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Multiple neural and synaptic phenomena take place in the brain. They operate over a
broad range of timescales, and the consequences of their interplay are still unclear. In this
work, I study a computational model of a recurrent neural network in which two dynamic
processes take place: sensory adaptation and synaptic plasticity. Both phenomena are
ubiquitous in the brain, but their dynamic interplay has not been investigated. I show
that when both processes are included, the neural circuit is able to perform a specific
computation: it becomes a generative model for certain distributions of input stimuli. The
neural circuit is able to generate spontaneous patterns of activity that reproduce exactly
the probability distribution of experienced stimuli. In particular, the landscape of the phase
space includes a large number of stable states (attractors) that sample precisely this
prior distribution. This work demonstrates that the interplay between distinct dynamical
processes gives rise to useful computation, and proposes a framework in which neural
circuit models for Bayesian inference may be developed in the future.
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1. INTRODUCTION
The main goal of Computational Neuroscience is to uncover
the kinds of computation implemented by neurons and neural
circuits, and to identify the biological mechanisms underlying
these computations. Numerous types of computation have been
described and have been associated with the dynamics of differ-
ent neural and synaptic processes (Herz et al., 2006; Abbott, 2008;
Gerstner et al., 2012; Tetzlaff et al., 2012). Among the numerous
biological phenomena observed in the brain, sensory adaptation
and synaptic plasticity stand out as two of the most studied,
since they are observed ubiquitously across most brain regions
and animal species. Both phenomena give rise to specific types of
computation, but the functional implications of their interaction
remain unclear.

Synaptic plasticity is the change in strength of the interac-
tion between neurons, and is believed to control the change
in behavior of a subject following its experience of the exter-
nal world. Synaptic plasticity takes multiple forms (Abbott and
Nelson, 2000; Feldman, 2009), of which the most studied is
Hebbian plasticity (Bi and Poo, 2001; Caporale and Dan, 2008).
Different types of plasticity are believed to underlie a broad range
of functions, including: memory formation and storage (Martin
et al., 2000; Lamprecht and LeDoux, 2004; Seung, 2009), ner-
vous system development (Katz and Shatz, 1996; Miller, 1996;
Sanes and Lichtman, 1999; Song and Abbott, 2001), recovery
after brain injury (Buonomano and Merzenich, 1998; Feldman
and Brecht, 2005), classical conditioning (Wickens et al., 2003;
Calabresi et al., 2007; Surmeier et al., 2009; Pawlak et al., 2010;
Gallistel and Matzel, 2013), operant conditioning (Seung, 2003;
Montague et al., 2004; Daw and Doya, 2006; Doya, 2007; Soltani

and Wang, 2008), spatial navigation (Blum and Abbott, 1996;
Mehta et al., 2002), efficient coding of sensory stimuli (Toyoizumi
et al., 2005; Savin et al., 2010; Bernacchia and Wang, 2013),
homeostatic regulation of neuronal excitability (Royer and Paré,
2003; Turrigiano and Nelson, 2004; Williams et al., 2013), sound
localization (Gerstner et al., 1996) and production of behavioral
sequences (Fiete et al., 2010).

Sensory adaptation is the change in responsiveness of a neu-
ron to a given input, and is believed to control the change in
perception of a stimulus, even if the stimulus maintains constant
physical attributes (Webster, 2011). The main effect of adapta-
tion on neural activity is to shift the response function depending
on the adapting stimulus (Kohn, 2007; Rieke and Rudd, 2009).
This effect has been observed in a broad range of species, sen-
sory modalities and stimulus variables, including: luminance
(Sakmann and Creutzfeldt, 1969; Shapley and Enroth-Cugell,
1984), contrast (Ohzawa et al., 1985; Smirnakis et al., 1997), edge
orientation (Müller et al., 1999; Dragoi et al., 2000), direction of
motion (Kohn and Movshon, 2004), motion speed (Brenner et al.,
2000; Krekelberg et al., 2006) and sound level (Dean et al., 2005).
In addition to the shift in tuning, the gain of neural response
changes depending on the stimulus variance (Fairhall et al., 2001;
Borst et al., 2005; Nagel and Doupe, 2006; Maravall et al., 2007).
One hypothesized function of sensory adaptation is the efficiency
of coding: the statistics of input stimuli can vary widely and must
be encoded by neurons with limited dynamic range; centering the
neural response around the mean input prevents saturation and
determines optimal discrimination (Laughlin, 1981; Wainwright,
1999; Machens et al., 2005; Clifford et al., 2007; Schwartz et al.,
2007; Wark et al., 2007).
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I simulate and analyze a computational model of a recurrent
neural circuit, and I show that when both sensory adaptation
and synaptic plasticity are included in the model, the neural cir-
cuit is endowed with a specific type of computation: it becomes
a generative model of the input stimuli. Generative models pro-
vide a solution to a broad range of problems in machine learning
(Hinton, 2007, 2010; Barra et al., 2012), and have been pro-
posed as candidate models of perception, learning and Bayesian
inference in real brains (Fiser et al., 2010; Clark, 2013). In the
model presented here, the spontaneous dynamics of neural activ-
ity lingers on a subset of specific neural patterns which corre-
spond to the neural patterns that have been driven by sensory
stimuli. In particular, the likelihood of observing a given neural
pattern is equal to the frequency with which the corresponding
stimulus has been previously experienced. Formally speaking, the
model dynamics displays a large number of attractors which sam-
ple exactly the probability distribution of input stimuli. In the
limit of an infinite number of neurons, I show that the dynamics
converges to a continuous (line) attractor.

Neurons and synapses are modeled as binary variables
(Hopfield, 1982; Tsodyks, 1990), therefore the model is not bio-
logically realistic. In particular, it does not include separate popu-
lations of excitatory and inhibitory neurons and does not account
for a range of dynamical regimes observed in the brain, such as the
asynchronous and irregular spiking activity of cortical neurons.
Also, the network operates in two distinct phases: (1) a stimulus
driven regime in which plasticity and adaptation occur and inter-
nal dynamics is turned off, and (2) a spontaneous regime in which
the stable states of the dynamics are probed in absence of stimu-
lus, plasticity and adaptation. However, the model is very simple
to simulate and analyze despite the inclusion of multiple mecha-
nisms. The present work is limited to univariate distributions of
input stimuli.

2. MATERIALS AND METHODS
The neural circuit implemented in this work is a variant of a
model studied in Bernacchia and Amit (2007), with the additional
inclusion of adaptation. I consider a neural circuit with a total
number of neurons equal to N, labeled by the index i = 1, . . . , N.
The total current afferent to neuron i at time t is the sum of
the external current, due to the input stimulus, and the internal
current, due to the local recurrent connections within the neural
circuit:

Ii(t) = Iext
i (t) + Iint

i (t) (1)

The activity of neuron i upon receiving current Ii is equal to

xi(t + �t) = sign (Ii(t)) (2)

where �t is the time step used in simulations.
For simplicity, I consider two exclusive scenarios, in which

either of the two types of currents dominate: When a stimu-
lus is presented, the internal current is set to zero, therefore
the external current dominates (“stimulus-driven” stage); when a
stimulus is absent, the external current is set to zero and the inter-
nal current dominates (“spontaneous” stage). The case in which

both types of current are simultaneously contributing was stud-
ied in Bernacchia and Amit (2007) (in absence of adaptation).
The parameter �t reflects the time constant of the update of
a neuron’s activity, and is set to 10 ms during the spontaneous
stage. During the stimulus-driven stage, a sequence of stimuli is
presented, the activity is instantaneously enforced by the stimu-
lus. Therefore, the activity is constant as long as the stimulus is
constant, and changes immediately following transitions between
subsequent stimuli. For simplicity, I simulate one time step for
each stimulus, by setting the time step equal to one “trial,” �t =
1. This value of �t is used only for convenience of numerical inte-
gration, and is not related to any biological timescale. A total of
T number of trials is simulated (a sequence of T stimuli) in one
simulation, t = 1, . . . , T.

The stimulus identity is labeled by α, varying in the closed
interval of real numbers α ∈ (0, 1), and the stimulus presented
at time t is denoted as α(t). The stimulus value α(t) at each time
step is drawn at random from a probability distribution P(α). The
external current afferent to neuron i depends on how that neu-
ron is tuned to the stimulus, which is summarized by its “tuning
curve.” I consider two types of tuning curves in different simula-
tions, one monotonic (sigmoidal), and one periodic (sine), given
by the following simple formulas

Iext
i (t) = tanh

(
β[α(t) − μi]

)
(3)

Iext
i (t) = sin

(
2π [α(t) − μi]

)
(4)

An illustration of the tuning curves is presented in Figure 1. I
define μi as the “tuning offset”: different neurons have different
offsets, but the same shape of the tuning curve. The results of most
simulation are shown for the sigmoidal tuning curve (3), but very
similar results have been obtained for a periodic tuning curve (4)
(see Appendix). The parameter β is positive, and its specific value
is irrelevant, since the neuron output is binary, given by Equation
(2), and the internal current is zero during the stimulus. In a given
simulation, the probability distribution P(α) is taken from a para-
metric family (see e.g., Figure 3), and different parameters are
drawn at random in different simulations (the distribution equals
the square of a Fourier series with random coefficients truncated
at five terms).

The internal current is the sum of activity xj of pre-synaptic
neurons weighted by the synaptic matrix Jij, namely

Iint
i (t) = 1

2N

∑
j

Jij(t)xj(t) (5)

Synaptic weights have binary values, Jij = ±1, except for the
self-couplings that are set to zero Jii = 0. Synaptic strengths are
initialized at random, +1 and −1 with equal probability. The
synaptic plasticity rule is Hebbian, meaning that it follows the
correlation of the pre and post-synaptic neuron (the product
xixj). Synaptic weights are updated at random at each time step
according to the following transition probabilities. The probabil-
ity of potentiation from time t to time t + �t is the probability
of the transition from Jij(t) = −1 to Jij(t + �t) = +1, and is
defined as
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FIGURE 1 | Schematic illustration of the neural circuit model with its

tuning curves and recurrent connections. Each circle represents one
neuron and each arrow a synaptic connection. Each rectangle shows a tuning

curve for one neuron, namely the external current afferent to that neuron
plotted as a function of the stimulus value. Left: sigmoidal tuning curves.
Right: periodic tuning curves.

w+ = 1 + xixj

2τ
(6)

Conversely, the probability of depression from time t to time t +
�t is the probability of the transition from Jij(t) = +1 to Jij(t +
�t) = −1, and is defined as

w− = 1 − xixj

2τ
(7)

Therefore, if xi and xj are different, there is a probability 1/τ of
synaptic depression, while if they are equal there is a probability
1/τ of synaptic potentiation. The time constant τ represents the
average number of time steps necessary to observe a transition
(in units of �t). Note that this synaptic plasticity rule is symmet-
ric, namely the same transition probabilities apply to Jij and Jji. In
order to reduce the effect of finite-size noise, symmetry of synap-
tic weights is enforced at each transition by updating half of the
synapses and setting Jij = Jji. This enforcement does not change
the qualitative behavior of the model.

The tuning curve of a neuron is modified during presenta-
tion of stimuli, as a consequence of adaptation. We implement
a phenomenon known as adaptation to the mean, which is ubiq-
uitously observed in a wide range of species, sensory modalities
and stimulus variables (Wark et al., 2007; Rieke and Rudd, 2009).
In particular, the presentation of a given stimulus determines a
change in the tuning offsets of neurons such that they tend to
converge toward that stimulus. An illustration of this dynamics
is shown in Figure 2. The tuning offset is a function time, μi(t),
and changes according to

μi(t + �t) = μi(t) + 1

τ

[
μ0

i − �
(
μi(t) − α(t)

)]
(8)

where τ is the timescale of adaptation in units of �t (τ is chosen
equal to the timescale of plasticity), α(t) is the stimulus presented
at time t, and � is the step function. The initial values of the tun-
ing offsets μi(0) = μ0

i are chosen to span uniformly the interval
(0, 1), namely

μ0
i = i − 1/2

N
i = 1, . . . , N (9)

The dynamics of tuning offsets, Equation (8), implies that they
are attracted by the presented stimulus, more so if they are closer
to it (see Figure 2). For convenience, tuning offsets are reordered
at each time step such that μ1 < . . . < μN . Namely, after each
update by Equation (8), if μi < μj for i > j then μi → μj and
μj → μi (no other neural parameters are permuted in this step).
Learning works without the permutation step but simplifies its
implementation.

The spontaneous dynamics of the network is tested 10 times
in each simulation, at fixed intervals of T/10 trials, referred to
as 10 sessions. In each session of the spontaneous stage, external
current, plasticity and adaptation are turned off, and the inter-
nal current is turned on. Recurrent neural dynamics is simulated
with a time step �t that is different from the one used during the
stimulus-driven stage. In the stimulus driven stage, �t reflects the
presentation of a stimulus, which may occur on a time interval
of a few seconds, while �t in the spontaneous stage reflects the
fast interaction between neurons through the internal currents,
of the order of tens of milliseconds. This internal dynamics is
implemented, by running Equations (2), (5), until the network
reaches a stable fixed point, when neural activity does not change
from one time step to the next. Then, this stable state is recorded
and the stimulus driven dynamics is resumed until the next
session.
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FIGURE 2 | The adaptation mechanism, by which tuning curves of

neurons are modified according to the presented stimulus. Tuning curves
of two neurons are shown, one neuron in blue and the other one in red,
before and after adaptation (full and dashed line, respectively). The presented

stimulus is indicated by the black dot and the vertical black line. The tuning
offsets of the two neurons are shown by the blue and red dots. Tuning
offsets are attracted by the stimulus, as shown by the arrows. Left: sigmoidal
tuning curves. Right: periodic tuning curves.

Across the 10 sessions of one simulation, the stable state may
change as a consequence of the changes in synapses occurred dur-
ing the stimulus-driven stage. I show in the Appendix that the
stable state must have a specific form that depends on a single
parameter ν (see Appendix: “The spontaneous dynamics of neu-
rons”). In general, this function is denoted by ξ(ν, μi) and, for a
sigmoidal tuning curve, that is equal to

xi = ξ(μi, ν) = sign(ν − μi) (10)

where ν is defined as the “retrieved” pattern and is sufficient
to identify the entire network state. This form implies that the
spontaneous state is equal to a pattern that would be obtained
in presence of stimulus α = ν. In order to explore the possibility
of the existence of multiple stable states, I run several simula-
tions each one with a different initial condition, varying across
the possible values of retrieved patterns.

The model has three parameters, N, T, and τ , fixed in each
simulation. I used N = 1000 in most simulations, with a few sim-
ulations implementing N = 2000, 4000, 8000, and 16000. Three
values of T used in simulations are T = 1000, T = 10000, and
T = 100000. Three values of τ used in simulations are τ = 100,
τ = 1000, and τ = 10000.

3. RESULTS
A simulation of neural circuit dynamics is divided in two sep-
arate stages: a stimulus-driven stage and a spontaneous stage.
During the stimulus-driven stage, sensory stimuli are presented
and the external currents dominates over the internal currents.
The response of a neuron to external stimuli is characterized
by the tuning curve of that neuron (illustrated in Figure 1).
During the spontaneous stage, there is no sensory stimulus and
the neural circuit activates autonomously according to its internal
currents. Synaptic plasticity and sensory adaptation occur during

the stimulus-driven stage. Synaptic plasticity is implemented by a
simple Hebbian rule, while sensory adaptation is implemented by
modifying the tuning curve of neurons (illustrated in Figure 2).
In each simulation, 10 sessions of stimulus-driven dynamics alter-
nate with 10 sessions of spontaneous dynamics (see Materials and
Methods for details).

Synaptic strengths are initialized at random, and they start
switching as a result of plasticity, depending on the neural pat-
terns of activity enforced by the presentation of stimuli. Upon
presentation of a given stimulus, synaptic plasticity tends to make
the corresponding neural activity pattern more stable, because of
the Hebbian rule. A series of different stimuli are subsequently
presented, determining a series of corresponding neural activ-
ity patterns. Therefore, because of the presentation of multiple
stimuli, each pattern competes with other patterns for switching
synapses in its own favor.

However, neural activity patterns not only compete but they
also cooperate. Since the tuning curves of neurons are smooth
functions of the stimulus (Figure 1), two similar values of the
stimulus corresponds to two neural activity patterns that are also
similar. Therefore, neural activity patterns are correlated, and two
similar patterns collaborate in switching synapses toward stabiliz-
ing both of them. The resolution of this competition-cooperation
trade-off depends on the distribution of input stimuli. If a subset
of nearby stimuli is presented more often than other stimuli, the
corresponding neural activity patterns will stabilize at the expense
of others.

In order to determine which neural activity patterns stabi-
lize as a consequence of synaptic plasticity, I measure the stable
fixed points of the spontaneous dynamics, also referred to as
“attractors” or “stable states.” At ten regular intervals (sessions)
in each simulation, the stream of external stimuli is interrupted
and the spontaneous dynamics is tested in presence of the internal
currents only. This dynamics runs until the network reaches a
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stable fixed point, a neural activity pattern that does not change
unless the system is perturbed. In each session, the spontaneous
dynamics runs multiple times, with different initial conditions, to
test for multiple stable states. After recording all the stable states,
the stimulus-driven dynamics is resumed until the next session.
The process is repeated for the 10 sessions of each simulation (see
Materials and Methods).

The neural activity pattern corresponding to a given stable
state is summarized by a single parameter, the “retrieved pattern.”
This corresponds to the stimulus that, when presented, elicits
exactly that neural pattern of activity. During the spontaneous
dynamics there is no presentation of any stimulus, nevertheless
the stable state is equivalent to the pattern elicited by that stim-
ulus. The fact that the spontaneous dynamics reproduces the
activity corresponding to a stimulus implies that synaptic plas-
ticity has previously worked toward stabilizing that stimulus. I
show in the Appendix (section: “The spontaneous dynamics of
neurons”) that a spontaneous state is equal to a stimulus pattern
provided that stimulus-driven synaptic plasticity has occurred for
a time long enough.

Figure 3 shows the stable states (retrieved patterns), recorded
during 10 subsequent sessions of spontaneous dynamics (ten
rows, from top to bottom), plotted together with the distribution

of input stimuli (top curve), in four different simulations (four
panels). In each simulation, a different probability density p(α)
is used to draw the sequence of input stimuli. Stimuli that are
located near the highest mode of the distribution are more likely
to be presented. Therefore, the corresponding neural activity pat-
terns occur more often, and drive synaptic plasticity toward their
own stabilization. As a consequence, in the first session one attrac-
tor state appears near the highest mode of the distribution (top
row). In one simulation, two attractors appear near the high-
est mode. In another simulation, two attractor states appear,
one near the highest mode, and another one near the second
highest.

The landscape of attractor states changes significantly in ten
subsequent sessions (Figure 3, ten rows, from top to bottom).
First of all, attractor states are not maintained. If a given state is
an attractor in one session, it is not necessarily an attractor in the
next session. This is a consequence of the ongoing synaptic plas-
ticity and the ongoing presentation of stimuli. Both processes are
noisy: synaptic transitions are stochastic, and stimuli are drawn
at random from the given probability density p(α). Most impor-
tantly, the number of attractor states increases significantly in
subsequent sessions. In each simulation, the first session has only
one or at most two attractor states. Numerous attractor states

FIGURE 3 | Distribution of stimuli p(α) (probability density, black

curve) from which the sequence of input stimuli is drawn, and the

stable fixed points of the spontaneous dynamics (attractors, blue

stars), referred to as “retrieved patterns.” Four example simulations
are shown in the four panels. Each stable fixed point is denoted by a
star along the stimulus space. Different rows in each panel correspond

to the 10 sessions of that simulation, ordered from top to bottom. In
early sessions, a few attractors tend to locate near the modes of the
probability density. In late sessions, several attractors sample the entire
space of stimuli in proportion to the their likelihood. A histogram of the
attractors from 1000 sessions (blue bars) is supermposed to the
probability density of stimuli.
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appear in subsequent sessions, which seems to sample precisely
the distribution of input stimuli.

In summary, spontaneous activity of the neural circuit shows
a large number of stable states which samples exactly the dis-
tribution of input stimuli. Therefore, spontaneous activity tends
to linger on neural activity patterns that corresponds to specific
input stimuli, more so if those stimuli have been experienced
more often. Formally, spontaneous neural activity stops at a stable
state and stays there indefinitely. However, in presence of noise,
spontaneous activity would jump between attractor states (Amit,
1992), and would spend more time where a larger number of
attractor states are present. In addition, I show below that an
infinite number of stable fixed points (a continuous attractor)
develops in the limit of an infinite number of neurons, implying
that spontaneous activity is virtually free to sample the distribu-
tion. This property makes the neural circuit akin to a generative
model of the stimuli (see Discussion).

The increase in the number of attractor states is a conse-
quence of adaptation, as illustrated in Figure 4. Initially, synapses
tend to favor neural activity patterns of stimuli that are encoun-
tered more often. However, adaptation tends to counterbalance
this effect. In order to illustrate this, I associate each stimulus
with a specific region of the neural circuit: when a stimulus is
equal to the tuning offset of a neuron, I associate the stimu-
lus with the location of that neuron. In Figure 4 (left), most
stimuli are presented (gray shading) in the top left part of the
network (therefore, most stimuli are equal to the tuning offsets
of neurons in that part). As a consequence of adaptation, tun-
ing offsets of neurons also tend to concentrate in that part of the
network. This is illustrated by the external arrows that, represent-
ing fixed shapes of tuning curves, are “repelled” by those stimuli
(right). The new organization of neurons following this transfor-
mation implies that the distribution of input stimuli now looks
uniform (gray shading). I show in the Appendix that the distribu-
tion of tuning offsets of neurons matches exactly the distribution

of presented stimuli (see Appendix: “The dynamics of tuning
offsets”).

Therefore, the network effectively “sees” a uniform distribu-
tion of presented stimuli. When synaptic plasticity applies to
this uniform distribution, no specific stimulus pattern is favored
with respect to any other. Therefore, the distribution of synaptic
strengths do not favor any specific stimulus, and all patterns are
equally likely to represent an attractor state. The increase in the
number of attractors across sessions reflects the fact that synaptic
plasticity tends to make more and more patterns suitable for sta-
bility. However, due to the finite size of the network, the stochastic
synaptic transitions and the random presentation of stimuli, some
neural patterns are still more likely than others to stabilize. Note
that attractors distribute uniformly in the neural space, but since
the neural representation of stimuli has changed, via the change
in tuning curves, the attractors follows the distribution of stimuli
in the stimulus space (see Discussion) as shown in Figure 3.

Figure 5 (left) shows the number of attractor states as a func-
tion of session for three different values of the timescale τ of
plasticity and adaptation (both phenomena are assumed to evolve
according to the same time constant τ ). As described above,
the number of attractor states increases in subsequent sessions.
In addition, the number of attractor states also increases as a
function of the timescale τ . A larger timescale implies a smaller
effect of noise, because changes in synaptic strengths and tuning
curves are slow enough to encompass a large number of stimulus
presentations and average out the resulting fluctuations.

In order for the spontaneous activity to match exactly the
distribution of input stimuli, the landscape of attractor states
should converge to an infinite number of fixed points (a con-
tinuous attractor) in the limit of a large number of neurons. I
tested this hypothesis by looking at how the number of attractor
states scales with the number of neurons. The result is shown in
Figure 5 (right), where the number of attractor states is calculated
in the limit of large τ and in stationary conditions. The number of

FIGURE 4 | Effect of adaptation on the representation of stimuli. Left:
illustration of the neural circuit model, same as in Figure 1. The tuning curves
of different neurons are not shown here, but are still represented by the arrows
pointing from the external circle to the neural circuit. The gray shading
illustrates the distribution of external stimuli according to the network
selectivity: the bump on the top left of the figure implies that most stimuli are

presented in that region. By definition, a stimulus presented at a given place of
the neural circuit is intended as equal to the tuning offset of the corresponding
neuron. Right: after adaptation, the tuning curves of neurons are changed, as
shown by the displacement of the arrows from the bulk of the stimulus
distribution. As a consequence, the stimulus distribution in gray shading now
appears uniform across the network (uniform gray shading around the circle).
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FIGURE 5 | Number of attractor states as a function of session number, timescale τ (left), and number of neurons (right). The number of attractor
states increases in subsequent sessions and for slower timescales. The scaling of the number of attractors with respect to the number of neurons is ∼N2/3.

attractor states increases as a function of the number of neurons
according to a power law ∼N2/3. Using mathematical arguments,
I show in the Appendix that in the limit of large N and τ , the
dynamics indeed converges to a continuous (line) attractor state
(see Appendix: “The spontaneous dynamics of neurons”).

4. DISCUSSION
It is well known that Hebbian synaptic plasticity determines sta-
ble and autonomous neural patterns of activity, sometimes called
“cell assemblies,” or “attractors” (Hopfield, 1982; Bernacchia and
Amit, 2007). These stable states are spontaneous, since they can
activate in absence of an external stimulus. In this work, I showed
that if sensory adaptation is added to synaptic plasticity, these
spontaneous states replicate the activity evoked by the previously
experienced stimuli, in proportion to their relative occurrence.
In other words, this set of stable states samples precisely the
distribution of stimuli, and the neural circuit represents a gener-
ative model of the input stimuli (Hinton, 2007, 2010; Fiser et al.,
2010; Barra et al., 2012; Clark, 2013). This is consistent with the
observation that spontaneous activity of neurons in visual cor-
tex reproduces the stimulus-evoked activity (Kenet et al., 2003;
Berkes et al., 2011). According to Bayesian models, neural activity
may represent the prior distribution of stimuli, either by encoding
the value of the probability (Pouget et al., 2003), or by sampling
that distribution (Hoyer and Hyvarinen, 2003). The present work
is more consistent with the latter interpretation.

Bayesian models have been applied to a broad variety of
problems in Neuroscience (Vilares and Kording, 2011), includ-
ing multi-sensory integration (Ernst and Bülthoff, 2004; Knill
and Pouget, 2004), sensory-motor control and action selection
(Körding and Wolpert, 2006; Berniker et al., 2011). Bayesian
models propose that neural circuits maintain a representation of
the probability distribution of sensory stimuli (prior), and com-
bine this prior distribution with new incoming information (Fiser
et al., 2010). Probability distributions are believed to be repre-
sented by the activity of populations of neurons (Pouget et al.,
2003). However, while the neural mechanisms of multi-sensory
integration are starting to be elucidated (Stein and Stanford, 2008;

Angelaki et al., 2009), it remains unknown how the brain forms
priors and how it combines them with new information (Vilares
and Kording, 2011).

The model studied in this work is characterized by binary
neurons and binary synapses, and includes a simple model of
sensory adaptation and synaptic plasticity. Because of its sim-
plicity, the model does not account for a range of biological
phenomena observed in real neurons and synapses, and any com-
parison between the model and experimental data may be only
qualitative. However, the model can be easily simulated and ana-
lyzed, and the results can be understood in a formal mathematical
framework. Details of the mathematical analysis of the model are
developed in the Appendix. It remains to be tested whether the
qualitative conclusions afforded by the model may be generalized
to biologically more realistic situations.

A couple of groups studied more realistic neural circuit models
including synaptic plasticity and spike-frequency adaptation, and
showed that they optimize information transmission (Hennequin
et al., 2010), and reproduce visual responses (Zylberberg et al.,
2011). However, spike-frequency adaptation is different from the
adaptation studied in this work, which is usually referred to as
“sensory adaptation” (Wark et al., 2007; Gutkin and Zeldenrust,
2014). Sensory adaptation is a more general phenomenon, and
spike-frequency adaptation is one of several possible mechanisms
by which it is implemented in neural systems. In this work,
I consider sensory adaptation without referring to any specific
biological mechanism. This is expressed as a change in the tun-
ing curve of neurons according to the adapting stimulus. In
particular, I consider the attraction of the tuning curve by the
adapting stimulus, which has been ubiquitously observed in the
case of monotonic tuning curves (e.g., sigmoidal, Kohn, 2007;
Rieke and Rudd, 2009). In case of unimodal tuning curves (e.g.,
sine), both repulsion (Müller et al., 1999; Dragoi et al., 2000)
and attraction (Kohn and Movshon, 2004) of the tuning curve
by the adapting stimulus has been observed. However, note that
repulsion and attraction in those cases is meant with respect
to the “preferred stimulus” of a neuron, instead of the “tuning
offset.” In the present model, both repulsion and attraction can
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be observed with respect to the preferred stimulus (see e.g.,
Figure 2).

A substantial assumption of this work is that the represen-
tation of the stimulus follows the change in the tuning curves
of neurons. In other words, a given neural activity pattern that
represents a given stimulus at some moment in time, may repre-
sent a different stimulus later, because tuning curves of neurons
have changed. In other words, I assume that the “homunculus”
is “aware” of adaptation, while perceptual changes seem to be
consistent with an “unaware” homunculus (Seriès et al., 2009),
leading to what has been previously referred to as a decoding
ambiguity (Fairhall et al., 2001), or coding catastrophe (Schwartz
et al., 2007). However, behavioral and physiological observations
are also consistent with a homunculus that is initially unaware of
adaptation, but slowly catches up after enough time has passed
since changes in stimulus encoding. In the present work, this
could be modeled by using a faster timescale for adaptation and
a slower timescale for plasticity. Future work will investigate the
effects of changes in those timescales on the network dynamics
and the attractor landscape (Chaudhuri et al., 2014).

In the present model, spontaneous activity converges to an
attractor, a stable state of the neural dynamics and, by definition,
it stays there indefinitely. However, in presence of noise, neural
activity jumps between attractors (Amit, 1992), and the dynam-
ics visits the different attractor states equally often. Furthermore,
I showed that in the limit of an infinite number of neurons, the
set of attractor states becomes infinite and converges to a continu-
ous (line) attractor spanning the entire stimulus set. In that limit,
the dynamics of neurons would not display discrete jumps, rather
it would sample exactly and uniformly the continuous space of
attractors.

As a final remark, note that in addition to representing a gener-
ative model of input stimuli, the model described here represents
a solution to the problem of developing a continuous attractor
from a set of discrete attractors, as previously investigated by
Koulakov et al. (2002), Renart et al. (2003), Blumenfeld et al.
(2006), Itskov et al. (2011).
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APPENDIX
In this section, I derive useful expressions of the following quantities: (1) The stationary distribution of synaptic strengths; (2) The
stationary distribution of tuning offsets; (3) The stable states of the spontaneous dynamics. Those quantities are instrumental for
understanding the results presented in the main text.

THE DYNAMICS OF SYNAPTIC STRENGTHS
Synaptic plasticity occurs during the presentation of input stimuli, and the statistics of those stimuli affect the synaptic strengths. The
goal of this section is to derive a simple expression for the stationary average of synaptic strengths, as a function of the statistics of
input stimuli.

The probability that at time t a synapse is potentiated (Jij(t) = + 1) is denoted by u(t). Conversely, the probability that the synapse
is depressed (Jij(t) = −1) is denoted by v(t). The normalization condition holds, namely

u(t) + v(t) = 1 (A1)

Using these probabilities, the average synaptic strength is equal to

〈
Jij

〉
t = u(t) − v(t) (A2)

The angular brackets denote an average over the distribution of synaptic stenghts. Using Equations (A1), (A2), the probabilities u(t),
v(t) are written in terms of the average, i.e.,

u(t) = 1 + 〈
Jij

〉
t

2
(A3)

v(t) = 1 − 〈
Jij

〉
t

2
(A4)

In order to derive a master equation which describes the evolution of the average synaptic matrix
〈
Jij

〉
, transition probabilities must be

defined. The probability of potentiation, namely the probability of the transition from Jij(t) = −1 to Jij(t + �t) = + 1 is denoted
as w+. Conversely, the probability of depression, namely the probability of the transition from Jij(t) = +1 to Jij(t + �t) = − 1 is
denoted as w−. The evolution of u(t) is given by the master equation

u(t + �t) − u(t) = w+v(t) − w−u(t) (A5)

In words, the change in the fraction of potentiated synapses during a time step �t is equal to the fraction of depressed synapses that
are potentiated minus the fraction of potentiated synapses that are depressed in that time step. Substituting Equations (A3), (A4) into
Equation (A5), it is possible to write the equation in terms of the average synaptic efficacy, namely

〈
Jij

〉
t+�t − 〈

Jij
〉
t = −(w+ + w−)

〈
Jij

〉
t + (w+ − w−) (A6)

The transition probabilities depend on neural activity according to a Hebbian prescription, given by Equations (6), (7). Substituting
those equations, the above Equation (A6) is rewritten as

τ
[〈

Jij
〉
t+�t − 〈

Jij
〉
t

]
= −〈

Jij
〉
t + xi(t)xj(t) (A7)

This equation shows how the average synaptic strength changes according to neural activity of the pre and post-synaptic neurons. For
simplicity, in the following I use �t = 1. The solution of Equation (A7) is equal to

〈
Jij

〉
t =

1

τ

t−1∑
t′ = 0

(
1 − 1

τ

)t−t′−1

xi(t′)xj(t′) +
(

1 − 1

τ

)t 〈
Jij

〉
0 (A8)

In the following, I assume that time t is large enough for the initial condition to decay away, namely t � τ . Plasticity occurs during
stimulus presentation, which imposes a specific pattern of neural activity. During presentation of stimulus α(t) at time t, neural activity
is equal to
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xi(t) = ξ(μi, α(t)) (A9)

Substituting Equation (A9) into Equation (A8), the expression of the average synaptic strengths is rewritten as

〈
Jij

〉
t = 1

τ

t−1∑
t′=0

(
1 − 1

τ

)t−t′−1

ξ(μi, α(t′)) ξ(μj, α(t′)) (A10)

As explained in the Materials and Methods section, in each trial one stimulus α is drawn at random from a distribution p(α). In the
limit of large t and τ (and t � τ ), the sum over t′ in Equation (A10) can be replaced by an integral over the distribution of the stimulus
values, and the stationary synaptic strengths are equal to

〈
Jij

〉 =
∫ 1

0
dα p(α)ξ(μi, α)ξ(μj, α) (A11)

THE DYNAMICS OF TUNING OFFSETS
In addition to plasticity, during the presentation of input stimuli also adaptation takes place, and determines a change in the tuning
offsets of neurons. The goal of this section is to derive a simple expression for the distribution of tuning offsets as a function of
the statistics of input stimuli. The final result is that, under certain assumptions, the distribution of tuning offsets is equal to the
distribution of input stimuli.

The dynamics of tuning offsets is defined by Equation (8). That equation is rewritten here with a minor rearrangement of terms

τ
[
μi(t + �t) − μi(t)

]
= μ0

i − �
(
μi(t) − α(t)

)
(A12)

I assume that after enough time has passed, this dynamics settles into a stationary state. In particular, this assumption will be met in
the limit of large τ . The stationary state is defined by the condition that the temporal average of μi(t + �t) is equal to the temporal
average of μi(t). In other words, the temporal average of the left hand side is zero. Therefore, the temporal average of the right hand
side must be also zero. The temporal average of the � step function is equal to the fraction of times in which its argument is positive,
namely the probability that μi > α. On the other hand, μ0

i is constant and given by Equation (9). Therefore, the stationary condition
reads

Prob(μi > α) = μ0
i = i − 1/2

N
(A13)

Note that μ0
i represents an ordered and uniform tiling of the interval (0, 1) by neurons. At the stationary state, when the values of

μi are relatively fixed and stable, the left hand side is equal to the cumulative distribution function of the input stimuli α. I denote
the density and cumulative distribution function of the input stimuli by, respectively, p(α) and P(α). Therefore, Equation (A13) is
rewritten as

P(μi) = μ0
i (A14)

By definition of cumulative distribution function, P can be inverted to obtain the tuning offsets of neurons

μi = P−1(μ0
i ) (A15)

In the limit of large N, I can substitute the index i with a label y = μ0
i spanning a continuum of neurons in the interval (0, 1). Therefore,

μ(y) = P−1(y) (A16)

Then, it is easy to show that the tuning offsets of neurons follow the same distribution of input stimuli. By taking the derivative of
Equation (A16) with respect to y, I can calculate the volume dy of neurons with tuning offsets included in a given interval dμ, that is
equal to

dy = p(μ)dμ (A17)

Therefore, the density function of tuning offsets across neurons is equal to the p(μ), which is equal to the density of input stimuli. I
denote the density of tuning offsets as g(μ) and the density of input stimuli as p(α). Therefore, the above result is written as

g(μ) = p(μ) (A18)
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THE SPONTANEOUS DYNAMICS OF NEURONS
The goal of this section is to derive a simple equation describing the (stable) fixed points of the retrieval dynamics of neurons, that
is the dynamics in absence of stimulus and plasticity. However, I assume that stimulation and plasticity have occurred before this
retrieval stage, and synaptic strengths have been modified by the distribution of input stimuli through Equation (A11). Therefore, the
distribution of input stimuli in turn affects the neural dynamics during retrieval. Neural dynamics also depends on the distribution of
tuning offsets.

During the retrieval phase there is no input stimulus, therefore the total current Ii is equal to the internal current, given by Equation
(5). In the limit of a large number of neurons N, I can substitute the synaptic strength Jij with its average, therefore the current is equal
to

Ii(t) = 1

2N

∑
j

〈
Jij

〉
xj(t) (A19)

I substitute the expression for the average synaptic strength, Equation (A11), into Equation (A19), and the new expression for the
current is

Ii(t) = 1

2N

∫ 1

0
dα p(α)ξ(μi, α)

N∑
j = 1

ξ(μj, α)xj(t) (A20)

As mentioned above, during the retrieval phase there is no input stimulus. Nevertheless, I assume that neural activity is equal to a
pattern that would be obtained by stimulating the network with a given stimulus ν. Namely, I assume that

xj(t) = ξ(μj, ν(t)) (A21)

The value of ν depends on time and is unknown. This assumption is verified below by a self-consistent argument. Under this
assumption, the new expression of the current is obtained by substituting Equation (A21) into Equation (A20), to find

Ii = 1

2N

∫ 1

0
dα p(α)ξ(μi, α)

N∑
j = 1

ξ(μj, α)ξ(μj, ν) (A22)

where I dropped the explicit dependence on time. In the limit of a large number of neurons N, I can substitute the sum over the index
j with an integral over the tuning offsets of neurons, μ = μj, according to the distribution of such tuning offsets, which I denote by
g(μ). Namely, I can use the following expression

1

N

N∑
j = 1

ξ(μj, α)ξ(μj, ν) =
∫ 1

0
dμ g(μ)ξ(μ, α)ξ(μ, ν) (A23)

By substituting Equation (A23) into Equation (A22), the new expression for the current is

Ii = 1

2

∫ 1

0
dα dμ p(α)g(μ)ξ(μi, α)ξ(μ, α)ξ(μ, ν) (A24)

This expression is useful for studying the stable states of neural dynamics. However, first the assumption made in Equation (A21) must
be checked. The following analysis is valid in case of a sigmoidal tuning curve, Equation (3), which implies ξ(μ, ν) =sign(μ − ν), but
similar results are obtained in case of a periodic tuning curve Equation (4).

The assumption in Equation (A21) states that neural activity in absence of the stimulus is equal to the activity in presence of a
stimulus, for a given unknown stimulus ν at time t. In order to check this assumption, I follow a self-consistent argument: given that
the assumption is true at time t, test whether it remains true at time t + �t. In other words, given Equation (A21), it must be true that

xi(t + �t) = ξ(μi, ν(t + �t)) (A25)

Note that the ν(t + �t) is not given and can be any value in the interval (0, 1). Equation (A24) was derived under the assumption
of Equation (A21), therefore I check whether Equation (A24) implies Equation (A25). I substitute the expression for the function ξ ,
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Equation (10) in Equation (A24). After calculating the integral explicitly, I express the current in terms of the cumulative distribution
functions of the input stimuli P and tuning offsets G, whose density functions are, respectively, p and g. The result is

Ii = G(ν) − P(μi) + 1

2

∫ 1

0
dα

[
P(α)g(α) − p(α)G(α)

]
+ sign(μi − ν) ·

·
{[

P(μi) − P(ν)
][

G(μi) − G(ν)
]

+
[

P(ν)G(μi) − P(μi)G(ν)
]

−
∫ μi

ν

dα
[

p(α)G(α) − P(α)g(α)
]}

Note that the term in curly brackets is small for μi ∼ ν. In that case, the current is approximated by

Ii � G(ν) − P(μi) + 1

2

∫ 1

0
dα

[
P(α)g(α) − p(α)G(α)

]
(A26)

This is a monotonically decreasing function of μi, because the cumulative distribution P is monotonically increasing by definition. In
addition, the current Ii takes opposite values at the extreme points μi = 0 and μi = 1. Therefore, it must vanish at a unique value of
μi, provided that this value is close enough to ν to justify the approximation μi ∼ ν. I define this value as ν(t + �t). As a consequence,
using Equation (2), the neural activity is equal to

xi(t + �t) = sign(Ii) = sign(ν(t + �t) − μi) = ξ(μi, ν(t + �t)) (A27)

and Equation (A25) is demonstrated. Therefore, the assumption that neural activity in absence of the stimulus takes the form of
Equation (A21) is self-consistent. The value of ν(t + �t) can be calculated as a function of the value of ν(t). Under the assumption
that the two values are close, ν(t + �t) ∼ ν(t), this can be calculated by replacing μi with ν(t + �t) in Equation (A26). Therefore,

P(ν(t + �t)) − G(ν(t)) + 1

2

∫ 1

0
dα

[
p(α)G(α) − P(α)g(α)

]
= 0 (A28)

In order to find the fixed points of neural activity, I impose that ν(t + �t) = ν(t) = ν. The value of ν is the fixed point of the retrieval
dynamics. This condition is equivalent to

P(ν) − G(ν) + 1

2

∫ 1

0
dα

[
p(α)G(α) − P(α)g(α)

]
= 0 (A29)

This equation can be solved to find the fixed points ν for a given distribution of input stimuli p and of tuning offsets g. By taking the
derivative of Equation (A28) with respect to ν, it is easy to check that a fixed point ν is stable if and only if

p(ν) > g(ν) (A30)

Note that if the two distributions p and g are exactly equal, as happens at the stationary state of the dynamics of tuning offsets, Equation
(A18), then all possible values of ν correspond to marginally stable fixed points. This corresponds to a continuous attractor state.
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