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While the anatomy of the cerebellar microcircuit is well-studied, how it implements
cerebellar function is not understood. A number of models have been proposed to
describe this mechanism but few emphasize the role of the vast network Purkinje cells
(PKJs) form with the molecular layer interneurons (MLIs)—the stellate and basket cells.
We propose a model of the MLI-PKJ network composed of simple spiking neurons
incorporating the major anatomical and physiological features. In computer simulations,
the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and
a shift toward faster, more regular firing patterns when inhibitory synaptic currents are
blocked. In the model, the time between PKJ spikes is shown to be proportional to the
amount of feedforward inhibition from an MLI on average. The two key elements of the
model are: (1) spontaneously active PKJs and MLIs due to an endogenous depolarizing
current, and (2) adherence to known anatomical connectivity along a parasagittal strip of
cerebellar cortex. We propose this model to extend previous spiking network models of
the cerebellum and for further computational investigation into the role of irregular firing
and MLIs in cerebellar learning and function.
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INTRODUCTION
The cerebellum is thought to be involved in producing smooth
and coordinated movements which are both spatially and tempo-
rally precise. How the cerebellum achieves this is not understood.
One approach to elucidate this mechanism is to construct a
model from known anatomy and physiology to explain how
the constituent neurons compute the function implemented by
the cerebellum. Numerous theoretical and computational models
have been proposed (Grossberg, 1969; Marr, 1969; Albus, 1971;
Fujita, 1982; Medina et al., 2000; Dean et al., 2010; Yamazaki and
Nagao, 2012), however few of these models emphasize the func-
tional role of the molecular layer interneurons (MLIs). Typically,
these inhibitory interneurons are described as providing “global
inhibition” or “sculpting” the overall response of the Purkinje
cells (PKJs); however, recent experimental evidence questions this
hypothesis (Bower, 2010; Jorntell et al., 2010). We seek to under-
stand the role of the MLIs in concert with the PKJs which they
form a vast network with by means of computational modeling.

A key feature of the network of MLIs and PKJs is that these
neurons fire spontaneously in absence of excitatory synaptic
input (Hausser and Clark, 1997; Raman and Bean, 1997). When
inhibitory synaptic currents are blocked in vitro, MLIs and PKJs
fire regularly (Hausser and Clark, 1997). In the presence of
inhibitory synaptic currents, they exhibit relatively irregular fir-
ing. Understanding how PKJ spontaneous activity is modified to
control their targets in the deep cerebellar nuclei and vestibular
nuclei (DCN/VN) is central to understanding the operation of
the cerebellar cortex. In conditioned eye blink response (CER)

learning, PKJs learn to make an appropriately timed pause in
firing in response to a conditioned stimulus, which in turn dis-
inhibits their DCN targets and elicits an eye blink (Jirenhed
et al., 2007). Since PKJs are spontaneously active and blocking
excitatory synaptic inputs to PKJs only modestly decreases the
spontaneous PKJ activity in vivo (Cerminara and Rawson, 2004)
and in vitro (Hausser and Clark, 1997), a decrease in efficacy at
parallel fiber (PF) to PKJ synapses is insufficient to explain the
learned pause in PKJ activity. Feedforward inhibition provided by
MLIs may be one mechanism to produce this pause. Furthermore,
using an optogenetic technique to increase the firing rates of a
target population of MLIs in awake mice, movements can be
elicited and kinematics controlled by varying the photostimula-
tion parameters (Heiney et al., 2014). Finally, in mutant mice
lacking PKJ gamma-aminobutyric acid A (GABAA) receptors,
effectively removing MLI feedforward inhibition, motor learning
deficits are observed (Wulff et al., 2009). The accumulating evi-
dence points to a greater functional role for MLIs than previous
theories suggest.

In this study we construct a spiking network model of spon-
taneously active MLIs and PKJs composed of leaky integrate-
and-fire neuron models connected according to known anatomy.
We show that despite using simple neuron models, this net-
work reproduces the irregular ISIs observed in PKJs and MLIs
in vitro. We further show that the relative contribution of MLI →
MLI feedback inhibition to produce irregular firing in MLIs is
greater than the PKJ → MLI feedback inhibition contribution.
Finally, this model provides a substrate for additional experiments
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investigating the functional role of irregular firing patterns and
MLIs in cerebellar learning and function.

MATERIALS AND METHODS
NETWORK MODEL
The network is composed of PKJs and MLIs and is modeled
after a 1 mm × 32 μm microzone of the cerebellar cortex with
the long axis extending parasagittally. In cats, 330 PKJs are con-
tained within a 1 mm2 sheet of cerebellar cortex arranged in a
grid-like arrangement (Palkovits et al., 1971). We therefore mod-
eled 16 PKJs along a one dimensional grid with an even 64 μm
spacing between cell body centers and assume PKJ cell bodies are
32 μm in diameter. The network includes 160 MLIs in accordance
with the anatomical data of a 10:1 ratio of MLIs to PKJs (Korbo
et al., 1993). Thus, each PKJ has 10 nearest MLIs; three are des-
ignated as lower molecular layer interneurons and are eligible to
receive PKJ recurrent collaterals (described below). Figure 1 illus-
trates the network and basic connectivity. Synapse formation in
the network is probabilistic subject to the anatomical constraints
described next.

In vivo, PKJ recurrent collaterals extend parasagittally and can
span more than 200 μm, appearing to contact both PKJs and
MLIs in the lower molecular layer (Chan-Palay, 1971; Hawkes and
Leclerc, 1989; O’donoghue et al., 1989; Apps and Hawkes, 2009).
Watt et al. (2009) showed PKJ recurrent collaterals extend asym-
metrically and predominantly terminate within 100 μm of the
parent cell soma but do not make functional synapses onto PKJs
after post-natal day 21. To model this, PKJs in our network model
extend their recurrent collaterals asymmetrically in the vicinity
of the two nearest PKJs and can form synapses onto MLIs in
the lower molecular layer, i.e., the first three of 10 MLIs corre-
sponding to a particular PKJ. We chose a probability of forming
a PKJ → MLI synapse such that, on average, each eligible MLI
receives one PKJ input and each PKJ forms synapses onto three
MLIs. Table 1 summarizes these convergence and divergence val-
ues. We assume the model network belongs to an adult animal
and do not allow PKJ to PKJ connections.

In vivo, MLI axons extend parasagittally and terminate up to
500 μm away from the parent soma, contacting both PKJs and
other MLIs (Itō, 1984). In the model, we assume MLI axons

extend asymmetrically and span a distance of eight PKJs. Each
MLI axon branches in one direction or the other determined ran-
domly with equal probability; i.e., an MLI can form synapses with
MLIs and PKJs either to its left or to its right, but not both direc-
tions. We chose a probability of forming MLI → PKJ synapses
such that, on average, 20 MLIs formed synapses onto one PKJ,
consistent with the anatomical data (Eccles et al., 1967; Palay and
Chan-Palay, 1974). Synapse formation is determined by iterating
through the list of candidate target neurons for a source neuron
and randomly drawing a value from Unif(0,1); if the drawn value
is less than some chosen probability, then a synapse is formed.
Thus, all target neurons within the axon span had an equal prob-
ability of forming a synapse whereas those neurons outside this
distance had zero probability of forming synapses. We also chose
a probability of forming MLI → MLI synapses such that, on aver-
age, each MLI received inputs from four other MLIs, consistent
with physiological data (Hausser and Clark, 1997; Kondo and
Marty, 1998). While gap junctions between MLIs are known to
exist (Mann-Metzer and Yarom, 1999), we chose to model only
chemical synapses as a first approximation to this network.

Peak inhibitory post synaptic conductances (IPSCs) for each
neuron type are summarized in Table 1. These peak IPSCs are
multiplied by synaptic weights, specific to each synapse (Equation
2). Synaptic weights are drawn from a random distribution to
simulate the diversity of synaptic conductances up to the peak
conductance as observed in vitro (e.g., Kondo and Marty, 1998).
MLI → MLI synapse weights are drawn from a uniform dis-
tribution between 0 and 1, i.e., wMLI→MLI ∼ Unif (0, 1); also,
wMLI→PKJ ∼ Unif (0, 1.25) and wPKJ→MLI ∼ Unif (0, 1).

NEURON MODEL
Neurons are modeled as conductance-based leaky integrate-and-
fire units (Gerstner and Kistler, 2002). The membrane potential,
V(t), is governed by Equation (1), where C is the mem-
brane capacitance, gleak is a constant leak conductance, gahp(t)
is an after-hyperpolarization (AHP) conductance (described by
Equation 4), gGABA(t) is the inhibitory GABA conductance and
Ispont(t) is a spontaneous depolarizing current (described below).
Eleak, Eahp, EGABA are the respective reversal potentials. Table 1
summarizes the physiological values used in the neuron models

FIGURE 1 | A schematic of the model network. 160 MLIs (red) and 16 PKJs
(blue) were simulated. Each PKJ has 10 corresponding MLIs that are closest
to it along the long axis. Of the 10 closest, three are eligible to receive PKJ
recurrent collaterals (shown in a lighter shade of red) and seven are ineligible

to receive PKJ recurrent collaterals (shown in a darker shade of red).
Examples of allowed connections are shown. All synapses are inhibitory.
Further details on the network connectivity are described in the Methods
Section.
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Table 1 | A summary of the neuron model and network parameters.

Cell parameters Neuron type

PKJ MLI

Vthreshold (mV) −55.0 −53.0

C (pF) 107.0 14.6

ḡleak (nS) 2.32 1.6

Eleak (mV) −68.0 −68.0

ḡGABA (nS) 1.0 4.0

EGABA (mV) −75.0 −82.0

τGABA (ms) 10.0 4.6

ḡAHP (nS) 100.0 50.0

EAHP (mV) −70.0 −82.0

τAHP (ms) 2.5 2.5

κ 0.430303 3.966333

β 0.195962 0.006653

MLI convergence 20 4

PKJ convergence – 0.3*

MLI divergence 2 4

PKJ divergence – 3

PKJ, Purkinje cell (Puia et al., 1994; De Schutter and Bower, 1994a); MLI, molec-

ular layer interneuron (Midtgaard, 1992; Hausser and Clark, 1997; Kondo and

Marty, 1998; Lachamp et al., 2009). –, Non-existent. Convergence and diver-

gence values are averages since the network is constructed randomly subject to

anatomical constraints. *Convergence was calculated on average for the entire

population of MLIs, despite PKJ → MLI synapses only being made on the lower

molecular layer interneurons.

derived from the literature. The model did not include any
excitatory synaptic conductances.

C
dV

dt
= −gleak ((V(t) − Eleak) − gahp(t)

(
V(t) − Eahp

)
− gGABA(t) (V(t) − EGABA) + Ispont(t) (1)

The total synaptic conductance is described by Equation (2),
where ḡGABA is the maximum synaptic conductance, wi is the
weight of the ith synapse, α(t) is the conductance kinetics func-
tion described by Equation(3), and δi(t) is a Dirac delta function
for the ith synapse onto a target neuron, indicating whether the
presynaptic neuron has spiked at time t. τGABA is the inhibitory
conductance time constant.

gGABA(t) = ḡGABA

∑
i

wi

∫ t

−∞
α(t − s)δi(s)ds (2)

α(t) = exp (−t/τGABA) (3)

When the membrane potential for the neuron model surpasses
Vthreshold, the neuron emits a spike and an AHP conductance is
triggered. The AHP is described by Equation (4), where tspiked is
the time the neuron last spiked and τahp is a time constant.

gahp
(
t − tspiked

) = exp

(−(t − tspiked)

τahp

)
(4)

The spontaneous firing activity of MLIs and PKJs has been
shown to be an intrinsic neuron property and not driven by
the background activity of parallel fibers (Hausser and Clark,
1997). In PKJs, the spontaneous firing is primarily mediated by
tetrodotoxin (TTX) sensitive sodium channels which produce
a sub-threshold depolarizing current (Raman and Bean, 1999).
While the mechanism for this endogenous current in MLIs is
not well-studied, MLIs presumably share a similar mechanism
to PKJs since blocking TTX-sensitive sodium channels abolishes
this sub-threshold depolarizing response in MLIs (Midtgaard,
1992). To model this spontaneous activity of MLIs and PKJs,
we inject a random depolarizing current drawn from a gamma
distribution, Ispont(t) ∼ �(κ, β) (in units of nA), every time
step of the simulation. A gamma distribution was chosen since
its support is strictly non-negative and has flexible shape and
scale (controlled by κ and β, respectively). We performed a
grid search over κ and β for MLIs and PKJs separately to find
the parameters which resulted in the neuron model reproduc-
ing the mean firing rate and inter-spike interval coefficient of
variation (CV) that was close to the example data reported in
Hausser and Clark (1997) in the presence of GABA blockers.
Table 1 summarizes gamma distribution parameters for each
neuron type. Figures 2, 3A–C show the resulting neuron model
activity when neurons are isolated, i.e., no synaptic inputs are
present.

We used the PKJ model parameters from Yamazaki and Nagao
(2012) but replaced the constant spontaneous current with one
drawn from a gamma distribution. A single neuron model for
basket and stellate cells was derived from physiological data
reported in the literature (Table 1). Anatomical and physiolog-
ical evidence suggests that basket and stellate cells belong to
one homogenous group of interneurons whose properties vary
smoothly by depth of the soma in the molecular layer (Sultan and
Bower, 1998; Ruigrok et al., 2011; Chu et al., 2012) and which
share common receptive field properties (Jorntell and Ekerot,
2003). Since PKJs and MLIs are modeled as single compartment
neuron models, we combine the effects of stellate-type synapses
onto the PKJ dendrites with basket-type synapses onto the PKJ
somas (Eccles et al., 1967; Palay and Chan-Palay, 1974) by mod-
eling a single idealized MLI that makes synapses of one type onto
the model PKJ.

SOFTWARE AND DATA ANALYSIS
Simulations were performed using BRIAN Simulator, a Python
library for spiking neural network simulations (Goodman and
Brette, 2009). Simulations were carried out using Euler’s method
for temporal integration with a time step of 0.25 ms for numerical
stability. Data analysis and plotting were performed using BRIAN
Simulator, SciPy, Matplotlib, Plotly and custom software written
in Python. The source code is freely available online at: http://dx.
doi.org/10.5281/zenodo.12798.

Artificial action potential (AP) waveforms were drawn for
Figures 2A,D, 3A,D, 5A,B. For Figures 2, 3, a value of 0 mV was
inserted when the spike occurred. For Figure 5, these waveforms
were a hand-crafted series of six values at 0.25 ms intervals for a
total AP waveform length of 1.5 ms. Exact values can be found in
the published code. Mean, variances and coefficient of variations
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FIGURE 2 | Spontaneously active MLI neuron models reproduce similar

firing patterns as observed in vitro. (A) Trace of an isolated MLI membrane
potential with spikes artificially drawn. The neuron appears to fire regularly in
absence of inhibitory synaptic currents. (B) Inter-spike interval (ISI) histogram
of the isolated MLI. The parameters for the gamma distribution governing the
random depolarizing current injected into the neuron were chosen such that
the mean firing rate and ISI coefficient of variation (CV) were similar to the
example neuron shown in Hausser and Clark (1997). All simulations were run

for 300 s. (C) A spike autocorrelogram of the isolated MLI showing regularity
in trains of spikes. (D) Membrane potential trace of one MLI selected from
the intact network of MLIs and PKJs where inhibitory synaptic currents a
present. From the trace, the neuron visibly fires irregularly compared to the
isolated case. (E) An inter-spike interval histogram of the same MLI. The
distribution shifts rightward and becomes broader, suggesting a slower and
more irregular firing pattern. (F) A spike autocorrelogram of the same MLI
showing the regularity in spike trains has disappeared.

FIGURE 3 | Spontaneously active PKJ neuron models reproduce similar firing dynamics as observed in vitro. Conventions are as in Figure 2.

were computed assuming a normal distribution in all cases to
make the values comparable to Hausser and Clark (1997).

RESULTS
MODEL PKJs AND MLIs IN ISOLATION EXHIBIT REGULAR FIRING
First, we examined the spike patterns of isolated MLI and PKJ
neuron models (no synaptic currents) with spontaneous depolar-
izing currents. The top rows of Figures 2, 3 show the response of
a model MLI and PKJ, respectively, under these conditions. The
random current was sufficient to drive the neuron past thresh-
old potential to fire spontaneously (Figures 2, 3A). A histogram

of the inter-spike intervals (ISIs) reveals the degree of regularity
of firing by the average baseline firing rate of the neuron and
variability in timing between spike pairs (Figures 2, 3B). These
results are consistent with MLIs and PKJs recorded in vitro when
GABAergic transmission has been blocked chemically (Hausser
and Clark, 1997). The model PKJ produced a mean firing rate
of 38.9 Hz and an ISI CV of 0.17 compared to 40 Hz and 0.18,
respectively, for an exemplar neuron in vitro (Hausser and Clark,
1997). The model MLI produced a mean firing rate of 29.1 Hz and
an ISI CV of 0.14 compared to 30 Hz and 0.14, respectively, for an
exemplar neuron in vitro (Hausser and Clark, 1997). The model
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MLI appeared slightly more skewed toward longer ISIs compared
to the in vitro data, possibly due to longer recording times of
300 s in our experiments. While the model PKJ ISI histogram
appeared symmetric, it failed a test of normality (Shapiro-Wilk
test, p < 10−12) as did the MLI ISI histogram (Shapiro-Wilk test,
p < 10−38). Tests of normality were not reported by Hausser
and Clark (1997), though the authors noted Gaussian-shaped
ISI histograms. A spike autocorrelogram revealed regularity in
trains of successive spikes with several peaks at integer multiples
of the baseline frequency (Figures 2, 3C). These results suggest
that a simple neuron model with a spontaneous random cur-
rent is capable of reproducing similar spike timing phenomena
as observed in vitro under conditions of GABAergic transmission
block.

MODEL PKJs AND MLIs IN THE NETWORK EXHIBIT IRREGULAR FIRING
Next, we examined the spike patterns of interconnected, sponta-
neously active MLI and PKJ neurons in a network (Figure 1). We
used the same neuron models for MLI and PKJ neurons, respec-
tively, with dynamics depicted in the top panels of Figures 2, 3,
to form the network. Despite the same prototypical MLI and
PKJ being used repeatedly, the random connectivity and random
synaptic weight assigned when constructing the network resulted
in a diversity of neuron responses (Figure 4) with MLI mean fir-
ing rates of 13.1 ± 8.0 Hz (n = 160, range: 0.2–29.2 Hz) and PKJ
mean firing rates of 25.9 ± 3.5 Hz (n = 16, range: 19.1–33.1 Hz).
The firing patterns of MLIs and PKJs in the network changed sub-
stantially due to the constant bombardment by inhibitory postsy-
naptic currents (IPSCs) from presynaptic neurons. The decreased
firing rate and irregular spiking of these neurons is apparent in
a trace of the membrane potential (Figures 2, 3D). The ISI his-
togram becomes significantly skewed favoring longer and more
irregular ISIs (Figures 2, 3E). MLI ISI coefficients of variation
increased markedly from the isolated case to 0.61 ± 0.24 (range:
0.14–1.04; n = 160), as did the PKJ ISI CVs 0.28 ± 0.04 (range:
0.21–0.39; n = 16). Hausser and Clark (1997) reported ISI coef-
ficients in control conditions of 0.51 ± 0.024 (range: 0.19–0.85;
n = 43) for MLIs and 0.28 ± 0.038 (n = 160, range: 0.05–1.13;
n = 68) for PKJs. We also found examples of both MLIs and PKJs
in the model network that closely matched exemplar neurons
reported in vitro data in control conditions. A model PKJ found in
the network produces a mean firing rate of 24.5 Hz and an ISI CV
of 0.30 compared to 35 Hz and 0.49, respectively, for an exemplar
neuron in vitro (Hausser and Clark, 1997). A model MLI found
in the network produces a mean firing rate of 17.8 Hz and an
ISI CV of 0.43 compared to 15 Hz and 0.40, respectively, for an
exemplar neuron in vitro (Hausser and Clark, 1997). It should
be noted that the background activity of parallel fiber input is
present in control conditions reported for in vitro data but was
shown to contribute only a modest increase in MLI and PKJ firing
rates in a separate experiment of the same study. No parallel fiber
background activity is present in this model. A significant corre-
lation between mean firing rate and CV was found in both MLIs
(Spearman rank-order coefficient r = −0.996, p < 10−167) and
PKJs (Spearman rank-order coefficient r = −0.991, p < 10−12).
Many of the peaks in the spike autocorrelogram disappeared sug-
gesting that trains of spikes are no longer regularly spaced. These

FIGURE 4 | The network of MLIs and PKJs exhibits a diversity of

responses. (A) A histogram of mean firing rates of MLIs from the network
during one simulation. (B) A histogram of mean firing rates of PKJs from
the network during one simulation.

results suggest that a simple neuron model of spontaneously
active MLIs and PKJs when interconnected in accordance with
known anatomy is capable of reproducing the irregular firing pat-
terns of MLIs and PKJs observed in vitro. Finally, analyses of the
consistency of the model results among different random instan-
tiations of the network constrained by the same parameters and
of the robustness of the model to random perturbations in the
parameters of up to 10% of the original values were performed
(Figures S1–S3). These results suggest the model reproduces sim-
ilar results under different random instantiations of the network
(Figures S1, S2) and is robust to small changes in the parameters
(Figure S3).

FEEDFORWARD INHIBITION PRODUCES VARIABLE DELAYS IN THE
POSTSYNAPTIC NEURON
Next, we ran simulations to illustrate the effect of feedforward
inhibition on the membrane potential of PKJs between successive
spikes. Multiple traces of the membrane potential of an iso-
lated PKJ showing two successive spikes are aligned to the first
spike and overlaid (Figure 5A). Action potential waveforms have
been artificially drawn since the leaky integrate-and-fire model
does not explicitly model the membrane potential during action
potentials. The random spontaneous current resulted in variable
delays between spikes. A model MLI was then synaptically con-
nected providing feedforward inhibition onto the PKJ with a peak
IPSC of 4 nS. The MLI was triggered to fire 12 ms after the PKJ’s
first spike. The effect of feedforward inhibition from the MLI to
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FIGURE 5 | Feedforward inhibition causes prolonged inter-spike intervals

in the target neuron. (A) 30 membrane potential traces overlaid with first spike
alignedfromasingleisolatedPKJ.Spikesareartificiallydrawn.ThevariableISIcan
be seen. (B) A model MLI was then synaptically connected to the PKJ providing
feedforward inhibition and caused to fire 12 ms (marked by the black arrowhead)
after thefirstPKJspike.30membranepotential traceswith thefirstspikealigned

fromthePKJareshown.TheeffectoftheIPSC(4nSpeakinthissimulation)canbe
shown to increase the average ISI. (C) Histograms of ISIs in the case without
feedforward inhibition (as in A) (darker shade, left histogram) and with
feedforward inhibition (as in B) (lighter shade, right histogram). (D) The
relationship between IPSC and ISI can be seen by varying the synaptic
conductance randomly in separate trials and measuring the resulting ISI.

the PKJ delays the time of the second PKJ spike (Figure 5B). The
mean delay with feedforward inhibition is significant (Mann–
Whitney U-test, p < 10−96, n = 500) (Figure 5C). Moreover, a
linear relationship between the peak IPSC and the ISI can be
seen (Figure 5D). This suggests the mean ISI is a function of
the total synaptic conductance during the interval preceding the
second spike. More elaborate methods for characterizing the
response of neurons to synaptic input, such as measuring the
phase response curves (PRC) of PKJs (Phoka et al., 2010), can
be straightforwardly applied to this model in future work.

THE EFFECTS OF REMOVING MLI → MLI OR PKJ → MLI SYNAPSES
Finally, to explore the effects of MLI → MLI and PKJ → MLI con-
nections on the baseline activity of the network, we simulated the
network activity when a random subset of synapses from one con-
nection type or the other were randomly pruned (i.e., removed).
We simulated scenarios where a random subset of 25, 50, or 75%
of the original MLI → MLI or PKJ → MLI synapses were pruned,
as well as when the network is fully intact (0%) or all synapses of
that connection type are removed (100%) (Figure 6). The activity
of each neuron was recorded for 60 s and a mean firing rate and
mean ISI CV were calculated for each neuron in each neuron-type

population. The median (i.e., second quartile) of each popula-
tion for both measures was computed and is depicted with filled
circles. The first and third quartiles for each measure was also
computed and is depicted with bars—where the lower bar is the
first quartile and the upper bar is the third quartile—to show
the distribution of values across the population. The population
mean was also computed and is depicted by a cross in a con-
trasting color. As more MLI → MLI synapses are pruned, the
MLI firing rates (Figure 6, top-left panel, dark red line) increase
due to decreased mutual inhibition. The MLI ISI CVs (light
red) decrease due to increased regularity in firing. The result of
increased MLI firing is increased inhibition onto PKJs, result-
ing in decreased PKJ firing rates (Figure 6, lower-left panel) and
increased PKJ ISI CVs. In contrast to the significant changes in
MLI and PKJ firing rates and ISI CVs when MLI → MLI synapses
are pruned, pruning PKJ → MLI synapses has only a subtle effect
on the activity of MLIs (Figure 6, top-right) and PKJs (Figure 6,
bottom-right). Statistical tests show that the difference between
population firing rates in the fully intact network (0%) and the
fully pruned PKJ → MLI connections (100%) is not significant
for MLIs (Mann–Whitney U-test, p > 0.13, n = 160) or PKJs
(Mann–Whitney U-test, p > 0.19, n = 16). These results show
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FIGURE 6 | Changes in network activity by pruning MLI → MLI or PKJ →
MLI synapses. Simulations were performed where a random set of
synapses of either MLI → MLI or PKJ → MLI connections were removed
from the model network to investigate the effect of these connection types
on the activity of the network. Left column: measurements of MLI population
(top row, in red) and PKJ population (bottom row, in blue) firing rates (darker
shade) and ISI CVs (lighter shade) when MLI → MLI synapses are randomly
pruned by 25, 50, and 75% as well as fully intact (0%) and fully pruned
(100%, i.e., no MLI → MLI left synapses at all). Each neuron’s mean firing
rate and ISI CV was measured over a 60 s simulation of the operation of the
network. Solid circles denote the median of the population for each of these
statistics. Bars show the first and third quartile to depict the distribution of
values across the population. The cross mark denotes the population mean.

Right column: similar measurements in the case of PKJ → MLI synapses
pruned. Top-left panel: As more MLI → MLI synapses are pruned, the median
firing rate of the population of MLIs (dark red) increases due to decreased
mutual inhibition. When the synapses are completely pruned, there is very
little variance in the population response and quartile bars overlap with the
filled circle and are not visible. Additionally, the median ISI CV decreases as
more MLI → MLI synapses are pruned (light pink). Bottom-left: As more
MLI → MLI synapses are pruned, inhibition onto PKJs from MLIs increases,
thus decreasing the median PKJ population firing rate (dark blue) and
increases the median PKJ ISI CV (light blue). Top-right: pruning PKJ → MLI
synapses has only a subtle effect on the MLI population median firing right
and ISI CV. Bottom right: similarly, pruning PKJ → MLI synapses has only a
subtle effect on the PKJ population median firing right and ISI CV.

that MLI → MLI mutual inhibition has a significant influence on
the baseline activity of the network by governing the average fir-
ing rate and variability of spike timing of MLIs and PKJs whereas
the effect of PKJ → MLI connections on the baseline activity of
the network is more subtle.

DISCUSSION
In this study, we demonstrate that a network composed of sim-
ple neuron models of MLIs and PKJs is sufficient to reproduce
the irregular firing patterns of their biological counterparts as
observed in vitro. The key elements to the model are neurons
with endogenous depolarizing currents that are interconnected
via inhibitory synapses in accordance with known anatomy. The
random endogenous current drives each neuron to spike in the
absence of all input to the neuron in a regular but still vari-
able way. In the event of an inhibitory input from another
neuron, the membrane potential of the target neuron is temporar-
ily decreased, requiring more spontaneous depolarizing current
and thereby more time to reach threshold, resulting in a longer
inter-spike interval. The time between two spikes is dependent
on the amount of the endogenous current and the amount of
inhibitory post synaptic conductance. The results suggest that a
more elaborate neuron model is not necessary to reproduce these
phenomena. In addition, simulations investigating the relative

importance of MLI → MLI and PKJ → MLI connections on reg-
ulating the baseline activity of the network revealed the significant
role of MLI mutual inhibition to achieve results matching in vitro
data and relatively subtle role of MLI → PKJ synapses. Finally,
this network model provides a substrate for additional experi-
mental investigation into the role of MLIs in cerebellar learning
and function.

IMPLICATIONS OF IRREGULAR FIRING
Whether irregular firing has a functional role or is simply a
consequence of interconnected spontaneously active neurons is
not clear. Some evidence suggests a functional role for these
firing patterns. Wulff et al. (2009) found that genetically modi-
fied mice lacking PKJ GABAA receptors exhibited normal motor
performance but were unable to consolidate motor learning fol-
lowing VOR gain down training. Interestingly, while the ISIs of
PKJs were more regular in the genetically modified mice com-
pared to control, the mean firing rate was nearly the same.
Motor learning in the cerebellum may initially take place in the
cortex and then be partially transferred to the deep cerebellar
nuclei/vestibular nuclei (DCN/VN) where it is consolidated for
long-term storage (Kassardjian et al., 2005; Shutoh et al., 2006).
While the overall quantity of PKJ inhibition onto their targets
in the DCN/VN is unchanged in knockout mice, the quality
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of PKJ firing patterns may be enough to disrupt consolidation
of memory to the DCN/VN and could explain the failure of
knockout mice to consolidate VOR gain down learning. This
is consistent with electrophysiological results showing that PKJ
inhibition onto DCN/VN targets controls learning at mossy fiber
(MF) to DCN/VN synapses (McElvain et al., 2010; Person and
Raman, 2010), a putative location for memory consolidation.
Mechanistically, irregular PKJ firing may favor rebound depolar-
izations (RDs) occurring in PKJ targets in DCN/VN (Aizenman
and Linden, 1999) by providing a period of intense inhibition
followed by a period of relative relief, which in turn may con-
trol learning at DCN/VN synapses (Pugh and Raman, 2008). In
the absence of spontaneous feedforward inhibition provided by
MLIs, the PKJs fire more regularly and prevent DCN/VN targets
from firing appropriately, possibly resulting in impaired mem-
ory transfer. However, too much feedforward inhibition leads to
more irregular PKJ firing (Figure 6), which might also interfere
with learning or motor performance. Episodic ataxia type-2 is a
condition caused by mutations to P/Q-type voltage-gated calcium
channels expressed in PKJs which leads to increased irregular-
ity in PKJ firing and impaired motor performance (Walter et al.,
2006). Thus, feedforward inhibition onto PKJs must be carefully
balanced to achieve stable learning and motor performance.

The irregular firing of PKJs may also be a means of preventing
synchronous PKJ activity during periods of rest when the cere-
bellar cortex is not actively emitting control signals. If many PKJs
did synchronize their firing in response to input stimulus, then
the summed activity could encode a sequence of ON periods,
when most PKJs are firing, and OFF periods, when most PKJs
are silent. Maex and De Schutter (2003) showed computationally
that the synaptic conductance delay in a homogeneous network of
inhibitory neurons is the primary parameter controlling the fre-
quency of synchronicity among these neurons. While this model
does not implement spike propagation or synaptic transmission
delays, this could be one way of evoking synchronized activity
among MLIs and PKJs. This ON-OFF pattern might be a means of
implementing Pulse Width Modulation (PWM), a digital control
signal used to represent analog values. Person and Raman (2012)
found that many synchronous inhibitory inputs to a neuron in
the DCN/VN can entrain the neuron to fire at a high and regu-
lar rate. This firing rate could be the analog value desired by the
PWM control scheme. On the other hand, if irregular firing pre-
vents PKJ synchrony during behavior as well, then the summed
activity of asynchronous PKJs could represent an analog value for
control of the DCN/VN targets. It is also possible that PKJs can
switch between operating modes to convey the most appropriate
control signal.

FUNCTION OF MLI-PKJ NETWORK
A more general inquiry is into the functional role of spon-
taneously active PKJs and MLIs. One advantage of sponta-
neously active neurons is that their firing rates can be both
increased and decreased, by excitation and inhibition, respec-
tively. Presumably, PKJs need to actively inhibit their DCN/VN
targets which are spontaneously active and exhibit rebound
depolarizations (Aizenman and Linden, 1999). Tonic inhibition
by PKJs can be increased and possibly synchronized by excitatory

PF inputs which could hyperpolarize or entrain DCN/VN targets.
A decrease in PKJ tonic activity, via MLI feedforward inhibition,
disinhibits DCN/VN targets. Such a scheme would allow for sev-
eral modes of control and a similar argument can be made for the
spontaneously active MLIs.

A key feature present in this model is MLI → MLI and PKJ →
MLI inhibition. In the model, MLI → MLI inhibition is shown
to have a significant effect on regulating the baseline firing rate
and spike regularity in both MLIs and PKJs (Figure 6). As dis-
cussed, a careful balance between these two properties may be
needed to ensure effective motor performance and learning. The
presence of MLI → MLI inhibition also theoretically allows for
competition among MLIs to take place in response to PF stim-
uli. Electrophysiological evidence suggests an activity dependent
form of learning at PF-MLI synapses may exist (Liu and Cull-
Candy, 2000; Rancillac and Crepel, 2004; Smith and Otis, 2005,
but see also Jorntell and Ekerot, 2002). If this is correct, a diverse
set of MLI receptive fields and responses could emerge from this
competition. Plasticity at MLI → PKJ synapses (Gao et al., 2012)
could enable PKJs to learn the most appropriate set of inhibitory
inputs to achieve the desired output response. While the anatom-
ical data on MLI → PKJ convergence between cat and rat differs
(Eccles et al., 1967; Palay and Chan-Palay, 1974), plasticity at these
synapses could also tune the total inhibitory conductance onto a
PKJ to ensure that the baseline PKJ activity is appropriate. In the
present model, this would be achieved by altering the synaptic
weights. In another computer model, PKJ → PKJ feedback inhi-
bition enables PKJs in a network with MLIs to perform temporal
integration on a time-scale of seconds (Maex and Steuber, 2013);
the role of MLI → MLI and PKJ → MLI inhibition may serve
a similar function. In contrast, PKJ → MLI connections appear
to have only a small effect on the resting activity of the network
(Figure 6). Taken together, these ideas suggest the information
storage capacity and expressiveness of the PKJ-MLI network is
even greater than previous theories describe (Brunel et al., 2004;
Clopath et al., 2012). The model proposed here provides an ini-
tial step toward carrying out further computational investigations
into these questions.

COMPARISON WITH OTHER MODELS
De Schutter and Bower (1994b) model a Purkinje cell as a
Hodgkin-Huxley-type, multi-compartmental model that repro-
duces asymmetric ISI distributions in response to PF and MLI
inputs. However, in these experiments the model PKJ relies exclu-
sively on PF inputs to drive spiking and not an endogenous
depolarizing current. Further the influence of MLIs is mod-
eled indirectly as Poisson spike trains which assumes the ISI
distribution is exponential, whereas our model generates MLI
spikes by simulating MLI dynamics directly and results in an
appropriate ISI distribution. Finally, by simulating the network
of MLIs and PKJs, our model enables simulating the response
of the MLI-PKJ network to PF input to investigate cerebellar
function. Previous computational network models of the cerebel-
lum that include MLIs typically ignore a number of anatomical
or physiological facts. For example, models do not include the
spontaneous activity of MLIs (Yamazaki and Nagao, 2012) or
MLI → MLI and PKJ → MLI connectivity (Contreras-Vidal
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et al., 1997; Schweighofer et al., 1998; Medina et al., 2000; Maex
and Steuber, 2013). Adaptive filter models implicitly model the
inhibitory effect of MLIs by allowing the PF-PKJ filter weights
to be negative (Fujita, 1982; Dean et al., 2010). While our net-
work models a parasagittal strip of cerebellar cortex, other work
has modeled a medio-lateral strip to investigate the effects of
spontaneously active MLIs on PKJs along a beam of PF inputs
(Santamaria et al., 2007). Further effort to extend the model pro-
posed in our study to include the medio-lateral axis would be
worthwhile.
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