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Existing current based models that capture spike activity, though useful in studying infor-
mation processing capabilities of neurons, fail to throw light on their internal functioning.
It is imperative to develop a model that captures the spike train of a neuron as a function
of its intracellular parameters for non-invasive diagnosis of diseased neurons. This is the
first ever article to present such an integrated model that quantifies the inter-dependency
between spike activity and intracellular energetics. The generated spike trains from our
integrated model will throw greater light on the intracellular energetics than existing cur-
rent models. Now, an abnormality in the spike of a diseased neuron can be linked and
hence effectively analyzed at the energetics level. The spectral analysis of the generated
spike trains in a time–frequency domain will help identify abnormalities in the internals of
a neuron. As a case study, the parameters of our model are tuned for Alzheimer’s disease
and its resultant spike trains are studied and presented. This massive initiative ultimately
aims to encompass the entire molecular signaling pathways of the neuronal bioenergetics
linking it to the voltage spike initiation and propagation; due to the lack of experimental
data quantifying the inter dependencies among the parameters, the model at this stage
adopts a particular level of functionality and is shown as an approach to study and perform
disease modeling at the spike train and the mitochondrial bioenergetics level.
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INTRODUCTION
Over the past decades, neuroscience research has witnessed myriad
deterministic (Hodgkin and Huxley, 1952; Fitzhugh, 1955; Oja,
1982; Buchholtz et al., 1992), stochastic (Fienberg, 1974; Harri-
son et al., 2005), electrical (Rall, 1957, 1959, 1960) models, which
have delved into the functional aspects of spatio-temporal char-
acteristics of a network of ion channels (Babinec and Babincov,
2002), dendritic arborization (van Pelt et al., 2001), the dynamics
of a single synapse (Reutimann, 1999; Attwell and Gibb, 2005),
and calcium wave oscillations (Volman et al., 2007) in response
to neurotransmitter release. These models abstract the character-
istics of either a specific function of a single neuron or deal with
the fundamental characteristics of the neuron on a dynamic scale
which is furnished in the concomitant voltage spike response.

On the other hand, with the advent of advanced experimen-
tation techniques, metabolic pathways which co-exist within the
cell characterizing the intracellular energetics of the cell organelles,
have been identified and studied extensively (Duchen, 2000; Green
and Green, 2005; Shulman and Rothman, 2005). This research into
the deeper aspects of intracellular interactions has paved the way
for elaborate models which describe the chemical kinetics of the
intracellular reactions of the mitochondria (Krebs cycle, electron
transport chain, B-Oxidation) and other organelles (Baker et al.,
2002; Mogilevskaya et al., 2006), through deterministic differential

equations, predominantly the Michaelis–Menten kinetics (Beard
and Qian, 2008).

However, a common feature of these models has been the lack
of improvisation to connect and establish the missing link between
the spike generation of the neuron to its underlying biophysical
and the biochemical processes in its intracellular compartments.
An unmistakable gap exists between the spike generation activi-
ties and energetics of a single neuron. Alzheimer’s, Huntington’s,
Parkinson’s, and other degenerative terminal brain diseases are
characterized by a cascade of affirmative changes at the energetics
level of the cell (Hirai et al., 2001; Zeviani and Di Donato, 2004;
Mattson et al., 2008) which is expressed in the voltage spike activ-
ity of the neuron. This research work presented here is an attempt
at bridging that lacuna, probing into the unknown, and establish-
ing the connect between electrical, biophysical, and biochemical
pathways of a single neuron thus providing a better and a com-
prehensive working platform toward disease modeling and drug
testing.

The pivotal role of the mitochondria during the degenerate
mode of a single neuron in times of Alzheimer’s cannot be ignored
(Hirai et al., 2001; Zeviani and Di Donato, 2004; Mattson et al.,
2008). It thus becomes indispensable that the dynamics of the
mitochondrial behavior needs to be captured through a mathe-
matical model and linked to the spike generation of the neuron.
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The resulting time–frequency analysis of the voltage spike pre-
sented in the following section reflect the fine changes in the
mitochondrial energetics leading to a better understanding and
comprehension of the disease and its intracellular potency.

The model, with respect to energetics is restricted to the mito-
chondria and does not deal with the entire set of parameters
involved in the Alzheimer’s disease but still gives a fair understand-
ing (Hardy and Selkoe, 2002). Limitations and further extensions
have been discussed in the final section.

A major limiting factor during the simulation phase of the
model has been the non-availability of realistic values for cer-
tain intracellular parameters for specific types of neurons. In fact,
this model makes use of a few intracellular parameters obtained
from the mitochondria belonging to hepatocytes (Mogilevskaya
et al., 2006). A generic, ubiquitous model has thus been proposed
which can be fine-tuned to work for a particular type of neuron
depending upon the level of experimentation available.

The concept that, the dynamics of the mitochondrial energet-
ics is captured in the voltage spike of the neuron adds a powerful
dimension to disease modeling. The non-invasive technique is
strengthened by the fact that intracellular pathways can be ana-
lyzed comprehensively through the spike response of the neuron.
It narrows down the field of experimentation and calls for estab-
lishing greater synergy between computational and clinical neuro-
scientists – working toward disease modeling and drug discovery,
and ultimately yielding better results.

The integrated voltage spike – energetics model along with the
mathematical concepts and simulation framework has been pre-
sented at the International Neuroinformatics Conference, 2010 at
Kobe, Japan (Mohan et al., 2010a,b). However, this is the first time
that the simulation results of the integrated model are presented,
discussed, and analyzed.

RESULTS
The simulated voltage spike (Figure 1A) was analyzed under vary-
ing concentrations and frequencies of neurotransmitter input and
intracellular parameters corresponding to a pyramidal neuron.
Alternate methods (discussed further) were adopted to determine
values of a few intracellular parameters which were unavailable.
Preliminary Disease Modeling was performed by identifying the
parameters that are responsible for Alzheimer’s (Figures 2, 3, 4,
and 5B). These parameters and associated constants 38 were then
altered to match the abnormalities found in a diseased neuron.
The simulation was then repeated to get the spike train of the dis-
eased neuron. The variations of all parameters were tracked using
the simulator. The rate and quantity of injected neurotransmitters
to the neuron was spread over four bands, i.e., constant rate and
quantity, varying quantity, varying rate, and null input conditions.
The Krebs Cycle Activity is represented as the micromoles of pyru-
vate used per timestamp. ATP concentration represents the total
intracellular ATP concentration in micromoles.

HEALTHY NEURON
For a constant neurotransmitter input to the simulator (Figure 1,
Constant Input Band), it was found that the voltage spike had a
constant frequency and small variation in amplitude (Figure 1A).
The Krebs Cycle Activity (Figure 1C) increased with deviation

FIGURE 1 | Simulation results using the energetics based single

neuron simulator, for a pyramidal neuron over four stages of input

under healthy conditions. (A) Difference in ionic concentration across the
membrane (voltage spike; μM) vs timestamp. (B) Input neurotransmitters
to the neuron (μM) vs timestamp corresponding to various input bands. (C)

Krebs cycle activity (pyruvate consumed in μM per timestamp) vs
timestamp. (D) Total intracellular ATP concentration (μM) vs timestamp.

of ionic concentration of Na+ and K+ from equilibrium state; a
gradual decrease in Krebs cycle activity is observed thereafter. Fur-
ther, activation of the Krebs cycle correlated with a decrease in the
ATP concentration (Figure 1D). When the amplitude of neuro-
transmitter input was varied (Figure 1, Varying Amplitude Band),
all the above phenomena were observed, with a constant ampli-
tude of the spike train, which resulted in similar graphs for Krebs
Cycle Activity (Figure 1C) and ATP concentration (Figure 1D).
A fixed concentration of neurotransmitter input with varied fre-
quency (Figure 1, Varying Frequency Band) caused a variation in
the frequency of spikes (Figure 1A) and similar variations in the
frequency of Krebs Cycle Activity (Figure 1C). Also, when the fre-
quency of neurotransmitter input decreases, Krebs cycle activity
is observed to decrease, correlating with increased ATP concen-
tration. Finally, when the neurotransmitter input was removed
(Figure 1, No Input Band); the ionic concentration was restored
to its equilibrium and ATP concentration became constant.

ALZHEIMER’S AFFECTED NEURON
Neurons affected by Alzheimer’s disease were modeled as a combi-
nation of two important factors, decreased activity of the Electron
Transport Chain (Mattson et al., 2008) and an increased forma-
tion of Oxide ions (O2−; Mattson et al., 2008). These factors and
their implications are discussed in the Section “Discussion.” In
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FIGURE 2 | Simulation results using the energetics based single

neuron simulator, for a pyramidal neuron over four stages of input

affected by Alzheimer’s disease. (A) Ionic concentration across the
membrane (Voltage Spike; μM) vs timestamp. (B) Input neurotransmitters
to the neuron (μM) vs Timestamp corresponding to various input bands. (C)

Krebs cycle activity (NADH produced in μM/timestamp) vs timestamp. (D)

Total intracellular ATP concentration (μM) vs timestamp.

our simulations of a defective neuron (Figure 2), it was found
that the Krebs Cycle Activity (Figure 2C) increased. However,
a corresponding drop in ATP concentration (Figure 2D) was
observed. Spiking activity was prevalent for the initial 200 time
stamps, followed by a breakdown of ionic concentration gradi-
ents (Figures 2A–D). These results are discussed in the Section
“Discussion.”

DECREASED ACTIVITY OF ELECTRON TRANSPORT CHAIN
When the decrease in the activity of the Electron Transport Chain
was considered in isolation, excluding the effect of increased rate
of formation of Oxide ions (O2−), breakdown of ionic concentra-
tion gradient was observed, however, it took a longer time when
compared with the results obtained from the Alzheimer’s neuron
affected by the combination of both the parameters – decreased
activity of ETC and increased superoxide production (Figure 3).

INCREASED RATE OF FORMATION OF OXIDE IONS
When the increase in rate the formation of superoxide anion rad-
icals was considered in isolation, excluding the effect of decrease
in the activity of ETC, breakdown of ionic concentration gradient
was observed, however, it took a longer time when compared with
the results obtained from the Alzheimer’s neuron affected by the
combination of both the parameters – decreased activity of ETC
and increased superoxide production and shorter time than results
obtained from the decreased activity of ETC (Figure 4).

WAVELET ANALYSIS
The Fourier transform has been traditionally used for various sig-
nal analysis, but it only gives the frequency–amplitude relationship

FIGURE 3 | Simulation results using the energetics based single

neuron simulator, for a pyramidal neuron over four stages of input

affected by a decrease in the rate of the electron transport chain. (A)

Ionic concentration across the membrane (voltage spike; μM) vs
timestamp. (B) Input neurotransmitters to the neuron (μM) vs timestamp
corresponding to various input bands. (C) Krebs cycle activity (NADH
produced in μM/timestamp) vs timestamp. (D) Total intracellular ATP
concentration (μM) vs timestamp.

FIGURE 4 | Simulation results using the energetics based single neuron

simulator, for a pyramidal neuron over four stages of input affected by

an increased formation of oxide ions. (A) Ionic concentration across the
membrane (voltage spike; μM) vs timestamp. (B) Input neurotransmitters
to the neuron (μM) vs timestamp corresponding to various input bands. (C)

Krebs cycle activity (NADH produced in μM/timestamp) vs timestamp. (D)

Total intracellular ATP concentration (μM) vs timestamp.
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FIGURE 5 | One dimensional wavelet transform (up to three frequency levels) of spike trains obtained from (A) energetics based simulation of a

healthy pyramidal neuron. (B) Energetics based simulation of a pyramidal neuron affected by Alzheimer’s disease.

of the given signal. It throws no light on the time–frequency
variations present in the signal.

This Achilles’ heel is overcome with the use of Wavelet trans-
forms (Tsodyks et al., 2000; Sklar, 2001), by using a varying scale
window function, we are able to obtain a time–frequency analysis
of the signal. Here the high frequency components are analyzed
with a high time resolution and a low frequency resolution while
the low frequency components are analyzed with a low time
resolution and high frequency resolution.

A one dimensional wavelet transform resolved to three fre-
quency levels is applied to the spike train of both the healthy
and diseased simulated neurons. We compare the results of this
transformation (Figures 5A,B)

It can be observed that across all input conditions, the wavelet
transformation of the diseased neuron (Figure 5B) indicates a
complete lack of activity as compared to that of the healthy neu-
ron (Figure 5A). The reasons and implications of this observation
are discussed in detail in Section “Discussion.”

MATERIALS AND METHODS
A Petri-net based environment was adopted to model the var-
ious biophysical processes using applied stochastic differential
equations. The places represent the concentration of reactants
and products, while the transitions capture the kinetics of the
biophysical and biochemical reactions. A single neuron Petri-net
model realizes biological concepts such as the Krebs Cycle Activity,
Electron Transport Chain, and Oxidative Phosphorylation, etc.

We shall now go on to describe the various biochemical path-
ways considered in the model. We leave out housekeeping activities
of the neuron since these processes are highly dependent on the
DNA and DNA transcription rates. As we do not have a model for
this at the present, we shall be implementing these models in the
future.

ATP CONSUMING PATHWAYS
Restoration of ionic gradients in the post-synapse
When neurotransmitters from the cleft dock on AMPA recep-
tors present on the post-synapse, the receptors open up and
allow Na+ ions to move in. As the voltage increases (caused
by this increased Na+ gradient), the Mg2+ ions which block
NMDA channels get released leading to increased calcium ions
influx.

CaMKII present in the synapse is activated by the calcium ions.
CaMKII, when activated increase the number of AMPA receptors
and also increase their open time by phosphorylating them. This
helps bring about Long-Term Potentiation.

When the synapse is activated for a continuous period of time,
the G-Proteins are also activated. The G-Protein upon activation
activates both the IP3 and the DAG. Activated IP3 leads to the
release of calcium stored in the endoplasmic reticulum. DAG acti-
vates PKC, which then attaches itself to the AMPA receptors and
decreases the number of AMPA receptors by internalizing them.
This helps bring about Long-Term Depression (Hayashi et al.,
2000; Attwell and Laughlin, 2001; Linden, 2001; Yu et al., 2001;
Weber et al.,2003; Steinberg et al.,2004; Remy and Spruston,2007).

Due to the influx of sodium and calcium ions, the gradient
has been lost and must be restored. This is an energy consuming
process. These activities of the synapse have been modeled by us.
The mathematical model formed to represent these pathways will
be detailed later in this section.

Restoration of ionic gradients in the soma
This inflow of sodium and calcium ions will lead to a Voltage Spike
if the voltage generated exceeds a threshold level. This threshold
will lead to the opening up of the voltage gated sodium and potas-
sium ion channels which cause spike propagation (Kandel et al.,
1991). Restoration of these ionic gradients in the soma is also an
ATP consuming process.

Packaging of neurotransmitters inside vesicles by Golgi apparatus
and pumping the vesicles with H+ ions
The packaging of the neurotransmitters inside vesicles by Golgi
apparatus is an energy consuming process. The vesicles have to be
pumped with H+ ions in order to create a gradient so that the
neurotransmitters in the pre-synaptic site leave the neuron with
a particular force. This enables them to make it across the synap-
tic cleft and hence dock onto the receptors on the post-synaptic
neuron (Südhof, 2004).

Absorption of neurotransmitters from the synaptic cleft by the glial
cells
The neurotransmitters are active at the post-synaptic site only for
a short interval. After this the neurotransmitters are absorbed by
the glial cells. The glial cell absorbs them based on the sodium
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concentration difference present between the extracellular and
intracellular part of the glial cell. The greater concentration of
sodium outside the glial cell pushes the neurotransmitters into the
glial cells where they are recycled and sent back to the neuron. In
order to restore the sodium gradient ATP is required.

Over the years there has been a drastic change in the view
of what role glial cells play in the central nervous system. Once
thought of as just passive members of the CNS providing a
supporting framework to a network of neurons, new evidence
suggests that the glial cells are involved in higher level activi-
ties such as plasticity regulation of synapses and recycling of the
neurotransmitter glutamate released by the synapse. This glu-
tamate absorbed by the glial cells gets converted to glutamite.
This glutamite is released back to the neuron, which is then
reconverted to glutamate. Thus glial cells have been known to
be suppliers of neurotransmitter glutamate to the neuron. As
scientific estimates show that glial cells account for only maxi-
mum 20% of total neuronal glutamate, we decided to exclude the
recycling of neurotransmitters from the pilot simulation. Thus
the glial cells play a minimal role in our model. Their only
main function is to absorb the glutamate released into the cleft.
The recycling process has not yet been modeled. However even
though it accounts for only a maximum of 20% of neurotrans-
mitters the neuron–glial interactions cannot be ignored and will
be incorporated along with their role in plasticity regulation and
calcium waves (Tsodyks et al., 2000; Schulman and Rothman,
2004; Sherwood et al., 2006; Volman et al., 2007; Cloutier et al.,
2009).

MITOCHONDRIAL RESPIRATION PATHWAYS
Calcium exchange between endoplasmic reticulum and
mitochondria
When the IP3 molecules dock on the endoplasmic reticulum (ER)
due to repeated synaptic activity, the calcium reserves of the ER are
released, which is then absorbed by the mitochondria. Absorption
of calcium by the mitochondria increases its rate of respiration by
depolarization of the mitochondrial membrane. This is one way
in which the mitochondria are able to sense the increase in activity
of the neuron (Yu et al., 2001; Weber et al., 2003; Steinberg et al.,
2004; Remy and Spruston, 2007).

Adenosine mono-phosphate activated protein kinase enzyme
The AMPK is known as the master switch or the master regula-
tor. AMPK has been identified as a key metabolic regulator in the
neuron. It senses the difference between the ATP and AMP con-
centration levels. The AMPK has two binding sites. When the ATP
concentration is very high (i.e., the cell is inactive) both the binding
sites are occupied by ATP which renders the AMPK inactive. How-
ever during periods of high frequency neuronal firing/activity, the
ADP formed does not recycle back to ATP quick enough. In this
case, ADP molecules begin reacting with each other. Two ADP
molecules combine together, leading to the formation of one mol-
ecule each of AMP and ATP. This process is favored only under
high stress. This is because it is almost impossible to recycle the
AMP back to ATP. However, this process is faster than the normal
Krebs cycle.

ADP + ADP ⇔ ATP + AMP

Thus as the AMP concentration increases, the AMPK gets acti-
vated as both the docking sites are now occupied by AMP. Upon
activation, the AMPK simultaneously increase the rate of Beta Oxi-
dation and increases the number of glucose transporters available.
The Beta Oxidation of the fatty acids increases the hydrogen ion
gradient. Beta oxidation is not a major process in the brain but it
does exist. And we believe if we are going to model the energetics
of the single neuron it is a good idea to include these processes
even if it has a negligible effect as long as they exist, and we can get
data about them. To take this into consideration the Beta oxidation
process in our simulations was not anyway a major producer of
ATP and compared to the actual Krebs cycle it was much smaller.
Moreover due to the increase in the glucose transporters more glu-
cose is transported to the neuron, thus it can produce more ATP
(Hayashi et al., 2000; Zong et al., 2002; Jäger et al., 2007).

Uncoupling protein
The UCP is a mitochondrial transport protein present in the inner
membrane of the mitochondria (Rousset et al., 2004). It is acti-
vated by high superoxide concentration. Superoxides are formed
by complexes I and III in the respiratory chain through a non-
enzymatic process. These superoxides are highly reactive and can
lead to cell death (Turrens, 1997). To prevent the toxic effects of the
superoxide anion radical ion, Manganese Superoxide dismutase
catalyze the dismutation of superoxides into oxygen and hydrogen
peroxide. The hydrogen peroxide, formed as a result of the redox
reaction is further reduced to water by glutathione peroxidase. As
the Krebs cycle rate increases, so does the superoxide formation.
At some point the rate of superoxide formation increases beyond
the rate at which MnSOD and glutathione peroxidase can detox-
ify them to water. This is when the UCP comes into play. It is
activated by the Superoxides and opens up. H+ ions will now flow
through the opening created by the UCP (Echtay et al., 2002). This
leads to the short-circuiting of the ATPase enzyme. Activation of
the UCP and its functioning as a proton carrier results in a ther-
mogenic process where the oxidation energy is dissipated as heat,
enhancing, and stimulating respiration (Turrens, 1997; Rousset
et al., 2004).

PETRI NETS BASED MODELING
We shall now view the mathematical Petri nets based model
that is used to represent these various biochemical pathways.
Figures 6, 8, and 9 represent the Petri net system divided into
various sections. As explained earlier, the places represent para-
meter concentrations, activation levels, and rate depending on
the context. The transitions represent the various equations
used to model the relations. To maintain the brevity of this
paper, the transition equations and Initial Ionic Concentrations
are not mentioned here. However, the equations and Initial
state conditions (concentrations) used may be viewed online at
http://www.warftindia.org/equations.pdf.

Synaptic cleft and post-synaptic dynamics
The input to the neuron is through the place titled neurotransmit-
ter input. Neurons have excitatory synapses in their apical den-
drites and inhibitory synapses on their basal dendrites. For a given
neurotransmitter input the ratio of excitatory synapses activated to
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FIGURE 6 | Petri nets based energetics model depicting the post-synapse and glial cells.

FIGURE 7 |Transition probability matrix.

inhibitory synapses activated is 7:2. A 10th of the neurotransmitter
input is used to activate the G-Proteins (Figure 6).

The AMPA receptors upon activation give rise to an influx of
Na+ ions. This influx was modeled using a transition probabil-
ity matrix. In Figure 7, the matrix on the left is the transition
probability matrix and the one in the middle is the conditional
probability matrix. The matrix to the extreme right is the dwell
time matrix.

The elements in the first row of this matrix represent the proba-
bility of making a transition from a given state (This is determined
by the element number. For example the letter C represents the
third state of conduction) of ion channel conduction to the first
state namely the closed state.

The elements of the second and third row represent the same
thing except it is for their respective states namely the half open
(second state) and the fully open (third state).

The matrix in the middle has elements which represent the con-
ditional probability. Its values represent the probability of being in
that particular state. Thus the product of these two matrices gives
rise to the dwell matrix. It represents the probability of finding
the ion channel in a given conducting state in the next instant of
time. Multiplication of each state probability with its conductance

gives rise to total conductance of the channel in the next instance
of time (Keizer, 2002; Beard and Qian, 2008). Similarly, the AMPA
and Chlorine channels were modeled this way.

The G-protein upon release diffuses into the cell fluid and docks
on the IP3 and DAG proteins activating them. IP3 upon activa-
tion sits on the endoplasmic reticulum and releases the internal
calcium reserves. The released calcium ions activate the CaMKII.
The CaMKII then phosphorylate the AMPA receptors, increasing
the time they spend in the open state and their numbers.

Similarly the DAG upon activation diffuses into the cell fluid
and docks on the PKC activating it. Upon activation the PKC
attaches itself to the AMPA receptors and internalizes them.

Each of these transitions has been modeled such that the new
product formed is equal to the amount of substrate released.

The chlorine ions that enter the neuron from the synaptic cleft
are transported out with the help of the potassium gradient. This
fall in potassium gradient is then restored by the ATPase pump.
Similarly the Sodium–Calcium exchanger pushes the calcium out
and the sodium in. This sodium is then pushed back out using the
ATPase pump. The restoration of the Sodium–Potassium gradient
consumes ATP. The equation to govern this ATP consumption will
be explained subsequently.

In our model the plasticity effects on the AMPA receptors are
brought about by the CaMKII. As the calcium concentration inside
the cell increases so does the number of activated CaMKII.

Based on the amount of activated CaMKII the time in each
element of the array for the AMPA channels was changed. As the
CaMKII concentration increased the time spent in the open state
of the AMPA channel was increased and that in the closed state
was correspondingly decreased.

Similarly based on the amount of activated PKC the time in
each element of the array for the AMPA channels was changed. As
the PKC concentration increased the time spent in the open state
of the AMPA channel was decreased and that in the closed state
was correspondingly increased.
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This was how we brought in the plasticity variation of synapses.
The equation used is like an AND function. Only if there are

three or more sodium ions and two or more potassium ions, will
the equation return true. And whenever it does, an ATP is con-
sumed and three sodium ions are transported outside and two
potassium ions are transported inside. The time dependency of
this process has not yet been studied by us. Hence we have assumed
it to be a time independent or instantaneous process. However it
will be improved in the future.

The endoplasmic reticulum releases calcium. The endoplasmic
reticulum is where the ribosomes are attached. The ribosomes are
the organelles where the various proteins in the body are manufac-
tured. The ribosomes attach themselves to the rough endoplasmic
reticulum. The endoplasmic reticulum consists of two parts, the
rough endoplasmic reticulum and the smooth endoplasmic retic-
ulum. The smooth endoplasmic reticulum is a store house of
calcium ions.

The endoplasmic reticulum is known to play a role in the reg-
ulation of synaptic plasticity. When the IP3 protein is activated it
will sit on the receptors on the surface of the smooth endoplas-
mic reticulum. When this happens the channels connected to the
receptors open up and calcium ions are released. These calcium
ions are crucial in the strengthening of synapses.

The endoplasmic reticulum also plays an important role in
increasing the Krebs cycle rate in response to activity. Under phys-
ical duress when the ATP demand is high, the mitochondrial
respiration should be increased. One of the ways to increase mito-
chondrial respiration rate is through the endoplasmic reticulum.
When the endoplasmic reticulum releases calcium it is absorbed
by the mitochondria. The calcium absorbed by the mitochon-
dria depolarizes its membrane, leading to increased ETC activity
(Jouaville et al., 1999; Arnaudeau et al., 2001; Parekh, 2003).

The mitochondria and endoplasmic reticulum interact through
calcium ion exchange. The calcium released by the endoplasmic
reticulum is absorbed by the mitochondria. This calcium is then
again released by the mitochondria. This will then be re-absorbed
by the endoplasmic reticulum. In this fashion gradually reducing
calcium waves are set up between the two organelles.

The NMDA receptors are blocked by magnesium ions. They
can start conduction only if this magnesium block is relieved by
heavy sodium influx.

Mitochondrial regulation
The ATP is consumed when the ATPase pumps try to restore
the ionic gradients. They are also consumed while pumping the
neurotransmitter vesicles with hydrogen ions, in order to pack-
age the neurotransmitters. This is why there is a transition from
the Golgi apparatus to the ATP (Shulman and Rothman, 2005).
Simultaneously the number of ADP produced is also increased
(Figure 8).

Thus the only change here is that as the Golgi activation
increases so does the number of ADP.

The number of Golgi apparatus activated depends on the
number of neurotransmitters produced by the Krebs cycle at a
particular instant. It represents how the Golgi apparatus activity
changes per neurotransmitter packaged. For the time being due to
a lack of experimental evidence we are assuming such processes

to be linear time variant. As we garner more information through
experiments our models will also improve to incorporate this new
information.

The neurotransmitters are produced from the alpha-
ketoglutarate in the Krebs cycle. This is a chemical reaction and the
proportionality constant is calculated from the Gibbs free energy
value.

The ATP is produced by the ATPase enzyme using the ADP and
the H+ ions. Only if the H+ ions have a high enough concentration
can enough energy be provided to the ATPase enzyme to produce
the required ATP. Thus as the H+ and Ca2+gradient increases the
amount of ATP produced also increases.

Consider the equation,

ADP + ADP ⇔ AMP + ATP

The Gibbs free energy for ADP + ADP is calculated and using
this, the rate reaction constant is obtained. The amount of ATP
produced will be equal to amount of AMP produced. This AMP is
used to activate the AMPK (metabolic switch). This process is also
modeled using a linear differential equation. This AMPK activa-
tion leads to the phosphorylation and hence inhibition of acetyl
CoA carboxylase.

The inhibition of acetyl CoA carboxylase leads to the inhibition
of malanoyl CoA carboxylase production. Inhibition of malanoyl
CoA carboxylase leads to an increase in the number of CPTI
enzymes which move across the mitochondrial membrane and
increase the transport of fatty acids into the mitochondria. These
fatty acids are then broken down by Beta Oxidation to increase the
number of NADH and FADH2.

The above modeled reactions are all part of the Beta Oxidation
process and will be modeled in greater depth in the future. As of
now a more simplistic approach has been adopted due to the lack
of knowledge on the precise dynamics and all the contributing
factors (Jäger et al., 2007).

Adenosine mono-phosphate activated protein kinase also
increases the number of glutamate transporters and hence
increases the amount of glucose transported into the neuron.

The increase in the amount of glucose transporter production
will definitely involve an increase in the transcription rate of the
DNA. As our nucleus model is still in the development phase there
is no way of incorporating the chemical pathway which eventually
increases the rate of glucose transporter transcription. Moreover
the chemical pathway linking the increased AMPK activation to the
increase in transcription of glucose transporter is not yet known.
That is why we have a simplified equation to govern the increase
in glucose transporters.

This motion of glucose transporters and CPTI enzymes across
the membrane is done using the Michaelis–Menten kinetics (Beard
and Qian, 2008).

The increase in glucose leads to an increase in pyruvate. This is
modeled using the Gibbs free energy of pyruvate production. The
increase in pyruvate leads to an increase in Acetyl CoA. This is also
modeled using Gibbs free energy.

This is based on the fact that longer the molecule, lower the
stability, and hence faster the cleaving of two carbon atoms. But
as the length of the fatty acid decreases the rate at which it is
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FIGURE 8 | Petri nets based energetics model depicting the mitochondria.

broken down also decreases. The FADH2, NADH, and acetyl CoA
produced depend directly on the amount of fatty acid produced.

The Krebs cycle rate increases with the amount of Acetyl CoA
produced. This increase is modeled using the Gibbs free energy
for acetyl CoA to citrate. The rate of formation of the NADH and
FADH2 is modeled using the Gibbs free energy obtained from the
transition malate to oxaloacetate. This is the transition responsible
for the rate of H+ ions released. So based on the rate of this reac-
tion we determine the rate of formation of NADH and FADH2.
The H+ ions formation from FADH2 and NADH is also modeled
using the Gibbs free energy for releasing the H+ ions. The NADH
and FADH2 inversely affect the amount of PDH. They are PDH
inhibitors.

The currents generated due to the sodium, calcium, and chlo-
rine influx in the pre-synaptic sites are added up and the net voltage
generated due to them is calculated. This voltage generated is then
passed to the voltage gated sodium, potassium, and chlorine chan-
nels. The number of ion channels activated will depend on the
magnitude of the voltage due to the synaptic currents. It is assumed
to be linearly dependent. The influx of ions is used to calculate the

Voltage Spike. The equation used to govern this process is the
Langevin equation inspired transporter equation (Schuss et al.,
2001; Keizer, 2002; Beard and Qian, 2008). The Voltage Spike is
used to calculate the number of calcium channels that are open.
The calculation of Voltage Spike has been discussed earlier. The
number of calcium channels is used to determine the number
of calcium ions based on the conductance of each ion channel.
This process is also implemented by the Langevin inspired trans-
porter equation (Schuss et al., 2001; Keizer, 2002; Beard and Qian,
2008). The number of neurotransmitters released depends on the
amount of activated SNARE proteins which in turn depends on
the amount of calcium ions.

Spike activity and pre-synaptic dynamics
Similarly the amount the number of ROS generated is considered
directly proportional to the amount of H+ ions generated. Where
we could not scientifically determine a rate constant a value of 0.1
was chosen. A part of these oxygen ions is detoxified by the mito-
chondrial MnSOD and converted to less reactive water. But a part
of these oxygen ions are also used to activate the UCP (Figure 9).
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FIGURE 9 | Petri nets based energetics model depicting the pre synapse and spike generation.

The number of output neurotransmitters will depend on the
amount of activated SNARE and the number of vesicles. Assuming
there is approximately 1 SNARE protein per vesicle the number of
output neurotransmitters will be determined by whichever of the
two (vesicles or SNARE) is smaller.

The number of activated glial cells will vary linearly with num-
ber of neurotransmitters in cleft. This is then assumed to cause a
linear decrease in number of sodium ions. As this leads to a loss
in the gradient the amount of oxygen required is also increased.
Thus the oxygen required depends on both the acetyl CoA and
sodium ions used up. In this model we have used a place called
dummy. Dummy is used when the number of fan-ins is more
than the number of fan-outs. In such cases we store the fan-ins in
dummy and then execute the function. This is done to maintain
the property that edges are alone transitions.

We are aware that there are more biochemical pathways that
regulate mitochondrial respiration. However we have at present
only considered the pathways mentioned above. In the future,
we will be expanding our model to include the nucleus, tran-
scription rates of proteins, housekeeping activities, and in-depth
models of the Endoplasmic Reticulum, Peroxisome, and Golgi
apparatus.

The modeling of the various biochemical reactions in the
model was done based on the Gibbs free energies of the respective

reactions. The rate constants for these biochemical reactions were
calculated from the Gibbs free energy values.

However while modeling the biophysical processes several dif-
ficulties were faced when trying to determine the values for the
various constants, used in the equations.

This problem was particularly pronounced when voltage gated
ion channels, the contribution of calcium to the increase in elec-
tron transport chain, uncoupling protein activation, DAG activa-
tion, PKC activation, and CaMKII activation were being modeled.
The problem stemmed from the lack of experimental data that
quantified how sensitive one parameter was to another.

To be more precise, we could not find data that indicated how
many ion channels per unit area are activated for a 1-mV increase
in the voltage difference across the membrane or at the least if
this dependency was non-linear or linear by nature. Similarly the
contribution of calcium to the increase in the rate of electron trans-
port chain was also unknown. Likewise for the synaptic parameters
(Südhof, 2004) listed above.

In such cases a method of repeated simulations and analysis
was adopted to obtain a realistic voltage spike. Repeated simula-
tions were carried out to compare the output of the model to the
experimental values and to get the appropriate rate constants in
our simulator. We are also working on modeling the inter rela-
tion of heat with chemical reactions as we believe this would be
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a key to study thermogenic processes. Presently we are modeling
the rate constants as a function of temperature and pH and will
be incorporating it into the energetics model in the near future.

DISCUSSION
The graphs indicate, the activity of the Krebs cycle directed toward
spike generation, without taking into consideration housekeep-
ing activities. The results obtained from the simulation indicate
a healthy correlation between the Krebs Cycle Activity and the
spiking activity of the neuron. Further, a significant correlation
between the Krebs Cycle Activity and intracellular ATP concen-
tration was observed. ATP is consumed quickly during the volt-
age spike, and rises immediately after the Krebs Cycle Activity
increases. When the neurotransmitter input was removed, the ATP
gradually restores itself to its equilibrium condition.

Our preliminary effort toward disease modeling considers
Alzheimer’s disease as a combination of two factors, decrease in the
activity of the Electron Transport Chain (Mattson et al., 2008) and
an increased formation of Oxide ions (Mattson et al., 2008) Other
parameters such as a large increase in intracellular and mitochon-
drial calcium have been identified (Mattson et al., 2008) .However;
the model in its current state cannot accommodate the variations
of these parameters. Thus, further work at WARFT, is directed
toward expanding the model and thus increasing its ability to
accurately model diseases.

The simulations of a diseased neuron, in its preliminary form,
indicate complete breakdown of the ionic concentration gradient
across the neuronal membrane. This is due to severe inhibition
of the ATP Synthase Enzyme which inhibits the activity of the
ATP Pump. We believe that experimentations to capture the spike
train of a defective single neuron could produce similar voltage
spikes.

An important consideration in disease modeling is the quan-
titative variation in the considered parameters. Due to lack of
accurate experimental data, we are forced to quantify this variation
with assumptions. We find that even a small change in amplitude
of this variation affects the severity of its deviation from that of
healthy neurons. Since the model is still in its pilot phase, we are
currently working on expanding the model to include all parame-
ters that are responsible for such diseases. This would aid us in
working on disease modeling using a method of optimization to
quantify the deviation of rate constants dependencies described in
detail at the end of this section.

As the voltage spike in the model is a function of the neuronal
energetics through several biophysical and biochemical processes,
we hope to be able to predict the concentrations of the various
intracellular parameters and the nature of the various reactions
taking place within the neuron based on the spike output of the
integrated energetics model.

No doubt, this will pave the way for non-invasive testing of
patients for diseases and could possibly be used in the future for
accurate modeling of diseases. Such a model also promises sev-
eral benefits toward a non-invasive simulation technique for drug
testing and discovery.

A study in the potency of the drug could be done with no
danger to the patient using such a model and its subsequent simu-
lation. A time–frequency analysis of both the healthy and diseased

simulated neuron can taken (Figure 5). Further, a neuron can be
tested to see whether it is in a degenerate state or not by taking
a time–frequency analysis of its spiking activity and comparing it
with those of the simulated neurons. If there is a high correlation
with that of the healthy simulated neuron it would indicate that
the neuron is not degenerate.

The model that has been discussed in this paper relates the
spike activity of a single neuron to its energetics. We would no
doubt like to extend the single neuron model to a network level.
The results that we get by studying a network of neurons would
be comparatively simpler to verify experimentally than that of a
single neuron because of the current limitations in experimental
methods. Moreover the devastating effect of a disease are felt only
when a network of degenerate neurons are considered as compared
to a single degenerate neuron.

However, there were several practical difficulties that were
encountered while trying to extend to a network model. The
most significant being the lack of experimental data detailing the
spatial distribution of mitochondria and other such organelles
and chemicals within the neuron. As such information could
not be found, a lumped model for the mitochondria and var-
ious intracellular chemicals, proteins such as voltage gated ion
channels, ligand gated ion channels etc., was developed. To
develop a network model we would in particular need precise
and accurate information on the distribution of inhibitory and
excitatory receptors on the dendritic tree. However as this infor-
mation was hard to come by the ion channels were modeled
lumped in nature. Needless to say a lumped ion channel model
would make the spatio-temporal summation of input by den-
drites (an essential feature of a network of neurons), impossible
to bring in, thereby negating the very essence of a network of
neurons.

Another important simplification we have made is with respect
to the rate constants. With more than 80 interdependent para-
meters in our model the rate constants governing the various
biochemical reactions take up a pivotal role. As explained earlier,
these values were obtained by a process of repeated simulation and
analysis.

Current work at WARFT aims at integrating this Voltage-Spike
Energetics Model to a network of neurons generated in a neuroge-
nesis inspired structure generation manner. The biochemical sig-
naling pathways responsible for the growth of neurons are linked
with the geometrical properties of the neuronal network. The cell
growth and division, neurite outgrowth, axon selection and guid-
ance, synapse and spine formation, and other anatomical para-
meters are modeled as function of the concentration of proteins
and enzymes responsible for their development (Venkateswaran
et al., 2011). In this regard, deeper models that investigate the
distribution and movement of mitochondria within a neuron, dis-
tribution of ion channels across the neuronal surface and a spike
propagation model that combines both these models are being
simultaneously investigated.

As explained earlier, the unavailability of detailed infor-
mation regarding the positioning and distribution of vari-
ous organelles and chemicals and their inter relationship hold
back the model. Thus immediate work aims at developing a
robust optimization paradigm that would effectively optimize
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these parameter values as a function of the voltage spike. A
two level Simulated Annealing – Game Theory optimization
approach is being currently investigated based upon. (Mohan,
2008).

COMPUTATIONAL ASPECTS
A framework for large scale simulation is presented here. A hyper
graph data structure captures the neuronal network information.
The hyper nodes and hyper edges represent the neurons and their
synaptic connectivity while the sub level nodes and sub level edges
represent the neuronal parameters and their dependency relations.
The energetic based simulation is currently being executed over
an arbitrary neuronal network which can be tuned to a specific
connectivity.

At every timestamp, a centralized control triggers execu-
tion of energetics model across partitions of neuronal network.
Within a neuronal partition, the computations performed and
communications established are in parallel (Ramanathan, 2011).

Deeper investigation into simulation techniques to decide on
event driven or data driven, centralized or distributed controls etc.,
are currently under research.

The parallel environment for the large scale simulation is facil-
itated by a hierarchy of host and node processes (Venkateswaran
et al., 2008).

The intra and inter regional synaptic connectivity (commu-
nications within and across partitions) contribute to the com-
munication complexity while computationally significant single
neuron models capturing the dynamics spanning from molecular,
cellular, and network levels contribute to the computational com-
plexity. The enormity lies in managing these high communication
and computational complexities pertaining to a dynamic system.

This research initiative demands a global database of exper-
imental results and deeper experiments to capture energetic
parameters. The enormity of this project calls for global support.
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