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The ability to integrate visual features into a global coherent percept that can be further
categorized and manipulated are fundamental abilities of the neural system. While the
processing of visual information involves activation of early visual cortices, the recruitment
of parietal and frontal cortices has been shown to be crucial for perceptual processes.
Yet is it not clear how both cortical and long-range oscillatory activity leads to the
integration of visual features into a coherent percept. Here, we will investigate perceptual
grouping through the analysis of a contour categorization task, where the local elements
that form contour must be linked into a coherent structure, which is then further
processed and manipulated to perform the categorization task. The contour formation
in our visual stimulus is a dynamic process where, for the first time, visual perception of
contours is disentangled from the onset of visual stimulation or from motor preparation,
cognitive processes that until now have been behaviorally attached to perceptual
processes. Our main finding is that, while local and long-range synchronization at several
frequencies seem to be an ongoing phenomena, categorization of a contour could only be
predicted through local oscillatory activity within parietal/frontal sources, which in turn,
would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta
(13–30 Hz) phase locking forms a network spanning across neural sources that are not
category specific. Both long range networks, i.e., the gamma network that is category
specific, and the beta network that is not category specific, are functionally distinct but
spatially overlapping. Altogether, we show that a critical mechanism underlying contour
categorization involves oscillatory activity within parietal/frontal cortices, as well as its
synchronization across distal cortical sites.
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INTRODUCTION
A fundamental ability of the neural system is to integrate visual
features into coherent percepts, whereby the segments belong-
ing to an object boundary are perceptually grouped (Wertheimer,
1923; Field et al., 1993). One particular instance of perceptual
grouping, where a coherent percept arises through the integra-
tion of a single stimulus feature, is contour integration, where
a set of local elements are integrated to a common contour
due to its relative orientation (Field et al., 1993). Evidence
from psychophysical (Field et al., 1993; Li and Gilbert, 2002;
Mathes et al., 2006), physiological (Li et al., 2006), and neu-
roimaging studies (Altmann et al., 2003; Kourtzi et al., 2003)
report enhanced activity within early visual cortex, suggesting
that contour integration can be mediated within the primary
visual cortex itself, giving form to the saliency hypothesis. A
complementary set of studies that argue for this hypothesis is
that contour detection performance strongly depends on the spa-
tial organization of the local elements (reviewed in Hess and
Field, 1999), up to the extent that behavioral performance is
thought to be explained by the anatomy of the visual cortex
(Field et al., 1993).

Simultaneously, neuroimaging, lesion, and electrophysiology
studies provide evidence that the processing and perception
of visual stimulus entails the participation of multiple and
widespread brain areas, emphasizing the selective role of early
visual cortices (Hubel and Wiesel, 1962; Mishkin et al., 1983),
parietal cortex (Tallon-Baudry et al., 1997; Volberg and Greenlee,
2014), and frontal cortices (Foxe and Simpson, 2002; Morgan
et al., 2013) on this process. In particular to perceptual group-
ing, several studies suggest the involvement of higher-order areas
the integration process as contour detection and its neural sig-
natures arising in early visual cortex seem to be modulated by
the task requirements, including attentional demands (Roelfsema
et al., 2004), perceptual learning (Li et al., 2006), or perceptual
noise within the contour (Mathes et al., 2006). Altogether, these
studies suggest that perceptual grouping, as well as contour inte-
gration, seem to involve the processing within non-primary visual
cortex.

Of particular interest for the understanding of the neural
mechanisms that mediate perceptual grouping is neural oscil-
latory activity. Local enhancement of oscillatory activity within
early visual cortices has been associated with visual processing
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and perceptual grouping itself through intracranial recordings
(Gray et al., 1989; Fries, 2009; Uhlhaas et al., 2009), and human
EEG/MEG studies (Lutzenberger et al., 1995; Tallon-Baudry et al.,
1997; Hoogenboom et al., 2006; Donner et al., 2007; Volberg
et al., 2013). But it is not only synchronization in local corti-
cal areas that is relevant for perceptual grouping. Recent studies
report transient synchronization between parietal and frontal cor-
tices: low frequency oscillations (7–14 Hz) have been proposed to
coordinate activity between disperse cortical areas during visual
processing (Tallon-Baudry et al., 2001; Sehatpour et al., 2008),
while enhanced synchronization within the gamma frequency
band (>30 Hz) has been associated with visual integration of seg-
regated features and cross-modal integration across independent
processing streams (Palva et al., 2005; Hipp et al., 2011). To this
end, neural synchronization has been proposed as the mecha-
nism by which visual information is integrated into a percept,
grouping visual features at both localized cortical areas and across
distributed cortical areas (Singer, 1999; Varela et al., 2001).

Despite the widespread advances to understand the mecha-
nisms by which the neural system performs perceptual grouping
tasks, it is not yet clear how both local and long-range oscillatory
activity leads to the integration of visual features into a coherent
percept (Engel et al., 2001). Here, we investigate whether oscil-
latory activity within visual cortex predicts perceptual grouping
of a visual stimuli, and whether and how perceptual group-
ing modulates synchronized activity across distributed neuronal
populations. To test this, we recorded EEG from human sub-
jects performing a contour categorization task, where co-aligned
local elements (i.e., Gabor elements) must be linked and fur-
ther classified (see Figure 1, Field et al., 1993). Our assumption

is that with the use of a contour categorization task, percep-
tual grouping is be described as a two-stage process, where the
local elements that form contour must be linked into a coher-
ent structure, which is then further processed and manipulated to
perform the categorization task. Our assumption can be framed
in both the incremental grouping theory (Roelfsema, 2006) and
perceptual matching theories (Herrmann et al., 2004; Watt et al.,
2008), where perceptual grouping is described as a two stage
process where the linking of the local elements is followed by
a further processing that require high-order cortical areas (see
also Mack and Palmeri, 2010; Kourtzi and Connor, 2011). As
such, the usage of a categorization task as a framework for the
study of perceptual grouping allows for a disentanglement of the
linking process of local elements (Contour Linking Process) and
the further contour processing for its categorization (Contour
Processing), which may involve several secondary processes, such
as top-down attentional selection (Mesulam, 1999; Buschman
and Miller, 2007; Siegel et al., 2008; Van Ede et al., 2012), memory
matching (Herrmann et al., 2004), or the targeting of the con-
tour (VanRullen and Thorpe, 2001). In particular, we expect the
involvement of fronto-parietal areas that are proposed to medi-
ate the formation and selection of behaviorally relevant stimulus
(Sato and Schall, 2003). Furthermore, in our task, contour for-
mation is a dynamic process where contour is continuously
morphing (see Video 1 for a contour trial and 2 for a non-contour
trial), so that the appearance of the contour is, for the first time,
not associated with a sudden onset of the visual stimuli. This
paradigm, in combination with a new analysis approach, allows
for the identification of cortical areas that are associated with dif-
ferent behavioral events, such as the processing of visual stimulus,

FIGURE 1 | Experimental design of the study. EEG was recorded while
subjects performed a contour integration task, where participants were
instructed to identify two different orientations of an oval contour. The
contour would appear on half the trials (contour vs. non-contour trials),
randomly on the left/right hemifield in varying locations in respect to
horizontal view, lasting for 1 s. Each trial starts with the appearance of a
fixation point, followed with a field of Gabor elements (Visual Stimulation
Onset, VS) that were continuously changing its orientation (see Video 1 for
contour trials and 2 for non-contour trails). After a delay period, a subset of
Gabor elements co-align forming an oval-like contour that pointed up/down

(Contour Onset, CO; ±66 ms range of contour visibility). Note that in this
diagram, the contour is shadowed to increase visibility. Subjects reported
identification of the contour via saccade after the response cue onset,
indicated with the appearance of two rectangles (up/down) that mark the
target location of the saccade (Response Cue Onset, RC). Subjects were
instructed to maintain fixation until the appearance of the report cue onset
and forced to perform saccade in non-contour trials. Throughout the study,
we analyzed neural activity associated with the different behavioral events:
VS-CO-RC and with two behavioral conditions associated with CO event
(contour and non-contour trials).
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the linking of contour elements, the further contour processing
for correct categorization and saccade planning. In the following,
we describe the oscillatory mechanisms involved in these pro-
cesses and their modulations within and across spatially distinct
cortical networks.

MATERIALS AND METHODS
PARTICIPANTS AND STIMULI
A total of 15 participants (9 female and 6 male, aged 18–32
years) gave informed written consent to participate in the study,
approved by the local ethics committee and conducted in accor-
dance with the Declaration of Helsinki and national guidelines.
Participants reported normal or corrected-to-normal vision, with
no history of neurological or psychiatric illness. At each trial,
participants were presented with a frame of 335 randomly ori-
ented Gabor elements (each spanning 0.5◦ of visual angle)
whose orientation was continuously changing [2◦ ± 2.6◦ (mean
± std) per frame], leading to the perception of smoothly rotat-
ing Gabor elements. During the trial, Gabor elements would
keep rotating and, on half of the trials, the orientation of 22
Gabor elements would co-align to form an oval-like contour
that spans 11.3◦ of the visual field (see Video 1 for contour
trials and Video 2 for non-contour trials,.avi and.mpeg for-
mat). The modulation of the angle of Gabor elements introduces
temporal evolution on the contour formation, so that collinear
contours are continuously morphing and perceived as dynamic
stimuli with smooth progression between stimulation frames.
The contour is an oval-like shape, so that the curvature at both
asymmetric ends was rather similar (see Figure 1). Contours
appeared in 50% of the trials, on either the left or right hemi-
field (25% of total trials) on five different positions relative to
the horizon (see Figure S1). Stimuli were displayed on a DELL
UltraSharp LCD monitor, VGA mode, 1024 × 768 pixel resolu-
tion, frame rate 60 Hz. The participants viewed the screen binoc-
ularly at 60 cm distance in a room with dim light and constant
luminance.

BEHAVIORAL TASK
The task of the participants was to identify two different spatial
orientations of the same oval-like contour, and report its orien-
tation in a two-alternative forced choice task (2AFC, up/down
response, Mathes et al., 2006). Contours appear 50% of the tri-
als, and the narrow side of the oval corresponds to the pointing
direction of the contour (oriented either up or down the screen).
The identification of the contour’s direction was reported through
a voluntary saccade toward the pointing direction of the oval after
the response cue (see Figure 1), and subjects were required to
make a random choice of an up or down eye movement in the case
where no contour was identified, which include non-contour and
false negative trials due to high noise. This last constraint forces
the participant to plan and execute an eye movement in every
trial, so that trials where contour orientation is reported can-
not be distinguished from the other trials based on the resulting
eye movement. Each trial starts with the appearance of a fixation
dot (spanning 0.3◦ of visual angle, see Figure 1). After a 300 ms,
visual stimulation starts with a full-frame field of randomly ori-
ented Gabor elements, and lasts either 1.03, 1.50, or 1.97 s. This

is the first behavioral event, namely, the visual stimulation onset
or VS event. After this period, a subset of 22 Gabor elements co-
align to form the described oval contour, and stay in co-alignment
for 1.03 s. Note that while the orientation of Gabor elements
changes at the same rate (2◦ ± 2.6◦ (mean ± std) per frame),
they remain aligned to the underlying contour path, see Video
1 for an example of a contour trial. This is the second behavioral
event considered for analysis: the contour onset (CO) event. As
contours appear on 50% of the trials, the CO event has two behav-
ioral conditions associated: contour vs. non-contour trials. After
a random period (either 1.03, 1.50, or 1.97 s), the response cue
appears (two rectangular shapes up/down the fixation point, see
Figure 1), marking the moment when participants are required to
report the categorization of the contour by performing a saccade
toward the response rectangles, located either up/down of the fix-
ation point (RC event). Each participant was required to respond
to a total of exactly 720 valid trials, during which EEG and eye
movements were recorded. Each trial starts with the appearance
of a fixation point, where participants were instructed to fixate
on during the total length of the trial. Loss of fixation lead to
a premature end of the trial, where loss of fixation is defined as
saccades with an amplitude larger than 1.25◦. Analyses were per-
formed in Matlab (MathWorks, Natick, MA) with custom code
and several open-source toolboxes: field trip (Oostenveld et al.,
2011) and EEGLab (Delorme and Makeig, 2004).

CONTOUR VISIBILITY AS A FUNCTION OF GABOR ORIENTATION NOISE
Given that the contour within contour trials arises through con-
tinuously morphing Gabor elements, the time at which the con-
tour is identified at each trial may vary. We account for this
variability around the CO event in two ways. First, we define that
the CO time t = 0 marks the time point at which the contour can
be identified with a probability of 0.7, on average over subjects.
Second, we define a range of contour visibility, which delineates
the time interval within the trial at which the contour will be
identified with a probability above chance. For that, we estimated
a psychometric curve that defined the subject’s performance
in the contour categorization task for the different degrees of
co-alignment of the Gabor elements. This experiment was con-
ducted with a different set of 7 male participants, aged 24–29
who gave informed consent to participate in the study, approved
by the local ethics committee and conducted in accordance
with the Declaration of Helsinki and national guidelines (see
Supplementary Materials for details). In short, the psychometric
function associates the degree of co-alignment � with a identifi-
cation probability so that, to obtain the probability of a contour
being identified at time t, with a known degree of co-alignment
�, we inverse the psychometric function: on average for all partic-
ipants, with an alignment of � = 50◦, the contours are identified
by chance, which corresponds to 66 ms before the CO event.

DATA RECORDING, PREPROCESSING AND NEURAL SOURCE
RECONSTRUCTION
Synchronization of stimulus presentation, eye-tracking,
and EEG recordings was controlled via ViSaGe software
(Cambridge Research Systems Ltd.). Eye movements were
recorded monocularly by EyeLink 1000 (SR Research Ltd.).
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Electroencephalogram was recorded via 64 channel ActiCap
(Brain Products GmbH). Electrode impedances were kept below
5 k�. We averaged referenced the raw EEG data Next, the data
were high-pass filtered at 1 Hz by a FIR filter to remove very
low frequency and constant trends. Epoching was performed
from −1 to 2 s around the behavioral event of interest (i.e., VS,
CO, and RC). After epoching, we corrected for baseline drifts by
subtracting the mean baseline [(−0.5, 0) s before behavioral event
of interest]. Trials with strong muscle activity were identified
and removed by visual inspection. While this approach removed
severe artifacts, we decided to reduce possible remaining artifacts
by rejecting trials with extreme values, linear trends, improbable
data and highly negative kurtosis (as suggested in Delorme
et al., 2007). To further control for the presence of microsaccade
artifacts on our data, we performed microsaccade detection on
preprocessed and epoched data by an algorithm published by
Engbert and Mergenthaler (2006). Trials with microsaccades
were discarded of further analysis.

Preprocessing resulted in 330 ± 20 (mean ± std) contour
trials and 210 ± 14 non-contour trials per subject. Sources of
neural activity were localized from the Independent Component
Analysis (ICA) estimates, computed on preprocessed EEG data
an obtaining a total of 64 signal sources per subject (maxi-
mum number of IC given the number of EEG electrodes, see
Supplementary Materials). Dipole localization of the resulting
components topography is performed using DIPFIT2.2 plugin
on EEGLab (Delorme and Makeig, 2004), based on a three-shell
boundary element model (BEM) on a MNI standard brain tem-
plate. Source localization on ICs instead of EEG signals reduces
several of the factors that add errors on the dipole localiza-
tion (e.g., environmental noise, non-linear interference between
sources, etc.), increasing accuracy on the source localization
(Tarkiainen et al., 2003). Note that source localization error of
ICA decomposed signals typically extend from 4.1 to 20 mm
(Acar and Makeig, 2013), so that the quantitative localization of
the dipoles only provides an approximation for the exact location
of the underlying source. Non-neural sources (e.g., localized at
the scalp) were discarded of further study, leading to an average
of 55 ± 5 neural sources per subject.

SPECTRAL DECOMPOSITION AND PHASE LOCKING VALUE
Two spectral decompositions of the ICs were performed. The
spectral analysis presented in the spectrograms for high frequency
bands (>30 Hz) was computed by a multitaper method, which
provides a way to control bias and variance of the spectral estima-
tion by using multiple Slepian tapers (Percival and Walden, 1993).
The time-frequency decomposition was computed on epoched
data, with a Slepian tapers, in steps of 2 Hz, with a window
of 12 cycles per frequency and a spectral smoothing of 1/5 the
frequency. The spectral analysis for frequency bands between 5
and 30 Hz was computed using Morlet wavelets, with a width of
four cycles per frequency, and steps of 2 Hz. The spectrograms
were computed on 90 trials per condition (contour/non-contour)
and subject, selected randomly from the available trials. Finally,
spectrograms were presented as a power change in respect to
the baseline (−0.5 to 0 s relative to event of interest), and then
averaged over trials and subjects.

Spectral analysis for the detection of task-relevant neural
sources was performed through a discrete multi-scale wavelet
transform using Daubechies wavelets of order 4 (DWT). The
instantaneous frequency was computed on epoched data, lead-
ing to 5 frequency intervals (5.6, 11.16, 22.32, 44.6, and 89.3 Hz
mean frequency). The instantaneous phase was extracted by the
Hilbert transform. The phase locking value (PLV) (Lachaux et al.,
2000), was computed on the instantaneous phase obtained from
the DWT spectral decomposition for two different behavioral
conditions (contour and non-contour trials). Phase synchroniza-
tion was estimated between each pairwise combination of neural
sources and frequency bands on 90 trials per behavioral con-
dition (contour/non-contour trials, selected randomly from the
available trials), with a resolution of 1 ms.

DETECTION OF TASK-RELATED NEURAL SOURCES
The goal of this method is to select neural sources that are associ-
ated with our stimulus of interest without any prior assumptions
on the data (naive Bayes classifier). Generally, our goal is to com-
pute the likelihood p(D|ci), namely, the probability that a set
of data D = {xt

1, xt
2, . . . , xt

n} belongs to a category C = {c1, c2}
where n is the trial number, t the time point at which the like-
lihood is computed, and C is a binary behavioral condition of
interest. For example, if the goal is to find neural sources that asso-
ciate with the appearance of stimulus, the classification is a binary
classification problem C = {0, 1}, where 1 indicates the presence
of stimulus. Likewise, other behavioral conditions of interest can
be reduced to binary classification problems, such as lateralization
of visual stimulation (C = {′left′, ′right′}), or with the direction
of eye movement (C = {′up′, ′down′}). The likelihood for binary
categories was computed via logistic regression (Fahrmeir and
Tutz, 2001; Bishop, 2007). In short, logistic regression estimates
the relationship between predictors variables and the categorical
outcomes ci, mentioned before. The predictor variables of our
logistic regression will be the discrete wavelet transform of the
neural sources data, so that D = {xt

1, xt
2, . . . , xt

n} is transformed
on the frequency domain such that ˜D = {̃xt

1, x̃t
2, . . . , x̃t

n}. In other
words, the logistic regression problem aims to find a set of
parameters w̃ that will establish the following relation: C = w˜D,
where C are the categorical outcomes for a time t and ˜D is the
frequency decomposition of a neural source at time t. To fur-
ther reduce the dimensionality of our model, we included a L1
or Lasso regularization term on the linear regression (Bishop,
2007). In short, within logistic regression, L1 regularization intro-
duces a penalty term α|w| on the optimization problem, and
that results on forcing some of the parameters to have a zero
weight. The penalty term is weighted by the hyper-parameter α.
To choose the hyper-parameter α, we trained a set of models
with α logarithmically spaced between [0.01, 0.3]. We choose the
hyper-parameter α that lead to the model with highest likelihood
(Friedman et al., 2010). Fitting the data for logistic regression
and Lasso regularization is performed by glmnet (Friedman et al.,
2007). Evaluation of the classification performance is computed
through the Maximum A Posteriori estimate, so that CMAP =
argmaxCp(˜D|ci) (Bishop, 2007). Concatenating the MAP at every
time step t is what we call the prediction trace (see Figure 2A
for an example). The model classification accuracy is validated
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FIGURE 2 | Local oscillatory activity during the processing of visual

stimulus and contour categorization. (A) Prediction traces for neural
sources that are associated with the processing of visual stimulus after VS
onset (left) and for neural sources that associate with correct contour
categorization after CO onset (right). The prediction trace of a neural source is
the time-resolved probability of a neural source to belong to a behavioral
condition of interest (see text for details). Prediction traces of neural sources
across subjects are shown in blue/green (mean ± std), while the prediction
traces of surrogate data is shown in red (mean ± std). Significance of
prediction traces is shown as a shadow in upper part of the plot, colorcoded

for different clusters (p < 0.01, corrected for multiple comparison). (B) Dipole
localization of neural sources associated with the processing of visual
stimulus (left) and contour categorization (right), across subjects. In (C,D) the
spectrogram of contour trials reflecting the power increase in respect to
baseline, averaged over neural sources and subjects for (C) of neural sources
associated with visual stimulation at VS onset and (D) neural sources
associated with contour categorization cluster PCO (upper) and cluster FCO
(lower) at CO onset. Note the range of contour visibility spans ± 66 ms
around CO onset (the time interval at which subjects identify the contour
better than chance).

through repeated random sub-sampling validation, for 100 iter-
ations and a split of the data D into 70% training trials and
30% validation trials, so that for each neural source we estimate
100 prediction traces, which are then averaged as to reduce the
bias of the model (Kohavi, 1995). By randomizing categorization
labels (random labels were generated through random permuta-
tion of the trial number), we obtain the likelihood function of
the null-hypothesis, which is, the probability distribution that
a dataset ˜D belongs to a random class ci (surrogate data, see
Figure 2A for an example). To this end, repeated random sub-
sampling validation, for 100 iterations and a split of the data D
into 70% training trials and 30% validation trials, so that for each
surrogate source we estimate 100 prediction traces, from which
we obtain a probability distribution of the null hypothesis. The
probability distribution of the null-hypothesis was used to com-
pute significance level of the categorization performance, so that
if p(˜D|ci) is outside the 99% confidence interval of the distri-
bution of the null-hypothesis, the categorization performance is
considered significant (p < 0.01; Bakeman and Robinson, 2005).

LONG-RANGE SYNCHRONIZATION NETWORKS
Synchronization between distal neural sources was computed
on contour and non-contour trials by the PLV (Lachaux

et al., 2000) between all pairs of neural sources and frequency
intervals obtained by DWT, resulting in N(N − 1) × f phase
synchronization values for each behavioral condition (contour
and non-contour) where N corresponds to the total number
of neural sources, and f corresponds to the different frequency
intervals. As the number of trials influences the PLV estimation,
the PLV was computed on 90 trials, selected randomly from the
available set of trials per subject. To compare PLV across behav-
ioral conditions we performed a cluster-based permutation test
where only significant PLV differences are kept for further study
(p < 0.01; see Maris and Oostenveld, 2007). In short, t-statistics
of a phase difference (a pair of neural sources, on a frequency f )
were clustered according to functional adjacency between neural
sources, or in other words, we analyze the PLV between particu-
lar subsets of neural sources. Here, we analyzed PLV between the
neural sources PCO-FCO (see Table 1) and the PLV between PCO
and frontal neural sources that are non-FCO (see Supplementary
Materials for details on how we obtain the neural sources that
lie within a cortical area of interest). The PLV-t-statistics were
accumulated over neural sources (cumulative sum) so that the
value of the t-statistics could only be positive/negative if, over all
PLV pairs considered, there was a significant positive/negative t-
statistics. For example, the PLV of the PCO neural sources at theta
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frequency (Figure 4) for contours and non-contour trials, was
significantly different for 32 connections to FCO neural sources,
so that if the visualized t-statistic was positive/negative for a cer-
tain time point, it has a significance p-value of p(32). To test
whether the difference between contour and non-contour trials
arose due to the integration process itself, we estimated whether
the t-statistics was significantly different relative to its baseline
with z-score (see Supplementary Materials).

RESULTS
BEHAVIORAL ANALYSIS AND NEURAL SOURCE RECONSTRUCTION
Electroencephalographic activity (EEG) and eye movements were
recorded from 15 participants who were instructed to identify two
different orientations of an oval-like contour (up/down), pair-
ing the possible spatial orientations with a saccadic response in
a two-alternative forced choice (2AFC) paradigm (see Figure 1).
Participants correctly identified the pointing direction of con-
tours on 97.9% of trials when a contour was present. Further
analysis revealed no performance differences between trials where
the contours appeared on the left/right hemifield, on five different
positions in regards to the horizon, and at the three different time
onsets in regards to the start of the trial (all with p > 0.2).

To this end, several aspects of the behavioral task can be
discussed. Firstly, as the presence of spatial cues may lead to
an asymmetrical shift of attention before the contour appeared
(Summerfield and Egner, 2009), contours appeared on 50% of
the trials (on either left/right hemifield, on five different posi-
tions in regards of the horizon, see Supplementary Materials),
so that the appearance of the contour could not be predicted,
as confirmed by the lack of biases on the contour categoriza-
tion performance. Secondly, as eye movements introduce both
amplitude changes on the amplitude of the EEG signal and a
broadband increase in gamma oscillatory activity (∼30–100 Hz)
(Yuval-Greenberg et al., 2008; Plöchl et al., 2012), subjects were
required to maintain fixation until the response cue onset, where
they had to report contour identity. Additionally, and to avoid
a temporal association between contour and saccadic response
(Badler and Heinen, 2006), the response cue appears after a delay
period of either 1.03, 1.50, or 1.97 s, once the co-aligned contour
disappears. Third, subjects were required to perform an up/down
eye movement at every trial (including non-contour trials), so
that the trials cannot be solely distinguished based on the plan-
ning and execution of an eye movement. Fourth, note that due
to their size (∼11◦ of visual field), the contours could not be
detected by individual receptive fields, but rather required the

integration of activity across multiple cortical columns (Field
et al., 1993; Hess et al., 2001; Mathes et al., 2006). Finally, as
contours were continuously morphing, the time at which they
were identified typically varied from trial to trial. To account for
this variability, we computed the time interval at which the con-
tour is identified with a probability above chance, what we call
the range of contour visibility (±66 ms around the CO event).
Furthermore, the CO corresponds to the point in time at which
subjects identify contour with a probability of 0.70 on average
(see Materials and Methods). Finally, through this study we will
analyze neural signals associated to three different behavioral
events (see Figure 1): VS, visual stimulation onset; CO, contour
onset (contour and non-contour trials); and RC, response cue
onset.

One of the core issues when measuring oscillatory activity
within EEG/MEG is the difficulty of attributing scalp signals to
the activation of a particular area at cortical level. As a result, syn-
chronization between neural signals across distal locations may
reflect the leaking of a single source to several electrodes or several
electrodes reflecting a single source (Kujala et al., 2008; Hipp et al.,
2011). Here, to improve the spatial specificity of our data and
analyze oscillatory activity with higher signal to noise ratio, we
performed ICA on the raw EEG data (see Materials and Methods
and Table 1).

LOCAL SYNCHRONIZATION DURING VISUAL STIMULUS PROCESSING
AND CONTOUR PROCESSING
We started by analyzing the neural sources that are generally asso-
ciated with the processing of visual stimuli. The neural sources
of interest were identified though a new analysis approach which
selects neural sources based on their ability to predict the behav-
ioral condition of interest, and does not require a pre-selection
of recording/analysis sites. The method is based on the hypoth-
esis that the oscillatory activity of neural sources can predict
subject perception (see Materials and Methods). In short, the
time-frequency decomposition of a neural source is used as a
predictor variable in a logistic regression model, such that, for
each neural source, we can estimate the probability of a neural
source to participate in a behavioral event of interest in a time-
resolved fashion, which we call the prediction trace (Figure 2A
for an example). In other words, the higher the prediction trace,
the stronger the association of the neural source to the behav-
ioral event of interest (e.g., contour lateralization). Only neural
sources that statistically significantly predicted the behavioral
condition of interest were kept for further study (with p < 0.01

Table 1 | Coordinates of the cluster centroids in Talariach space and their spatial localization (Lancaster et al., 2000).

Cluster name Reference on the text x, y, z Talariach coordinates Anatomical structure Brodmann area

OVS Occipital cluster at visual stimulation onset (4.44, −66.47, 26.87) Occipital lobe precuneus Brodmann area 31

PCO Parietal cluster at contour onset (−10.47, −57.19, 22.89) Parietal lobe precuneus Brodmann area 31

FCO Frontal cluster at contour onset (1.85, 35.98, 3.96) Frontal lobe medial frontal gyrus Brodmann area 32

OCO Occipital cluster at contour onset (−10.99, −76.39, 20.40) Occipital lobe cuneus Brodmann area 18

FRC Frontal cluster at response cue onset (8.02, 32.06, −17.8) Frontal lobe medial frontal gyrus Brodmann area 11

PRC Parietal cluster at response cue onset (4.40, −60.69, 14.7) Parietal lobe posterior cingulate Broaddman area 23

FNC Frontal cluster not related with FCO (−1.47, 47.84, 11.39) Frontal lobe medial frontal gyrus Brodmann area 10
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based on cluster-based permutation testing, see Materials and
Methods). With this process, we obtain a prediction trace for
each neural source of each subject. To this end, we clustered
the neural sources based on their predictive power (k-means
clustering of prediction traces), thus obtaining a pooled pre-
diction trace that reflects the probability of a group of neu-
ral sources, across subjects, to predict a behavioral event of
interest.

Across all subjects, we found a total of 35 neural sources to be
associated with the processing of visual stimuli or, in other words,
oscillatory activity within 35 neural sources can be used to pre-
dict that a subject is processing visual stimuli on a single trial
basis (an average of 2.3 neural sources per subject).These neu-
ral sources predicted the presence of a visual stimulus in 87.2%
of the trials on average, at 100 ms after visual stimulation onset
(VS onset), with time-varying prediction traces that were sim-
ilar across subjects and across neural sources (Figure 2A left).
Interestingly, the dipole locations of these sources spread across
large areas within the occipital cortex (see Table 1 for the centroid
coordinates of the cluster OVS, and Figure 2B left), in accordance
with a large body of studies that argue for the involvement of
occipital areas on the processing of visual information (Hubel
and Wiesel, 1962; Goodale and Milner, 1992; Tallon-Baudry and
Bertrand, 1999). For the sake of completeness, we represented the
oscillatory activity of these neural sources in form of a spectro-
gram (Figure 2C), showing that visual stimulus onset induces an
enhancement of gamma band synchronization that extends over
a broad frequency range (30–100 Hz) accompanied with a slight
enhancement of oscillatory activity in the low frequency bands
(5–30 Hz) within the first 500 ms after VS onset. Taken together,
this findings replicate the well-known neural signature associ-
ated with the processing of visual stimuli involving the occipital
cortex, as reported in human MEG/EEG studies (Lutzenberger
et al., 1995; Donner et al., 2007; Volberg et al., 2013) and invasive
recordings (Gray et al., 1989; Li et al., 2006), confirming that our
analysis method, coupled with ICA source decomposition and the
localization of these sources, allows for the reconstruction of local
population activity associated with a given behavioral condition
of interest.

Next, we analyzed neural activity that associate with contour
processing, namely, we identified those neural sources that are
predictors of correct contour categorization at CO (see Figure 1).
Across all subjects we found a total of 31 neural to associate with
contour categorization (i.e., average of 2.06 neural sources per
subject). Clustering these neural sources based on their predic-
tion traces gave rise to two distinct groups (k-means clustering,
see Materials and Methods). The first cluster (PCO) is predictive
of contour perception within 50–00 ms, with a correct predic-
tion average of 65.78% trials at 380 ms after CO (±66 ms range
of contour visibility Figure 2A, right), a comparable performance
to other decoding approaches (Rotermund et al., 2011). Dipole
localization shows that these neural sources are mainly grouped
within parietal cortex (see Table 1 for the centroid coordinates
and Figure 2B, right). Concurrently, the second cluster (FCO),
is localized within frontal areas (see Table 1 for the centroid
coordinates and Figure 2B, right), and is predictive of contour
perception for the first 500 ms after CO, with an average correct

prediction in 64.26% of trials at 300 ms after CO (Figure 2A,
right). The spectral decomposition of parietal and frontal neu-
ral sources associated with correct contour categorization (cluster
PCO and FCO; Figure 2D, upper and lower, respectively) shows
enhanced oscillatory activity within the theta band (4–8 Hz),
co-occurring with a broadband enhancement of gamma oscilla-
tory activity (>30 Hz), especially within low-gamma frequency
bands (30–60 Hz). Simultaneously, while beta oscillatory activity
(13–30 Hz) seems to be slightly reduced in parietal neural sources,
a strong and long-lasting enhancement of beta is present within
frontal areas (cluster FCO; Figure 2D, lower).

In summary, we have shown that oscillatory activity within
parietal/frontal cortices in single trials can be used to predict the
subject’s ability to correctly classify contours, revealing a crucial
involvement of higher visual cortices on the perceptual grouping
of local elements onto a coherent percept.

DISSOCIATING THE PROCESSING OF CONTOURS FOR
CATEGORIZATION FROM THE CONTOUR LINKING PROCESS AND
SACCADIC CONTROL
As perceptual grouping through contour categorization seem to
require the processing of contours within parietal/frontal cortices,
we continue by testing whether we can disentangle this process
from the process of linking the contour elements. In particular, we
tested whether oscillatory activity can predict the spatial location
of the contour or, in other words, whether the contour appears on
the left or right hemifield at a given trial (Contour Lateralization
test). The spatial localization of the contour is not a relevant fea-
ture for the behavioral task, and we cannot disentangle whether
the contour is perceptually available at this stage. Thus, if we can
decode the contour spatial location, it is necessarily required that
the contour elements have already been linked into a whole.

Oscillatory activity within parietal/frontal neural sources asso-
ciated with contour processing is assumed to reflect neural
processes involved with the processing of contours for fur-
ther categorization, which may involve top-down attentional
selection (Siegel et al., 2008; Van Ede et al., 2012), memory
matching (Herrmann et al., 2004) or the targeting of the contour
(VanRullen and Thorpe, 2001; Sato and Schall, 2003). However,
broadband gamma synchronization within parietal cortex has
been proposed to encode motor goals within visuo-motor tasks
(Van Der Werf et al., 2008), and enhanced gamma activity
within frontal cortex has been associated with eye-motor con-
trol, encoding saccadic goals (Schall and Thompson, 1999). To
test whether the oscillatory activity within parietal/frontal neural
sources arises due to the processing of contours for further catego-
rization or to saccadic control, we tested whether neural sources
can predict the saccadic goal, a process associated with saccade
planning and execution (Saccade Planning test).

Following the same methodology as in the previous section, we
estimated the prediction trace of neural sources associated with
each of the three different behavioral events (i.e., VS, visual stim-
ulation onset; CO, contour onset; RC, response cue onset), and
identified potential neural sources that are predictors of contour
lateralization or saccade planning, see Figure 3A. As such, neu-
ral activations within VS are used as a double negative control,
since they should not associate with either saccade planning or
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contour lateralization. Alternatively, we would expect that some
neural sources within CO and RC may be predictors of saccade
planning.

First, our results show that neural sources that respond to
VS do neither predict saccade planning nor contour lateraliza-
tion (Figure 3). Second, we found that neural sources that are
active during the CO event are not found to be associated with
saccade planning, while a subset of neural sources does predict
contour lateralization (cluster name OCO, Figure 3A, total of 14
sources, with an average of 0.99 neural sources per subject). At
250 ms after CO (±66 ms range of contour visibility), the spatial
localization of the contour within the visual field can be pre-
dicted with an average accuracy of 57.7% (significantly different
from chance level, p < 0.01). Interestingly, dipoles of the neural
sources that predict contour lateralization are localized within the
occipital lobe and are independent of those neural sources that
associate with contour categorization (see Table 1 for the centroid
coordinates and Figure 3B). Furthermore, the prediction trace of
contour lateralization within higher occipital areas peaks 100 ms
earlier than the prediction trace of parietal neural sources asso-
ciated to contour categorization, FCO. Third, oscillatory activity
of neural sources at RC onset were not associated with contour
lateralization, suggesting that low-level stimulus properties are
not maintained up until the RC event (Figure 3A). In contrast,
a subset of 32 neural sources (total across subjects, an average
of 2.13 neural sources per subject) are associated with saccadic
direction, which are separated into two clusters according to its
prediction traces: PRC and FRC (Figure 3C). Both clusters are
predictive of saccadic direction within the first 600 ms after RC
onset, with a peak prediction of 85.78 and 74.38% accuracy after

200 and 300 ms after RC, respectively. Dipole localization of the
neural sources associated with saccadic planning is presented in
Figure 3C and Table 1. Interestingly, the neural sources of cluster
PRC localize within the parietal areas while cluster FRC local-
ize within the frontal cortex. In accordance with recent studies
on saccadic control, our results show that both frontal and pari-
etal cortex are involved in saccade preparation and execution
(Schall and Thompson, 1999; Sato and Schall, 2003; Van Der Werf
et al., 2008). Notably, the set of neural sources within parietal and
frontal cortex that associate with saccadic control (PRC and FRC)
is not overlapping with the set of parietal and frontal sources that
associate with contour integration (PCO and FCO).

In summary, neural sources that are associated with the pro-
cessing and manipulation of contours to be correctly classified
(PCO and FCO) are dissociated from the linking process of local
elements into a whole, which can be decoded from oscillatory
activity within occipital areas. Furthermore, the neural sources
that associated with the overall perceptual grouping process are
dissociated from complementary processes that are present dur-
ing visual processing (e.g., saccade planning). Interestingly, while
several behavioral processes can be decoded from neighboring
spatial locations (contour categorization and saccadic control),
they appear to be segregated neural processes in both time and
IC-space.

LONG-RANGE NETWORKS OF OSCILLATORY ACTIVITY DURING
CONTOUR PROCESSING
To ascertain whether contour processing and categorization man-
ifests itself within the global synchronization network, we quanti-
fied transient phase-synchronization across distant neural sources

FIGURE 3 | Local oscillatory activity during contour linking process

and saccadic control. (A) Prediction traces at three different behavioral
events (i.e., VS, visual stimulation; CO, contour onset; RC, response cue),
for two different conditions of interest: contour lateralization and saccade
planning. Prediction traces of neural sources across subjects are shown in
blue/green (mean ± std), while prediction traces of the surrogate data is

shown in red (mean ± std). Significance of prediction traces is shown as a
shadow in upper part of the plot, colorcoded for different clusters
(p < 0.01, corrected for multiple comparison). (B) Dipole localization of
neural sources associated with contour lateralization within CO onset.
(C) Dipole localization of neural sources associated with saccade planning
within RC onset.
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(Lachaux et al., 2000) for five different frequencies: theta (5.6 Hz),
alpha (11.16 Hz), high beta (22.32 Hz), low gamma (44.6 Hz),
and high gamma (89.3 Hz) bands (main frequency within fre-
quency interval, see Materials and Methods).

We first addressed the question of whether the transient syn-
chronization pattern arising during contour trials where the
contour is correctly classified differs from the synchronization
pattern of non-contour trials. For that, we estimated whether the
PLV significantly differs between the two conditions (contour vs.
non-contour) by means of a permutation test. The 21.5% of all
neural sources show statistically significant synchronization at all
frequencies tested (p < 0.01), suggesting that there is a dynamic
formation of phase-synchronization networks across distal neural
sources during cognitive processing (further details in Figure S3).

So far, long-range synchronization between distal neural
sources has been identified by grouping neural sources according
to their spatial proximity (Palva et al., 2005; Hipp et al., 2011).
However, as spatially neighboring neural sources may be involved
in more than a single behavioral function, we focus on the
properties of long-range synchronization of distal neural sources
based on their involvement with the behavioral task of interest
rather than on their spatial location. Specifically, we addressed
the question of how the neural sources associated with contour
processing modulate long-range synchronization networks. For
that, we analyzed the connectivity pattern of parietal/frontal areas
associated with contour categorization (PCO-FCO) and found
that phase-synchronization in contour trials is significantly higher
than in non-contour trials at theta between 80 and 985 ms after
CO, at alpha within 245–570 ms after CO, and at high gamma
between 350 and 720 ms after CO (±66 ms range of contour vis-
ibility for all measures, Figure 4). In principle, the differences in
phase-synchronization between contour and non-contour trials
may either reflect neural processes directly related to the per-
ceptual grouping or to secondary processes (e.g., saccade prepa-
ration). To differentiate the two possibilities, the significance of
t-stats is corrected by the z-score, which estimates whether the t-
statistics is significantly different when compared to its baseline
(z-score, see Supplementary Methods).

Previous studies report phase locking between frontal and
parietal areas while performing visual processing tasks at the beta

frequency range (Palva et al., 2005; Phillips et al., 2012), while our
analysis found synchronization at theta, alpha, and gamma fre-
quencies. Since our results suggested that different functions can
occur in overlapping brain areas, we hypothesize that the cou-
pling between parietal/frontal areas in beta frequency may not be
required for the recruitment of neural sources that are enhanced
on a behavioral task, but may instead signal a baseline com-
munication or status quo, as proposed by the beta suppression
hypothesis (Engel and Fries, 2010; Schroeder et al., 2011). To test
this hypothesis, we analyzed the phase-synchronization pattern of
PCO neural sources to frontal sources that are not related to con-
tour processing (cluster FNC, see Table 1 and see Supplementary
Materials for details), and found that phase-synchronization of
these sources is significantly different between contour and non-
contour trials in the theta range (5.5 Hz), starting 80 ms after
stimulus onset, at alpha (11 Hz) within 250–550 ms and at high
beta (22.6 Hz) within 280–440 ms (±66 ms range of contour vis-
ibility for all measures). As such, our results suggest that gamma
synchronization between parietal and frontal sources is function-
ally related to contour processing, while beta synchronization
between parietal and frontal non-contour-integration specific
sources might reflect secondary processes but not contour pro-
cessing and categorization itself.

Finally, to further explore the relevance of long-range connec-
tions between distal neural sources, we tested whether there is a
significantly different number of connections between different
sets of neural sources (number of links to other neural sources
with significant PLV). We found that parietal sources associated
to contour processing -PCO- have a significantly higher number
of connections than frontal neural sources -FCO- for any
of the tested frequency intervals (Figure S3), suggesting that
parietal neural sources may form a hub-like structure underlying
coordination of distal neural sources during visual perception.
Interestingly, we did not found a significant increase of the
number of connections between PCO-FCO, suggesting that
phase-synchronization coupling exist but it is not significantly
higher than the connectivity that can occur between two random
neural sources.

Taken together, these results suggest that the parietal/frontal
areas associated with contour processing (PCO/FCO) show

FIGURE 4 | Long-range phase synchronization during contour

integration between PCO/FCO neural sources, for different frequency

intervals. The images show the cumulative sum of the t-statistics for the
Phase Locking Value difference during contour integration process (contour
onset at t = 0 ± 66 ms for the range of contour visibility, marked as a shadow

gray). Intense color indicates periods of significantly enhanced phase
synchronization with distant neural sources (positive t-statistic), corrected for
baseline by z-score. A black line indicates the z-score of the neural sources
associated with contour integration, red lines indicate z-score significance
threshold.
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enhanced phase synchronization in theta, alpha and high gamma
frequency that arises in trials where the contour is percep-
tually grouped and classified, while beta synchronization is
found between parietal and frontal but non-contour sources
(PCO/FNC). Notably, the neural sources localized in the parietal
areas and associated to contour processing (PCO) exhibit higher
connectivity to distal cortical areas as compared to frontal sources
(FCO), therefore forming a hub-like structure underlying the
coordination of neural processes involved in contour processing.

DISCUSSION
In this study, we aimed to first determine whether oscillatory
activity within early-visual cortical areas predict the perceptual
grouping of a visual stimuli; and second, we determined whether
this perception process modulates long-range synchronization
networks.

To answer those questions, we analyzed EEG activity of sub-
jects performing a contour categorization task, where perceptual
grouping can be described as a two-stage process (Roelfsema,
2006; Watt et al., 2008; Mack and Palmeri, 2010; Kourtzi and
Connor, 2011; Volberg and Greenlee, 2014) as the successful exe-
cution of the task requires the linking of contour boundaries
into a coherent contour (Contour Linking Process), as well as a
processing of the contour for its correct categorization (Contour
Processing). Contour integration follows the Gestalt law of “good
continuation” and has been serving as a reference behavioral
task to study visual perception as local stimulus features remain
constant, thus minimizing variability due to low level stimulus
features (Wertheimer, 1923; Field et al., 1993; Hess et al., 2001;
Mathes et al., 2006). In other words, given that contour and non-
contour stimuli only differ on the co-alignment of a small subset
of elements, differences in the oscillatory activity within the neu-
ral sources reflect differences between perceptual states. While
psychological, psychophysical and neuroimaging studies propose
that local interactions within early visual cortex mediate con-
tour integration (Field et al., 1993; Li et al., 2006; Mathes et al.,
2006), recent studies report that contour detection and its neural
signals can be modulated by the task requirements, including
attentional demands (Roelfsema et al., 2004), perceptual learning
(Li et al., 2006) or perceptual noise within the contour (Mathes
et al., 2006). Here, through the analysis of the EEG signals with
a pattern classifier, we decode both the contour linking process
as well as the processing of the contour for its correct categoriza-
tion from a contour categorization task, with no pre-selection of
the cortical areas of interest. Furthermore, classical contour inte-
gration tasks involve the sudden appearance of a contour and its
background elements, so that the contour appearance is inevitable
linked to a sudden change in the visual stimulus. Here, the con-
tour integration task was adapted to mitigate the presence of
spatial and temporal cues associated to the contour appearance
by continuously modulating the orientation of local elements,
reducing in turn the possibility of generating an asymmetrical
shift of attention before the contour appeared (Summerfield and
Egner, 2009, see Video 1 for a contour trial). Notably, the dynamic
design allows, for the first time, the dissociation of the neural sig-
natures associated with the onset of the visual stimulus and the
appearance of a contour.

Accordingly, in the first part of the study, we aimed to deter-
mine whether local oscillatory activity can predict perceptual
grouping of a visual stimuli, involving both the linking of local
elements into a contour structure (Contour Linking Process) and
the further contour processing for its categorization (Contour
Processing), which may involve a broad range of secondary pro-
cesses, such as top-down attentional selection (Siegel et al., 2008;
Van Ede et al., 2012), memory matching (Herrmann et al., 2004)
or the targeting of the contour (VanRullen and Thorpe, 2001).
Our results show that oscillatory activity within occipital cortex
allows for the decoding of the spatial location of the contour,
indicating that at this stage, the local elements that form the con-
tour are linked into a coherent structure, supporting the idea that
occipital areas are classically linked to the processing of visual
stimulus in a bottom-up manner (Hubel and Wiesel, 1962; Gross,
1999). Most interesting for this study, oscillatory activity within
the frontal and parietal cortex can predict correct categorization
of the contour, in line with the idea that top-down control is
involved in perceptual grouping (Li et al., 2006; Mathes et al.,
2006; Volberg et al., 2013). Whereas occipital sources that reflect
the linking of local elements peak at 250 ± 66 ms after CO, frontal
cortices better predict contour categorization at 300 ± 66 ms, fol-
lowed by the parietal neural sources that peak at 380 ± 66 ms, sug-
gesting a dynamics of contour categorization resembling visual
search tasks (Buschman and Miller, 2007; Phillips et al., 2012).
Our study advocate for a crucial involvement of fronto-parietal
areas on a perceptual grouping task that requires contour cat-
egorization, areas that are proposed to mediate the formation
and selection of behaviorally relevant stimulus (Sato and Schall,
2003), as well as attentional control (Mesulam, 1999; Siegel et al.,
2008). Furthermore, our results emphasize the relevance of local
oscillatory activity and suggest that enhancement of local syn-
chronization within cortical areas serves as a general mechanism
mediating sensory processing (Singer, 1999; Fries, 2009; Hipp
et al., 2011). Finally, and most important for the purpose of
this study, our results show that several aspects of a behavioral
task (e.g., contour categorization and saccade planning) can be
decoded within nearby spatial locations (e.g., parietal and frontal
cortices). To this end, we argue for the advantage of using pattern
classifiers for the analysis of time-resolved brain activity, propos-
ing that this approach increases sensitivity on studying the neural
basis of cognitive processes.

The second part of the study aimed to determine whether the
integration and categorization of contours manifests itself as a
transient synchronization involving distal neural sources. Though
the understanding of how cognitive functions modulate syn-
chronization across distributed cortical populations have greatly
improved, the measure of such synchronization from EEG/MEG
recordings remains difficult. This is mostly due to methodolog-
ical issues. First, the low spatial resolution of EEG complicates
both the cortical localization of neural activations and the com-
putation of long-range synchronization (Kujala et al., 2008; Siegel
et al., 2012). To account for this problem, we analyzed EEG signals
at the source level, a transformation of electrode data into local-
ized cortical sources, which increased spatial specificity. Secondly,
there is a clear lack of statistical tools that allows the analysis
of high-dimensional neural signals with no prior assumptions
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on the structure and the location of the neural signals associ-
ated with the behavioral process of interest (Kilner, 2013). Our
method to detect neural signals associated with whichever behav-
ioral conditions of interest may serve as a powerful new tool
to analyze high-dimensional neural data, where the selection
of neural signals of interest is hypothesis free, with no starting
assumptions on functional specialization and localization of neu-
ral sources. Instead, the method provides quantification for how
well a neural signal predicts the behavioral condition of interest,
simultaneously increasing the signal to noise ratio by selection
of relevant neural signals. Furthermore, the method corrects for
multiple comparisons and in principle, it is not limited to the
study of EEG signals, but can be applied to any time-varying sig-
nal associated with categorical conditions. As such, our approach
complements recent brain-computer applications that quantify
structural properties of neural processes (Nicolelis and Lebedev,
2009; Rotermund et al., 2011; King and Dehaene, 2014). Note that
the method is constrained to the analysis of neural signals asso-
ciated with categorical behavioral conditions, where the model
itself assumes that the relationship between the behavior and the,
potentially non-linear, predictors is linear.

Our analysis show that 21.5% of the neural sources show
an intermittent phase synchronization with other neural sources
while performing the contour categorization task, supporting
recent studies which suggest that there is a dynamic control of
information flow across distributed neural sources in a frequency-
specific fashion (Engel et al., 2001; Palva et al., 2005; Hipp et al.,
2012). Is there a long-range synchronization network specifi-
cally associated to the processing of contour percepts for further
categorization? For that, we analyzed the phase synchroniza-
tion between neural sources that are associated to predict the
subject’s ability to classify contours (clusters PCO/FCO) and
found that they synchronize at theta (5.6 Hz, main frequency
within interval), alpha (11.6 Hz) and high gamma (89.3 Hz) fre-
quency intervals. Those fluctuations seem to mediate information
transmission between parietal/frontal areas which are specifi-
cally involved to the processing and manipulation of a contour
for its categorization, in congruency with previous studies that
report transient synchrony in the high-gamma band to emerge
during perceptual binding (Melloni et al., 2007; Phillips et al.,
2012), cross-modal integration (Hipp et al., 2012) and attentional
control (Mesulam, 1999; Siegel et al., 2008), proposing that task-
relevant cortico-cortico communication from between cortical
areas may be mediated through gamma synchronization (Fries,
2009). Strikingly, beta synchronization between parietal/frontal
areas has been reported in visual processing tasks, such as visual
working memory, visual search and visual attention studies, sug-
gesting that long-range beta synchronization may mediate top-
down communication between cortical areas are active in tasks
involving visual information processing (Munk et al., 2002; Engel
and Fries, 2010; Hipp et al., 2011; Morgan et al., 2013; Volberg
and Greenlee, 2014). Further, we analyzed phase synchronization
between parietal and frontal neural sources that are not associ-
ated with contour processing (cluster FNC) and found that they
indeed show phase synchronization in the beta frequency range
(22.3 Hz). As such, while distal neural sources actively involved
in the processing of contours synchronize at gamma frequency,

nearby frontal sources synchronize in beta frequency. As observed
in studies within the motor control system, where beta is actually
replaced by gamma-band oscillatory activity during the prepa-
ration and execution of voluntary movements (Pogosyan et al.,
2009; Swann et al., 2009), beta synchronization between pari-
etal/frontal sources between neural sources that are recruited for a
particular cognitive task at hand may similarly signal the mainte-
nance of baseline activity, facilitating the cross-modal integration
of cognitive tasks, allowing for the processing information on dif-
ferent timescales (Engel and Fries, 2010; Schroeder et al., 2011).
These results seem to provide further insights on how nearby
cortical sources enhance oscillatory in different frequencies in
a task-specific manner, emphasizing the relevance on analyzing
neural activity based on function rather than analyzing neural
activity based on its spatial location.

Taken together, our results suggest that while oscillatory activ-
ity within occipital cortex predict the linking of local elements
into a contour, oscillatory activity within parietal and frontal
cortices play a crucial role in the execution of a contour catego-
rization task, as well as the establishment of transient synchro-
nization among them. In particular, our study reveals a phase
locking in alpha, theta and gamma frequencies between frontal
and parietal neural sources arising during the correct contour
categorization, while a fronto-parietal beta phase locking arises
within those neural sources that are not actively recruited in the
contour categorization task itself. Finally, we presented a novel
method that identifies neural sources based on their ability to
predict behavioral conditions of interest, and report that differ-
ent behavioral functions may involve the activation of cortical
areas within nearby spatial locations, suggesting the presence of
functionally distinct but spatially overlapping cortical areas.
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