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Multiple cortical areas of the human brain motor system interact coherently in the low

frequency range (<0.1Hz), even in the absence of explicit tasks. Following stroke, cortical

interactions are functionally disturbed. How these interactions are affected and how

the functional organization is regained from rehabilitative treatments as people begin to

recover motor behaviors has not been systematically studied. We recorded the intrinsic

functional magnetic resonance imaging (fMRI) signals from 30 participants: 17 young

healthy controls and 13 aged stroke survivors. Stroke participants underwent mental

practice (MP) or both mental practice and physical therapy (MP+PT) within 14–51

days following stroke. We investigated the network activity of five core areas in the

motor-execution network, consisting of the left primarymotor area (LM1), the right primary

motor area (RM1), the left pre-motor cortex (LPMC), the right pre-motor cortex (RPMC)

and the supplementary motor area (SMA). We discovered that (i) the network activity

dominated in the frequency range 0.06–0.08Hz for all the regions, and for both able-

bodied and stroke participants (ii) the causal information flow between the regions: LM1

and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was

reduced significantly for stroke survivors (iii) the flow did not increase significantly after

MP alone and (iv) the flow among the regions during MP+PT increased significantly. We

also found that sensation and motor scores were significantly higher and correlated with

directed functional connectivity measures when the stroke-survivors underwent MP+PT

but not MP alone. The findings provide evidence that a combination of mental practice

and physical therapy can be an effectivemeans of treatment for stroke survivors to recover

or regain the strength of motor behaviors, and that the spectra of causal information

flow can be used as a reliable biomarker for evaluating rehabilitation in stroke survivors.

Keywords: functional magnetic resonance imaging, spectral Granger causality, brain network activity, stroke

recovery, low-frequency oscillations

Abbreviations: SS, stroke survivors; MP, mental practice; PT, physical therapy; MP+PT, combination of mental practice and

physical therapy.

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2015.00173
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sahil.neuro@gmail.com
http://dx.doi.org/10.3389/fnhum.2015.00173
http://www.frontiersin.org/journal/10.3389/fnhum.2015.00173/abstract
http://community.frontiersin.org/people/u/115190
http://community.frontiersin.org/people/u/186415
http://community.frontiersin.org/people/u/133914
http://community.frontiersin.org/people/u/72688


Bajaj et al. Network restoration after rehabilitation

Introduction

Hemiparesis is one of the most common deficits observed
following stroke (Dromerick and Reding, 1995). The functional
imbalance within the motor system following stroke (James et al.,
2009; Wang et al., 2010; Grefkes and Fink, 2011; Inman et al.,
2012) can be due to damage of the white axonal tracts con-
necting brain motor areas (Turken et al., 2008; Granziera et al.,
2012). Due to limited clinical data compared to healthy volun-
teers data, recovery and restorative brain mechanisms in stroke
survivors (SS) are not clearly understood. Specifically, scientists
have yet to identify specific node and network activities of dam-
aged brains that are invoked and/or restored following rehabilita-
tive treatments. Mental practice (MP) and physical therapy (PT)
are two evidence-based interventions currently used to improve
motor movement, coordination and balance following stroke
(Page et al., 2002; Jackson et al., 2004; Butler and Page, 2006). MP
or motor imagery (MI) represents mental rehearsal of a motor
action without any overt action; and has been shown to improve
motor behaviors in people with neurologic disorders (Sharma
et al., 2006, 2009). Likewise various forms of PT have been shown
to be effective in ameliorating motor weakness following stroke
(Wolf et al., 2006; Langhorne et al., 2011). Here, we studied the
brain network mechanism for motor function recovery as a result
of: MP only, and MP and PT in combination.

Low frequency oscillations (LFOs) (<0.1Hz) in blood-
oxygenation-level dependent (BOLD) functional magnetic res-
onance imaging (fMRI) signals reflect self-organizing dynamic
behavior of the brain. Several cortical and subcortical regions,
including motor regions M1, PMC, and SMA, interact and coor-
dinate within and across the hemispheres within the low fre-
quency (<0.1Hz) range during resting-state (Wu et al., 2011;
Bajaj et al., 2014). The origin and functional relevance of these

TABLE 1 | Clinical and demographic data of the stroke group.

Participant Age Sex Post stroke MMSE Stroke location

(years) (months)

1 55 F 5 30 L thal. hem.

2 55 M 1 27 L basal ganglia

3 52 M 8 24 R cingulate gyrus

infarct

4 74 F 9 30 R caudate infarct

5 65 F 7 28 L caudate infarct

6 54 M 11 27 R putamen hem.

7 50 M 5 30 R lacunar infarct

(Globus pallidus)

8 69 F 8 28 R motor cortex infarct

9 64 M 54 28 R basal ganglia,

thalamic hem.

10 42 M 5 30 R pontine infarct

11 55 M 7 28 L internal capsule

12 62 M 7 28 L thalamic hem.

13 73 M 5 28 L pontomedullary

M, male; F, female; MMSE, Mini-Mental State Exam.

oscillations have not been completely investigated (Cordes et al.,
2001; Buzsáki and Draguhn, 2004; De Luca et al., 2006; Razavi
et al., 2008). An emerging, well-accepted notion is that these
slow intrinsic fluctuations are believed to be associated with neu-
ral level excitability changes in cortical and subcortical networks
(Buzsáki and Draguhn, 2004; Balduzzi et al., 2008; Keilholz
et al., 2010) which provides neural substrates for the flexibility
and variability in cognition and motor behaviors (Arieli et al.,
1996; Palva and Palva, 2012). These slow coherent oscillations
are the backbone of whole-brain functional connectivity net-
works such as default-mode networks (Raichle et al., 2001; Buck-
ner et al., 2008), which are actively being investigated in basic
and clinical neuroscience (Fox and Greicius, 2010; Gillebert and
Mantini, 2013). Despite tremendous progress in revealing these
network patterns in resting-state and clinical cases, the spec-
tral features of oscillatory network activity and their modula-
tions in patients by task conditions or therapy are not completely
understood.

Recent neuroimaging studies (Cordes et al., 2000; Solodkin
et al., 2004; Grefkes et al., 2008a; Kasess et al., 2008) have exten-
sively studied the brainmotor networks during resting-state (RS),
motor imagery (MI) and motor execution (ME) and have shown
that overlapping networks are engaged in these task conditions.
Planning, initiation, guidance and coordination of voluntary
movements could modulate functional connectivity in the motor
networks in these tasks (Jiang et al., 2004). The motor network
commonly includes these areas: the primary motor area (M1),
the premotor cortex (PMC) and the supplementary motor area
(SMA) (Jeannerod and Frak, 1999; Gerardin et al., 2000; Kasess
et al., 2008), which taken together play a dominant role in the
development, specification and execution of action. Activity in
these cortical areas during resting-state is thought to maintain
a dynamic equilibrium but is modulated during a motor task
by disturbing the balance and coordination of cortical areas by
inhibiting each other (Jiang et al., 2004). The primary motor
area (M1) is one of the principle brain areas that generates
and sends neuronal signals to control the execution of motor
commands whereas secondary motor areas SMA and PMC are
involved in motor planning, sending neuronal impulses to M1.
Also, the functional and potential asymmetries in PMC play an
important role in controlling interhemispheric interactions dur-
ing bimanual motor task (Berg et al., 2010). Anatomically, M1 is
connected to SMA and PMC in the same as well as in the oppo-
site hemisphere allowing bilateral activity during rest, unimanual
and bimanual hand movements (Schell and Strick, 1984; Deecke,
1987; Rouiller et al., 1994; Bajaj et al., 2014).

In this study, we used the spectral version of Granger causality
technique (Geweke, 1982; Dhamala et al., 2008a,b) to investigate
how the oscillatory network activity in the low frequency band
(<0.1Hz) within the motor network reorganizes in aged stroke
survivors compared to young able-bodied participants as these
stroke survivors undergo two interventions, mental practice and
combined mental practice and physical therapy. Granger causal-
ity and its spectral version have been in continuous use because it
is a data-driven approach where causal interactions are inferred
directly from simultaneously recorded physiological data and has
the capability to infer the relation among structural connectivity,
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functional connectivity and behavior (Seth, 2005; Seth and Edel-
man, 2007). The motor network we studied included: the left
M1 (LM1), the right M1 (RM1), the left PMC (LPMC), the right
PMC (RPMC) and the SMA.We predict that the interventions to
improve motor performance in stroke survivors would change
the characteristic features of the brain motor network activity
in such a way as to have network commonalities with those of
able-bodied healthy participants. The strength of oscillatory net-
work activity would correlate with improvement in motor behav-
iors independent of intervention or in either intervention. We
tested this hypothesis by examining and comparing the brain
motor network activity in people recovering from stroke follow-
ing interventions and healthy controls from intrinsic BOLD fMRI
measurements.

Materials and Methods

Participants
We recorded resting-state fMRI data from a total of 30 adult par-
ticipants: 17 young able-bodied (all right-handed, 12males, mean
age 25.17 ± 4.68 years) and 13 aged stroke survivors (12 right-
handed, 9 males, mean age 59.23 ± 9.49 years). A written con-
sent was obtained from each participant before the experiment.
The experimental protocol had appropriate institutional review
boards (IRB) approval.

Able-Bodied Participants
All the participants had no abnormal neurological history. None
of them reported use of medication known to affect any neuro-
logical function.

Stroke Survivors
To be included in the study, all stroke survivors had to be at
least 18 years old, independent in standing, toilet transfer, and
the ability to maintain balance for at least 2min with arm sup-
port. Upper extremity movement criteria included the ability
to actively extend the affected wrist ≥ 20◦ and extend 2 fin-
gers and thumb at least 10◦ with a motor activity log (MAL)
score of less than 2.5 (Uswatte et al., 2006). All of them sur-
vived their first stroke within 54 months prior to enrollment.
Either MR imaging or computed tomography (CT) was used to
confirm stroke and its location (Table 1). Stroke latency ranged
from 1 to 54 months. Six of them had left hemiparesis result-
ing from infarct or hemorrhage located in the thalamus, basal
ganglia, internal capsule, caudate, and/or pre-central gyrus. The
remaining volunteers had right hemiparesis due to infarctions of
the middle cerebral, pontine or internal carotid arteries (Table 1)
(Inman et al., 2012). The Mini-Mental State Exam (MMSE) was
used to assess cognitive aspects of mental function where a max-
imum score of 30 describes normal cognition function (Fol-
stein et al., 1975) (Table 1). This measure constituted two sets
of questions; one set tested orientation, memory and attention
whereas the second set tested the participant’s ability to name,
follow verbal and written commands, write a sentence sponta-
neously and copy a complex polygon. The Fugl–Meyer Motor
Assessments (FMA) was used to assess sensation and motor
functions. This included a total of 33 items including reflexes,

volitional movement assessment, flexor synergy, extension syn-
ergy, movement combining synergies, movement out of synergy,
normal reflex assessment, wrist movement, hand movement, co-
ordination and speed, each with a scale from 0 to 2 (0 for no
performance, 1 for partial performance and 2 for complete per-
formance) (Fugl-Meyer et al., 1975). The total possible score was
66 where a score of nearly 33 represents moderate impairment of
the affected upper limb.

Intervention Details
Six participants were randomized to “mentally practice” a series
of upper limb functional motor tasks for 4 h per day (8–30min
sessions), with the guidance of an audio tape, for a total of 60 h
over 3 weeks. MP is the creation by the mind referring to an
experience, which can be auditory, visual, tactile or kinesthetic
representing movement without any physical movement. Seven
participants were randomized to undergo physical training +

MP. The PT + MP group underwent 15 days (4 h per day) of
intensive one-on-one therapy, consisting of listening to the same
MP tape for 60min per day plus 3 h of physical therapy per day.
Identical tapes were given to all participants and the six mental
practice tasks did not change, but small details of themental prac-
tice scenarios such as the type of drink or color/type of telephone
one reached for were altered to enhance motivation and lessen
boredom.

The MP consisted of imagining four basic MI tasks using
the affected or unaffected hand. For instance, participants were
asked: (1) to imagine brushing or combing their hair, (2) to imag-
ine picking up and bringing different types of fruit to theirmouth,
(3) to imagine extending their arm to pick up a cup from a cab-
inet and place it on the counter and gently release it, and (4) to
imagine cleaning the kitchen counter using a cloth.

The PT consisted of repetitive, task-oriented training of the
more-impaired upper extremity for several hours a day (depend-
ing on the severity of the initial deficit). Task-oriented training
involved functionally based activities performed continuously for
a period of 15–20min (e.g., writing in a journal). In successive
periods of task training, the spatial requirement of the activity,
or other parameters (such as duration), were changed to require
more demanding control of limb segments for task completion.
Feedback about overall performance was provided at the end
of the 15–20min period. A large bank of tasks was created for
use among participants. Frequent rest intervals were provided
through the training session.

All sessions had identical contact durations and were mon-
itored by a licensed rehabilitation specialist. The investigators
were blind to group assignment. Following the 3-week “train-
ing” period all participants underwent a second testing session
recording both clinical and physiologic measures.

Imaging
All the participants were instructed to keep their eyes open fix-
ated on a cross in the center of a screen, relax and try not
to fall asleep. Each of the able-bodied participants underwent
one resting-state fMRI (rs-fMRI) scanning session. Imaging was
performed using a 3-Tesla Siemens whole-body MRI scanner.
Functional imaging was 7min and 54 s long, and included a
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T2∗-weighted echo planner imaging (EPI) sequence [echo time
(TE) = 40ms; repetition time (TR) = 2000ms; flip angle = 90◦;
field of view (FOV) = 24 cm, matrix = 64 × 64; number of
slices = 33 and slice thickness = 5mm]. High-resolution T1-
weighted images were acquired for anatomical references using
an MPRAGE sequence with an isotropic voxel size of 2mm.
Stroke participants underwent two rs-fMRI scanning sessions.
The second session was executed following an intervention where
stroke participants underwent either mental practice (MP) alone
or mental practice combined with physical therapy (MP+PT).
The gap between the sessions ranged from 14 to 51 days.
Their fMRI data was collected from a Siemens 3.0 T Magnetom
Trio scanner (Siemens Medical Solutions, USA) and included
TR/TE/FA= 2350ms/28ms/90◦, 130 time points (∼5min each),
resolution= 3× 3× 3mm3 and 35 axial slices.

Data Analysis
FMRI Preprocessing
FMRI data were preprocessed by using SPM8 (Wellcome Trust
Centre for Neuroimaging, London; http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/). The preprocessing steps involved slice
time correction, realignment, normalization and smoothing.
Motion correction to the first functional scan was performed
within participant using a six-parameter rigid-body transforma-
tion. Six motion parameters (three translational and three rota-
tional) were stored and used as nuisance covariates. Four able-
bodied participants out of total 17 had either more than 2mm
of translation or more than 1.5◦ of rotation about the three
axes and were excluded from the analysis. The mean of the
motion-corrected images was then co-registered to the individual
structural image using a 12-parameter affine transformation. The
images were then spatially normalized to the Montreal Neuro-
logical Institute (MNI) template (Talairach and Tournoux, 1988)
by applying a 12-parameter affine transformation, followed by a
nonlinear warping using basis functions (Ashburner and Fris-
ton, 1999). Images were subsequently smoothed with an 8-mm
isotropic Gaussian kernel and band-pass-filtered (0.04–0.1Hz) in
the temporal domain.

Regions of Interest
Regions of interest (ROIs) for motor-execution network were
defined using seed-based correlation mapping procedure to
assess functional connectivity among the regions. The left pri-
mary motor area (LM1) was selected as seed region with a
6mm radius sphere centered at (−33.0, −19.8, 52.1) in the
MNI coordinate system. Voxel-wise BOLD time-series for all
the regions were extracted by making masks using MARSBAR
(http://marsbar.sourceforge.net/). The correlated regions to the
LM1 were right primary motor cortex (RM1) centered at (35.7,
−18.1, 52.0), left pre-motor cortex (LPMC) centered at (−34.3,
−1.4, 55.8), right pre-motor cortex (RPMC) centered at (35.1,
0.1, 54.9) andmidline supplementary motor area (SMA) centered
at (0.0,−4.2, 64.7). Co-ordinates chosen were in accordance with
one of the previous studies (Inman et al., 2012). Previously, power
spectra for data with TR>2 s showed peak at frequency less than
0.04Hz due tomotion parameters (Razavi et al., 2008). Therefore,
in current analysis, we extracted data from all the regions, linearly

detrended and band-pass filtered within the frequency range of
0.04–0.1Hz.

Spectral Granger Causality Measures
Spectral Granger causality measures, one of the directed func-
tional connectivity measures (Friston et al., 2012), are a subset
of spectral interdependency measures (Dhamala, 2014). Spec-
tral interdependency measures are used to quantify the inter-
relationship between oscillatory processes as a function of fre-
quency of oscillations. It consists of three sub-measures: total
interdependence (M1,2) (say between oscillatory processes 1 and
2), one-way directional influence either from 1 to 2 (M1→2) or
2 to 1 (M2→1) and instantaneous causal flow (M1.2) (Granger
causality measures), which are derived from a spectral density
matrix (S) and are related by equation:

M1,2 = M1→2 +M2→1 +M1.2 (1)

These are well-accepted measures to characterize frequency spe-
cific interdependence between multiple neurophysiological time-
series data.

Spectral matrix (S) is constructed parametrically from the
time-series of oscillatory systems using autoregressive (AR)mod-
eling (Dhamala et al., 2008b). Diagonal elements of the matrix, S
represent node activity in terms of spectral power as a function of
frequency whereas directional influences i.e., Granger causality
(GC) between 1 and 2 are given by:

M1→2

(

f
)

= ln
S22

(

f
)
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(

f
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∗
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(

f
)

H̃22

(

f
)

622H̃
∗
22(f )

(2)

where H̃11 = H11 +
612
611

H12, H̃22 = H22 +
612
622

H21 represent
new transfer function matrices for 1 and 2 respectively in terms
of noise covariance matrix, 6 and transfer function matrix, H.
These are estimated from the residual errors and the inverse
of the Fourier transforms of the coefficients in autoregressive
models respectively.

Significant Tests and Percentage Difference
GC-values were integrated over the frequency range from 0.04Hz
(f) to 0.1Hz (f):

iGC1→2 =
1

f2 − f1

∫ f2

f1

M1→2

(

f
)

df (3)

Thresholds for significance level of Granger causality for each
participant—able-bodied (AB), stroke survivors (SS), stroke sur-
vivors under treatments: mental practice (MP) and mental prac-
tice and physical therapy (MP+PT) were computed by random
permutation method (Hayasaka and Nichols, 2004). We consid-
ered AB condition as reference level for SS to calculate percentage
difference (D) in connectivity strength. SS was used as refer-
ence for MP and MP+PT to calculate percent modulation (M)
after treatment of MP and MP+PT. This percent difference (D)
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and percent modulation (M) for SS and for MP and MP+PT
respectively were calculated as follows (Bajaj et al., 2014):

D =
iGCSS − iGCAB

iGCAB
× 100% (4)

M =
iGCMP/MPPT − iGCSS

iGCMP/MPPT
× 100% (5)

Here iGCSS, iGCAB, iGCMP, and iGCMPPT represent integrated
causal flow for stroke survivors (SS) (no treatment), able-bodied
(AB) participants, stroke survivors with treatment of men-
tal practice (MP) only and stroke survivors with combined
treatment of mental practice and physical therapy (MP+PT)
respectively.

Results

Power and GC Spectra
Average power spectra from all subjects for all five ROIs (LM1,
RM1, LPMC, RPMC, and SMA) and average GC spectra from all
subjects for each connection were computed for AB, SS, MP, and

MP+PT conditions. Figure 1A shows group level comparison of
power spectra of SMA for AB, SS, MP, and MP+PT conditions
and for other ROIs, see supplementary section. In all four condi-
tions, for all the ROIs, the peaks for power were in the frequency
band 0.06–0.08Hz. Figure 1B shows a comparison of peak power
of all ROIs for all conditions with standard error of mean. The
peaks for GC spectra were also found in the same frequency band
0.06–0.08Hz (Figure 2).

Directed Functional Connectivity
Directed functional connectivity among five ROIs was com-
puted for AB, SS, MP, and MP+PT conditions. For AB,
seven connections were found that had significant causal flow
(Figures 2A–G), including bidirectional causal flow between
LM1 and SMA (Figures 2A,D; blue line) and between RPMC
and SMA (Figures 2B,G; blue line). Here dashed line shows a
significant threshold (p < 0.01, sample size = 26) calculated
from combined set of data for AB and SS using random per-
mutation test. Other connections having significant causal flows
were from RPMC to LM1 (Figure 2C; blue line), SMA to RM1
(Figure 2E; blue line) and SMA to LPMC (Figure 2F; blue line).
Compared to AB, the stroke survivors did not show signifi-
cant causal flow (Figures 2A–G; black lines). Compared to AB,

FIGURE 1 | Power spectra and peak power. (A) Peak of power

spectra for SMA occurs within the frequency band 0.06–0.08Hz for

able-bodied participants (blue colored plot), stroke survivors who

underwent MP+PT (green colored plot), stroke survivors who

underwent MP only (red colored plot) and for stroke survivors

before intervention (black colored plot). (B) Peak power and the

associated standard error of the mean for each ROI in each

condition is shown.
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FIGURE 2 | Granger causality (GC) spectra. Young able bodied vs. aged

stroke survivors before and after intervention. Average GC spectra for all the

possible connections among five ROIs (LM1, RM1, LPMC, RPMC, and SMA)

were computed. Seven connections (A–G) were found which were

significantly stronger for AB condition (blue colored plots) whereas none of

the connections was significantly stronger for stroke survivors following

stroke (black colored plots) as well as following MP (red colored plots). Here

black colored dashed horizontal line represents the significance level

(p < 0.01, sample size = 26) calculated using random permutation test.

Three connections (A,D,F) were significantly stronger for participants who

underwent MP+PT (green colored plots). Peak of GC spectra for all the ROIs

under all the conditions was also found in the frequency range 0.06–0.08Hz.

stroke survivors who underwent MP only did not demonstrate
any connections with significant causal flow (Figures 2A–G, red
line). On the other hand, stroke survivors who underwent com-
bined MP+PT showed three connections, bidirectional connec-
tion between LM1 and SMA (Figures 2A,D; green line) and from
SMA to LPMC (Figure 2F; green line), with significant causal
flows. Integrated causal flow for all seven connections was cal-
culated by using Equation (3) (Figures 3A–G). Significant causal
flows are marked with ∗p < 0.01, sample size= 26.

Connectivity Modulations
We used Equation (4) to compute percent difference (D) in con-
nection strength for aged stroke-survivors (SS) with respect to
young able-bodied (AB) people. We found that the strength of
all the connections, which showed significant causal flow in AB,
decreased and ranged from −21 to −97% (Figures 4A,B). Con-
nection between SMA and LM1 was the most negatively affected
connection for aged stroke-survivors. We used Equation (5) to
compute the percent modulation (M) of stroke survivors, who

had either MP or MP+PT treatment. We found that percent
modulation for MP ranged from 18 to 65% (Figure 4C). The
most affected connection found previously (between LM1 and
SMA) was modulated by 62–65%. Three connections, from SMA
to RM1, RPMC to LM1, and RPMC to SMAwere negativelymod-
ulated by 5, 52, and 77%, respectively. We found that percent
modulation for MP+PT ranged from 45 to 94% (Figure 4D).
Here the most affective connections were modulated by 92–94%,
which is much higher than during MP only. Two connections,
from SMA to RM1 and RPMC to LM1were negativelymodulated
by 28 and 45%, respectively. Percent decrease and percent mod-
ulations in Figures 4B–D are shown with red and black colored
dots, respectively.

We were also interested in whether or not the behavior of the
network differs for AB, SS, MP, and MP+PT groups and there-
fore we combined all seven individual significant connections as
part of one network and performed two-sample (un-paired) t-
test for AB vs. SS, SS vs. MP, SS vs. MP+PT, and MP vs. MP+PT
(Figure 5). We found that the network as a whole, consisting
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FIGURE 3 | Integrated causal flow. Young able bodied vs. aged

stroke survivors before and after intervention. Integrated causal flow for

frequency band 0.04–0.1Hz is calculated for all the seven connections

(B–G). Here *represents significant causal flow values. Three

connections: (A) LM1 to SMA, (B) SMA to LM1, and (G) SMA to

LPMC showed significant causal flow values for stroke survivors after

MP+PT whereas none of the causal influences for stroke survivors are

significant before and after MP treatments.

of seven significant connections, was significantly stronger for
young able-bodied volunteers than for aged stroke-survivors
(p = 10−5, sample size = 13, denoted by ∗∗∗). We also found
that there was no significant difference between the strength of
networks when the stroke survivors had only performed MP
(p = 0.75, denoted by NS) whereas the network became signifi-
cantly stronger when the stroke survivors underwent combined,
MP+PT (p = 0.02, denoted by ∗). We also found that the effect
of MP+PT was significantly stronger than MP only (p = 0.01,
denoted by ∗∗).

Brain and Behavior Correlation
FMA scores were recorded for all the stroke-survivors before and
after the intervention. Using paired t-test, we found that FMA
scores were not significantly higher when the participants under-
went MP only (sample size = 6; p > 0.05) (Figure 6A) whereas
scores were significant higher when the participants underwent
MP+PT (sample size = 7; p < 0.05) (Figure 6B). For the
brain and behavior correlation, behavioral FMA score differences
(1FMA) and brain GC differences (1GC) (Table 2) were not
significantly correlated for the causal influence from SMA to

LPMC (Figure 6C) in case of MP treatment, but tended toward
significant values (p = 0.06, Figure 6C) for this connection in
case of MP+PT treatment.

Discussion

In this study, we used a spectral GC approach on resting-state
fMRI data of 30 participants to investigate the organization of
motor-execution network for young able-bodied and aged stroke
survivors along with substantial changes after the stroke sur-
vivors underwent mental practice alone or combined mental
and physical therapy. We found that node and network activi-
ties were dominant in the frequency band 0.06–0.08Hz for all
the ROIs in all conditions. As expected we found that node
activity for each ROI was significantly higher in AB condi-
tion than SS condition but unexpectedly there was no signifi-
cant difference between node activities for SS, MP, and MP+PT
conditions. There were bidirectional causal influences between
LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and
RM1, and SMA to LPMC for young able-bodied participants,

Frontiers in Human Neuroscience | www.frontiersin.org 7 March 2015 | Volume 9 | Article 173

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Bajaj et al. Network restoration after rehabilitation

FIGURE 4 | Percent difference and modulation. Compared to (A)

able-bodied participants, percent decrease of the causal flow ranged from

−21 to −97% for aged stroke patients as shown in (B), whereas compared

to these stroke patients, there was a percent modulation ranging from −77

to 65% for stroke patients who underwent MP as shown in (C) and from −45

to 94% for stroke patients who underwent MP+PT as shown in (D). Percent

decrease and percent modulations are shown with red and black colored

dots respectively. Width of the arrows represents corresponding strength of

connections on an arbitrary scale. Wider the arrows, stronger are the

connections.

but none of the directions were significant for stroke sur-
vivors even when they underwent a session of MP. Some of
the connections, for example between LM1 and SMA and from
SMA to LPMC, showed significant causal flow when stroke sur-
vivors underwent combined session of MP and PT (MP+PT).
Percent decrease in connection strength reflected by causal flow
for aged stroke survivors compared to young able-bodied ranged
from −21 to −97% whereas the percent modulation for stroke
survivors with MP and MP+PT compared to those individu-
als receiving no treatment ranged between 18–65 and 45–94%,
respectively. Furthermore, as predicted young able-bodied par-
ticipants demonstrated significantly stronger network causal flow
than aged stroke survivors. There was no significant difference
between network causal flow before and after the MP treatment
in stroke survivors. But, to our surprise the causal flow was sig-
nificantly more after MP+PT than before any treatment. Fur-
thermore, network causal flow after MP+PT was also found
to be significantly more than after MP only. We also found
that the FMA scores were significantly higher following inter-
vention (MP+PT) in post-stroke hemiplegic patients indicat-
ing a greater degree of recovered upper limb function in this
group. There was a correlation, which tended toward signifi-
cant value, between difference in FMA scores and difference in
directed functional connectivity measures from SMA to LPMC
following stroke and when the stroke-survivors underwent
MP+PT.

Low-Frequency Network Activity
Intrinsic functional networks usually show coherent oscillatory
activity in the low frequency band, less than 0.1Hz. Spontaneous
synaptic activity of neurons is known to give rise to fluctua-
tions in fMRI BOLD signals. These low-frequency oscillations are
believed to mediate long-distance synchronization of distributed
brain regions, modulation of which represent cortical excitabil-
ity (Buzsáki and Draguhn, 2004; Bajaj et al., 2013, 2014). Fur-
ther evidence points to the notion that these oscillations have
a definite neuronal basis rather than the result of physiologi-
cal artifact (Lowe et al., 1998; Cordes et al., 2001; Bajaj et al.,
2013). The resting-state activity and the spontaneous fluctuations
also reflect the dynamic self-organizing nature of brain (Raichle
and Mintun, 2006). The power of such low-frequency fluctu-
ations of brain signals may differ significantly between stroke
survivors and able-bodied healthy individuals (Tuladhar et al.,
2013), which is consistent with our results. Our findings are
consistent with a study by Tsai et al. (2014) who reported that
during the resting-state, the amplitude of low frequency oscilla-
tions is altered in people with impaired consciousness following
a stroke. Significant differences in the amplitude of low fre-
quency oscillations was also reported during resting-state in the
brain areas of people suffering from depression (Wang et al.,
2012).

However, it has been postulated that following a stroke,
brain network activity may deviate. Fluctuations with frequency

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2015 | Volume 9 | Article 173

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Bajaj et al. Network restoration after rehabilitation

FIGURE 5 | Network activity comparison. Considering the causal

influences for all significant connections, stronger network activity

(***p = 10−5) was observed for able-bodied participants than

stroke-survivors. No significant difference between integrated causal flow

values was found between stroke survivors before and after mental

practice (MP) (p = 0.75) whereas network activity was significantly higher

when they underwent combined session of mental practice and physical

therapy (MP+PT) (*p = 0.02). We also found that the network activity

was significantly higher following MP+PT than following MP only

(**p = 0.01).

less than 0.1Hz have been shown to contribute to resting-
state functional connectivity in auditory, visual and motor
cortices (Cordes et al., 2001). Strong coherence relation-
ship between motor areas have been found in the frequency
band 0.02–0.15Hz during rest as well as in the presence of
lesions (Otten et al., 2012). Dominance of ultra-low frequency
band (0.01–0.06Hz) in cortical networks and of 0.01–0.14Hz
in limbic networks suggest the involvement of distinct fre-
quency bands in the resting-state fMRI signals (Wu et al.,
2008).

Altered Functional Connectivity Following Stroke
Detailed descriptions of resting-state connectivity in stroke sur-
vivors may help rehabilitation scientists recognize and target
insulted neural networks with evidence-based therapies. It has
been suggested that coupling between distinctive cortical areas
and their functionality following stroke can be better under-
stood in the absence of any active task (Grefkes and Fink, 2011).
The degree of network disturbance and reduction in network
activity following stroke is mainly caused by weak or abnormal

neural coupling between higher order pre-motor andmotor areas
and is dependent on the age, location of lesion and intensity of
anatomical damage (Grefkes and Fink, 2011; Sun et al., 2012).
Stroke may also leave a strong negative impact on the cou-
pling between the cortex and spinal cord and among corti-
cal areas, which are contiguous or removed from the location
of lesion (Grefkes and Fink, 2011). Our findings are consis-
tent with a dynamic causal modeling (DCM) study by Rehme
and colleagues, where changes in effective connectivity within
M1, PMC, and SMA were observed following stroke (Rehme
et al., 2011) i.e., there was reduction in positive coupling of
SMA and PMC with M1. In another DCM study of 12 sub-
acute stroke patients during a hand movement task, Grefkes
and colleagues found intrahemispheric and interhemispheric
disturbances due to subcortical lesions (Grefkes et al., 2008b).
They reported that the intrinsic neural coupling between SMA
and M1 was significantly reduced in patients recovering from
stroke. The deficiency in motor skills due to a single subcorti-
cal lesion was thought to be related to pathological interhemi-
spheric interactions among core motor regions. In comparison
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FIGURE 6 | Brain and behavioral correlation. The Fugl-Meyer Motor

Assessment (FMA) scores for stroke-survivors: (A) before intervention

(blue bars) and after MP (red bars), and (B) before intervention (blue

bars) and after MP+PT (red bars) are plotted. We also observed that

for connection: (C) from SMA to LPMC, the correlation coefficient (r)

between differences in FMA scores (1FMA) and GC-values (1GC)

before and after MP+PT intervention showed a trend toward statistical

significance.

TABLE 2 | Differences in FMA scores (1FMA) and GC values (1GC) before

and after the intervention.

Participant 1FMA 1GC (following intervention-following stroke)

LM1 → SMA SMA → LM1 SMA → LPMC

PARTICIPANTS WHO UNDERWENT MP ONLY: MP-STROKE

1 6 −0.36 −0.23 −0.26

2 7 0.00 0.08 0.07

3 10 −0.06 0.02 0.10

4 7 −0.01 −0.12 −0.15

5 −2 −0.01 0.00 0.02

6 0 0.01 −0.03 −0.06

PARTICIPANTS WHO UNDERWENT MP+PT: (MP+PT)-STROKE

7 4 0.04 0.00 0.02

8 9 0.1 0.10 0.02

9 9 −0.02 0.04 0.19

10 2 0.00 −0.17 0.02

11 2 0.09 0.15 −0.03

12 1 0.18 0.05 −0.00

13 0 0.03 −0.06 −0.03

1FMA, Difference between FMA scores following stroke and following intervention; 1GC,

Difference between GC-values following stroke and following intervention.

to able-bodied participants, weaker paths weights have been
found from PMC to M1 for stroke patients (Inman et al.,
2012). Patients with stroke had significantly diminished con-
nections between fronto-parietal cortices and primary motor

areas, suggesting an overall weaker confirmatory model. Our
findings also showed a significantly diminished motor network
compared to young healthy participants. In addition,abnormal
effective connectivity has been shown between PMC, SMA and
prefrontal cortex in patients with Parkinson’s disease due to
disturbed functionality of a subcortical circuit (Rowe et al.,
2002).

Recovered Functional Connectivity Following
Rehabilitation
Several studies on animals and humans provide insight demon-
strating the basis of recovery mechanisms. Studies in rodent
models have shown multiple cellular level changes occur in the
unaffected hemisphere during recovery from stroke (Jones and
Schallert, 1994). A study on non-human primates have shown
that the degree of motor impairment after stroke depends upon
the damage to direct corticospinal connections between neurons
in motor areas M1, PMC, and SMA and alpha-motor neurons
(Dum and Strick, 2002; Grefkes and Fink, 2011). Motor recov-
ery may be associated with increased activation in the SMA
(Aizawa et al., 1991). Various hypotheses have been proposed
describing the source of activations in SMA. It is believed that
without execution of a motor plan, MP or mental rehearsal forms
a hypothetical environment of movements, which causes activa-
tion of motor preparation or motor execution network (Jean-
nerod and Frak, 1999). Lotze et al. (1999) in an fMRI study of
healthy participants have verified this observation, where sup-
plementary motor area (SMA), premotor cortex (PMC), and
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primary motor area (M1) are found to be consistently active
during motor execution as well as during motor imagery task.
Activation of the same neural populations during MP and phys-
ical actions may be because of the same vegetative responses
elicited by both (Butler and Page, 2006). Performance times
are also found to be close for imagined and physically per-
formed tasks with different levels of difficulty (Kohl and Fisicaro,
1995; Cerritelli et al., 2000). Treatment by MP, which is funda-
mentally rehearsal of an action mentally without any physical
effort, is usually considered as a mental imagery (MI) task. Only
slight but insignificant restoration of insulted brain networks
following MP has been observed in the current study which
may be because both motor-imagery and motor-execution are
known to associate with similar brain networks. Brain studies
have confirmed a correspondence between imagined and exe-
cuted movements and considered MI as a dynamic process with
a strong correlation with motor-execution. Mental rehearsal by
itself or in combination with physical practice has been proven
to be beneficial for healthy as well as for mentally challenged
individuals (Sharma et al., 2006; Dickstein and Deutsch, 2007).
Our report that MP with motor imagery may cause the inter-
nal simulation of movements but not of a sufficient intensity
to match that of able-bodied participants. Whereas repetitive
physical practice combined with MP causes a stronger corti-
cal reorganization with concomitant improvement in function
is consistent with previous findings (Jackson et al., 2003; Butler
and Page, 2006). For comparison, previous neuroimaging stud-
ies suggest that during resting state, there is significant influ-
ence of age on functional connectivity within the motor network
and normal aging may cause disruption and decline of func-
tion in motor areas (Wu et al., 2007a,b; Solesio-Jofre et al.,
2014). This may explain why young able-bodied participants
demonstrated significantly stronger network causal flow than
aged stroke survivors; in all the conditions, especially before
any treatment. But on the other hand, in a resting state fMRI
study on stroke survivors, Carter and colleagues confirmed that
lesions are responsible for changes in the functional architecture
of the brain as well as constrain behavioral outputs (Carter et al.,
2010).

Furthermore, our findings of the directed functional connec-
tivity changes for stroke patients following rehabilitation are con-
sistent with a study by Rehme and colleagues who reported an
increase in coupling between SMA,M1, and PMC following reha-
bilitation (Rehme et al., 2011). SMA and PMC are found to have
direct extensive projections to M1 in non-human primates (Dan-
cause et al., 2005) and may play a critical role in motor recov-
ery. Findings from a study by James and colleagues suggested
that the unaffected hemisphere has a strong and direct influ-
ence on the affected hemisphere following stroke, but this influ-
ence diminishes with recovery (James et al., 2009). Despite the
variability due to heterogeneity of lesion locations in our sam-
ple of stroke-survivors, our current findings suggest a significant
influence of rehabilitation therapy (i.e., MP+PT) on motor net-
works and upper limb motor recovery in post-stroke hemiplegic
patients.

Previous studies (Page et al., 2001; Butler and Page, 2006;
Confalonieri et al., 2012) have shown that the combination of

MP and PT is helpful in improving functional and motor skills
more than MP only. MP by itself is considered an effective
technique to enhance motor performance by tracing the over-
lap between motor imagery and motor execution neural cir-
cuits (Jeannerod, 2006). Although, the improvement in muscular
strength of participants with deficiency in motor skills following
MP is less than physically trained participants (Yue and Cole,
1992). We found that the combination of MP and PT signifi-
cantly improved the connectivity between specific cortical areas
as well as for motor-execution network as a whole and tended
toward connectivity values of healthy participants. These find-
ings are in-line with our behavioral results where we reported
that the FMA scores for patients who received MP+PT are sig-
nificantly higher than before intervention. Differences in FMA
scores and GC values before and after MP+PT also follow a lin-
ear trend. Page and colleagues also observed that the patients
who received MP+PT improved significantly by an average of
7.81 and 6.72 points on the Action Research Arm (ARA) test
and Upper Extremity Fugl–Meyer Assessment of Motor Recov-
ery After Stroke (FM) respectively whereas patients who received
PT and relaxation showed significantly lower scores of only 0.44
points and 1 point on the ARA and FM, respectively (Page et al.,
2007).

We also found that there was decrease in causal flow val-
ues from SMA to RM1, RPMC to LM1, and RPMC to SMA
after MP. The decrease in causal values was less when stroke
patients underwent MP+PT. The decrease in value could
be because mental practice or imagery usually consists of a
set of relatively independent processing sub-systems (Koss-
lyn et al., 1984, 1990). Lack of simultaneous activations in
these sub-systems may result in weakening of the connec-
tions in motor network. Mental practice may also involve
some manipulation, producing descriptions of the task or day-
dreaming (Kosslyn et al., 1990; Schuster et al., 2012). Hence,
whether and how long these weak interactions arising frommen-
tal practice are retained is an interesting question for future
investigations.

Limitations
Lesion locations in our sample of participants were not homoge-
neous. This may have added variability to the connectivity mea-
sures for some of the regions of interest. The sample included
stroke survivors with a wide age range and time since stroke,
hence further adding to intersubject variability. Future studies
having participants with age-matched stroke and able-bodied
volunteers can provide better references for brain connectiv-
ity comparisons and may give better estimates of connectiv-
ity improvements compared with able-bodied patients. Despite
the variability and this limitation, our data show excellent cor-
relation between brain network activity flow and behavioral
measures within the recovering stroke patients of similar age
group.

In conclusion, the results of the current study suggest that
the fMRI BOLD brain signals can capture the network activity
flow changes within the cortical motor-execution networks fol-
lowing stroke and during the course of rehabilitation and recov-
ery. The combination of mental practice and physical therapy
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is an effective treatment option, capable of producing signifi-
cant behavioral and brain activity changes. The directed func-
tional connectivity approach allows us to probe the brain network
mechanisms during the course of motor recovery from stroke,
providing the basis for clinical decisions making and selection of
treatments for stroke patients.
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