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Serotonin (5-HT) receptors of types 1A and 2A are strongly expressed in prefrontal
cortex (PFC) neurons, an area associated with cognitive function. Hence, 5-HT could be
effective in modulating prefrontal-dependent cognitive functions, such as spatial working
memory (SWM). However, a direct association between 5-HT and SWM has proved
elusive in psycho-pharmacological studies. Recently, a computational network model of
the PFC microcircuit was used to explore the relationship between 5-HT and SWM
(Cano-Colino et al., 2013). This study found that both excessive and insufficient 5-HT levels
lead to impaired SWM performance in the network, and it concluded that analyzing
behavioral responses based on confidence reports could facilitate the experimental
identification of SWM behavioral effects of 5-HT neuromodulation. Such analyses may
have confounds based on our limited understanding of metacognitive processes. Here,
we extend these results by deriving three additional predictions from the model that
do not rely on confidence reports. Firstly, only excessive levels of 5-HT should result
in SWM deficits that increase with delay duration. Secondly, excessive 5-HT baseline
concentration makes the network vulnerable to distractors at distances that were robust
to distraction in control conditions, while the network still ignores distractors efficiently
for low 5-HT levels that impair SWM. Finally, 5-HT modulates neuronal memory fields in
neurophysiological experiments: Neurons should be better tuned to the cued stimulus than
to the behavioral report for excessive 5-HT levels, while the reverse should happen for low
5-HT concentrations. In all our simulations agonists of 5-HT1A receptors and antagonists
of 5-HT2A receptors produced behavioral and physiological effects in line with global 5-HT
level increases. Our model makes specific predictions to be tested experimentally and
advance our understanding of the neural basis of SWM and its neuromodulation by 5-HT
receptors.
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INTRODUCTION
Spatial working memory (SWM) is a function of the pre-
frontal cortex (PFC) (Smith and Jonides, 1999) that is known
to be under the neuromodulatory control of the monoamine
nuclei of the brainstem (Brozoski et al., 1979; Porrino and
Goldman-Rakic, 1982; Ellis and Nathan, 2001; Robbins and
Arnsten, 2009; Arnsten, 2011; Arnsten et al., 2012). Especially
catecholamines have been implicated in SWM, while only com-
paratively fewer studies have investigated neuromodulation of
SWM by the indolamine serotonin (5-hydroxytryptamine, 5-HT)
(Park et al., 1994; Luciana et al., 1998, 2001; Vollenweider et al.,
1998; Carter et al., 2005; Wingen et al., 2007; Wittmann et al.,
2007; Mendelsohn et al., 2009; Silber and Schmitt, 2010). These
studies have not found consistent effects of 5-HT on SWM, even
if the serotonergic system is associated with general cognitive
function (Schmitt et al., 2006; Robert and Benoit, 2008; Ögren
et al., 2008; Froestl et al., 2012). This is unexpected, given the
marked effect of local application of serotonergic drugs on the
persistent activity of prefrontal neurons in monkeys engaged in

a SWM task (Williams et al., 2002), which is believed to sub-
serve working memory function in the PFC (Funahashi et al.,
1989; Goldman-Rakic, 1995). A role for 5-HT in controlling PFC-
dependent functions is also suggested by the strong expression of
serotonin receptors in PFC (Jacobs and Azmitia, 1992; Jakab and
Goldman-Rakic, 1998; Barnes and Sharp, 1999; Amargós-Bosch
et al., 2004; Santana et al., 2004; De Almeida et al., 2008) and
their capacity to modulate prefrontal cortical activity (Jacobs and
Azmitia, 1992; Puig et al., 2004, 2005, 2010; Celada et al., 2013).

Recently, a computational model of SWM was used to study
the effects of 5-HT receptors on network function (Cano-Colino
et al., 2013). This study suggested that a non-monotonic depen-
dency of SWM performance with 5-HT concentration could
underlie the difficulty in identifying serotonergic effects in psy-
chopharmacological studies of SWM. Furthermore, the network
model predicted that worsened SWM performance upon exces-
sive and defective activation of 5-HT receptors could be dis-
criminated based on a careful examination of the nature of the
errors committed (Cano-Colino et al., 2013). In particular, the
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confidence declared by subjects after erroneous responses could
distinguish the behavioral effects of increased and reduced 5-
HT activations, and thus lead to detecting a robust serotonergic
effect on SWM. These predictions are experimentally testable,
since confidence reports are being increasingly used in both
human (Pessoa and Ungerleider, 2004; Mayer and Park, 2012;
Rademaker et al., 2012) and animal (Middlebrooks and Sommer,
2011, 2012; Tanaka and Funahashi, 2012) studies of working
memory. However, there are limitations in relying only on the
confidence report to test the computational model. On the one
hand, confidence reports rely on meta-cognition, the knowledge
about one’s own cognitive processes (Flavell, 1979), which is also a
PFC-dependent function (Schnyer et al., 2004; Pannu et al., 2005;
Rounis et al., 2010; Middlebrooks and Sommer, 2012). As a result,
metacognitive reports could be themselves affected by serotoner-
gic manipulations and there could be a confound between a 5-HT
effect on the confidence circuits and a 5-HT effect on the SWM
circuit. On the other hand, neurobiological research on metacog-
nition is in its infancy, so that confidence-based predictions are
difficult to test in animal studies.

Here, we present behavioral and physiological predictions
from the computational model of SWM subject to 5-HT neu-
romodulation (Cano-Colino et al., 2013) that do not require
metacognitive reports. In this way, we provide control predictions
to disambiguate a 5-HT effect on metacognition as opposed to
on SWM, and we also extend the predictive power of the com-
putational model so it can be validated in electrophysiological
studies that use well-established behavioral paradigms of SWM
during application of pharmacological agents in behaving ani-
mals (Williams et al., 2002; Meneses, 2007; Vijayraghavan et al.,
2007).

MATERIALS AND METHODS
THE MODEL NETWORK
We used a neuronal network model of the PFC to explore the rela-
tionship between 5-HT and SWM (Cano-Colino et al., 2013). The
network model represents a local circuit of the monkey dorso-
lateral PFC (Funahashi et al., 1989). The local recurrent cortical
network consists of two populations of leaky integrate-and-fire
neurons (Tuckwell, 1988): excitatory pyramidal cells (NE = 1024)
and inhibitory interneurons (NI = 256). The membrane voltage
Vm of each neuron obeys the following dynamical equation:

Cm
dVm

dt
= −IL − Isyn, e − Isyn, i − Iext + Is − I5-HT

where Cm represents the membrane capacitance of the neu-
ron. When Vm reaches a threshold value Vth, Vm is reset to
Vres and stays there for an absolute refractory period τref. Iext

represents random synaptic inputs from outside the network,
simulated as uncorrelated Poisson spike trains activating AMPA
channels of conductance gext at a rate next. Is is the input cur-
rent associated with stimulus presentation (see below). Isyn, e

and Isyn, i are the recurrent synaptic inputs from presynaptic
pyramidal cells and interneurons, respectively. Details of synap-
tic transmission are given below. For pyramidal neurons I5-HT

is the current modulated by 5-HT (see below) and the leak

current is IL = gL (Vm − EL), with gL and EL being the conduc-
tance and reversal potential of leak channels. For interneurons
IL depends on 5-HT concentration (see below) and there is no
I5-HT. The intrinsic parameters that characterize pyramidal cells
are: Cm = 0.5 nF, gL = 27.4 nS, EL = −70 mV, Vth = −50 mV,
Vres = −60 mV, νext = 1650 Hz, gext = 5 nS, and τref = 2 ms.
For interneurons Cm = 0.2 nF, EL = −70 mV, Vth = −50 mV,
Vres = −60 mV, νext = 1800 Hz, gext = 1.8 nS, and τref = 1 ms.

Neurons are connected through conductance-based synapses
of the AMPA, NMDA, and GABAA types, which were calibrated
by the experimentally measured dynamics of synaptic currents
(Wang, 1999). Thus, postsynaptic currents were modeled accord-
ing to Isyn = gsyn s(Vm − Vsyn), where gsyn is a synaptic conduc-
tance, s a synaptic gating variable, and Vsyn the synaptic reversal
potential (Vsyn = 0 for excitatory synapses, Vsyn = −70 mV for
inhibitory synapses). AMPAR and GABAAR synaptic gating vari-
ables were modeled as an instantaneous jump of magnitude of 1
when a spike occurred in the presynaptic neuron followed by an
exponential decay with time constant 2 ms for AMPA and 10 ms
for GABAA. The NMDA conductance was voltage-dependent,
with gsyn multiplied by 1/(1 + [Mg2+] exp(−0.062 Vm)/3.57),
[Mg2+] = 1.0 mM, and the channel kinetics were modeled by:

ds

dt
= −1

τs
s + αsx (1 − s),

dx

dt
= −1

τx
x +

∑

i

δ (t − ti)

where s is the gating variable, x a synaptic variable propor-
tional to the neurotransmitter concentration in the synapse, ti the
presynaptic spike times, τs = 100 ms the decay time of NMDA
currents, τx = 2 ms controls the rise time of NMDAR channels,
and αs = 0.5 kHz controls the saturation properties of NMDAR
channels at high presynaptic firing frequencies. Parameters for
synaptic transmission were taken from Compte et al. (2000).

The network model simulates neurons selective to the memo-
rized location in working memory tasks (Funahashi et al., 1989;
Goldman-Rakic, 1995). Pyramidal cells and interneurons were
spatially distributed on a ring, labeled by their preferred direc-
tion of motion (θi, from −180 to 180◦) (Figure 1A). Connections
between cells were spatially tuned, such that nearby cells were
more strongly connected than distant cells (Compte et al.,
2000). The connection strength gsyn, ij between pyramidal cells
i and j depended on the difference in preferred angle between
the cells and was described by the equation gsyn, ij = W(θi −
θj) Gsyn, where W(θi − θj) was the sum of a constant term plus
a Gaussian: W(θi − θj) = J− + (J+ − J−) exp[−(θi − θj)

2/2σ2].
W(θi − θj) depends on two parameters, J+ and σ, while J−
is determined from a normalization condition (Compte et al.,
2000). All the connections were structured with the same σ

(σEE = σEI = σIE = σII = 14.4◦) but with different J+ : J+
EE = 2,

J+
EI = 0.5, J+

IE = 1.4, J+
II = 1.9. Following the notations in Compte

et al. (2000) and Cano-Colino et al. (2013), the parameters
defining the strengths of local connections in the network were
as follows: GEE, AMPA = 0.14 nS, GEE, NMDA = 2.1 nS (pyramid
to pyramid); GEI, AMPA = 0.72 nS, GEI, NMDA = 1.9 nS (pyramid
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FIGURE 1 | Schematic of network architecture and 5-HT modulation in

model neurons. (A) Scheme of the ring structure of the network model with
excitatory pyramidal neurons (blue triangles) and inhibitory interneurons (red
circles) in a proportion of 4:1 interconnected within and between them.
Nearby pyramidal neurons are strongly connected with each other (strength
indicated by thickness of connections). Connections onto pyramidal neurons
are indicated with a solid line and onto interneurons with a dashed line. (B) In
pyramidal cells (blue triangle), 5-HT has an inhibitory effect via 5-HT1A

receptors by increasing a K+ current (IK1A), and an excitatory effect via

5-HT2A receptors by inhibiting the Ca2+-dependent K+ current (IKCa), and
increasing intracellular Ca2+, which modulates in turn a non-specific cationic
current (ICan). In interneurons (red circle), 5-HT inhibits passive leak currents
(IL) via 5-HT2A receptors. (C) Schematic diagram of the simulated tasks. In
the no-distractor trials (left), after 3 s of fixation a stimulus is presented in one
of 16 possible locations. After a delay of 3 s subjects have to report the
location of the stimulus. In the distractor trials, a distractor stimulus is
presented at location θD during the delay (at 1.75 s), and a second delay of
1.75 s follows before the behavioral response.

to interneuron); GIE = 7.8 nS (interneuron to pyramid); GII =
4.4 nS (interneuron to interneuron).

5-HT MODULATION
The model included 5-HT receptor physiological effects on PFC
neurons (Figure 1B). 5-HT1A and 5-HT2A receptors are the two
most abundant receptors in the PFC (Santana et al., 2004), which
are highly co-localized in pyramidal neurons (∼80%) (Amargós-
Bosch et al., 2004). The main and faster inhibitory response to
5-HT pulses is through 5-HT1A receptors and the later excitatory
response through 5-HT2A receptors (Puig et al., 2005; Goodfellow
et al., 2009), which desensitize at high [5-HT] levels (Araneda
and Andrade, 1991). We modeled the kinetics of the mechanisms

triggered by these receptors with the following simple kinetic
equations (Destexhe et al., 1994; Cano-Colino et al., 2013):

ds1A

dt
= −s1A

τ1A
+ α1A[5-HT],

ds2A

dt
= −s2A

τ2A
+ α2A[5-HT](1 − s2A)

where s1A and s2A are the gating variables for the correspond-
ing 5-HT receptors (0 < s1A, s2A < 1); [5-HT] is the serotonin
concentration, which we take to be 10 nM in physiological con-
ditions (Celada et al., 2001), but the exact absolute value is not
critical in our model. The receptor time constants τ1A and τ2A
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(τ1A = 30 ms and τ2A = 120 ms) were chosen to match the time
course of PFC responses to the electrical stimulation of raphe
neurons in the rat (Amargós-Bosch et al., 2004; Puig et al., 2005).
The parameters α1A = 1.8 kHz/μM, α2A, E = 2.25 kHz/μM and
α2A, I = 11 kHz/μM control the affinity of the receptors to 5-HT
and were obtained through an optimization procedure seek-
ing to ensure the stability of working memory function in the
network in the presence of baseline 5-HT (Cano-Colino et al.,
2013). Assuming a diffuse, temporally constant action of 5-HT
on the network’s mechanisms to mimic systemic application of
serotonergic agents, our simulations used a constant value of
[5-HT] for all neurons in the network and through all peri-
ods of the task. Phasic actions of the serotonergic system in the
course of the task are not evaluated in this study. In different
simulations we changed the tonic level of [5-HT], increasing or
decreasing the initial value (physiological level, see above) by
10 or 20%. We also mimicked the effect of agonists or antag-
onists of 5-HT receptors. To this end, we ran simulations in
which we kept constant the activation of one receptor, by fixing
the value of [5-HT] in its kinetic equation, while we modi-
fied the activation of the other one by changing [5-HT] in its
equation.

The physiological actions of these receptors on pyramidal
neurons have been characterized in in vitro electrophysiologi-
cal studies (Andrade et al., 1986; Araneda and Andrade, 1991;
Béïque et al., 2004; Villalobos et al., 2005; Zhang and Arsenault,
2005; Ma et al., 2007). In interneurons, 5-HT2A receptors have
been described in in vitro studies to increase neuronal excitability
(Deng et al., 2007; Puig et al., 2010). We included these electro-
physiologically defined effects of 5-HT receptors in our network
model (Figure 1B, see below) (Meeter et al., 2006; Cano-Colino
et al., 2013).

We simulated the hyperpolarizing action of the 5-HT1A

receptor in pyramidal prefrontal neurons by including a 5-HT-
modulated K+ current (IK1A) in excitatory cells of our network
(Figure 1B, blue triangle), modeled according to:

IK1A = gK1As1A (V − VK)

where gK1A = 29.7 nS is the maximal conductance of the channel
and VK = −70 mV is the potassium reversal potential. The depo-
larizing/excitatory response to 5-HT2A receptor activation was
simulated through 3 different mechanisms: increase in intracel-
lular Ca2+, inhibition of Ca2+-activated afterhyperpolarization
currents (IKCa), and activation of an afterdepolarization cur-
rent mediated by a Ca2+-dependent non-selective cation channel
(ICan). The calcium dynamics were modeled by the following
equation:

d
[
Ca2+]

dt
= αCa

∑

sp

δ
(
t − tsp

) −
[
Ca2+]

τCa
+ γ[5-HT]s2A

where γ[5-HT] = 0.41 nM/ms controls calcium flow through 5-
HT2A receptors, the [Ca2+] influx per spike is αCa = 0.1 μM and
τCa = 240 ms (Wang, 1998; Tegnér et al., 2002). These calcium

dynamics affect IKCa and ICan according to:

IKCa = gKCa (1 − s2A)

[
Ca2+]

[
Ca2+] + KD

(V − VK),

ICan = gCanm2
CahCa (V − VCan) ,

dmCa

dt
= m∞ − mCa

τCan
,

m∞ = αCan
[
Ca2+]

αCan
[
Ca2+] + βCan

,

τCan = 1

αCan
[
Ca2+] + βCan

,

hCa = 1

1 + exp
(([

Ca2+] − βh
)
/αh

)

where gKCa = 703 nS, VK = −70 mV, KD = 30 μM, gCan =
36 nS, VCan = −20 mV, αCan = 0.0056 [ms·μM]−1, βCan =
0.002 ms−1, αh = 3 μM, βh = 5 μM (Wang, 1998; Tegnér et al.,
2002; Cano-Colino et al., 2013).

We included the depolarizing action of 5-HT2A receptors on
model interneurons (Figure 1B, red circle) by having 5-HT2A

receptors activation decrease the conductance of the leak current:

gL = g∗
L (1 − s2A)

where g∗
L = 26 nS.

SIMULATIONS
We simulated a SWM task that resembled behavioral protocols
used in monkey experiments (Funahashi et al., 1989; Williams
et al., 2002). In brief, monkeys fixate on a central spot during
a brief presentation of a peripheral cue and throughout a sub-
sequent delay period. After this delay, they make a saccadic eye
movement to where the cue had been presented in order to obtain
a reward. To mimic this behavioral protocol in our simulations,
simulation trials consisted of four periods: fixation (3 s), cue
(0.25 s), delay (3 s), and response (Figure 1C, left). In the fixation
period there were no additional external inputs to the network so
it typically stayed in a spontaneous, unstructured firing state. In
the cue period, a cue stimulus was applied at location θs. This was
simulated as current injection to each excitatory neuron in the
network (labeled by θi) of intensity Is(θi) = I1 exp[μstim(cos(θi −
θs) − 1)]. We used I1 = 0.235 nA and μstim = 10. During the
delay, no stimulus was presented so that the network maintained
the cue position in a stable pattern of network activation (activity
bump).

The response period was not simulated explicitly, but a decod-
ing algorithm was used to simulate behavioral responses during
simulated tasks. The task consisted of reporting the location of the
cue stimulus after the delay period within a predefined tolerance
window. To obtain a behavioral response from our simulation tri-
als we computed a population vector estimation (Georgopoulos
et al., 1986; Lee et al., 1988) from the network activity at the
end of the delay period. Thus, if {ni, i = 1 . . . NE} are the spike
counts of all the excitatory neurons labeled by {θi, i = 1 . . . NE}
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in a 50-ms window at the end of the delay period, the pop-
ulation vector was computed as the normalized sum of each
neuron’s selectivity vector eiθi (we use complex notation to oper-
ate with vectors in a compact manner) weighted by its spike

count: P = (∑
nieiθi

) (∑
ni

)−1
. We then extracted the modulus

C and angle θR of the resultant population vector: P = CeiθR . For
each individual simulation trial we took θR as the decoded loca-
tion memorized in the network activity before response initiation,
the behavioral response. Correct trials were those trials for which
|θR − θS|< 22.5◦, where 22.5◦ is an arbitrarily defined window
around θS to define correct trials.

In several simulations, we tested the influence of distractors on
network performance. We define a distractor as an external stim-
ulus of the same intensity and duration as the cue stimulus, but
which appears after the cue and the nature of the task requires it
to be ignored. The distraction trials consisted of: fixation (0.75 s),
cue stimulus in the direction θS (0.25 s), delay 1 (1.75 s), distrac-
tor in the direction θD (0.25 s), delay 2 (1.75 s), and response
(Figure 1C, right). Distractors were modeled as a cue stimulus
(same strength, I1 = 0.235 nA and μstim = 10, same duration,
250 ms) but at a different location relative to the cue stimulus. We
tested several distances between the stimulus position and the dis-
tractor position (θD − θS, from 0 to 180◦ in steps of 11.25◦) for
different levels of baseline [5-HT] (see above). We ran 100 sim-
ulations for each condition ([5-HT] and distance θD − θS), and
then we computed the behavioral response (report location, θR)
at the end of the delay period, from which we had a measure of
the distractability as θR − θS vs. θD − θS.

NUMERICAL INTEGRATION
The integration method used was a second-order Runge–Kutta
algorithm with a time step of �t = 0.02 ms. The custom code for
the simulations was written in C++.

RESULTS
We used a computational network model to investigate how 5-
HT modulates WM function (Cano-Colino et al., 2013). This
neuronal network model mimics the activity of neurons in PFC
of monkeys performing a visuo-spatial WM task (Compte et al.,
2000), and incorporates the cellular mechanisms of receptors 5-
HT1A and 5-HT2A described in PFC neurons in vitro (Figure 1B)
(Materials and Methods) (Cano-Colino et al., 2013). The network
model consisted of 1024 pyramidal neurons (excitatory cells) and
256 interneurons (inhibitory cells), each coding for a stimulus
location at a specific angle (Figure 1A). Any neuron connected
to all other neurons in the network, and it received independent
random inputs (assumed to be inputs from other brain regions).
Connections between pyramidal cells coding for nearby stimuli
were stronger than average (see Materials and Methods). With
this general network organization, simulations produce neural
activity consistent with PFC single-neuron data acquired during
performance of visuo-spatial WM tasks (Funahashi et al., 1989;
Compte et al., 2000).

We used this model to simulate behavioral tasks used in mon-
keys and humans to test SWM (Funahashi et al., 1989; Park and
Holzman, 1992; Park et al., 1999). The task (Figure 1C, left) starts
with a fixation period of 3 s followed by a brief presentation

(0.25 s) of a cue stimulus (localized external current input to
the network). The cue stimulus appeared in a random location
restricted within a circle of given eccentricity from the fixation
point. Thus, the cue stimulus location was entirely described
by an angle value θS (−180◦ < θS < 180◦). After cue stimulus
extinction there was a delay period of 3 s, after which the location
of the cue stimulus had to be reported based on the network’s
neural activity at the end of the delay period. We did not sim-
ulate explicitly the response period activity of the network (see
Materials and Methods).

The network parameters could be tuned so that during the
delay period the memory of the cue stimulus was maintained
in a localized bump of neural activity (cluster of neighboring
cells with raised activity, see Figure 2A) by virtue of strong rever-
beratory recurrent excitation among neighboring excitatory cells
and strong disynaptic inhibition between excitatory cells of dis-
similar selectivity (Compte et al., 2000; Tegnér et al., 2002).
In this optimal network operation regime, this tuned persistent
activity state (memory state) is maintained in a stable manner
by the network, but the network can also sustain a low firing
rate, unstructured network state (spontaneous state) if no cue
stimulus has been presented (as during the fixation period in
Figure 2A). Neuromodulation through 5-HT receptors imbal-
ances this network regime and causes the destabilization of either
the memory state or the spontaneous state, thus resulting in two
types of behavioral errors that can be distinguished based on the
reported confidence in the response (Cano-Colino et al., 2013).
We first review briefly this result and we then use the model to
derive additional predictions that do not require metacognitive
evaluation.

5-HT MODULATION OF SWM PERFORMANCE
We ran repeated trials with the task structure defined above but
with different noise realization so that network activity over the
course of the trial varied substantially from trial to trial. Then,
we could extract behavioral output from these network simula-
tions that could be treated similarly as in a real psychophysics
experiment (Cano-Colino and Compte, 2012; Murray et al., 2012;
Cano-Colino et al., 2013). For each simulation trial we obtained
a behavioral response by extracting a population vector read-out
of the angle θR encoded in network activity in a window of 50 ms
at the end of the delay period. Thus, for each simulation trial we
obtained the full network dynamics over the course of the trial,
and one behavioral measure: the decoded stimulus location θR.
As it is usual in behavioral experiments, we classified trials as cor-
rect or error trials. If |θR − θS| < 22.5◦ we classified the trials as
correct, and if |θR − θS| > 22.5◦ the trial was an error. Typically,
in correct trials the localized network activity (bump) triggered
by the stimulus at θS was maintained by excitatory reverbera-
tion robustly through the delay (memory bump trials, Figure 2A).
When inspecting the network dynamics in error trials two main
causes for errors could be distinguished. In some cases, network
activity formed in response to the stimulus at θS failed to rever-
berate through the length of the delay period so that by the end of
the delay network activity was unstructured and did not contain
any robust signal (decaying bump trials, Figure 2B). Responses in
these error trials would be declared with low confidence because
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FIGURE 2 | 5-HT modulates SWM performance in the network model.

(A–C) Example of rastergrams of simulations with 3 s fixation, a cue
presentation of 250 ms (gray bar) and a delay period of 3 s. Panel (A) shows a
correct trial: at the end of the delay period the memory bump is in the same
position where the cue was presented. Possible errors can be due to:
memory disappearance before the end of the delay period (B, decaying bump
trial) or emergence of a spurious, misaligned bump (C, emergent bump trial).

See specific criteria for defining correct and error trials in the text, based on
the relative match of cue location (red triangle) and decoded bump location at
the end of the delay (black triangle, θR ). (D–F) For different levels of [5-HT]
(black bars), and varying activation of 5-HT1A (purple bars) or 5-HT2A (blue
bars) receptors, fraction of correct trials (D), fraction of decaying bump error
trials, (E) and fraction of emergent bump error trials (F). Thousand trial
simulations per condition.

there was no signal in the network at the end of the delay and
the response θR would essentially be randomly chosen. In other
cases, the error occurred because a spontaneous bump of activity
was formed in the network before the cue stimulus was presented
and it remained stable for the duration of the delay period, despite
the subsequent presentation of the stimulus at θS (emergent bump
trials, Figure 2C). These responses would be declared with high
confidence, as the late-delay signal in the network was strong,
albeit wrong.

We then ran 1000 trials of this task simulation for 5 different
values of tonic 5-HT concentration, and we identified trials as
correct or error trials based on the classification described above.
When the network model was subject to the reference 5-HT con-
centration of 10 nM (physiological level) almost all trials were
correct responses. However, when the tonic 5-HT level was either
increased or decreased, errors became more frequent (Figure 2D,
black bars). The results showed an inverted U-shape, with optimal
performance around our reference 5-HT concentration. Similar
non-monotonic dependencies were observed when the activation
of 5-HT1A or 5-HT2A receptors were independently manipulated
(Figure 2D, purple and blue bars). It has been argued that this
non-monotonic dependence of behavioral accuracy with 5-HT
concentration could be a factor in the inconsistent results of
psycho-pharmacological studies exploring the effect of 5-HT on
SWM (Cano-Colino et al., 2013).

Inspection of the network activity in individual trials revealed
that errors committed were very different in the high 5-HT
and low 5-HT conditions: Errors in the low 5-HT network
were mostly emergent bump trials (Figure 2F, black bars), while
the performance decrease for high 5-HT concentrations was
mostly due to decaying bump trials (Figure 2E, black bars). The

same trend of error types was observed varying only 5-HT1A

receptor activation: 5-HT1A agonists caused decaying bump tri-
als (Figure 2E, purple bars) and 5-HT1A antagonists promoted
emergent bump trials (Figure 2F, purple bars). In contrast, 5-
HT2A receptor manipulations presented the opposite behavior:
antagonists of 5-HT2A increased decaying bump trials (Figure 2E,
blue bars) and 5-HT2A agonists increased the incidence of emer-
gent bump trials (Figure 2F, blue bars). The analogy between
the types of errors resulting from 5-HT1A receptor activation
and from 5-HT concentration increases, indicates that the rele-
vant effect of 5-HT in this WM network is a change of cellular
excitability in excitatory neurons (because this is the only effect
of 5-HT1A in the model) (Cano-Colino et al., 2013). One can
therefore understand emergent bump trials as a consequence of
enhanced network excitability, and decaying bump trials as a
result of reduced network excitability. These two network dynam-
ics cause behavioral errors of very different nature.

Non-monotonic dependencies of behavioral performance
with 5-HT modulations in Figure 2D can thus turn into mono-
tonic relationships (Figures 2E,F) if we can distinguish the nature
of the errors (whether a decaying bump trial or an emergent
bump trial) on a trial-by-trial basis. Monotonic dependencies
would then be a lot easier to document in experimental popula-
tion studies. In our network simulations we resorted to the full
network dynamics, but this is experimentally inaccessible with
current neurophysiological techniques. One possibility presented
by (Cano-Colino et al., 2013) is to use the confidence in the
response as a behavioral parameter to distinguish the two types
of errors: low-confidence errors would mostly follow the predic-
tions for decaying bump trials (Figure 2E), while high-confidence
errors would mimic emergent bump trials (Figure 2F). We now
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turn into identifying other ways to tell apart the two error regimes
experimentally without resorting to a metacognitive evaluation.

DELAY-LENGTH DEPENDENCY OF 5-HT EFFECTS ON SWM
PERFORMANCE
One defining feature of working memory processes is the fact that
the retention of stimulus attributes degrades with time (Pasternak
and Greenlee, 2005). Also in our computational network model,
the representation of the cue stimulus degrades during the delay
(Compte et al., 2000). We reasoned that the performance of net-
works with parameter modulations promoting decaying bump
trials would be especially sensitive to the duration of the delay
because for longer delays more and more memory states would
destabilize and decay to the spontaneous state. We tested this
explicitly by running multiple trials with three different delay
lengths: 1, 2, and 3 s delay, and for three 5-HT concentrations:
physiological [5-HT], low [5-HT], and high [5-HT]. When we
plotted the fraction of correct trials for each of the factors, we
found that for increases in baseline 5-HT levels behavioral perfor-
mance decayed with delay duration more strongly than in either
the physiological or low [5-HT] conditions (Figure 3). Strong
delay-length dependency of SWM performance therefore charac-
terizes decaying bump error trials and should be a specific trait of
agonists, not antagonists, of 5-HT1A receptors or antagonists, not
agonists, of 5-HT2A receptors, or treatments leading to increased,
not decreased, baseline [5-HT] according to our computational
network model.

5-HT RECEPTORS EFFECT ON THE DISTRACTIBILITY OF THE NETWORK
The ability to resist distractors is an important component of
SWM, and our computational network model has inhibitory

FIGURE 3 | Only high 5-HT effects on SWM performance depend on

delay length. Fraction of correct trials, from a total of 1000 simulation
trials, for a delay length of 1, 2, and 3 s for two levels of [5-HT], compared
with the physiological level of [5-HT] (dashed line). Top, for a low level of
[5-HT] (20% reduction compared to the physiological level), the fraction of
correct trials was reduced but remained roughly constant for different delay
lengths. Bottom, for a high level of [5-HT] (20% increase compared to the
physiological level), the fraction of correct trials diminished parametrically
with increasing delay length.

mechanisms that allow it to resist the presentation of intervening
distractors (Compte et al., 2000). We hypothesized that a regime
with a fraction of decaying bump trials would behave radically
different than a regime with a large proportion of emergent bump
trials in relation to the filtering of unwanted distractors, and this
would provide us with another prediction to disambiguate error
types in different neuromodulatory manipulations. We therefore
sought to characterize how 5-HT neuromodulation affected the
resistance to distractors presented as intervening stimuli during
the delay period in the network model.

To this aim, we ran trials with a different simulation protocol
(distractor trials, Figure 1C, right) (see Materials and Methods).
First, a cue stimulus was shown at an angle θS. It triggered nor-
mally the memory state, a bump with a peak at an angle close to
θS (see Figures 4A,B) prior to the presentation of a distractor at
angle θD, of the same intensity and duration as the cue stimu-
lus (see Materials and Methods). We then quantified the effect of
the distraction by measuring the peak location of the bump state

FIGURE 4 | Only for distant intervening distractors can the network

model resist distraction. (A,B) Rastergram during a simulated SWM task
with a distractor. Transient cue presentation of 250 ms (first gray bar)
centered at angle θS (first red triangle) induces a tuned sustained memory
state, which could be maintained (A) or not (B) after the presentation of a
distractor (second gray bar) of the same duration and intensity as the cue,
but in a different position θD (second red triangle). The report location (θR ,
black triangle) is decoded from activity at the end of the delay period. (C)

For the physiological level of [5-HT], fraction of simulation trials in which a
given distraction angle θR − θS was observed when stimulus and distractor
were presented at different relative locations θD − θS (θS = 0◦, θD from 0 to
180◦ in steps of 11.25◦, 100 simulations per θD ). Warmer colors on the
diagonal indicate distraction, while resistance to distractors is characterized
by higher fraction of trials (warmer colors) along the x-axis.
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at the end of the delay period (report angle θR, Figures 4A,B)
(see Materials and Methods). The effect of the distractor was
quantified as the difference between the location of behavioral
response compared with the location of the cue stimulus, θR − θS.
Distractor stimuli were presented at various positions relative to
the cue stimulus (θD − θS), in separate trials. The effect of the
distractor depends on the stimulation intensity (Compte et al.,
2000), so we considered only the condition in which the applied
distractor stimulus had the same intensity and duration than the
cue stimulus. We chose stimulation intensity so that a similar pro-
portion of trials had response θR in a vicinity of the cue θS and the
distractor θD stimuli, for large θD − θS.

When the distractor was applied, the network activity that
was previously storing the cue stimulus could maintain its orig-
inal position resisting the distraction (Figure 4A) or move to
the location of the distractor (Figure 4B). We ran several sim-
ulations of the task for different distances between the stimulus
position and the distractor position (θD − θS). Figure 4C shows
the fraction of trials that, for a given distance between the dis-
tractor and cue stimuli (θD − θS), had an effect in the behavioral
response θR − θS (distance between the location of the report
and the cue stimuli). As previously shown (Compte et al., 2000),
the effect of the distractor depended on the distance to the cue
stimulus: distraction was very probable when distractor and cue
stimulus where presented in nearby locations (θD − θS < 45◦).
When the distance θD − θS increased, both distraction and no-
distraction trials were observed in a similar proportion (as a
result of our choice of stimulation strength, see above). This
pattern of distraction corresponded to our network model with
a physiological level of [5-HT].

The manipulation of baseline 5-HT concentrations in the net-
work model was found to greatly affect the distractibility of
the network. Low [5-HT] (Figure 5A, top) led to perseverant

behavior, resisting the distraction in almost all trials. Only when
the distractor was within 45◦ of the cue stimulus the memory state
was perturbed, and the memory bump was attracted toward the
distractor location. For larger distances the network was unaf-
fected by distractors. High [5-HT] (Figure 5A, bottom) had the
opposite effect, the network resulted easily distracted by both
close-by and distant distractors. Thus, the two conditions were
more readily distinguished by using distractors sufficiently dis-
tant from the cue: if 33% of network simulations (293 out of
900) resulted in a correct response in the baseline condition for
θD − θS > 90◦, this fraction grew significantly to 76% of sim-
ulations when reducing baseline [5-HT] by 20%, and it instead
decreased to just 6% of correct trials when baseline [5-HT] was
raised by 20%.

We also studied how specific receptor agonists and antago-
nists would modify the capacity of the network to resist dis-
tractors. From the results of Figures 2E,F we hypothesized that
agonists of 5-HT1A receptors and antagonists of 5-HT2A receptors
would have the same effect on network distractibility as increas-
ing baseline [5-HT], further supporting the idea that changes
of [5-HT] engage dominantly 5-HT1A. Therefore, we varied in
our network simulations the tonic activation of one receptor
type independently from the other, mimicking the effect of ago-
nists or antagonist of the receptors, similarly to what we did in
Figure 2. When the activation of 5-HT1A receptors was decreased
(Figure 5B, top) the network was completely unaffected by dis-
tractors, as it happened for low levels of [5-HT] (Figure 5A, top).
And when 5-HT1A receptors were agonized the network lost its
ability to resist the distractors for any position of the distrac-
tor (Figure 5B, bottom), as it also happened with high [5-HT]
(Figure 5A, bottom). In contrast, modulation of 5-HT2A recep-
tors activation led to the reversed pattern: 5-HT2A agonists made
the network become more resistant to an intervening stimulus,

FIGURE 5 | More network distractibility for increasing [5-HT] levels.

Same as Figure 4C, for decreases (Top panels) or increases (Bottom panels)
of [5-HT] and 5-HT receptor modulations. (A) Top, for low [5-HT] levels (−20%
change relative to physiological value) the network shows persevering
behavior, i.e., no distraction for any condition. Bottom, for high [5-HT] (+20%
change relative to physiological value) the network always gets distracted. (B)

5-HT1A antagonists (Top, −20% change relative to baseline 5-HT1A activation)

and 5-HT1A agonists (Bottom, +10% change relative to baseline 5-HT1A

activation) have similar effects on network distractibility than corresponding
manipulations of [5-HT], suggesting that general 5-HT modulation operates
primarily on 5-HT1A receptors. (C) In contrast, 5-HT2A agonists (Top, +20%
change relative to physiological value) and 5-HT2A antagonists (Bottom,
+20% change relative to physiological value) follow the opposite trend than
corresponding [5-HT] modulations.
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whereas 5-HT2A antagonists rendered the network very sensi-
tive to intervening distractors (Figure 5C). The larger differences
again occur for θD − θS > 90◦, so that the percent of correct
responses in these trials is 73% (5%) for a 20% 5-HT1A (5-HT2A)
receptor activity reduction, and 5% (74%) for a 20% 5-HT1A

(5-HT2A) receptor activity enhancement.
Thus, SWM tasks with intervening distractors is a behav-

ioral protocol that can clearly tell apart the two different causes
for SWM deficits that our network model predicts to occur as
serotonergic neuromodulation is parametrically varied.

5-HT MODULATES THE SHAPE OF NEURONAL MEMORY FIELDS
So far we have been able to propose two experimental valida-
tion of the computational model in behavioral experiments that
do not require metacognition evaluation. However, our model

is neurobiologically explicit and it can also produce predictions
regarding PFC neural activity in SWM tasks upon systemic 5-HT
neuromodulation. We derived one such prediction based on how
the different error types affect neural tuning curves in the delay
period of a SWM task. We first illustrate how we build such tun-
ing curves schematically in Figure 6A, which shows schematically
the firing rate during the delay period for 5 different trials (labeled
i–v) in which the stimulus was presented at θS = 0 (red triangles),
together with the location of the behavioral report (θR, black tri-
angles), computed at the end of the delay period. Following the
criteria in Figure 2, trial i would be classified as a correct trial,
trials ii, iii, and iv would be emergent bump error trials and trial
v would be a decaying bump error trial. The latter shows a small
bump around the cue location due to the activity at the beginning
of the delay, before the bump decays, but the report location is in

FIGURE 6 | Neuronal tuning curves change predictably depending on

[5-HT] levels. (A) Scheme of 5 possible examples of neuronal firing rate
during the delay period (i–v ). The red triangle shows the location of the
stimulus (θS ), the black triangle the report location calculated at the end of
the delay period (θR ) and the classification of each trial is showed on the right,
computed as in Figure 2. Right, Tuning curves are computed by averaging
firing rate, after aligning the trials to the stimulus location (red line, cue
tuning) or to the report location (black line, report tuning). (B) Predicted delay
cue tuning changes with 5-HT: low [5-HT] (dark red line) induces increases in

tuning curve tails, high [5-HT] (orange line) mostly reduces tuning curve peak.
(C) Tuning curves in the delay period computed from the stimulus cue
position (red lines) and from the position of the behavioral report (black lines).
Average delay firing rates for bins of 45◦ (circles) and Gaussian fit computed
from all trials (200 trials) (top panels) or just from error trials (bottom panels).
Left: low [5-HT] (20% decrease compared to the physiological level) has
better tuning for report than cue tuning curves. Right: high [5-HT] (20%
increase compared to the physiological level) shows better tuning for cue
than for report tuning curves.
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a random location, because the activity at the end of the delay is
unstructured. As it is customary to build tuning curves, we can
average the firing rate over many different trials by using the loca-
tion of the cue stimulus as a reference (θ − θS). We call this cue
tuning (Figure 6A right, red curve). Error trials can have a marked
influence on the cue tuning: although its height depends on cor-
rect trials, it decreases if there is a substantial number of error
trials.

In addition, we now propose to compute a different neural
tuning curve, based on the behavioral response. We calculate the
report tuning curve (Figure 6A right, black curve) by averaging
the firing rates during the delay period in different trials as a func-
tion of the distance from the neuronal cue preference θ (obtained
from the cue tuning curve) to the report location θR(θ − θR). The
report tuning is also affected by the number of error trials, but
it is in addition very sensitive to the type of error trials. Thus,
emergent bump error trials (ii–iv) make the curve more sharply
tuned, while decaying bump error trials (v) reduce its tuning. We
therefore hypothesized that a systematic study of how seroton-
ergic manipulations alter the sharpness of cue tuning and report
tuning in a SWM task could yield a prediction from our modeling
approach that could be tested electrophysiologically to identify
the effects of different error substrates in PFC neuronal responses.

We used the full network dynamics from our simulations in
Figure 2 to test this hypothesis with our modeling data. We com-
puted neuronal firing rates in the delay period for each neuron θ

in each simulation trial and we averaged across all trials, correct
and error trials. We first analyzed predictions in relation to the
classically defined delay tuning curve, the cue tuning. Relative to
the cue tuning curve in the control [5-HT] levels, reduction of
baseline [5-HT] essentially increased firing rate to non-preferred
cues, while increased [5-HT] caused primarily a reduction of
delay firing rates in response to cue stimuli (Figure 6B). We then
computed delay firing rates using both bins centered around
the cue location θS (cue tuning) and bins centered around the
report location θR (report tuning). We found that for low base-
line [5-HT] (Figure 6C, top left) the report tuning curve was
more sharply tuned than the cue tuning curve because of the high
incidence of emergent bump error trials (Figure 2). On the other
hand, for high baseline [5-HT] (Figure 6C, top right) the report
tuning curve presented worse selectivity than the cue tuning
curve, as a result of decaying bump error trials. An increase in
the firing rate in the tails of the curves was also observed for the
high baseline [5-HT] condition, especially for the report tuning
curve.

These differences were still bigger when we analyzed only
error trials. For low baseline [5-HT] (Figure 6C, bottom left) the
cue tuning curve showed essentially no selectivity for the cue
because practically all errors corresponded to emergent bump
trials. In contrast, the report tuning curve was still nicely tuned
because these error trials maintained a bump of activity centered
around the report location (Figure 2C). For high baseline [5-HT]
(Figure 6C, bottom right) the cue tuning curve retained good
cue selectivity because decaying bump error trials had bumps
centered around the cue location in the early period of the delay.
In contrast, the report tuning was not selective at all, since for
these error trials responses do not reflect a bump of activity in
the network but a random choice due to the lack of network

selectivity at the end of the delay (Figure 2B). Note however a
small selectivity in the report tuning of the bottom right panel
in Figure 6C. This is due to the fact that mean network activity
over the whole delay (as plotted in Figure 6C) still has residual
enhanced rates around the cue stimulus for decaying bump trials
(case v in Figure 6A), which are the dominant type of error tri-
als there. Since in error trials behavioral reports are far from the
cue, neurons with preference right on the report are never partic-
ipating in such residual mean activity. This explains the dip in the
report tuning curve in Figure 6C, bottom right panel.

Our computational model thus predicts that a comparison of
cue tuning and report tuning curves from delay activity in SWM
tasks should be able to reveal the different neural substrate of
errors committed in the various 5-HT modulations considered.
A majority of emergent bump errors leads to sharper report tun-
ing than cue tuning, while a majority of decaying bump errors is
reflected in a sharper cue tuning compared to the report tuning.

DISCUSSION
We used a cortical network model for SWM which includes the
effect of 5-HT modulation of PFC neurons proposed previously
(Cano-Colino et al., 2013) to investigate behavioral and physio-
logical effects of 5-HT neuromodulation of SWM. The dynamics
of our computational network model was strongly affected by
changes in baseline 5-HT concentration [5-HT] in regard to the
stability of the homogeneous, unstructured spontaneous state,
and the stability of the tuned, persistent activity memory state
(Cano-Colino et al., 2013). However, when the network was
tested in a SWM task that mimics experimental behavioral proto-
cols (Figure 1C, left), performance changed non-monotonically
with [5-HT] (Figure 2D), which may compromise the detec-
tion of behavioral effects (Cano-Colino et al., 2013). However,
the error types committed for reduced and increased [5-HT]
were of radically different nature, either decaying bump errors
(Figure 2B) or emergent bump errors (Figure 2C), and distinc-
tion between these error types revealed monotonous, predictable
effects of [5-HT] manipulations that would be easier to prove
experimentally (Figures 2E,F). In a previous study we argued
that one way to distinguish error types would be by separating
errors based on the declared confidence of the subjects in their
responses (Cano-Colino et al., 2013). While confidence reports
are increasingly being used in behavioral studies of SWM (Pessoa
and Ungerleider, 2004; Middlebrooks and Sommer, 2011; Mayer
and Park, 2012; Rademaker et al., 2012; Tanaka and Funahashi,
2012), interpretations suffer from our limited understanding of
metacognition mechanisms. Here, we sought to explore other
possible strategies to distinguish errors without using metacog-
nition, in order to control for possible confounds and to provide
simpler behavioral protocols that can be implemented more eas-
ily in animal studies. Two of these predictions concern behavioral
experiments that can be carried out both on human and non-
human subjects (Figures 3, 5), and one prediction is specific
for electrophysiological experiments in monkey studies of SWM
(Figure 6).

In a first prediction we propose to study the dependency of
behavioral accuracy with delay-length as a way to disambiguate
decaying bump errors from emergent bump errors. Decaying
bump errors are very sensitive to delay length because once the
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cue stimulus triggers bump activity in the network, random fluc-
tuations can destabilize the bump and they are more likely to
occur the longer the delay period. Thus, delay-length dependency
in error rates is a property of decaying bump error trials, and
not of emergent bump error trials (Figure 3), and this could
distinguish the behavioral errors committed for low and high [5-
HT] experimentally without requesting a report of confidence
from the subjects. For other neuromodulatory systems, pharma-
cological modulations can indeed have delay-dependent or delay-
independent behavioral effects on working memory depending
on dosage (Penetar and McDonough, 1983; Chudasama and
Robbins, 2004).

The second prediction concerned the ability to resist dis-
tractors during the SWM task. Previous computational studies
have studied the conditions for SWM distraction in similar neu-
ronal network models (Compte et al., 2000; Brunel and Wang,
2001; Durstewitz and Seamans, 2002; Gruber et al., 2006; Murray
et al., 2012). When the external distractor is presented close to
the location of the cue stimulus, the memory report is invari-
ably attracted toward the distractor location (Figure 4C), but
when the distractor is beyond a given distance from the cue (in
Figure 4 ∼45◦), one observes either a negligible effect of the
distractor or a complete distraction (Figure 4) (Compte et al.,
2000). The proportion of distraction trials for these distant-
distractor conditions (Compte et al., 2000) as well as the window
of short distances in which the distractor attracts the memory
trace (Gruber et al., 2006; Murray et al., 2012) depend on the
specific parameters of the network simulations and are therefore
subject to possible neuromodulation (Compte et al., 2000; Brunel
and Wang, 2001; Durstewitz and Seamans, 2002; Gruber et al.,
2006). Interestingly, recent psychophysics studies have found evi-
dence for this distance-dependent attraction of distractors in
SWM (Stefan Van der Stigchel et al., 2007; Herwig et al., 2010),
thus lending support to our network mechanism for the control
of SWM distraction.

Our model makes testable experimental predictions about how
5-HT pharmacological manipulations affect distractibility in a
SWM task with intervening distractors. Drugs that enhance brain
5-HT levels, such as selective serotonin reuptake inhibitors or
tryptophan loading treatments, should decrease the ability to
resist distractors (Figure 5A, bottom), and result in increased
errors for distractors far away from cue stimuli. On the other
hand, reducing 5-HT brain levels with tryptophan depletion
should lead to better resistance to distant distractors (Figure 5A,
top). Directly modulating 5-HT1A and 5-HT2A receptors should
also affect distractibility: Antagonists of 5-HT1A and agonists
of 5-HT2A receptors would facilitate resistance to distractors,
while increased distractibility should be expected after treatment
with agonists of 5-HT1A and antagonists of 5-HT2A receptors
(Figure 5). Experimentally, we are not aware of any study that
has investigated the effect of 5-HT drugs on distraction in such
SWM tasks. Instead, the effect of 5-HT on cognitive flexibility
is well-described (Robbins and Roberts, 2007). Several studies
have shown a perseverative, inflexible behavior associated with
prefrontal 5-HT depletion including a failure in error detection,
altered responsiveness to punishment or loss of reward, and a
deficit in inhibitory control (Deakin, 1991; Murphy et al., 2002;
Evers et al., 2005). Large depletions of 5-HT throughout the

PFC (Clarke et al., 2004, 2005) as well as more restricted lesions
targeting the OFC (Clarke et al., 2007) result in impaired discrim-
ination reversal performance characterized by marked response
perseveration. Although these tasks are clearly different from the
distraction SWM task that we analyzed here, it is suggestive to
realize that if we change the task and ask the network to switch
to the memory of the distractor to complete the task, reduced
[5-HT] would result in perseverant behaviors (memories would
remain on the initial cue) and the network would be unable to
perform the required switch.

We observed a parallelism in distractibility between the global
effects of baseline [5-HT] and the activation of 5-HT1A recep-
tors. In contrast, distractibility effects from the activation of
5-HT2A receptors followed the opposite trends, with agonists
reducing distractibility and antagonists increasing it. These results
reinforce the idea advanced before (Figure 2 and Cano-Colino
et al., 2013) that 5-HT1A receptors drive the effects of general
modulation of 5-HT baseline levels in PFC in SWM.

As a third prediction, we took advantage from the fact that
our model is mechanistically explicit to derive predictions at the
neurophysiological level that can be addressed in electrophysi-
ological experiments in behaving animals. We reasoned before
that microinfusion of serotonin receptor agonists and antago-
nists in the PFC should alter behavioral WM performance non-
monotonically (Figure 2), while modulating monotonically the
average firing rate during delay periods of correct trials (Cano-
Colino et al., 2013). We now add that in such experiments,
receptor modulations should alter the shape of neuronal tuning
curves in error trials (Figure 6). In error trials, delay tuning to the
cued stimulus (cue tuning) should be diminished relative to cor-
rect trials but some residual cue tuning may be detectable, since
decaying bump error trials have early-delay rate elevations linked
to the cued location (Figure 2B). We propose to compare this cue
tuning to tuning curves computed based on the behavioral report
(report tuning), not the memory cue. Report tuning in the delay
will be stronger (weaker) than cue tuning for emergent bump
(decaying bump) error trials (Figure 6). Considering the specific
effects of the 5-HT receptors separately, our model thus predicts
stronger (weaker) report tuning than cue tuning in error trials
after microinfusion of a 5-HT1A antagonist (agonist) or a 5-HT2A

agonist (antagonist) (Figure 6). Although this difference is espe-
cially notorious for error trials, a change in tuning sharpness of
cue and report tuning curves should also be detectable when ana-
lyzing all trials together, provided the task was designed to be near
psychophysical thresholds so errors would be numerous.

Our study has some limitations. We included only 5-HT recep-
tor mechanisms that are known to be in PFC neurons and have
also been described physiologically in in vitro studies. We there-
fore did not include 5-HT1A receptors on inhibitory interneurons
or the effects of 5-HT1A and 5-HT2A receptors on intracortical
glutamatergic and GABAergic synaptic transmission in our model
(Celada et al., 2013). We also left out other receptors that are
known to be expressed in PFC but lack in vitro characteriza-
tion, such as 5-HT3 (Puig et al., 2004), or 5-HT2C receptors
(Pompeiano et al., 1994). However, analysis of the network sim-
ulations leads to the conclusion that the effects reported here are
primarily dependent on the modulation of the pyramidal neuron
excitability and not specific of the mechanisms of one single
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receptor (Cano-Colino et al., 2013). For this reason, we expect
that adding more 5-HT receptors or functional effects as their in
vitro characterization becomes available will increase the predic-
tions that emanate from the model but will not essentially change
the current findings. A second limitation is related with the fact
that we are modeling neurons as single compartments where
different 5-HT receptors interact compactly. However, there are
indications of a possible distinct spatial distribution of 5-HT1A

and 5HT2A receptors on PFC pyramidal neurons (Nichols and
Nichols, 2008; Celada et al., 2013). Our modeling study cannot
address possible mechanistic consequences of such segregation
of 5-HT receptors on different neuronal compartments. A third
limitation stems from the fact that our simulations rely on many
parameters that lack clear experimental references. We reported
here simulations that correspond to one particular network real-
ization that yields reasonable SWM behavior, and the question
remains as to how general these findings are in relation to other
possible parameter instantiations. This is a difficult problem that
affects this kind of modeling projects, but we have addressed
it partially by finding 20 different network realizations using
an unbiased automated optimization procedure and confirming
that our predictions are shared by all these different networks
(Cano-Colino et al., 2013). We are therefore confident that our
analysis extends to a large family of SWM models with 5-HT
neuromodulation.

Although we focused our study on 5-HT effects on SWM,
the modulations of network function that we observed depend
essentially on a concerted change in neuronal polarization in
our network, here due to the action through 5-HT1A recep-
tors (Cano-Colino et al., 2013). Therefore, any neuromodulatory
agent that alters the excitability of neurons in the PFC would lead
to analogous predictions in our SWM network model. This is
further strengthened by the fact that synaptic strengths are also
known to affect emergent and decaying bump dynamics in a
similar way to cellular excitability (Edin et al., 2009; Wei et al.,
2012), so the qualitative results would apply to neuromodula-
tors affecting either cellular or synaptic excitability. Thus, all our
predictions aimed at distinguishing error types to characterize
the behavioral effects of neuromodulation on SWM would apply
also to the dopamine or norepinephrine (NE) systems (Aston-
Jones and Cohen, 2005; Cools and D’Esposito, 2011). This is
underscored by comparing qualitatively our results with those of
Eckhoff et al. (2009), who also used a computational approach

to explain the non-monotonic effects of NE on decision-making.
They found that low tonic NE produces unmotivated behav-
ior, due to fading or decaying memory. In contrast, high tonic
NE causes impulsive responses and poor accuracy, due to the
emergence of spontaneous activity prior to stimulus onset. Our
results with 5-HT suggest that a careful analysis of error types
in a wide range of cognitive tasks is critical to understand
the effects of neuromodulatory systems in cognitive function.
Experimentally, rodent experiments with D1 receptor manipu-
lations report that an excessive activation leads to perseverative
responses while suppression of the receptor induces more ran-
dom behavior in a SWM task (Zahrt et al., 1997; Floresco and
Phillips, 2001; Seamans and Yang, 2004). This is reminiscent
of our findings that behavioral inverted U-curves may reflect
different types of errors, and it is in line with the pattern of dis-
tractibility of the network upon modulation of 5-HT2A receptors.
Notably, D1 and 5-HT2A receptor activations have both a gen-
erally depolarizing effect on PFC pyramidal neurons (Araneda
and Andrade, 1991; Yang and Seamans, 1996). In a suggestive
study (Vijayraghavan et al., 2007), local activation of D1 receptors
by iontophoresis was associated with a dose-dependent change
in neuronal tuning curves in a SWM task so that insufficient
D1 stimulation led to diminished cue tuning due to stronger
response to non-preferred locations, while excessive D1 stim-
ulation diminished cue tuning by reducing responses to pre-
ferred locations. Interestingly, these modulations parallel our
network model’s predictions for 5-HT2A receptor modulation
(Figure 6B). Taken together, we propose that identifying error
mechanisms when neuromodulation causes inverted-U dose-
response curves in working memory can be a fruitful avenue to
advance our understanding of neuromodulatory control of higher
cognitive functions.
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