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Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive
networks, controlling sequential and spatial working memory (SWM). Such dynamic
connectivity changes suggest that the normal relationship between the neuronal
components within the network deteriorates. As a result, competitive network dynamics
is qualitatively altered. This dynamics defines the robust recall of the sequential
information from memory and, thus, the SWM capacity. To understand pathological and
non-pathological bifurcations of the sequential memory dynamics, here we investigate
the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition.
We consider the ensemble of units with all-to-all inhibitory connections, in which the
connection strengths are monotonically distributed at some interval. Based on computer
experiments and studying the Lyapunov exponents, we observed and analyzed the new
phenomenon—clustered sequential dynamics. The results are interpreted in the context
of the winnerless competition principle. Accordingly, clustered sequential dynamics is
represented in the phase space of the model by two weakly interacting quasi-attractors.
One of them is similar to the sequential heteroclinic chain—the regular image of SWM,
while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means
that the recall of the normal information sequence is intermittently interrupted by episodes
with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged
working memory and other cognitive functions.

Keywords: cognitive dynamics, memory disorders, inhibition, sequential intermittency, complex networks,

heteroclinic chimeras

1. INTRODUCTION
The human brain is a complex net of functionally interconnected
regions. Deeper understanding the dynamics of this network is
very useful for describing how brain activities transform to task-
dependent cognitive processes. This dynamical approach is pro-
viding new insights into abnormal brain organization in various
psychiatric and neurological disorders. Advances in this area stim-
ulate new discoveries on dynamical disorders related to network
connectivity, such as obsessive-compulsive disorder, schizophre-
nia, dementia, and drug dependence (Chambers et al., 2009;
Bystritsky et al., 2012; Hughes et al., 2013). Non-linear dynamical
models studying psychopathology must focus on understanding
how disturbances in the networks’ architecture contribute to cog-
nitive and affective dysfunctions. In particular, it is extremely
important to separate emergent dynamics into pathological
and non-pathological regimes concerning a specific cognitive
task.

As well known, cognitive human resources are finite
(Franconeri et al., 2013). When a person becomes sick or its
cognitive problem worsens, the performance degrades. There
are several possible mechanisms of cognitive resource limita-
tions discuss in the literature; for a review, see Emrich et al.
(2013). In this paper, we focus on sequential working memory
(SWM) capacity and discuss the instability mechanism related

to the length of the information items (chunks) sequence. SWM
is a dynamical cognitive network that enables and sustains a set
of sequentially ordered mental representations for further recall
and processing. The capacity of SWM is quite limited, i.e., it
is 5 ± 2 chunks of information at any time instant (Miller,
1956; Bick and Rabinovich, 2009; Rabinovich et al., 2014). The
contents of SWM are generally thought to be conscious. The
SWM cognitive network, as imaging experiments indicate, con-
sists of several brain modules distributed in different areas of
the frontal cortex, sensory cortical regions, hippocampus and
some others. These modules interact through the attentional pro-
cess (Postle, 2006), forming stimulus-dependent spatiotemporal
informational modes.

In excitatory-inhibitory cognitive networks that perform
SWM, these modes sequentially turn off/ turn on each other
according to winnerless competition (WLC) principle. As a result,
a stable time-ordered sequence of chunks is formed (Rabinovich
et al., 2014). In experiments, the sequence of such switching looks
like a chain of metastable states—each state corresponds to the
specific mode lasting for a finite time (Stopfer et al., 2003; Jones
et al., 2007; Bouchard et al., 2013). The mathematical image of
the sequence of metastable states is a stable heteroclinic channel
(SHC) in the phase space of the corresponding dynamical model
(Afraimovich et al., 2004a; Rabinovich et al., 2012b).
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If excitation is constant, cognitive inhibition plays a key role
in SWM dynamics and it is the origin of WLC. Cognitive inhi-
bition refers to the mind’s ability to tune out stimuli that are
irrelevant to the task/process at hand or to the mind’s current
state (Harnishfeger, 1995; MacLeod, 2007). Cognitive inhibition
is caused by several different interacting biological factors. The
first is the existence of inhibitory neurotransmitters, or chemicals
emitted by brain cells to both communicate and inhibit commu-
nication between each other. GABA is an inhibitory transmitter
that has been implicated in certain simple behavioral measures of
inhibition and the control of behavior in normal and pathological
cases; it has been identified in the cerebral cortex (Dempster and
Corkill, 1999). Given the cerebral cortex’s importance in many
brain functions such as memory and thought, the presence of
the inhibitory substance GABA supports the cognitive inhibition
processes that go on in this area of the brain. Cognitive inhibi-
tion is playing a key role in schizophrenia (Westerhausen et al.,
2011). The corresponding degradation of the sequence of infor-
mation items stability is analyzed in this paper. In particular, we
are interested in the dynamics of sequential switching in the case
of heterogeneity of the SWM network as a result of decreasing
cognitive inhibition.

For the description of the modes interaction in excitatory-
inhibitory cognitive networks, we use here the traditional model
of population dynamics and game theory—generalized Lotka-
Volterra equation for N interacting agents (Hofbauer and
Sigmund, 1998). In canonic form (see below) this model has
N metastable states that are represented in the phase space by
saddle fixed points on the axes corresponding to different agent-
variables. We consider the case of all-to-all inhibitory connections
between participants. Depending on the strengths of the anatom-
ical connections of the subnetworks - motifs or clusters that
are embedded in an original larger network can form. These
are anatomical motifs. Here we show that in heterogeneous net-
works one can observe the emergence of dynamical clusters, or
dynamical motifs in the phase space, which can be interpreted as
temporal unification of different groups of agents.

Cognitive functions, including working memory and atten-
tion, involve interconnected networks of brain regions. Recent
investigations indicated abnormalities in structural and func-
tional networks in the case of schizophrenia and other disorders,
such as depression, obsessive-compulsive disorder, and substance
abuse. These conditions are associated with deficits of GABA-
mediated synaptic transmission in the brain, when inhibitory
connections become weaker in frontal-subcortical neuronal net-
works (Tekin and Cummings, 2002; Lewis et al., 2005; Murray
et al., 2014a).

In contrast with GABA synaptic inhibition in neurophysiologi-
cal networks, the inhibition in cognition is a concept that is based
on behavioral and imaging experiments. In fact, it is a process
that has been postulated and modeled by kinetic equations for
the competitive cognitive modes (Rabinovich et al., 2012b). In the
framework of such models, it is possible to explain changes and
deteriorations in the cognitive performance in many domains of
psychological and psychiatric research. There are many areas of
psychology and cognitive science where the concept of inhibition
in global brain networks has been used successfully (Aron, 1982;

Constantinidis and Wang, 2004; Gorfein et al., 2007; Joorman
et al., 2007; Engelhart et al., 2008; Baumeister et al., 2014; Deco
et al., 2014).

Following previous studies, our results indicate potential
dynamical ways for augmenting damaged working memory
and other cognitive functions. Specifically, we hypothesize that
psychiatric and cognitive conditions will express substantial
changes in temporal dynamics during key cognitive functions.
Furthermore, if these models are successful it would be of great
interest to determine if manipulating the organization of the
feedback between fMRI time series of working memory (WM)
activity through repetitive transcranial stimulation targeting pre-
frontal cortex can modulate inhibitory WM network and thus
provide some control of the chaotic dynamics.

This paper focuses on the analysis of two related cognitive pro-
cesses, i.e., sequential working memory and attention sharing.
The analysis of the dynamics of corresponding functional global
networks with inhibitory heterogeneous connections between
cognitive modes (information items) revealed a new type of net-
work behavior, which is coined clustering dynamics. Clustering
dynamics is a sequential activity that includes ordered switch-
ing between a few information items, interrupted by intervals
with chaotic switching between some other ones. The mathemat-
ical image of such intermittent dynamics we named heteroclinic
chimera as an analog to chimeras observed in networks of phase
oscillators (see Omelchenko et al., 2013; Panaggio and Abram,
2014), inspired by neuroscience (Kozma, 1998; Henderson and
Robinson, 2011). The observed phenomenon leads to decreasing
capacity of the sequential working memory. Moreover, it causes
serious impediments in the process of attention sharing among
several objects.

2. RELATION TO OTHER MODELING STUDIES
In Loh et al. (2007), based on a statistical dynamical model
of integrate-and-fire neuronal network, the stability of attrac-
tor states in prefrontal cortical networks has been analyzed. The
authors showed that for the stability of network dynamics is
important to have a balance between excitation (NMDA con-
ductance) and inhibition (GABA conductance). In particular,
decreasing inhibition reduced the basins of cognitive attractors
and destabilized the cognitive task performance that models the
schizophrenia symptoms. The concept of excitation-inhibition
dynamical balance is supported also by other modeling (Murray
et al., 2014b), and experimental studies. In their nice work Murray
and coauthors have showed that with constant excitation disinhi-
bition increases random drift and decreases memory precision.

It is important to note that dynamical modeling of sequential
neural activities has a long history; for a review, see Rabinovich
et al. (2006). In particular, about 30 years ago, two seminal papers
have been published (Kleinfeld, 1986; Sompolinsky and Kanter,
1986), in which authors used the same idea, i.e., that sequential
patterns were generated by neural networks with time-delayed
connections. Recent work about robust sequential memory in
networks with controllable steady-state period is related to this
idea (Xia et al., 2009). Camperi and Wang (1998) analyzed visual
working memory models using networks with cellular bistabil-
ity. Szatmary and Izhikevich (2010) built a spike-timing network
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model of working memory using associative short-term synaptic
plasticity (STDP). Buonomano (2000) has trained a biophysical
network model of decoding temporal information using simi-
lar principles. In Seliger et al. (2003), the problem of recalling
temporal sequence was solved in the framework of WLC net-
works. Concluding this obviously incomplete list, we notice that
memory storage on short timescales can be maintained by neu-
ral activity that passed sequentially through a chain of network
states (Goldman, 2009). This mechanism reminds the informa-
tion propagation along heteroclinic channel in the phase space of
WLC network (Rabinovich et al., 2012a).

3. MATERIALS AND METHODS
3.1. DYNAMICAL PRINCIPLES OF COGNITION: THE SIMPLEST

CANONICAL MODEL
In order to build a non-linear dynamical model of sequential
working memory, attention, and other cognitive functions in nor-
mal and pathological conditions, we use the following ideas based
on brain imaging and behavioral experiments (see Rabinovich
et al., 2012b): (i) the equations of the model have to be written for
variables that represent the evolution of the temporal coherency
of the brain components, and must have solution which corre-
spond to metastable patterns (knowledge) in the brain; (ii) the
model must be based on winnerless competitive (WLC) dynam-
ics, a non-linear process of interaction of many informational
items or spatiotemporal modes, which guarantees sequential
switching between metastable states and potential robustness of
transient creativity dynamics; (iii) the model is an open dissipa-
tive system where inhibition is balanced by excitation; and (iv)
the dynamics of the model has to be sensitive to the changes in
memory and environment information.

In our study, we consider a kinetic equation, which can be
written as ẋi = xiF(x), where F(x) is a vector function and
x = (x1, . . . , xn). The Generalized Lotka Volterra (GLV) equa-
tion is a specific example of the kinetic equation. Thus, GLV
is a non-linear population model with a simple quadratic non-
linearity. Moreover, it is known that a system of non-linear
equations can be rewritten as system of GLV equations after
some suitable transformations (Hernandez-Bermejo et al., 1998).
Therefore, the “simple” Lotka Volterra equations can provide a
powerful tool for the description of the dynamics of complex
networks. Using this approach, one can write the model in the
simplest canonical form of Generalized Lotka-Volterra equations
(Rabinovich et al., 2006):

τ�

dR�

dt
= R�

(
γ� −

N∑
k = 1

a�,kRk

)
, (1)

where R� is the level of activity of �-th mode , � = 1, . . . , N.
Information mode variable R� must be positive or equal to zero
for all �. N is the total number of modes describing the com-
ponents that interact to perform a specific cognitive task. Time
constants τ� are fixed for a given system �, while parameters a�,k

describe the inhibitory connections between mode � and k, while
a�,� = 1 for any �, and γ� is the strength of the stimulation of
mode �. It is important that, in general, the elements of this
matrix are controlled by cognitive tasks.

The dynamics of the cognitive network is extremely sensitive
to the diversity of inhibitory connections. In this work, we model
cognitive diseases through heterogeneous decrease of inhibitory
activity in the cortex.

It is very important to emphasize that the complexity of the
corresponding model is determined by the numbers of vari-
ables (agents) and the task dependent functional hierarchical
architecture of the cognitive networks (Rabinovich et al., 2014).
The individual dynamics of the agents is of secondary impor-
tance and it can be selected based on a suitably simple model.
While numerous models exist that explain various aspects of
cortical behavior, even simple, parsimonious GLV models (Bick
and Rabinovich, 2009; Rabinovich et al., 2010) can produce
intermittent chaotic behavior by a change in inhibitory weights,
which provide insights into dynamical behaviors that may mirror
pathological conditions.

3.2. LOTKA-VOLTERRA NETWORKS. GALLERY OF THE PHENOMENA
GLV model is very important and popular model for the analysis
of multi agent non-equilibrium dynamics in ecology, biochem-
istry, and neuroscience. There is a huge amount of publications
about GLV dynamics. Here we recall the main phenomena that
are described by this model, which have been observed over a wide
range of the control parameters.

If the connection matrix is symmetric the GLV model is a gra-
dient system and demonstrates monotonic dissipative dynamics
(Hirsch and Smith, 2005). In particular, one can observe mul-
tistability like in associative memory neural networks (Hopfeld,
1982; Cohen and Grossberg, 1983; Yi et al., 2003). In the case of
moderate inhibition, the typical regime is winner-share-all (Fukai
and Tanaka, 1997). Phase portrait of such stable regime of the
symmetric high-dimensional model Equation (1) is shown in
Figure 1A.

If the connection matrix is non-symmetric, the GLV model
dynamics is extremely rich. For N > 3 the dynamics of GLV
system can be chaotic (Arneodo et al., 1982; Takeuchi, 1996;
Varona et al., 2002; Rabinovich et al., 2012b). An example of
chaotic behavior in the GLV model with 6-modes is shown in
Figure 1B. Another example is the transient dynamics represent-
ing cognitive information processing such as attention switching
or sequential working memory stability (Bick and Rabinovich,
2009; Rabinovich et al., 2014); stable heteroclinic transients are
illustrated in Figure 1C.

The key issue for the present study is understanding the ori-
gin of the SHC instability in the framework of model Equation
(1) with heterogeneous connections. The results are important for
the description of sequential information processing; for a review,
see Rabinovich et al. (2012a).

3.3. STABILITY OF THE INFORMATION SEQUENCE. SADDLE VALUES
Robust transient dynamics is organized in the phase space typ-
ically as a chain of sequentially switching of metastable states—
saddle points. The mathematical image of such dynamics is a
stable heteroclinic channel—the vicinity of the chain of saddles
coupled sequentially by their unstable separatrices. The chain can
be finite, i.e., ending at the simple attractor (stable fixed point),
or it can be periodic, asymptotically reaching a heteroclinic cycle.
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FIGURE 1 | Illustration of various dynamical regimes of the

Lotka-Volterra system. (A) Example of a system when all trajectories
converge to one stable fixed point, illustrating the coexistence of 3 modes.
(B) Portrait of irregular switching in a 6-dimensional inhibitory LV network. 3D

projection of the phase portrait of the observed strange attractor Equation (1).
(C) Winnerless competitive dynamics of a network with random
non-symmetric connections; 3D projection is shown; see Huerta and
Rabinovich (2004).

Let Ai = (0, . . . , 0, γi, 0, . . . , 0) be an equilibrium point of the

system Equation (1), i = 1, . . . , N. If λ
(i)
1 , . . . , λ

(i)
N are eigenvalues

of the matrix of the system linearized at Ai, that are ordered as fol-

lows λ
(i)
1 > · · · ≥ Reλ(i)

ki
> 0 > Reλ(i)

ki+1 ≥ · · · ≥ Reλ(i)
N then Ai is

a saddle with ki-dimensional unstable manifold.
When the unstable manifolds of the saddles are one-

dimensional, i.e., ki = 1 for all i, the stability of a SHC depends on
the ratios of the compression of the phase volume to the stretch-
ing of it in the vicinity of the channel. These ratios are called

saddle values and they can be defined as νi = −Reλ(i)
2 /λ

(i)
1 . Thus,

if νi > 1, the saddle is called dissipative and the trajectories get
closer to the unstable manifold of the saddle after passing through
its neighborhood. The mechanism of the SHC emergence in dissi-
pative systems is the Winnerless Competition that can guarantee
the sequential switching of agents activity in networks with non-
symmetric inhibitory coupling (Rabinovich et al., 2006, 2012b;
Bick and Rabinovich, 2010).

The conditions of the existence and stability of the heteroclinic
contour with constant uniform stimulation strength γi = 1 for
any i are given in Afraimovich et al. (2004a). The conditions of
existence and stability of the heteroclinic sequence with differ-
ent values of γi were obtained in Afraimovich et al. (2004b). To
support the proposed interpretation of cognitive dynamics using
heteroclinic chimera, we provide detailed mathematical analysis
in the Appendix.

4. RESULTS
4.1. DEPENDENCE OF THE NETWORK DYNAMICS ON THE

DISTRIBUTION OF INHIBITORY CONNECTIONS STRENGTHS
In this work, a system of 6 LV Equations (1) is studied. Figure 2
illustrates the general structure of such system with all-to-all con-
nections among 6 modes shown in 6 different colors; external
inputs are marked by arrows pointing to each mode. We are able
to select the parameters of the model to guarantee the regime of
regular sequential working memory. In order to produce a system
having robust heteroclinic contour, the inhibitory connections are
chosen in two groups, i.e., with weights greater than one and
smaller than one, respectively, while the self-inhibition weights
are equal to one. Moreover, the weights in each of these subsets
have a limited spread, i.e., they are concentrated around a partic-
ular value. Also, the strength of the inhibition is growing when the
number of interacting modes increases; for details, see Bick and
Rabinovich (2010). In the pathological case of weakened inhibi-
tion, on the other hand, we may expect that the strength of some
inhibitory connections to approach zero.

4.2. DYNAMICAL CLUSTERING IN HETEROGENEOUS NETWORKS.
INTERMITTENT SEQUENCES AND HETEROCLINIC CHIMERA

To analyze in detail the case of reduced/intermediate strength of
coupling when quasi-periodic heteroclinic dynamics and chaos
co-exist in a mutually coupled system, we performed extensive
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FIGURE 2 | All-to-all inhibitory interactions between 6 modes

(information items) of the cognitive network; excitatory self

connections are not shown. Black arrows represent incoming signals.

simulations with various sets of parameters. Examples of the dis-
tribution of the inhibitory weights in the GLV system with 6
modes are given in Figure 3. Blue color illustrates connectivity
in a network producing normal SHC behavior, when the strong
weights correspond to two triangle motifs, while there is a group
of small weights describing weak connectivity between the motifs.
The degraded (pathological) case is shown in red and it has signif-
icantly reduced inhibitory connection values with respect to the
normal SHC case. The magnitudes of the weights are distributed
over a range of parameters; the dotted red line illustrates a simple
exponential fit for better visibility.

Takens’ theorem (Takens, 1981) can be used to reconstruct
high-dimensional attractors from the time series of a variable
using time-delayed coordinate embedding. Note that time delay
τ can be selected according to the given problem to produce a
suitable display of the phase portrait. For example, R1(t) and its
time-lagged copies R1(t − τ ) and R1(t − 2τ ) are used in Figure 4
to show the 3-dimensional phase portrait with time-lagged recon-
struction. The case of τ = 150 is used in this display; the direction
of the trajectory is illustrated by arrows. Figure 4A shows the case
of SHC corresponding to normal parameters. On the other hand,
the attractor produced by reduced strength of coupling parame-
ters given in Figure 4 reflecting pathological conditions is shown
in Figure 4B. Here a highly complex dynamics emerges resem-
bling the Roessler strange attractor with two wings (Kennel et al.,
1992). Specifically, the attractor in Figure 4B has a main wing
and a secondary wing. The main wing is shown by overlapping
red, orange, yellow, and green patches. There is a second wing,
which is less pronounced and approaches but does not quite reach
the blue and magenta dots. The secondary wing starts when the
trajectories exit the main wing shown as Exit in Figure 4B, and
later return to the main wing through the region shown as Enter.
Figure 4C depicts a more detailed view of the two-wing attractor
using more detailed computer simulations with about 105 time
steps.

FIGURE 3 | Distribution of the strengths of the inhibitory connections

in the GLV network with 6 participants. Blue: connectivity in a network
producing normal SHC behavior; the large weights represent two triangle
motifs with strong constant connectivity values, while there is a group of
small weights describing weak connectivity between the motifs. Red:
illustrates the pathological case with significantly reduced inhibitory
connections with respect to normal SHC case, which are distributed over
the parameter range; the dotted red line is a simple exponential fit shown
for better visibility.

Quantitative evaluation of the Lyapunov exponents confirms
the coexistence of heteroclinic cycles and chaos. Namely, we
have two positive Lyapunov exponents, one small negative
value close to zero, one small negative exponent, and two
large negative exponents. The exact Lyapunov exponent values
corresponding to parameters shown in Figure 3 are as follows:
λ1 = 0.0061 ± 0.0005, λ2 = 0.0008 ± 0.0001, λ3 = −0.0019 ±
0.0015, λ4 = −0.0127 ± 0.0019, λ5 = −0.6654 ± 0.0004, λ6 =
−1.4409 ± 0.0002. We explored a variety of systems close and
further away from the heteroclinic cycles. The above conclusions
have been confirmed, i.e., we have two positive Lyapunov
exponents, one close to zero, and the rest are negative. Our
results show that two different dynamic regimes coexist in a
single system of coupled agents with non-oscillatory intrinsic
dynamics, similarly to the chimera states described recently in the
literature (Abrams and Strogatz, 2004; Hagerstrom et al., 2012;
Omelchenko et al., 2012). Earlier manifestations of chimera states
have been in ensembles of phase oscillators. In our case of WLC,
however, we observe amplitude clusterization.

Dynamical clustering means the separation of the phase flow
into several qualitatively different components. In our example
we have two components, one includes quasi-heteroclinic reg-
ular trajectories, while the other is a transient chaotic set. We
named such complex image as heteroclinic chimera. We observe
that the network’s cooperative dynamics is dominated by the
weak interaction between just a few (in our case two) dynamical
sub-networks, although the monotonic heterogeneity of the con-
nection strengths between agents would allow more distributed
interaction dynamics.

We interpret this behavior as emergent granulation of the dis-
tributed dynamics into the interaction of just a few sub-networks.
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FIGURE 4 | Illustration of various dynamic regimes using 3-dimensional

phase portrait with time-lagged reconstruction of R1; (A) normal regime

with stable heteroclinic channel (SHC); (B) abnormal regime:

coexistence of SHC and quasi-chaotic attractor—heteroclinic chimera;

(C) abnormal regime: coexisting SHC and quasi-chaotic attractor for

longer time series with up to 105 points.

These sub-networks could be formed through the collaboration
between agents Ri, i = 1, . . . , 6 with the strongest mutual inter-
action between each others. We have tested this interpretation in
the case of weak interaction between two strongly interconnected
sub-networks, each with 3 modes (triangles). Our results indi-
cate that in the case of coupled triangles we have topologically the
same phase portrait of heteroclinic chimera as we observed in the
original system with distributed parameters. We pointed out ear-
lier, following Equation 1, that information mode variable Ri is
either positive or zero, which determines the differences between
the previously known phase chimera characterizing the dynam-
ics of the network of phase oscillators, and the new heteroclinic
chimera observed here in the case of the WLC processes. These
results point to the importance of conducting a rigorous analysis
in the case of weak inhibitory connections; details are given in the
Appendix.

Figure 5 is the schematic image of a SHC modeling normal
cognitive functions with sequential switching between various
memory items. The consecutive patterns are symbolized by circles
of different colors for simplicity. The appearance of the transient
chaotic dynamics is illustrated in Figure 6, when the sequence of
the patterns enters a valley, in which various colors are mixed
in a chaotic fashion. This is the model of abnormal cognitive
dynamics when the regular sequential memory dynamics breaks
down. After some period of time, however, the trajectory leaves

FIGURE 5 | Illustration of the trajectory in an SHC progressing through

the sequence of saddle points; different memory patterns are shown

in different colors, i.e., red, orange, yellow, green, blue, and violet.

the chaotic valley, e.g., through the orange unit, and it resumes
the regular sequential switching pattern.

Figure 7 illustrates heteroclinic chimera in a GLV network
with degraded inhibitor weights. This GLV network has 6 units,
from which two units are shown here, R1 and R2, respectively.
Figure 7A depicts variable R1(t), which exhibits SHC regime with
stable values over extended time periods. Figure 7B shows the
temporal evolution of variable R2(t), which has frequent irreg-
ular oscillations. The determined positive Lyapunov exponent
indicates the existence of chaos. The dynamics of all 6 vari-
ables Ri, i = 1, . . . , 6 of the abnormal system is summarized in
Figure 8 using a raster plot. A given variable is shown in the plot
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FIGURE 6 | Schematics of the trajectory of a pathological case of GLV

equations, when the initial sequence enters a chaotic valley after the

violet unit. The system stays in the valley for some time, but ultimately
escapes it and resumes the regular SHC switching, see exit at the orange
unit.

FIGURE 7 | Examples of time series illustrating heteroclinic chimera in

a GLV network with degraded inhibitor weights; the GLV network has

6 units, and two units are shown here. (A) Variable R1(t) exhibits SHC
regime with stable values over extended time periods; (B) Variable R2(t)
has frequent irregular oscillations; the determined positive Lyapunov
exponent indicates the existence of chaos.

if its amplitude exceeds a threshold value (of 0.1). Note the preser-
vation of sequential switching in the boxes marked by dashed
lines. While some of the variables apparently maintain stable het-
eroclinic trajectories, others exhibit intermittent oscillations and
chaos, as a manifestation of heteroclinic chimera dynamics.

5. DISCUSSION
This paper analyzes the role of the heterogeneity of inhibitory
connections in a cognitive network that models cognitive sequen-
tial information processing. The introduced model has been
applied for the description and prediction of many cognitive
processes like working memory, attention, and decision making.
Here we suggested a plausible dynamical mechanism to study the
deterioration of the working memory. Sequential order has been
destroyed as the result of pathological heterogeneous decrease of
some of the inhibitory connections. This mechanism is related
to a new dynamical phenomenon: dynamical clustering of infor-
mation items (cognitive modes) in networks with heterogeneous
inhibitory connections.

FIGURE 8 | Raster plot of intermittent sequences of the variables of the

GLV system in the case of heteroclinic chimera dynamics; the 6

variables are shown as R1, R2, R3, R4, R5, and R6, respectively. A given
variable is shown in the plot if its amplitude exceeds a threshold value; the
threshold used here is 0.1. Note the preservation of sequential switching in
the boxes marked by dashed lines.

The corresponding phenomenon is coined here “heteroclinic
chimera.” In the case of heteroclinic chimera, we observe the
coexistence of chaotic and heteroclinic cycle behavior, thus the
chimera property is expressed through sequential amplitude
coordination. An important distinction between the previously
described phase chimera and heteroclinic chimera is that phase
chimera represents phase dynamics and it does not relate to
the temporal sequence of items. The phenomenon of dynami-
cal clustering described in this work in the case of heterogeneous
inhibitory connections in model Equation 1 is robust. In Sokolov
et al. (2014) the dynamics of the model is studied in the presence
of multiplicative noise. It is shown that the noise does not change
the qualitative picture of the dynamics.

Studies focusing on the analysis of sequential non-linear brain
dynamics in the case of psychiatric disorders attract the interest
of medical doctors. Results exist related to anxiety and depression
(Bystritsky et al., 2014), and to obsessive-compulsive disorder
(Bystritsky et al., 2012; Schiepek et al., 2013). Some psychiatrists
anticipate that analysis of non-linear sequential dynamics will
lead to changes in cognitive behavioral therapies (Kronemyer and
Bystritsky, 2014).

There are several fMRI experiments that focused on the spa-
tiotemporal analysis of the representation of informational items
in short-time memory (Attout et al., 2014; D’Argembeau et al.,
2014, and references therein). In addition, some experiments
show the disruption of functional cortical networks in the case
of psychiatric disorders including schizophrenia (Baker et al.,
2014; Bittner et al., 2014). However, no comprehensive analysis
have been completed yet concerning the spatiotemporal dynam-
ics of functional cortical networks, in the case of patients with
schizophrenia who do not recall ordered information from SWM.
Together with our colleague Alan Simmons (UCSD Dept. of
Psychiatry), we plan to conduct such analyses and compare the
results with our predictions. In particular, we intend to measure
the voxels in functional time series in pathological conditions,
i.e., signal intensity vs. time activity in parietal and prefrontal
cortexes, to characterize the performance of SWM recall. The
modeling results are represented by the Ri(t) time series. The
mathematical image of the damaged SWM with heteroclinic
chimera is in fact an intermittent chaotic dynamical regime. There
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are several successful methods for controlling chaotic dynam-
ics; see, for example Sieber et al. (2014), which is a successful
approach to modulate the irregular activities by feedback.

Observations in neuroimaging studies were used to describe
the neural correlates of cognitive deficits in attention, working
memory and executive functions in patients with Huntington’s
disease (Montoya et al., 2006). The chaotic behavior of clustered
sequential dynamics can serve as a model of Huntington’s Chorea.

A related important cognitive problem involves abnormali-
ties in attention switching and focusing, which can be described
by the proposed dynamical model; see also Rabinovich et al.
(2013). Of the many clinical features of schizophrenia, distur-
bances in certain cognitive processes, such as impairments in
attention, memory and executive functions (that is, the ability
to plan, initiate, and regulate goal directed behavior), might rep-
resent the core features of the illness (Elvevag and Goldberg,
2000). There is increasing evidence indicating that such dis-
orders are related to decreasing level of inhibition in corti-
cal inhibitory circuits (Lewis et al., 2005). In recent studies,
schizophrenia patients has been tested to answer the question: are
they impaired relative to controls in sustaining attention, switch-
ing attention, or both (Smid et al., 2013). The results supported
the hypothesis that schizophrenia is associated with attention
switching, while the mechanisms of sustained attention remains
largely intact. Our results give a dynamical interpretation to these
observations.

If the GLV model suggested is successful in characterizing
the differences in temporal dynamics in normal and patholog-
ical samples then it would be of great interest in determining
if this could guide a potential intervention in these dynamics
to either mimic or ameliorate the core symptomologies of these
pathologies. We expect that it would be very promising to provide
feedback based on functional sequential cortical activity during
memory recall, i.e., the time series representing sequential switch-
ing between metastable states (Polyn et al., 2005; Norman et al.,
2006), by repetitive transcranial brain stimulation. This feedback
may involve either repetitive magnetic stimulation (Barr et al.,
2013) or ultrasound stimulation (Hameroff et al., 2013; Mueller
et al., 2014). Such feedback has to support the correct sequen-
tial switching between corresponding recalled information items
from SWM.

SHC is the mathematical image of regular sequential switching
of attention as it is postulated in Rabinovich et al. (2013). Regular
sequential switching between attention modalities is maintained
in our model at normal conditions. In the case of the pathological
inhibitory strength distribution (selective decrease of inhibitory
weights), the regular sequential switching of attention focus is
impaired. As a result, the sequential switching is intermittently
interrupted by periods of irregular/chaotic dynamics, and the
attention switching process becomes uncontrolled. Our model-
ing results are also in agreement with recent works (Colzato et al.,
2007; Tomasi et al., 2010) showing that chronic cocaine use is
associated with disrupted inhibitory connections in the brain. In
particular, findings in Tomasi et al. (2010) suggest that decreased
functional dopaminergic inhibitory connectivity of the midbrain
interferes with the activation and deactivation signals associated
with sustained attention in cocaine addicts.
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APPENDIX
Here the case of GLV with weak inhibitory connections are stud-
ied. For convenience, let us introduce the notation for foregoing
sub-networks S1 and S2, respectively. Both subsystems have 3
modes, S1 contains modes R1, R3, and R5, while S2 includes
R2, R4, and R6. We consider the case of weak, uniform connec-
tions between the two subsystems. Accordingly, κ1 and κ2 denote
the connection strength from S1 to S2 and from S2 to S1, respec-
tively. For the sake of simplicity, here we assume κ2 = 0 and we
study bifurcation only with respect to one parameter κ = κ1.
Note that the results of this section are readily extendable to the
case κ2 �= 0.

Based on the definition of subsystems S1 and S2, clearly two
independent stable heteroclinic cycles exist for κ1 = 0. Further, it
is expected that the two heteroclinic cycles are maintained for very
weak coupling 0 < κ << 1. Increasing κ in the small to inter-
mediate coupling levels, complex dynamics may emerge, such as
simultaneous presence of chaos and heteroclinic cycles. The upper
bound of this region is marked as κ∗. Finally, the cycles must
collapse if coupling exceeds a high threshold value (κ >> 1).

We start with the definition of several quantities, which allow
us to separate the whole domain of coupling parameter κ into
regions with different types of behavior. The threshold values are
expressed as follows: κ∗ = maxi{γi + 1/γi}, i = 1, . . . , 6, where γi

is the strength of stimulation of mode i (see Equation 1). Further,
let us characterize each equilibria. In the following considerations,
all indices are written with respect to (mod 6) and we use of
the following convention {i ∈ {0, . . . , n}|i = n ( mod n)} = n.
Let us define for each i = 1, . . . , 6 the corresponding set of two
numbers i = {(i ± 2) mod 6}.

Further notations are: k∗
odd = max{k1, k3, k5} and k∗

even =
max{k2, k4, k6}, and indexes defined as i∗odd = arg max{k∗

odd} and
i∗even = arg max{k∗

even}, where ki is defined by

ki = γ(i + 1)( −∑
k∈i γkaki + γi

∏
k∈i aki)∏

k∈i (γk − γiaki)
(2)

In the following considerations, we use quantities
k′ = max{ki∗odd−2, ki∗odd+2} and k" = max{ki∗even−2, ki∗even+2}. It

is easy to see that k′ and k" are larger than the other thresholds.

In the following description, we assume that k′ < k" unless it is
specified otherwise.

There exists a value of coupling parameter 0 < k0 << 1 such
that for κ ∈ (0, k0

)
the coupled system exhibits two heteroclinic

cycles. For κ ∈ (ko, κ∗) various complex behaviors emerge, with
the possibility of co-existing chaotic attractor and heteroclinic
cycle. In the case of κ ∈ (κ∗, k′) the system converges to a fixed
point. For κ ∈ (k′, k"), a heteroclinic cycle in one system coex-
ists with zero fixed points in the other system. Finally, for κ >

k" the coupled system collapses. Thus, we have the following
regions

0 < ko < κ∗ < k′ ≤ k" < ∞. (3)

If k′ = k" then the conclusion still holds with the difference that
the behavior corresponding to values between k′ and k" does not
occur. The present results were derived based on the dissipative
property of the saddle point. In other words, the equilibrium
point attracts trajectories in its neighborhood if it is dissipative
point. However, if the dissipative property of the saddle point
changes, i.e., the saddle value is no more greater than one due
to the increase of κ , we may observe that the orbits move in direc-
tions away from equilibria. For this reason, when the coupling
parameter is large (κ > k′), the origin will attract the trajecto-
ries of one of the subsystems. Under this scenario, we have one
subsystem (i.e., S1 or S2) embedded in 6 dimension, and this sub-
system behaves as in the case κ = 0. In other words, considering
the phase space R

6 = R
3 ⊕ R

3, if one subsystem vanishes we deal
with the subspace where all coordinates of this subsystem are zero,
so the other subsystem behaves like in the case κ = 0.

In the case of κ ∈ (κ∗, k′), the central eigenspace of each equi-
libria stays the same. However, the number of stable non-leading
eigenvalues is increased to the maximum possible value, thus fixed
points appear. In the most challenging case when κ ∈ (k0, κ∗),
the equilibria which form the heteroclinic cycles have different
number of stable and unstable non-leading eigenvalues. This case
is possible due to the non-symmetry of the equations, which
describe the coupled system with mutual inhibition between its
subsystems. To put it simply, there is no symmetry group between
its subsystems coupling.
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