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As one of the phylogenetically and ontogenetically oldest neuro-
transmitters, the monoamine serotonin (5-HT) is derived from
tryptophan in neurons within the raphe nuclei, and inner-
vates various parts of the nervous system (Jacobs and Azmitia,
1992). The serotonergic system is complex and can generate
multifarious actions (Barnes and Sharp, 1999; Smythies, 2005).
There are seven general families of serotonin receptors with
multiple receptor subtypes, all of which are G protein-coupled
receptors (GPCRs) except one (5-HT3 receptor), which is a
ligand-gated ion channel, and these receptors can modulate the
release of many major neurotransmitters such as glutamate,
GABA, dopamine, acetylcholine, and norepinephrine (Barnes
and Sharp, 1999; Smythies, 2005). It can also modulate neu-
ronal excitability and network properties of many targeted brain
areas, and regulate mood, cognition and behavior (Smythies,
2005). Dysfunctions of the serotonergic system are impli-
cated in neuropsychiatric disorders including depression and
schizophrenia (Müller and Jacobs, 2009). The serotonergic
system has been the target of pharmaceuticals for decades,
primarily to treat biological and neuropsychiatric disorders.
These include antidepressants, antipsychotics, hallucinogens,
antimigraine agents, and gastroprokinetic agents (Nichols and
Nichols, 2008). Hence, the study of serotonin has high societal
impacts.

Although the serotonergic system has been studied for many
years, an integrative account of its underlying functions remains
elusive. This could be partly attributed to the high variability
and heterogeneity in terms of neuronal properties and receptor
subtypes, and its extensive connections with other brain regions.
Indeed, it has been claimed that serotonin is in involved “in virtu-
ally everything, but responsible for nothing” (Jacobs and Fornal,
1995). While there have already been many excellent reviews and
books on serotonin and related neural systems (e.g., Jacobs and
Azmitia, 1992; Barnes and Sharp, 1999; Smythies, 2005; Müller
and Jacobs, 2009), we hope that this collection of recent works
provides a complementary and updated coverage of their diverse
functions. In particular, unlike previous collections, neurobiolog-
ically based computational studies are included in this collection
as we consider them to be important toward elucidating some of
the underlying principles, especially at the systems level. Hence,
we have made a concerted effort to invite both experimental
and computational articles in this Research Topic. These works
include original results, reviews, and hypothesis over multiple

levels: from receptors and channels, to neuronal circuits and
finally to behavior and neuropsychiatric disorders.

At the receptor and cellular levels, Maejima et al. (2013)
discussed various GPCRs and ion channels in the serotonin reg-
ulation and introduced optogenetic techniques that modulate
intracellular signaling to more finely control the serotonergic sys-
tems for studies of their functions. The activation of the serotonin
receptors was determined by its release and uptake dynamics.
Unlike other more commonly studied neurotransmitters such as
acetylcholine for example, the release and uptake dynamics of
serotonin is not well characterized. Dankowski and Wightman
(2013) reviewed the challenges and developments of fast-scan
cyclic voltammetry to monitor serotonin at the subsecond (maybe
millisecond) timescale in both in vitro and in vivo conditions.

At the neuronal circuit level, Celada et al., 2013 provided a
comprehensive review on cortical modulation of serotonin. In
particular, the prefrontal cortex, linked to executive brain func-
tions, seemed to form closed-loop interactions with the serotonin
neurons in the dorsal raphe nucleus. This review was well comple-
mented by biologically realistic computational modeling works
of serotonin modulation on the prefrontal cortex. In Wang and
Wong-Lin (2013), a biologically motivated model was developed
to investigate how the co-modulation of serotonin and dopamine
in the prefrontal cortex could result in complex, non-intuitive
neuronal circuit dynamics, thus challenging current simpler theo-
ries on neuromodulation. Cano-Colino et al. (2013) incorporated
serotonin modulation into an established computational model
of the prefrontal cortex performing spatial working memory
tasks. The model showed that excessive serotonin could impede
task performance, and interestingly predicted that serotonin lev-
els could affect neuronal memory fields.

Besides the cortex, serotonin is also known to modulate impor-
tant subcortical brain regions. Using a mathematical model of
multiple brain regions, Reed et al. (2013) demonstrated the
potential roles of serotonin in maintaining homeostasis in the
basal ganglia (via the frontal cortex) under dopamine depletion
(e.g., in Parkinson’s disease). In Nakamura (2013), the neu-
ral circuit architecture of the dorsal raphe nucleus and other
key subcortical brain regions involved in reward-based deci-
sion making and learning were discussed with emphasis on the
neural circuit. The dorsal raphe nucleus has strong anatomical
and functional connectivity with neighboring structures includ-
ing the pendunculopontine tegmental nucleus (PPTg) and the
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locus coeruleus (LC), where many acetylcholine and noradrener-
gic neurons are found, respectively, (Koyama and Koyama, 1993;
Martinez-Gonzalez et al., 2011). Indeed, Okada and Kobayashi
(2013) showed that PPTg neurons exhibit similar tracking of
future reward expectation as neurons in the dorsal raphe nucleus.
Tsuruoka et al. (2012) reviewed the role of LC on pain control,
which might be involved in aversive information processing.

It has been proposed that reinforcement learning models can
be used as a platform for studying neurological and neuropsy-
chiatric disorders (Maia and Frank, 2011). In this collection,
Herzallah et al. (2013) dissociated among depressed patients with
and without antidepressant medication, and healthy control sub-
jects by observing the performance in learning from positive
(reward) and negative (punishment) feedback. Castro-Rodrigues
and Oliveira-Maia (2013) provided a useful commentary on this
important original work. Finally, the comprehensive review by
Asher et al. (2013) proposed a closed-loop paradigm toward
understanding serotonergic roles in decision making by involving
behavioral experiments, game theory, computational modeling,
and human–robotic interaction, a truly integrative neuroscience
approach.

We hope that this issue will provide a comprehensive review
of the diverse and complex functions and computations of sero-
tonergic and related systems at multiple scales of investigation.
We wish that this will motivate and inspire a more integrative
research approach from cellular to systems level toward under-
standing neuromodulatory systems.
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