 10 N for illustration purpose.

the controller did not require retraining for different friction
conditions.

The FL controller
The efficacy of FL controller output can be observed in the out-
put object and finger position. If a suboptimal FL is generated,
the object does not reach the reference position. The cardinal
components affecting the object-finger slip are μ and Mo (Refer
Table 1 for the values of μ and Mo used in simulation). Since the
FL controller is affected by μ and Mo, a decreased μ or increased
Mo increases the Fslip Therefore, in this study we trained the FL

controller for the minimum μ and the maximum Mo to prevent
the object from slipping even when μ increases or Mo decreases.
Furthermore, to train the FG controller, we assume a sufficiently
large FG (=10 N) thereby effectively decoupling the FG controller.
With a large, constant FG, the cost function (CE) [Equation (8)]
was optimized using the GA (Goldberg, 1989; Whitley, 1994) for
the setup parameters from Fellows et al. (1998) (μ = 0.44 and
Mo = 0.33 N) to obtain PID parameter values. The PID param-
eter values obtained were KP,L = 6.938, KI,L = 14.484, KD,L =
1.387, τs = 0.087. The same PID parameters were used to sim-
ulate results from Ingvarsson et al. (1997) also. In Figure 7, the
output of the simulated finger and object position is shown
for (Figure 7B) the silk condition of (Ingvarsson et al., 1997),
(Figure 7C) the sandpaper condition of (Ingvarsson et al., 1997)
and (Figure 7D) light condition of (Fellows et al., 1998).

Since we fixed the PID parameters for the FL controller,
efficacy of the PID parameters across the three control con-
ditions viz. Ingvarsson et al. (1997) silk condition, Ingvarsson
et al. (1997) sandpaper, and Fellows et al. (1998), needs to be
determined. Two important criteria for determining a success-
ful lift are: low slip (X̄fin − X̄o) and low position error (Xref −
X̄o). In all the three cases (refer Table 1) the finger–object

slip distance was <0.005 m and the Xref − X̄o <0.001 m, where,
X̄o is average position between simulation time (T) as 4000
and 5000 ms. The FG controller output is shown in Figure 7A;
object and hand position for Ingvarsson et al. (1997) sand-
paper, Ingvarsson et al. (1997) sandpaper, and Fellows et al.
(1998) is shown in Figures 7B–D. Note that FGref is held
constant at 10 N.

OBTAINING V(F Gref), h(F Gref), AND U(F Gref)
Utility based approach requires estimation of V(FGref) and
h(FGref) [refer model Section “Computing U(FGref)”]. V and
h are generated for Ingvarsson silk and Ingvarsson sandpaper
and were obtained using the parameters given in Table 1. We
assumed the noise to be inversely related to the friction coef-
ficient. Hence a higher noise was used in case of lower μ and
vice versa.

Note that value functions [expressed as a function of FGref

(Appendix B, Equation (42)] in case of PG are expected
to have a sigmoidal shape, since a FG level that exceeds
the Fslip always results in a successful grip-lift and therefore
reward. On the contrary, the risk function, h [Appendix B,
Equation (43)], is expected to be bell-shaped since risk is
the highest in the neighborhood of slip force, and zero far
from it.

These observations are supported by the value and risk func-
tions constructed for various experimental conditions—Fellows
et al. (1998) light and Ingvarsson et al. (1997) silk and sandpaper
cases. Figure 8A shows the value and risk functions for Fellows
et al. (1998), Figure 8B shows the value and risk functions for
Ingvarsson et al. (1997) silk and Figure 8C shows the value and
risk functions for Ingvarsson et al. (1997) sandpaper condition.

PERFORMING ACTION SELECTION USING THE BG AND SIMULATING
THE CONTROL AND PD CASES OF THE STUDY
Two features mark the difference in V(FGref) and h(FGref) between
controls and PD. In PD OFF case we apply the clamped δU (=
δLim) condition [Equation (26b)], whereas in PD ON case we add
a positive constant (δMed) to δU [Equation (26c)]. In addition to
these changes in the dopamine signal, δU , we assume altered risk
sensitivity in PD. Studies also suggest altered risk taking in PD
patients (in particular, risk in PD ON> risk in PD OFF) when
compared to healthy controls (Cools et al., 2003). Since α repre-
sents risk sensitivity in the utility function [Equation (20)], we
use a smaller α in PD case (both ON and OFF) (Refer Tables 3, 4
for the simulated values).

As described earlier, the GEN method [Equation (23)], pro-
duces a series of SGF values with a certain mean and stan-
dard deviation computed over the trials. It may be recalled,
from “Model”, that Equation (23) represents a form of stochas-
tic hill-climbing over the utility function, U. It represents a
map from FGref(t − 1) to FGref(t), where “t” represents the
trial number. The three terms on the RHS of Equation (23)
represent GO, NOGO and Explore regimes, in that order.
The three regimes are active under conditions of high, low,
and moderate dopamine (δU ), respectively. Figure 9 shows
some sample profiles of the three terms on the RHS of
Equation (23).
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FIGURE 8 | Figure showing the value, risk and utility (α = 0.3 and α = 0.5) of the RBF network as an average value of 20 runs for (A) Fellows et al.

(1998) (B) Ingvarsson et al. (1997) silk, and (C) Ingvarsson et al. (1997) sandpaper.

Table 3 | Table showing the GEN parameters and Utility parameters

for Fellows et al. (1998) control and PD ON.

Fellows et al. (1998)

Norm PD ON

λG 1.53 1.53

λN −7.18 −7.18

σE 1.00 1.00

AG 0.01 0.01

AN 1.60 1.60

AE 0.43 0.43

α 0.70 0.312

δLim 1.00 −0.5

δMed 0.00 0.427

Using the GEN policy on δU,we simulate our model with
parameters described in Tables 3, 4 (However, simulation with
δV of Equation (21) with the same parameter set described in this
section yields Supplementary Material B).

Procedure to train the GEN parameters
• The change in FGref (i.e., �FGref) from trial, “t” to “t + 1” is

given in Equation (23).

Table 4 | Table showing the GEN parameters and Utility parameters

for simulating both Ingvarsson et al. (1997) cases of silk and

sandpaper in controls, PD OFF and PD ON conditions.

Ingvarsson et al. (1997)

Norm PD OFF PD ON

λG 1.53 1.53 1.53

λN −7.18 −7.18 −7.18

σE 1.00 1.00 1.00

AG 0.60 0.60 0.60

AN 2.16 2.16 2.16

AE 0.29 0.29 0.29

α 0.50 0.30 0.30

δLim 1.00 0.5 0.5

δMed 0.00 0.00 0.005

• This Equation (23) contains six parameters (AG/E/N , λG/N and
σE) whose values need to be determined.

• The training for GEN parameters (AG/E/N , λG/N and σE) was
carried out using GA for optimizing CEGEN on Fellows et al.
(1998) control condition experimental data. (Figure 6A)

• The GEN parameters obtained from the control conditions are
also used for simulating PD. In case of (Fellows et al., 1998),
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FIGURE 9 | Figure illustrating output of the GO (λG = 2), NOGO

(λN = −2), explore (σE = 1) regime and the overall output of the three

regimes. Here AG = AN = AE = 1. The �FGref(t − 1) is set to 1. We
thereby analyze the selection output �FGref(t) as a function of δU alone. The
“overall” graph is produced by actually adding the noise term [III term on
RHS in Equation (23)]. Note the high variability in �FGref(t) in the vicinity of
δU = 0.

the parameters from controls are used for PD ON only. In case
of (Ingvarsson et al., 1997), the parameters from controls are
used in PD ON and OFF for two surface conditions – silk and
sandpaper.

• In PD OFF case, only δLim and α are trained. In PD ON case,
δLim,δMed and α are trained.

Simulation of Fellows et al. (1998) results
Fellows et al. (1998) for controls was simulated using the param-
eters (Table 4) obtained by optimizing GA on CEGEN.

(a) Using the AG/E/N , λG/N,σE and α = 0.7 obtained from the
GA, the controls was simulated using δLim = 1 and δMed = 0.

(b) A similar approach was performed for modeling the PD
ON condition. The parameters (AG/E/N , λG/N and σE) were
the same as the controls, while the values of α = 0.312,
δLim = −0.5 and δMed = 0.427 were obtained by GA opti-
mization. For a detailed list of parameters see Table 3.

A comparison of the experimental and simulated data obtained
for Fellows et al. (1998) using the parameters in Table 3 is given
as Figure 10.

Simulation of Ingvarsson et al. (1997) results
Following the simulation of the Fellows et al. experiment:

(a) The results of the Ingvarsson et al. (1997) controls for both
sandpaper and silk were simulated for obtaining (AG/E/N ,
λG/N,σE,and α = 0.5) using GA (Table 4). The other param-
eters are set as δLim = 1 and δMed = 0.

FIGURE 10 | Comparison of experimental (Fellows et al., 1998) and

simulation results for SGF. The bars represent mean (±SEM). The results
for the control and PD ON groups are statistically significant with the
p-value < 0.05 in both the experiment and simulation.

(b) In PD ON condition, the same control parameters (AG/E/N ,
λG/N and σE) were used along with α = 0.30, δLim = 0.5 and
δMed = 0.005 obtained through GA optimization.

(c) PD OFF condition was shown by optimizing α = 0.30,
δLim = 0.5 and δMed = 0 with the parameters (AG/E/N ,
λG/N and σE) remaining the same as that of the controls.

A comparison of the experimental and simulated data obtained
for Ingvarsson et al. (1997) for silk and sandpaper using the
parameters in Table 4 is given as Figures 11 and 12, respectively.
In order to be consistent with the experimental result the sim-
ulation results in Figures 11 and 12 are shown in median ±
Q3. Figures 10–12 replicate the empirical findings (both mean /
median and variance profiles) well. Fellows et al. (1998) results
show that the mean(SGF) is higher in PD ON case compared
to controls (SGFnorm<SGFPDON) (Figure 10). A similar result
(SGFnorm<SGFPDON) is also reported in Ingvarsson et al. (1997)
silk (Figure 11) and sandpaper cases (Figure 12). Furthermore,
var(SGF) under PD OFF cases is observed to be greater than that
of controls. It may be inferred that the increase in SGF during the
PD conditions would be due to their increased SM while play-
ing risk aversive in the game of risk based decision making. This
increased SM could be needed to oppose the increased internal
perturbations/sensory-motor incoordination observed in the PD
patients.

DISCUSSION
In this paper, we present a computational model to explain
the changes in FG in controls and PD ON/OFF conditions
(Ingvarsson et al., 1997; Fellows et al., 1998). To our knowl-
edge this is the first computational model of PG performance
in PD conditions. A novel aspect of the proposed approach to
modeling PG is to apply (based on the observation that PG per-
formance involves a SM) concepts from risk-based DM to explain
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FIGURE 11 | Comparison of experimental (Ingvarsson et al., 1997) and

simulation results for SGF for silk surface. The bars represent the
median (± Q3 quartile). The results for the control and PD ON groups are
statistically significant with the p-value < 0.05.

FIGURE 12 | Comparison of experimental (Ingvarsson et al., 1997) and

simulation results for SGF for sandpaper surface. The bars represent
the median (± Q3 quartile). The results for the comparison on controls-PD
ON, controls-PD OFF and PD ON-PD OFF in both the experiment and
simulation are non-significant in both the experiment and simulation.

FG generation. To this end, we applied a recent model of the
BG action selection based on the utility function formulation,
instead of value function, to explain PG performance (Pragathi
Priyadharsini et al., 2012).

There are significant challenges involved in developing a com-
putational model of PG in PD conditions. The root cause of
this difficulty is that the pathology in PD is located at a high
level (dopaminergic neurons of the BG) in motor hierarchy,
while the motor expression is at the lowest level in the hier-
archy (finger forces). Ideally speaking, a faithful computational
model must incorporate these two well-separated levels in motor

hierarchy, and all the levels in between. But development of such
an extensive model would be practically infeasible, and may not
be essential to the problem at hand. On the other hand, if model
compactness is the sole governing principle, one may build an
empirical, data-fitting model that links experimental parameters
like friction, object weight, and abstract neural parameters like
dopamine level, medication level, with observed data like mean
and variance of grip force generated. But such an over-simplified
model could be a futile mathematical exercise without much
neurobiological content.

Therefore, a conservative approach to model PG performance
in PD would have two components: (1) a minimal model of
sensory-motor loop dynamics involved in generating PG forces,
and (2) a minimal model of the BG that incorporates the effect
of dopamine changes on the BG dynamics. Whereas the BG level
generates evaluations of actions (FG) based on the rewards (suc-
cessful grip performance) obtained from PG performance, the
sensory-motor loop dynamics receives the command from the BG
level and generates FG. While the first component represents DM,
the second represents execution. These two components must
then be integrated. PD-related reduction in dopamine level in the
integrated model must then be manifested as appropriate changes
seen in PG forces. This is the approach adopted in the present
study. Figure 13 presents the grand plan of the entire model, and
the training/design steps followed to build various components.

MODELING THE SENSORIMOTOR LOOP
The sensory-motor loop component consists of two controllers,
for generating the grip force and lift force, and a plant model. FG

and FL and given as inputs to the plant model which simulates the
of the object and the fingers. The error between actual and desired
object positions is fed back to the FL controller. The FG controller
receives FGref as input and generates the FG(T) profile. FGref is
generated by the second component, the BG component, by a DM
process. The BG component is built on the lines of Actor-Critic
models of the BG, where the utility function used instead of value
function, and the dopamine signal, δ, is the temporal difference
of utility [Equation (24)].

THE FLCONTROLLER FORMS A LOOP WITH THE PLANT
The controller gives FL as input to the plant and receives position
error as feedback. The controller is trained by GA as described
in “The Precision Grip Control System”. The grip force controller
is designed as an open-loop second order system that gives FG

as input to the plant (see The “Precision Grip Control System”).
Plant dynamics is described in Appendix A. The controller and
plant system, with its trained parameters, is then integrated with
appropriately trained the BG models to simulate control and PD
results (Ingvarsson et al., 1997; Fellows et al., 1998).

Simulation of Fellows et al. (1998) results
Incorporating the values of object mass (Mo = 0.33 kg) and fric-
tion (μ = 0.44) from Fellows et al. (1998), the controller and
plant system trained above is used to calculate V and h func-
tions (see “The Precision Grip Control System”). The V and h
functions thus computed are explicitly modeled using RBFNNs
(see “The Utility Function Formulation”). The V and h func-
tions are combined to produce the utility function, which is
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FIGURE 13 | An illustration of the entire model, the training/design steps followed to build various components and to reproduce the results of

Fellows et al. (1998) and Ingvarsson et al. (1997). The text in {} denote section name.

used in the GEN method [see “Computing U(FGref)”] to pro-
duce mean(SGF) and var(SGF) as outputs. The parameters of
the GEN method must be calibrated to each experimental setup.
Thus, the GEN parameters (AG/E/N , λG/N and σE) are trained by
GA to produce the mean(SGF) and var(SGF) corresponding to
the controls case. Then for the PD ON case, only δLim and δMed

are optimized (AG/E/N , λG/N and σE are unchanged). Simulated
and experimental values of mean(SGF) and var(SGF) approx-
imate the experimental mean(SGF) and var(SGF) (see Results:
Figures 11, 12).

Simulation of Ingvarsson et al. (1997) results
The case of Ingvarsson et al. (1997) is a bit more complicated
since it involves two friction conditions: silk and sandpaper. It
also involves both PD ON and OFF unlike Fellows et al. (1998)
which describes results for only PD ON. For the condition of
sandpaper, object mass (Mo = 0.3 kg) and friction (μ = 0.94)
are incorporated into the trained controller and plant system.
V and h functions are computed and explicitly modeled using
RBFNNs (“The Utility Function Formulation”) and Utility func-
tion is computed by combining V and h. The Utility function is
used in the GEN method; the GEN parameters (AG/E/N , λG/N

and σE) are trained to minimize CEGEN[Equation (27), Figure 5]
so as to calibrate the model for the sandpaper case of Ingvarsson
et al. (1997). The trained GEN parameters are used for the PD
OFF case and only δLim is trained to optimize CEGEN. The same
GEN parameters are again used for the PD ON case, where both

δLim and δMed are optimized. A similar procedure is followed for
the “silk” case (Mo = 0.3 kg and μ = 0.44) of Ingvarsson et al.
(1997) as outlined in Figure 13.

Risk-based decision making can arise in both motor and cog-
nitive domains (Claassen et al., 2011). The present study deals
with risk in motor domain. In this context, an interesting ques-
tion naturally arises. Is there a correlation between risk-sensitivity
in motor and cognitive domains. Does impaired risk-sensitivity
in one domain carry over to the other? In other words, do PD
patients show impaired decision making in motor and cognitive
domains equally? In order to answer the above line of questioning,
we propose to use a task, the Balloon Analog Risk Task (BART),
which tests risk-sensitivity in cognitive domain (Claassen et al.,
2011). We then propose to adapt that BART to the motor domain.

In BART, the subject is asked to press a key and inflate a virtual
balloon displayed on the monitor. For every key press, the virtual
balloon is inflated by a fixed amount and the subject earns a fixed
number of points. The catch lies in that, on inflation beyond a
threshold volume, the balloon bursts and the subject loses all the
points. Knowing when to stop and redeem all the points earned
so far involves risk based decision making.

The above task, which is a cognitive task, can be redesigned in
terms of motor function, specifically in terms of PG performance.
Just as in the BART task there is a threshold point at which the
balloon bursts, in PG task there is a threshold grip force at which
the object slips. In the redesigned BART task, the subject will
earn more points as he/she grips the object with the grip force as
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close as possible to the slip force. Uncertainty can be incorporated
by using objects that look identical but with different weights.
It will be interesting to see possible parallels in performance of
normal or PD patients, on both the cognitive and PG versions
of the BART. If the above line of experimentation confirms that
there is correlation between risk-sensitivity in motor and cogni-
tive domains, it would place risk-based decision making approach
to understanding PD on a stronger foundation.
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APPENDIX A
PG MODEL
Plant
The forces (FL and FG) obtained from the two controllers are used
for determining the kinetic (position, velocity and acceleration of
finger and object). The plant model incorporates the FLand FG for
obtaining the net forces acting on both the finger (Ffin) and object
(Fo), with the interaction based on with the interaction based on
finger-object interface through friction (Ff ). The net force acting
on finger and object is given in Equations (29, 30). Please note
that Mfin is kept constant to Mo/10 in the model.

Ffin = FL − Ff − Mfing (29)

Fo = Ff + Fn − Mog (30)

When the object is resting on surface the net force on object is
zero as there is no acceleration. So, the normal force is obtained
by keeping Fo = 0 in Equation (30). When the object is lifted
from the table the normal force becomes zero. Fn determination
is given in Equation (31).

Fn =
{

Mog − Ff , if Xo = 0 ∧ Mog > Ff

0, else
(31)

The frictional force (Ff ) coupling the finger and object is given in
Equation (32)

Ff =
{

Fnoslip, if Fnoslip < Fslip

Fslip , else
(32)

Where, the Fslip, representing the maximum frictional force that
can be generated is given in Equation (33).

Fslip = 2μFG (33)

The Ff required to prevent slip is given in Equation (34)

Fnoslip = MoMfin

Mo + Mfin

(
FL

Mfin
− Fn

Mo

)
(34)

According to Newton’s second law of motion force is given as a
product of mass and acceleration. So, Equations (29, 30) can also
be represented as Equations (35, 36).

Ffin = Mfin
d2Xfin

dx2
(35)

Fo = Mo
d2Xo

dt2
(36)

The kinetic parameters can be obtained by integrating d2Xo

dt2 to
obtain velocity and double integrated to obtain the position.

APPENDIX B
TRAINING RBF
In order to determine U in PG performance we first need to iden-
tify the state and the reward signal. Since FGref is the key variable
that decides the final outcome, FGref at trial (‘t’) is treated as a state
variable.

As described earlier, calculation of U(FGref(t)) requires
V(FGref(t)) and h(FGref(t)) as explicit functions of FGref(t). To
this end we use data-modeling capabilities of neural networks to
implement V(FGref) and h(FGref) as explicit functions of FGref.

Using the values of V(FGref) and h(FGref) as output and FGref

as input, an RBFNN (contains 60 neurons with the centroids dis-
tributed over a range [0.1 12] in steps of 0.2, and a standard
deviation (σRBF) of 0.7) was constructed and trained to approxi-
mate V(FGref) and h(FGref). For a given FGref(t), a feature vector
(�) is represented using RBFNN [Equation (37)].

φm(FGref(t)) = exp(− (FGref(t) − μm)2 /σ2
m) (37)

Here, for the mth basis function, μm denotes the center and σm

denotes the spread.
Using the φ that was obtained from Equation (37). The

RBFNN weight for determining value, wV , is updated in Equation
(38). Hence the value is the mean of all the VCE’s obtained on
F̂Gref.

�wV = ηV �VCE(FGref) φ(FGref) (38)

where ηV is the learning rate maintained to be 0.1, and the change
in VCE is given as in Equation (39).

�VCE(FGref) = e−CE(F̂Gref) − e−CE(FGref) (39)

The risk function (h) is then the variance in the �VCE as per
Equation (40). Risk is the variance seen in all the VCE’s obtained
on F̂Gref.

ξ(FGref) = �VCE(FGref)
2 − h(FGref) (40)

The weights for risk function wh, is updated Equation (41)

�wh = ηh ξ(FGref) φ(FGref) (41)

Here, ηh is the learning rate for risk function = 0.1 and ξ is the
risk prediction error [Equation (40)].

From the trained RBFNN, V(FGref) and h(FGref) are calculated
using Equations (42, 43), respectively.

V(FGref (t)) = wVφ(FGref(t)) (42)

h(FGref (t)) = whφ(FGref(t)) (43)
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