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Errors in choice tasks are preceded by gradual changes in brain activity presumably related
to fluctuations in cognitive control that promote the occurrence of errors. In the present
paper, we use connectionist modeling to explore the hypothesis that these fluctuations
reflect (mal-)adaptive adjustments of cognitive control. We considered ERP data from
a study in which the probability of conflict in an Eriksen-flanker task was manipulated
in sub-blocks of trials. Errors in these data were preceded by a gradual decline of N2
amplitude. After fitting a connectionist model of conflict adaptation to the data, we
analyzed simulated N2 amplitude, simulated response times (RTs), and stimulus history
preceding errors in the model, and found that the model produced the same pattern as
obtained in the empirical data. Moreover, this pattern is not found in alternative models
in which cognitive control varies randomly or in an oscillating manner. Our simulations
suggest that the decline of N2 amplitude preceding errors reflects an increasing adaptation
of cognitive control to specific task demands, which leads to an error when these task
demands change. Taken together, these results provide evidence that error-preceding brain
activity can reflect adaptive adjustments rather than unsystematic fluctuations of cognitive
control, and therefore, that these errors are actually a consequence of the adaptiveness
of human cognition.
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Human performance is error-prone even when simple tasks are
considered. This has typically been attributed to attentional lapses
or control failures due to spontaneous fluctuations in attention
and cognitive control (e.g., Weissman et al., 2006). Evidence for
this notion comes from the observation of error-preceding brain
activity, which refers to gradual changes in electrophysiological
and hemodynamic measures that precede the occurrence of an
error (Ridderinkhof et al., 2003; Allain et al., 2004; Hajcak et al.,
2005; Padilla et al., 2006; Li et al., 2007; Eichele et al., 2008, 2010;
Cavanagh et al., 2009; Mazaheri et al., 2009). We have previ-
ously suggested the alternative account that error-preceding brain
activity reflects adaptive adjustments of cognitive control rather
than unsystematic fluctuations, and that it is the adaptiveness of
cognitive control which makes performance error-prone (Eichele
et al., 2008, 2010). In the present paper, we employ connectionist
modeling to further explore this idea.

In a recent study (Eichele et al., 2010), we examined event-
related potentials (ERPs) preceding errors in the Eriksen-flanker
task (Eriksen and Eriksen, 1974). In this task, participants have
to categorize a target while ignoring simultaneously presented
flankers that are associated with either the correct response

(compatible trials) or an incorrect response (incompatible tri-
als). We found that errors in this task were preceded by a
decline of the N2 amplitude that started already several trials
before an error had occurred (Eichele et al., 2010). The N2 is
an endogenous component in the stimulus-locked ERP peaking
at fronto-central electrodes at about 250–350 ms after stimu-
lus onset (Nieuwenhuis et al., 2003; Folstein and van Petten,
2008). The N2 amplitude is typically larger for incompatible tri-
als than for compatible trials—an effect presumably generated by
increased activity in the anterior midcingulate cortex (aMCC) or
rostral cingulate zone (RCZ), respectively, in the medial frontal
cortex (Ridderinkhof et al., 2004; Huster et al., 2011).

A possible explanation for the observed decline of N2 ampli-
tude preceding errors can be derived from conflict monitoring
theory (Carter et al., 1998; Botvinick et al., 2001; Yeung et al.,
2004). This framework assumes that a conflict monitor located
in the medial frontal cortex registers response conflict emerg-
ing when contradicting behavioral responses are simultaneously
activated, and that response conflict is reflected by the N2 ampli-
tude, among others (Yeung et al., 2004; Yeung and Cohen, 2006;
Danielmeier et al., 2009). This conflict monitor is part of a conflict
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adaptation mechanism which adjusts the level of cognitive control
according to the previously registered response conflict. Whereas
high response conflict leads to higher levels of cognitive control,
low response conflict leads to lower levels of cognitive control
on the subsequent trial. Evidence for this account has been pro-
vided by studies demonstrating a negative correlation between the
amount of response conflict on the previous trial and the com-
patibility effect on the current trial in behavioral measures (e.g.,
Gratton et al., 1992; Ullsperger et al., 2005) and the N2 amplitude
(e.g., Forster et al., 2011).

How this framework can account for the decline of N2 ampli-
tudes preceding errors becomes clear if we consider the relation
between response conflict and cognitive control in more detail.
Within conflict monitoring theory, N2 amplitudes directly reflect
the amount of response conflict registered in the medial frontal
cortex. However, because the level of response conflict in a trial
is a consequence of the state of adaptation of cognitive control in
this trial, the N2 amplitude can simultaneously be interpreted as
an indirect index of the state of adaptation of cognitive control. In
the Eriksen-flanker task, for example, cognitive control reduces
the influence of the flankers. As a consequence, low response
conflict (and hence low N2 amplitudes) results when high cog-
nitive control is exerted on an incompatible trial (on which the
flankers activate the incorrect response and, therefore, increase
conflict) or when low cognitive control is exerted on a compat-
ible trial (on which the flankers activate the correct response and,
therefore, decrease conflict). Following this line of reasoning, an
error-preceding decline of N2 amplitude could indicate a decline
of response conflict due to adaptation of cognitive control in the
course of several trials, creating states of maladaptation due to
conflict history. This is plausible if one takes into account that
strong adaptation to a specific task demand can be detrimental
when task demand is changed. For instance, a strong reduction
of cognitive control following several compatible trials might lead
to an error on a subsequent incompatible trial. This view implies
that errors preceded by a decline of N2 amplitude are errors due
to maladaptation of cognitive control and that this maladaptation
is reflected by the time course of the N2 amplitude (and hence of
response conflict) across trials.

In the present study, we investigated this hypothesis by exam-
ining whether an existing connectionist model of conflict adapta-
tion (Botvinick et al., 2001), in which the N2 is simulated as the
response conflict induced by the stimulus, can account for error-
preceding brain activity in the Eriksen-flanker task. We started
with fitting the model to data from an experiment in which the
local probability of incompatible trials was manipulated. In this
experiment, each block of trials consisted of five sequences of 40
trials in which conflict probability, i.e., the probability of incom-
patible trials was either 10%, 30%, 50%, 70%, or 90%. This
manipulation allowed us to calibrate the strength of conflict adap-
tation in the model. Because cognitive control should be adjusted
according to these local probabilities, an increasing conflict prob-
ability should imply a decreasing effect of flanker compatibility.
As a consequence, the strength of this conflict probability effect
should reflect the strength of conflict adaptation. By fitting the
model to these data, we should obtain a realistic model of con-
flict adaptation. In addition to this conflict adaptation model, we

also constructed alternative models in which the level of cognitive
control varied in a random or a slowly oscillating manner, analo-
gous to stochastic noise in attentional networks and resting state
fluctuations, respectively.

Using the simulation data obtained from these models, we
then examined whether error-preceding brain activity reflects
conflict adaptation. This was achieved by comparatively ana-
lyzing empirical N2 amplitudes and simulated N2 amplitudes
preceding errors. To extract the time course of these measures
preceding errors, we applied a de-convolution analysis on single-
trial N2 amplitudes, a method previously employed by Eichele
and colleagues (Eichele et al., 2008, 2010; Eichele and Calhoun,
2009), which is preferable to within-subject averaging because it
enables the inclusion of overlapping trial sequences with errors.
To robustly estimate EEG activity on a trial-by-trial basis, we used
independent component analysis (ICA) to extract a component
that captures N2 activity, and took the amplitude of this com-
ponent as an estimate of the single-trial N2 amplitude (for an
overview on this method, see e.g., Eichele and Calhoun, 2009;
Gentsch et al., 2009). We predicted that, if conflict adaptation is
sufficient to account for error-preceding effects in the N2 ampli-
tude, a model involving conflict adaptation should produce the
same effects as found in the empirical data. Moreover, if con-
flict adaptation is necessary to account for error-preceding effects
in the N2 amplitude, no such effects should be obtained in the
alternative models. To further demonstrate that errors are caused
when strong adaptation occurs together with a change of task
demands, we also analyzed the empirical and simulated stimulus
sequence and the time course of response times (RTs) preceding
errors.

MATERIALS AND METHODS
EXPERIMENTAL METHOD
Participants
Twenty-seven paid participants (15 females, 12 males)1 with mean
age of 21.5 years participated in the study. All had normal or
corrected to normal vision, had no history of neurological or
psychiatric disease, and were not using psychotropic medication.
Participants were primarily recruited from undergraduate psy-
chology and medicine classes at the University of Bergen and had
signed a written statement of informed consent. Data from three
subjects were discarded due to excessive artifacts in the EEG. The
experiment was approved by the regional ethical committee for
western Norway.

Stimuli and task
The task was a modified Eriksen-flanker paradigm (Eriksen and
Eriksen, 1974) implemented in E-prime (Psychology Software
Tools, Pittsburgh, USA). Each stimulus consisted of seven arrow-
heads presented horizontally on a computer screen, a target arrow
and three identical flanker arrows on each side. On compatible
trials, all arrows pointed to the same direction (<<< < <<<,
>>> > >>>). On incompatible, trials flankers and target

1The data presented in this paper are part of a larger sample in which stim-
ulus probabilities were manipulated in various ways. This larger sample was
published in Eichele et al. (2010) without reporting specific analyzes of the
probability manipulation in the present sub-sample.
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pointed to different directions (<<< > <<<, >>>< >>>).
Participants were instructed to respond to the direction of the tar-
get arrow while ignoring the flanker arrows by pressing the left or
right button of a computer mouse placed under their preferred
hand. Responses had to be given as quickly and as accurately as
possible. Each trial started with the presentation of a fixation cross
for 800 ms. Then, the flanker arrows were presented alone for
100 ms followed by the target arrow. Target and flankers remained
on the screen until the registration of a response which started a
new trial.

Each participant worked through five blocks of 200 trials each
with short breaks in between, resulting in a total of 1000 trials.
Each block consisted of five contiguous sub-blocks of 40 tri-
als. These sub-blocks differed with respect to the probability of
incompatible trials which was manipulated in five steps (0.10,
0.30, 0.50, 0.70, 0.90). The probability of a left and right response
was kept constant. Trial sequences and order of probability con-
ditions within each block was randomized separately for each
participant. No explicit performance feedback was given during
the experiment.

EEG data acquisition and preprocessing
Participants were seated in an electro-magnetically shielded and
sound attenuated room (Rainford EMC Systems, Wigan, UK).
Continuous EEG was recorded from 61 Ag/AgCl scalp electrodes
(Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2,
F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7,
C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2,
CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3,
POz, PO4, PO8, O1, Oz, O2, TP10) mounted in an elastic cap
(Falk Minow Services, Herrsching, Germany). A recording ref-
erence was placed at TP9 and a ground electrode was placed in
front of the right ear. Vertical EOG was monitored by a bipo-
lar derivation between Fp1 and an electrode placed under the
left eye. Horizontal EOG was monitored by a bipolar derivation
between F7 and F8. Impedance of all electrodes was kept under 10
k. EEG recordings were done with a Brain MR plus X2 amplifier
(BrainProducts, Munich, Germany) with sampling rate 1000 Hz,
a time constant at 10 s and a high cut-off at 250 Hz.

The EEG data were offline re-referenced to common average
reference, filtered from 0.5 to 45 Hz (12 db) and decimated to
500 Hz sampling rate. To obtain epochs comprising the previ-
ous response as well as the current response, epochs from 900 ms
before target onset to 1100 after target onset were extracted from
the continuous EEG. Epochs were baseline-corrected with the
mean value of the entire epoch serving as baseline. Epochs con-
taining large, non-stereotyped artifacts with amplitudes exceed-
ing ±300 μV on any of the channels were rejected, and padded
with the average of adjacent trials. Epochs from all 61 scalp chan-
nels were subjected to temporal ICA using the infomax algorithm
(Bell and Sejnowski, 1995) implemented in EEGLAB (Delorme
and Makeig, 2004). Thirty components were estimated after PCA
compression. To obtain robust estimates of single-trial ampli-
tudes of the N2, analyzes were conducted on independent com-
ponents (ICs) representing the N2 conflict effect rather than on
raw EEG data. To extract these components, automated sorting
routines were applied. Spatial correlation with templates for blink

and lateral eyes movements were used to identify ICs representing
ocular artifacts (Viola et al., 2009). Spatial standard deviation of
the topography and correlation with a spectral template were used
to identify ICs with muscular and other artifacts localized at single
electrodes. From the remaining components, one was extracted
for each participant that (1) best matched the expected fronto-
central topography of an N2, (2) produced large amplitudes on
error trials (Yeung et al., 2004), and (3) was associated with a
large difference between compatible and incompatible stimuli. In
most participants, this procedure yielded a single matching com-
ponent. In about 10% of the sample, two or three components
matched the criteria, and we selected the one with the largest
correlation score. Topographies of the selected components were
assigned a positive maximum, and components activations were
back-projected to sensor level to recover the sign and amplitude
of the scalp recorded potentials.

Empirical variables
Three empirical variables were extracted from each trial. First,
empirical accuracy was determined by categorizing each trial as
correct trial or error. Second, empirical RT was calculated as the
time difference between target onset and key press. Third, empir-
ical N2 was calculated as the maximum amplitude in the time
window between 310 ms and 350 ms after target onset.

Modeling
Model structure and simulation details. We implemented the
neural network model of the Eriksen-flanker task in a customized
version of the Emergent 5.1.6 simulation environment (Aisa et al.,
2008)2. In the following, only general aspects and deviations from
the original model are described (for a detailed description, see
Yeung et al., 2004). The neural network consisted of three layers
(see Figure 1). A stimulus layer contained one unit for each pos-
sible combination of stimulus (<, >) and spatial location (left
flanker, target, right flanker). This allowed for representing each
possible stimulus array as a unique pattern of activated stimu-
lus units. The response layer contained one unit for each possible
response (left, right). Feedforward excitatory associations con-
nected each stimulus unit with its corresponding response unit.
To ensure that the target units had the strongest influence on the
response units, activation in the stimulus layer was influenced by
an attention layer representing the allocation of attention to the
respective stimulus locations. The attention layer contained one
unit for each possible stimulus location, and each unit was bi-
directionally connected to its corresponding units in the stimulus
layer. Within each layer, each unit was linked with each other unit
through inhibitory connections.

The model was simulated as described by Yeung et al. (2004).
A trial started by activating stimulus and attention units. Stimulus
units were activated according to the stimulus presented in a
trial. For simplicity, no SOA between flankers and target was
implemented. Attention units were activated by setting external

2The Emergent software is available at http://grey.colorado.edu/emergent. To
simulate the model by Botvinick et al. (2001), the Constraint Satisfaction class
was modified in the source code of the Emergent software, and the software
was re-compiled.
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FIGURE 1 | Architecture of the conflict adaptation model by Botvinick

et al. (2001). The stimulus layer contains one unit for each combination of
arrow type (<= left arrow, >= right arrow) and stimulus position (L = left
flanker, T = target, R = right flanker). The response layer contains one unit
for each response (<= left response, >= right response). The attention
layer contains one unit for each stimulus position. Conflict E(n), resulting as
a function of activity in the response layer, is used to adjust the control
parameter ext, which determines activity in the attention unit. Gray bars
indicate the average distribution of activity across stimulus positions in the
attention layer.

inputs extL, extC , and extR, respectively, to the left, central, and
right unit according to the strength of selective attention in a
trial (see below). A trial was simulated for 100 cycles. On each
cycle, activation of a given unit was updated as a function of
its activation on the previous cycle, Gaussian noise (with mean
0 and standard deviation snoise), external inputs, and the acti-
vation of units projecting to this unit weighted by connection
weights. Due to within-layer inhibition, the network showed a
winner-takes-all behavior. In the course of several cycles, each
layer approached an attractor state with one unit converging to
maximum activation and all other units converging to minimum
activation. A response was selected when activation of a response
unit exceeded a response criterion rcrit. On the majority of trials,
the response unit representing the correct response for a given
stimulus exceeded the criterion. On some trials, noise caused the
incorrect response unit to become selected.

Conflict monitoring and adjustments of cognitive control. To
simulate conflict monitoring in the medial frontal cortex
(Botvinick et al., 2001), response conflict was calculated as the
Hopfield energy of the two-unit response layer at cycle n,

E(n) = −actLeft(n) · actRight(n) · wR,

with wR denoting the associative weight between the two response
units with activations actLeft(n) and actRight(n), respectively. Note
that E(n) is positive if both units are activated because the
inhibitory weight wR is negative. If activation of one or both
of the units became negative, E(n) was set to zero. Crucially,
this definition of response conflict implicated that simulated

response conflict was high whenever both responses were con-
currently activated. Accordingly, response conflict could occur for
two reasons: first, response conflict could occur before a response
exceeded the criterion when target and flankers activated different
response units early in the trial (pre-response conflict). Second,
response conflict could occur after a response exceeded the cri-
terion when this response was incorrect. Due to self-corrective
behavior, a conflict between the still activated incorrect response
and the emerging correct response can occur (post-response
conflict).

According to conflict monitoring theory (Botvinick et al.,
2001), response conflict on the previous trial determines cognitive
control on the current trial. In the model of the Eriksen-flanker
task, cognitive control is assumed to correspond to the distri-
bution of selective attention across target and flanker stimuli.
Following Botvinick et al. (2001), response conflict for a given
trial was calculated by summing up response conflict across all
cycles of that trial. This cumulated conflict E(t − 1) from the
previous trial t − 1 is used to update the external input to the
central attention unit, extC(t) for the current trial t by applying
the equation:

extC(t) = λ · extC(t − 1) + (1 − λ) · [α · E(t − 1) + β],

with α and β being scaling parameters. λ is bound to the interval
[0, 1] and represents the relative contribution of attention from
the preceding trial to attention on the current trial. The three
parameters α, β, and λ play different roles for the adjustment
of cognitive control, whereas α determines the relation between
conflict and attention, β establishes a lower limit of attention.
Finally, λ determines the volatility by which changes in conflict
lead to changes in attention. In contrast to earlier simulations of
the model, an additional parameter, extCmax, was introduced rep-
resenting the upper bound to extC. This allowed for simulating
long sequences of high conflict trials without causing excessively
high values of extC. Finally, external input to the attention units
representing the flanker locations was calculated as:

extL(t) = extR(t) = 1

2
· [3 − extC(t)],

which implies that total attention is constant and larger values of
extC lead to smaller values of extLand extR.

Simulated variables. We used this model to generate the three
simulated variables corresponding to our empirical measures.
First, the simulated error rate corresponds to the relative frequency
of trials on which an incorrect response unit exceeds the response
criterion. Second, simulated RTs were calculated as the number of
cycles until a response is selected. Then, a linear transformation
was used to translate these values into milliseconds (see below).
Third, the simulated N2 was obtained by calculating the average
response conflict E across all cycles within a trial.

Model fitting. In a first stage, the model was fit to RTs of cor-
rect responses and error rates for each experimental condition.
To this end, we applied the optimization procedure by Bogacz
and Cohen (2004) that was developed for neural networks. For

Frontiers in Human Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 97 | 4

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Steinhauser et al. Error-preceding brain activity

the optimization, five stimulus sequences with a total of 5000
trials were generated that had the same length and structure as
those used in the experiment. Within each iteration, these five
sequences were simulated and simulated RTs and error rates for
each condition were averaged across sequences. The optimization
procedure minimizes the mean squared error, MSE, calculated as
the sum of squared differences between empirical and simulated
data points. Differences were weighted to ensure comparability of
MSE components from different variables. A difference of 1% in
the error rates corresponded to a difference of 10 ms in the RTs.

Five free parameters were optimized: the response criterion
rcrit, the maximum attention extCmax, two parameters of conflict
adaptation, α and β, respectively, and the noise parameter snoise.
These parameters were chosen because we assumed that param-
eters regulating the susceptibility to errors (such as the response
criterion and noise) as well as the range and volatility of atten-
tional adjustment differ between studies. All other parameters
were taken from Yeung et al. (2004). In addition, the optimiza-
tion procedure of Bogacz and Cohen (2004) optimizes two scaling
parameters—a time constant reflecting non-decision processes,
TND, and the duration of a cycle, Tcycle—that translate cycles into
milliseconds by means of linear transformation.

Simulation and model variants. Using these parameters, a final
simulation was conducted which served for subsequent analyses.
To maximize the comparability between empirical and simulated
data, we now simulated the stimulus sequences of all 24 subjects
resulting in 24,000 trials. In addition to the standard model
described above, which assumes that the level of cognitive control
on each trial is determined by the conflict adaptation mechanism
(which we call the Adaptive Control model in the following), we
simulated four alternative models to investigate whether adaptive
adjustments of control are necessary to explain error-preceding
brain activity: In the Random Control model, the cognitive con-
trol parameter, extC(t), varied randomly across trials. In three
Oscillating Control models, extC(t) oscillated across trials with
either a low, an intermediate or a high frequency (see below). We
wanted these models to differ only in the way cognitive control
varies across trials but not in any other aspect (e.g., the quality
of the fit to the averaged data). Therefore, the Random Control
and the Oscillating Control models were not fit to the data, but
were derived from the Adaptive Control model by applying the
following four steps:

(1) We fitted and simulated the Adaptive Control model as
described above.

(2) We extracted the cognitive control parameter, extC(t), for
each trial t.

(3) For each sub-block of 40 trials, extC(t) was rearranged
depending on the specific model. For the Random Control
model, order was simply randomized. For the Oscillating
Control model, the 40 values were sorted into q quantiles
(q = 10 for the high frequency, q = 5 for the intermediate
frequency, q = 2 for the high frequency). A new order was
created by cycling repeatedly back and forth through these
quantiles and drawing one value for each trial. Examples
of extC(t) sequences for a sub-block of a single subject are
provided in Figure 2.

(4) The models were simulated by setting these new values of
extC(t) and recalculating extL(t) and extR(t) accordingly, but
without adjusting extC(t) based on response conflict.

Note that the fact that we only rearranged extC(t) within sub-
blocks, mean RTs, mean error rates, and mean simulated N2
amplitudes produced by these models are largely identical.

Analysis of model and empirical data
To quantify the effects of conflict probability and compatibility
for model fitting, means of simulated and empirical RT, accuracy
and N2 were computed for each condition. For the empirical RT,
responses faster than 100 ms (0.03%) and slower than 1000 ms
(0.48%) were not considered. Later, changes in RT and N2 before
and after errors were calculated by applying the de-convolution
method that has originally been introduced for hemodynamic
response estimation (Eichele et al., 2008) and which has recently
been applied to extract trial-by-trial effects in behavioral data
and ERP amplitudes (Eichele et al., 2010). De-convolution allows
for extracting systematic modulations around specific events like
errors while avoiding problems with overlapping trial sequences
(e.g., when two errors occur in succession) that occur with
within-subject averaging (for a simulation demonstrating the
validity of this method, see Eichele et al., 2010). We first elimi-
nated variance related to stimulus types, priming, and errors from
empirical and simulated single-trial RTs and N2 amplitudes fol-
lowing the method by Notebaert and Verguts (2007). For each
variable, multiple linear regressions were computed with compat-
ibility (compatible, incompatible), stimulus/response repetition
(repetition, change), and accuracy (correct, error) as indepen-
dent variables. Residuals from these regressions were taken as
new estimates of empirical and simulated single-trial RTs and N2
amplitudes, and were used in further analyzes. Then, a binary
vector representing response accuracy (0 = correct, 1 = error)
was used to derive the modulation from five trials prior to five
trials after errors using de-convolution. The de-convolved mod-
ulation of each variable preceding errors was tested by fitting a
linear slope to the five error-preceding trials using linear regres-
sion, and by testing the significance of the slope as well as the trial
immediately preceding the error. For the simulated data, each of
the 24 simulated sequences was treated as a “subject.”

RESULTS
EMPIRICAL DATA
Conflict-related IC
Figure 4 shows spatial distribution and time course of the IC
used for single-trial analysis of N2 amplitudes. Visual inspec-
tion reveals that the component has the typical fronto-central
distribution of an N2 (e.g., Nieuwenhuis et al., 2003) and that
component activity in the time range of the N2 (shaded area)
strongly differs between compatible and incompatible stimuli (see
statistical analysis in next section). Both observations are not sur-
prising given that they reflect the main criteria for component
selection. However, Figure 4 also reveals that the extracted IC
captures more than the mere N2. First, there is a strong com-
patibility effect in the time range of the P3 (>360 ms). This
phenomenon—which is also evident in ERP waveforms reported
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FIGURE 2 | Exemplary sequence of extC (t) values from one sub-block of

each model variant. Gray columns indicate incompatible trials. Note that the
set of values is the same across models while only the order of values differs
between models. For the Adaptive Control model, mean values averaged

across 100 simulations are provided to illustrate how extC (t) varies as a
function of stimulus sequence when noise is removed. For the Oscillating
Control model, only a sequence for the intermediate frequency (10 trials per
cycle) is depicted. n = number of simulations.

by other studies (e.g., Yeung et al., 2004)—might reflect the strong
correlation between the N2 and the fronto-central P3a in a num-
ber of paradigms (for an overview, see Folstein and van Petten,
2008). Second, the component captures oscillatory activity in the
theta range (4–7 Hz). This is not surprising given recent evidence
provided by Nigbur et al. (2011) showing that fronto-central
theta oscillations in the Eriksen-flanker task are sensitive to con-
flict with a peak in the N2 time range. This suggests that the
conflict-related N2 and conflict-related theta oscillations may well
reflect the same neurocognitive mechanisms. However, given that

the compatibility effect in the present data seems to be restricted
to the event-related N2/P3a complex, we conclude that, even if
both phenomena represent different mechanisms, the extracted
IC mainly captures the conflict-related N2 rather than conflict-
related theta activity, and thus, can be used to estimate single-trial
N2 amplitudes.

Condition means. Figure 3 (left column) depicts empirical RTs,
error rates, and N2 amplitudes averaged for each experimental
condition. RTs of correct responses and error rates were analyzed

Frontiers in Human Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 97 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Steinhauser et al. Error-preceding brain activity

FIGURE 3 | Response time, error rates, and estimated N2 amplitude for

the empirical data and the fit of the Adaptive Control model as a

function of Compatibility and Conflict Probability. Simulated N2
amplitude is estimated by the cumulated pre-response conflict in each trial.

Note that the results for the alternative model variants are approximately the
same because these model differ only with respect to the order of extC (t)
values within each condition, which does not influence the averaged results.
ms, milliseconds.
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in a Two-Way ANOVA with repeated measurement on the vari-
ables Compatibility (compatible, incompatible) and Conflict
Probability (10%, 30%, 50%, 70%, 90%). For the RTs, a signifi-
cant effect of Compatibility, [F(1, 23) = 316.8, p < 0.001], and a
significant interaction, [F(4, 92) = 41.3, p < 0.001], was obtained.
With a larger Conflict Probability, RTs for incompatible stimuli
became shorter and RTs for compatible stimuli became longer.
For the error rates, significant effects of Compatibility, [F(1, 23) =
98.7, p < 0.001], and Conflict Probability, [F(4, 92) = 59.1, p <

0.001], as well as a significant interaction, [F(4, 92) = 68.0, p <

0.001], were obtained. Whereas error rates for incompatible stim-
uli decreased with an increasing Conflict Probability, error rates
for compatible stimuli remained constant at a low level. Finally,
for the N2, we obtained significant main effects of Compatibility,
[F(1, 23) = 14.5, p < 0.001], and Conflict Probability, [F(4,92) =
2.62, p < 0.05], as well as a significant interaction, [F(4, 92) =
9.00, p < 0.001]. Whereas for incompatible stimuli a higher
Conflict Probability led to decreased N2 amplitudes, for com-
patible stimuli a higher Conflict Probability led to increased N2
amplitudes.

Time course preceding errors. Figure 5 (left column) depicts the
result of the de-convolution analysis for the empirical data. Values
extracted by the de-convolution analysis indicate the deviation
from the mean. Error-preceding brain activity should be char-
acterized by an increasing deviation from the mean reaching a
maximum on the trial immediately preceding the error (e–1 trial).
We concluded that such a pattern exists if there is a significant
deviation from zero on the e–1 trial, and if there is a significant
slope across five trials preceding the error. The latter criterion
was chosen because error-preceding activity in previous studies
influenced five error-preceding trials (Eichele et al., 2008, 2010).

As already reported by Eichele et al. (2010) for a larger sample
with additional variation of stimulus and response probabilities,

FIGURE 4 | Conflict-related IC. Left: Mean activity of the extracted ICs
representing the N2 conflict effect as a function of Compatibility and
Conflict Probability. The shaded area represents the time range of the N2
used for analysis. Horizontal lines at the x-axis indicate the range of mean
RTs for compatible trials (long dashed line) and incompatible trials (short
continuous line). Right: Mean topography of the extracted ICs. com,
compatible. inc, incompatible.

errors were preceded by a linear decline of N2 amplitude, indi-
cated by a significant slope (0.09 μV), t(23) = 2.35, p < 0.05,
and a significant deviation on the e–1 trial (0.29 μV), t(23) =
2.23, p < 0.05. The same analysis applied to RTs showed only
a slight decrease preceding errors with a non-significant slope
(−1.03 ms), t(23) = 0.81, p = 0.43, but a significant value pre-
ceding the error (–15.0 ms). Because the non-significant slope
might reflect the outlier on the e−5 trial, we additionally tested
the slope for the four error-preceding trials and found this to
be significant (−3.74 ms), t(23) = 2.27, p < 0.05. The data also
revealed a sharp increase in RT following errors indicating a
strong effect of post-error slowing (e.g., Rabbitt and Rodgers,
1977; Laming, 1979).

To examine which stimuli are typically preceding errors, de-
convolution analysis was also applied to compatibility with 1
referring to an incompatible stimulus and 0 referring to a compat-
ible stimulus. Figure 5 shows a strong positive value representing
the fact that errors are more likely to occur for incompatible stim-
uli. Moreover, errors are preceded by a significant decline of the
compatibility variable [slope: −0.03, t(23) = 3.01, p < 0.01; e−1
value: −0.21, t(23) = 7.66, p < 0.001]. This shows that errors are
more likely to be preceded by compatible stimuli.

Taken together, we obtained robust error-preceding brain
activity. Moreover, this effect is accompanied by a change in com-
patibility, which already points to maladaptation as a cause of
this effect. In the next part, it is examined whether maladapta-
tion of cognitive control is sufficient and necessary to account for
systematic changes of brain activity preceding errors.

Modeling
Model fitting. To build a realistic model of our task, the model
was fit to RTs and error rates in each experimental condition by
optimizing five parameters related to conflict adaptation (α, β),
attention (extCmax), response selection (rcrit), and noise (snoise).
Inspection of Figure 3 contrasting model prediction and empiri-
cal data reveals that the model captures the main trends inherent
in the empirical data, although some small deviations remain.
Crucially, although the model was fit to behavioral data only, the
pattern of simulated N2 amplitudes closely corresponds to that of
the empirical N2 amplitudes. Note that this effect is exclusively
due to the conflict adaptation mechanism which adjusts cognitive
control according to the stimulus sequence.

The parameter values of the best fit are depicted in Table 1. The
increase of α from 4.41 to 22.6 implies that changes in response
conflict lead to a stronger adjustment of attention. These stronger
adjustments were necessary to quickly adapt attention to changes
in conflict probability. To avoid that strong adjustments lead to
excessive levels of external input to the center attention unit,
an upper bound to this external input, extCmax, was introduced
which adopted a value of 8.70. Moreover, the lower limit of adjust-
ment, β, was reduced to 0.367. Finally, the response criterion, rcrit,
was increased to 0.24 and noise, snoise, was reduced to 0.23 to
adapt to the generally low error rate.

Time course preceding errors. The time course of the estimated
N2 amplitude and other variables preceding errors were analyzed
for different model variants in the same way as the empirical
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Table 1 | Comparison of model parameters from the best fit of the

present model and the original model by Yeung et al. (2004).

Model parameter Yeung et al. (2004) Best fit

rcrit 0.18 0.2353

extCmax – 8.6994

α 4.41 22.5452

β 1.08 0.3669

snoise 0.035 0.0234

Note: rcrit = response criterion; extCmax = maximum external input to central

attention unit; α, β = linear transformation between response conflict and

attention; snoise = standard deviation of noise in the activation function.

data. The results are depicted in Figure 5 (right column). The
Adaptive Control model showed a significant decline of the simu-
lated N2 amplitude preceding errors [slope: −0.01, t(23) = 8.84,
p < 0.001; e−1 value: −0.07, t(23) = 18.4, p < 0.001] as well as
a significant reduction of simulated RT [slope: −6.97 ms, t(23) =
8.98, p < 0.001; e−1 value: −44.4 ms, t(23) = 18.3, p < 0.001].
Note that there was no post-error slowing as in the empirical
data since such a mechanism was not included in this version of
the model (but see Botvinick et al., 2001). Finally, we obtained
a decrease of the compatibility variable preceding errors [slope:
−0.07, t(23) = 10.2, p < 0.001; e−1 value: −0.35, t(23) = 18.1,
p < 0.001] that resembled that obtained in the empirical data.

The same analysis was applied to the Random Control model
and three variants of the Oscillating Control model. However, as
shown in Figure 5, none of these models produced substantial
trends in the simulated N2 amplitude or the simulated RT pre-
ceding errors. Only for the compatibility variable, we obtained
significant effects for some of the Oscillating control models.
Compatibility deviated significantly on the e−1 trial for the low
frequency model (−0.17), t(23) = 6.96, p < 0.001, and the inter-
mediate model (−0.12), t(23) = 4.19, p < 0.001. This might
simply reflect the fact that the highest error frequency for incom-
patible trials were obtained in conditions where compatible trials
were frequent, an effect that should have contributed to the results
also in the Adaptive Control model. However, because this effect
was restricted to the e−1 trial in some Oscillating Control mod-
els, it cannot fully account for the time course of compatibility
obtained in the Adaptive Control model. Taken together, these
analyzes show that only the Adaptive Control model predicts
error-preceding brain activity as found in the empirical data.

DISCUSSION
In the present study, we investigated the hypothesis that the
decline of N2 amplitude preceding errors reflects adaptive adjust-
ments of cognitive control and, accordingly, that it is the adaptiv-
ity of cognitive control that promotes the occurrence of errors in
this type of task. Our strategy was to fit a connectionist model
of conflict adaptation (Botvinick et al., 2001) to experimental
data and to test whether adaptive adjustments of cognitive con-
trol are sufficient and necessary to simulate this error-preceding
brain activity. The model assumes that the N2 reflects response
conflict elicited by the stimulus (Yeung et al., 2004; Yeung and

Cohen, 2006), and that the strength of response conflict not only
indicates the level of cognitive control but is also used by a conflict
adaptation mechanism to adjust cognitive control to meet current
task demands.

To calibrate this conflict adaptation mechanism, we consid-
ered an experiment in which the frequency of incompatible trials,
and thus conflict probability, varied locally (e.g., Gratton et al.,
1992). As expected, we found that an increased conflict proba-
bility led to a reduced effect of flanker compatibility not only in
behavioral measures but also in the N2 amplitude. The model was
able to reproduce these effects by means of local conflict adapta-
tion. Although we fitted the model only to behavioral measures,
the model displayed a similar pattern in the simulated N2 ampli-
tudes as in the empirical N2 amplitudes. This supports the general
assumption that the N2 reflects response conflict, and that the
N2 compatibility effect can be viewed as an indirect measure of
cognitive control (e.g., Forster et al., 2011).

Crucially, however, this Adaptive Control model produced
similar effects preceding errors as shown in the experimental data.
Most importantly, the simulated N2 amplitude showed a strong
decline preceding errors. This can be interpreted as a gradual
increase in adaptation of cognitive control which initially led to a
reduction in response conflict, but eventually increased the prob-
ability of an error. Basically, this effect can result in two scenarios.
First, it could result from an adaptive increase of control due to
a series of incompatible trials, which then leads to an increased
error probability on a compatible trial (Note that high control is
detrimental on compatible trials because it prevents the flankers
from activating the correct response). Second, it could result from
an adaptive decrease of control due to a series of compatible
trial, which then leads to an increased error probability on an
incompatible trial. Both possibilities presumably contribute to
this effect. However, the relative contribution of the latter effect
should be larger because errors were more frequent on incompat-
ible trials and were preceded by a gradually decreasing probability
of incompatible stimuli—an effect that was also reflected in a
decline of RT preceding errors.

Whereas the analysis of the Adaptive Control model revealed
that conflict adaptation is sufficient to predict the observed time
course of the N2 amplitude, we simulated additional models to
show that conflict adaptation is necessary to predict these effects.
Two types of models were derived by simply reordering the cog-
nitive control parameter either in a random or an oscillating
manner, representing the idea that errors are caused by intrinsic
and task-unrelated fluctuations in attentional and cognitive con-
trol systems (Weissman et al., 2006). Both models were not able
to reproduce the empirical data. We found no corresponding time
course preceding errors in either of the variables considered. Note
that this is not due to the fact that these models are less able to
account for the empirical mean performance. Because the models
were derived from the Adaptive Control model by reordering the
control parameters within sub-blocks associated with a specific
conflict probability, the alternative models produced the same
averaged data as the Adaptive Control model.

Taken together, our simulations show that conflict adapta-
tion, as implemented in the original model by Botvinick et al.
(2001), is sufficient and necessary to simulate a specific type of
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FIGURE 5 | Residual estimated N2 amplitudes, residual response

times, and compatibility around errors for the empirical and

model data, as obtained by de-convolution analysis. Simulated
N2 amplitude is estimated by the cumulated pre-response conflict

in each trial. Red lines indicate linear regression across five
trials preceding errors (only provided for the AC model). ms,
milliseconds, AC, Adaptive Control, RC, Random Control,
OC, Oscillating Control.
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error-preceding brain activity, namely the decline of N2 ampli-
tudes preceding errors. Conflict adaptation is sufficient because
it can fully account for the observed effects without making
additional assumptions that go beyond the original model by
Botvinick et al. (2001). It is necessary because simpler models
without conflict adaptation (e.g., based on random or oscil-
latory fluctuations of attention) cannot account for the data.
Given the already broad range of phenomena that have been
successfully simulated using this model (like the error-related
negativity, the N2, behavioral conflict adaptation effect, lateral-
ized readiness potentials; e.g., Botvinick et al., 2001; Yeung et al.,
2004; Danielmeier et al., 2009), the present results demonstrate
again that conflict monitoring and conflict adaptation provide
a parsimonious explanation for the interaction of conflict and
control.

The question emerges whether other types of error-preceding
brain activity reflect similar mechanisms. A phenomenon related
to the error-preceding decline of the N2 is the finding that
response-locked ERPs for correct responses preceding errors show
a positive shift with a similar spatial distribution as the N2
(Ridderinkhof et al., 2003; Allain et al., 2004; Hajcak et al., 2005).
Allain et al. (2004) proposed that this effect is related to the
error-related negativity (Falkenstein et al., 1990; Gehring et al.,
1993), another component that has been interpreted as reflect-
ing response conflict by conflict monitoring theory (Yeung et al.,
2004). As a consequence, this positive shift might reflect a decline
of response conflict that only differs in timing from the N2 effects
considered here. Future research might reveal whether there is a
relation between both phenomena.

Finally, a further result from our simulations deserves to be
mentioned. As can be seen in Figure 5, the Adaptive Control
model does not account for post-error slowing, which refers to
the slowing of RT following an error, and which has typically
been attributed to more cautious responding to prevent fur-
ther errors (e.g., Rabbitt and Rodgers, 1977; Laming, 1979; but
see Notebaert et al., 2009). Our model could not account for

this effect because only selective attention but not the response
criterion was adjusted depending on response conflict in a trial-
by-trial manner. In fact, Botvinick et al. (2001) implemented such
a mechanism and could successfully account for post-error slow-
ing. The fact that conflict adaptation and post-error slowing are
modeled by different algorithms support the notion that perfor-
mance monitoring can trigger a range of independent adaptation
mechanisms (King et al., 2010; Danielmeier et al., 2011; Maier
et al., 2011; Steinhauser and Kiesel, 2011). Moreover, the fact
that our model predicted pre-error speeding but not post-error
slowing implies that both phenomena are not necessarily related.
Whereas pre-error speeding can reflect stimulus history preced-
ing errors (and thus indirectly conflict adaptation), post-error
slowing might reflect a criterion change.

Taken together, our results provide an answer to the question
why human performance is error-prone even in simple tasks. The
brain continuously monitors conflicts emerging between con-
tradicting responses to predict upcoming task demands and to
adjust the level of control accordingly (Botvinick et al., 2001,
2004). The resulting adaptation of cognitive control allows the
brain to produce goal-directed performance. However, a draw-
back of this adaptation is that adaptive control can become
maladaptive when task demands change. A level of control that is
optimal in one situation can be detrimental in another situation,
leading to performance decrements or even errors. Because this
(mal-)adaptation is represented by error-preceding brain activ-
ity, this further implies that error-preceding brain activity can not
only be used to investigate the origin of errors, it can also serve as
a robust empirical marker of adaptive control.
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