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Excess nutrients shift the ecological balance of coastal ecosystems, and this
eutrophication is an increasing problem across the globe. Nutrient levels may be
routinely measured, but monitoring rarely attempts to determine the source of these
nutrients, even though bio-indicators are available. Nitrogen stable isotope analysis
in biota is one such bio-indicator, but across the British Isles, this is rarely used. In
this study, we provide the first quantitative evidence of the anthropogenic drivers of
reduced water quality surrounding seagrass meadows throughout the British Isles using
the stable nitrogen isotope δ15N. The values of δ15N ranged from 3.15 to 20.16h
(Mean ± SD = 8.69 ± 3.50h), and were high within the Thames Basin suggesting
a significant influx of urban sewage and livestock effluent into the system. Our study
provides a rapid ‘snapshot’ indicating that many seagrass meadows in the British Isles
are under anthropogenic stress given the widespread inefficiencies of current sewage
treatment and farming practices. Ten of the 11 seagrass meadows sampled are within
European marine protected sites. The 10 sites all contained seagrass contaminated by
nutrients of a human and livestock waste origin leading us to question whether generic
blanket protection is working for seagrasses in the United Kingdom. Infrastructure
changes will be required if we are to develop strategic wastewater management
plans that are effective in the long-term at protecting our designated Special Areas of
Conservation. Currently, sewage pollution is a concealed issue; little information exists
and is not readily accessible to members of the public.

Keywords: stable isotope analysis, sewage signals, nitrogen, seagrass, agriculture

INTRODUCTION

The influx of nitrogen is critical in shaping the structure and function of aquatic ecosystems
across multiple levels (Ryther and Dunstan, 1971; Carpenter et al., 1998; Rabalais, 2002; Conley
et al., 2009), but the magnitude of this influx has been immensely altered through the actions
of humankind (Vitousek et al., 1997a,b; Galloway and Cowling, 2002; Galloway et al., 2004;
Canfield et al., 2010). As a result, available nitrogen in aquatic ecosystems has risen significantly
over the last century with far-reaching environmental impacts including changes to productivity,
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species composition, habitat status, and diversity (Cloern, 2001;
Deegan, 2002; Rabalais et al., 2009). While increased nitrogen
input is just one element of a suite of anthropogenic stressors
that effects near-shore environments, it is generally the result of
land-use changes, coupled with increasing coastal populations,
and intense animal agriculture (Baden et al., 1990; Mallin and
Cahoon, 2003; Lotze et al., 2006; Howarth, 2008; Rabalais et al.,
2009; Jones and Unsworth, 2016; Unsworth et al., 2016). Evidence
suggests that eutrophication driven by increased nutrient inputs
presents the biggest threat to seagrass meadows (Waycott et al.,
2009; Unsworth et al., 2015).

The seagrass Zostera marina forms a highly productive
habitat within the temperate coastal ecosystems of the Northern
Hemisphere (den Hartog, 1970). However, in recent decades
meadows of Z. marina have declined in size and health (Short and
Wyllie-Echeverria, 1996; Orth et al., 2006) with anthropogenic
activity generally held accountable (Short and Wyllie-Echeverria,
1996; Waycott et al., 2009). Globally, seagrass is lost at a rate of 7%
yr−1 (Waycott et al., 2009), and expanding coastal populations
will see these declines increase. Gaining a more comprehensive
picture of how these habitats are threatened is vital if we are
to protect these habitats for the ecosystem services they provide
(Cullen-Unsworth et al., 2014) and requires understanding the
local drivers of decline to create effective management solutions
(Jones and Unsworth, 2016).

The nutrient over-enrichment of seagrass meadows results in
primary production shifts, away from seagrass, to fast-growing
nutrient-limited epiphytic microalgae (Burkholder et al., 2007).
Epiphytes grow on the surface of seagrass leaf tissue (Hauxwell
et al., 2001; Burkholder et al., 2007) and their excessive growth
is a contributing factor to seagrass degradation globally (McRoy
and Goering, 1970; Heck et al., 2000; Hauxwell et al., 2003;
Burkholder et al., 2007; Cabaco et al., 2008), causing smothering
and reducing the plants ability to photosynthesise.

The nitrogen contained in human and agricultural waste
forms a significant component of total nutrient influx into
marine environments. As a result, monitoring the presence
and effects of sewage [Urban Wastewater Treatment Directive
(91/271/EEC); Bathing Water Directive (2006/7/EC)] and
agricultural waste [The Water Framework Directive (WFD)
(2000/60/EC); Groundwater Daughter Directive (2006/118/EC)]
are important activities within the United Kingdom. A recent
report, however, suggests that four out of five rivers in
England and Wales consistently fail to achieve the WFD rating
of ‘good ecological status’ (WWF-UK, 2017) – defined as
“a biological community which would be expected in conditions
of minimal anthropogenic impact.” This situation is so poor
that most waterbodies will not even reach the “good” status
by 2027, mandated by the United Kingdom’s inclusion in
the WFD.

No routine monitoring programs in the United Kingdom
consider one of the most widely used techniques to identify the
source of N; stable nitrogen isotope analysis. Dissolved inorganic
nitrogen (DIN) inputs to watersheds have different δ15N values
meaning that the source of N can be easily tracked. Inputs from
precipitation (−7 to +1h), biologically fixed N (∼0h), and
inorganic fertilizers (−3 to+3h) have lighter δ15N signals when

compared with those from urban sewage and livestock effluent
(+4 to +6h) (Macko and Ostrom, 1994; McClelland et al.,
1997; McClelland and Valiela, 1998; Kjønaas and Wright, 2007;
Barnes et al., 2008; Bruland and MacKenzie, 2010). As a result,
studies to detect N born from urban sewage and livestock effluent
have drawn upon numerous taxa, including algae (Dailer et al.,
2010; Fernandes et al., 2012), rooted macrophytes (McClelland
et al., 1997; McClelland and Valiela, 1998; Cole et al., 2004;
Connolly et al., 2013; Fourqurean et al., 2015; Gorman et al.,
2017), invertebrates (Bucci et al., 2007; Carmichael et al., 2008,
2012; Fertig et al., 2009, 2010; Risk et al., 2009), and fish (Jennings
et al., 1997; Schlacher et al., 2005; Hoffman et al., 2012).

Seagrass meadows within the British Isles are in a perilous
state, threatened by eutrophication (Jones and Unsworth, 2016)
and physical disturbance (Unsworth et al., 2017). Using a bio-
indicator approach that involved collecting data on seagrass
density and morphology alongside analysis of leaf biochemistry
(C, N, and P content) (Jones and Unsworth, 2016), we previously
provided evidence that seagrass meadows of the British Isles are
mostly in poor condition in comparison with global averages,
with tissue nitrogen levels on average 75% higher than global
values. Such poor status places their long-term resilience in
doubt (Unsworth et al., 2015). Although these systems may
be in a perilous state, we know nothing of the sources of the
suspected elevated nutrient levels in United Kingdom seagrass.
We hypothesize that nitrogen inputs are arising from sewage
or animal agriculture (Cabana and Rasmussen, 1996), driving a
reduction in seagrass health across the British Isles. Collecting
data on Nitrates and Nitrites from water samples alone is
arguably sufficient for assessing water quality (Lee et al., 2004).
Therefore, other available metrics, including seagrass leaf tissue
biochemistry could and should be included in monitoring
assessments.

In the present study, we investigate the status of seagrass
around the British Isles and seek to determine whether elevated
nutrient levels result from sewage and agricultural sources. We
discuss these findings in the context of the management strategies
in place, and their suitability to ensuring seagrass remains
resilient into the future.

MATERIALS AND METHODS

Study Sites
Seagrass meadows at 11 localities around the British Isles
were assessed during May–August 2013 (Figure 1). At each
site, qualitative descriptive information was collected about
the perceived presence of anthropogenic impacts to place
the data in context; this data is presented in Jones and
Unsworth (2016). To apportion these sites into categories of
perceived anthropogenic influence, they were a priori scored
on their status based on five categories (Industry, tourism,
agriculture, catchment, and population). Based on values
presented in Bruland and MacKenzie (2010), δ15N signals
are higher where these factors are an impact. A score of
five was a site of high potential impacts and zero was a
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FIGURE 1 | Seagrass meadows were sampled at 11 locations spread throughout the British Isles. These included one site in Ireland, one site in Northern Ireland,
three sites in Wales, two sites on the Isle of Man, three sites in England, and seagrass meadows in the Isles of Scilly.

healthy more pristine site displaying no potential impacts
(Table 1).

Plant Collection, Morphological
Measurements, and Seagrass Status
At sampling sites, three haphazardly placed 0.25 m2 seagrass plots
containing Z. marina were sampled. Seagrass sites were within
the range of 0–3 m depth. Shoot density counts and percentage
cover estimates were taken on site and recorded (McKenzie
et al., 2001). All seagrass material within the quadrats was
collected for subsequent analysis. Morphological measurements
(leaf width and length, number of leaves per shoot) were

TABLE 1 | Seagrass sampling locations around the British Isles, their
Anthropogenic impact score and perceived health score calculated from data
presented in Jones and Unsworth (2016).

Site Anthropogenic
impact score

Seagrass meadow
health status

Gelliswick Bay, Wales (GB) 5 Poor

Southend-On-Sea, England (SS) 5 Poor

Priory Bay, Isle of Wight (PB) 4 Moderate

Ramsey Bay, Isle of Man (RB) 4 Moderate

Studland Bay, England (SB) 4 Moderate

Kircubbin Bay, Strangford Lough,
Northern Ireland (KB)

4 Poor

Mannin Bay, Ireland (MB) 3 Moderate

Langness, Isle of Man (LA) 2 Moderate

Porthdinllaen, Wales (PD) 2 Poor

Isles of Scilly (IS) 1 Good

Skomer MCZ, Wales (SK) 1 Poor

taken in the laboratory. All epiphytes, where present, were
carefully scraped from both sides of the leaf using a microscope
slide. Cleaned leaf sections were dried at 60◦C for 24 h and
ground until homogenous before dry leaf mass was recorded
using an Ohaus balance (maximum: 100 g; d = 0.1 mg;
Switzerland). Similarly, the scraped epiphytes were also dried at
60◦C until they were of constant weight before their dry mass was
recorded.

Each variable measured different aspects of seagrass status.
A Principal Components Analysis (Zar, 1984; Johnson and Gage,
1997; Salita et al., 2003), measuring the spread of sites based on
seagrass health and nutrient balance (Jones and Unsworth, 2016),
was used to group sites into three health groups (good, moderate,
and poor) (Figure 2).

Leaf Content
Seagrass leaf tissue was analyzed for percent nitrogen (N) by
weight and atomic percent of 15N using a continuous flow
isotope ratio mass spectrometer (ANCA SL 20-20, Europa
Scientific, Crewe, United Kingdom). Our use of C:N in this
study is owing to its use as a robust, early warning indicator
of light reduction (McMahon et al., 2013). Isotope values
are expressed in the del (δ) notation, δ15N, relative to the
international standard of atmospheric nitrogen (Connolly et al.,
2013):

δ15N(h) = ((15N/14Nsample ÷
15N/14Nstandard)− 1) × 1000.

(1)

Data Analysis
Statistical analysis was conducted using SPSS. Data were tested
for homogeneity of variance and normality. Where data were
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FIGURE 2 | Principal component analysis (PCA) of seagrass characteristics from 11 locations spread throughout the British Isles adapted from Jones and Unsworth
(2016). Seagrass meadows were loosely grouped based on PC1 and given a score to reflect status (good, moderate, poor).

not normal, log transformations were performed so that data
met the assumptions of parametric tests. One-way ANOVA was
used to test for differences in δ15N values, and proportional δ15N
values across sites and Pearson’s correlation was used look at
the association between δ15N and seagrass morphometrics. All
values, where described, are reported as mean± SD.

RESULTS

δ15N Values across Sites
Isotope signals from seagrass leaf tissue differed significantly
across 11 sites within the British Isles (F10,29 = 22.165,
p < 0.001; Figure 3). δ15N values ranged from 3.15 to 20.16h
(8.69 ± 3.50h), where highest values were recorded from
seagrass tissue collected at Southend-on-Sea (17.97 ± 2.1h),
within the Thames waterway and lowest from seagrass tissue
collected from the Isles of Scilly (4.47 ± 0.97h). δ15N values
were also high in Studland Bay (12.33 ± 0.65h), Dorset, and
Kircubbin Bay (9.73 ± 1.00h), within the Strangford Lough.
Based on data presented in Jones and Unsworth (2016), δ15N
values were significantly associated with perceived anthropogenic
influence (F4,35 = 7.673, p < 0.001; Figure 4). Sites with
high anthropogenic influence scores (4 and 5; Table 1) were
characteristic of high δ15N values compared with sites of low
anthropogenic influence scores (1 and 2; p< 0.001).

Implications for Seagrass Status
Seagrass meadow status was significantly influenced by δ15N
(F4,35 = 7.673, p < 0.001). δ15N within leaf tissue in the Isles of
Scilly, the only site with a ‘good’ status, was significantly lower

than δ15N values at sites with a moderate (p < 0.05) and poor
status (p < 0.001). However, there was no difference in δ15N
values between moderate and poor sites (p = 0.542). Higher
δ15N values resulted in significantly lower above ground biomass
(r = −0.359, n = 40, p < 0.05), seagrass cover (r = −0.375,
n = 40, p < 0.05), shoot biomass (r = −0.369, n = 40, p < 0.05),
leaf length (r = −0.504, n = 40, p < 0.001), and leaf width
(r =−0.428, n= 40, p< 0.05; Figure 5).

However, there was no association between δ15N and shoot
density (r = 0.049, n = 40, p = 0.765), leaves per shoot
(r = −0.298, n = 34, p = 0.087), total epiphyte biomass
(r = −0.041, n = 40, p = 0.804), or epiphyte biomass per
shoot (r = −0.027, n = 40, p = 0.870). While there was
no association between δ15N and epiphyte presence, there was
however a significant negative association between δ15N and the
C:N ratio (r = −0.390, n = 40, p < 0.05), suggesting that higher
occurrence of δ15N leads to light limitation.

DISCUSSION

Seagrasses form ecologically and economically important and
productive coastal habitats, but they are threatened globally (Orth
et al., 2006; Waycott et al., 2009; Cullen-Unsworth and Unsworth,
2013). Poor water quality is signaled as one of the leading
causes of seagrass loss globally (Ralph et al., 2006; Burkholder
et al., 2007; Waycott et al., 2009) but the origins of poor water
quality are often poorly investigated. In this study, we provide
the first quantitative evidence of the anthropogenic drivers of
reduced water quality for seagrass meadows throughout the
British Isles. While the data provides a rapid and limited
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FIGURE 3 | Average leaf δ15N (h) within seagrass at 11 locations spread throughout the British Isles.

FIGURE 4 | The influence of Anthropogenic Influence Score on δ15N values across 11 locations spread throughout the British Isles. Anthropogenic Influence Score
was derived from information presented in Jones and Unsworth (2016).

snapshot, it is sufficient to indicate that many seagrass meadows
in the British Isles are under anthropogenic stress given the
widespread inefficiencies of current sewage and wastewater
treatment (WWF-UK, 2017). Nitrogen turnover within seagrass
tissue is slow, ranging from weeks to months (Moore and Wetzel,
2000; Lepoint et al., 2002; Connolly et al., 2013) and because

these turnover rates determine the time-integrated interval over
which seagrasses absorb the nitrogen they have been exposed to
Fourqurean et al. (1997) and Fourqurean et al. (2015), the values
documented in this study suggest that the wastewater imprint
in the receiving seagrass meadows around the British Isles is a
persistent feature (WWF-UK, 2017).
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FIGURE 5 | Association between δ15N (h) and aboveground biomass (g), seagrass cover (%), shoot density, C:N ratio, leaf length (mm) and leaf width (mm) for the
seagrass, Zostera marina, across 11 locations spread throughout the British Isles.

Identifying and understanding the prevalence of threats to
seagrass at local scales, both direct and indirect, is a fundamental
requirement for effective management and to harmonize
conservation goals with sustainable economic development.
Back-tracing these nutrients from seagrass to source can provide
a means for targeted management solutions based on specific
local threats. However, the conservation of a specific seagrass
meadow is rarely based on the explicit consideration of local
threats and drivers, and instead focuses on conserving seagrass as
part as a broader management plan incorporating other specific
habitats or species. While this may be effective, this way of
thinking limits the effectiveness of protection and is conducive
to user conflict. For example, 10 of the 11 seagrass meadows
examined in this study occurred within European marine
protected sites, leading us to question whether generic blanket
protection is working for seagrasses in the United Kingdom
(Jackson et al., 2016).

While seagrasses are protected under the EU Habitats
Directive (92/43/EEC), this directive does not afford protection to
all seagrass habitats; it does, however, afford protection through
the designation of Special Areas of Conservation (SACs). Within
SACs, all activities must be assessed to ascertain whether they
would compromise the features of the site. Seagrass should also
gain indirect protection from a number of other EU Directives
because of its need for good water quality, namely the Urban
Wastewater Treatment Directive (91/271/EEC) and the WFD
(2000/60/EC). However, a case by case analysis of seagrass
leaf tissue here suggests that current protection is inadequate
with nutrients from urban sewage and livestock effluent driving
eutrophication in numerous Z. marina meadows.

Watershed studies reveal that high δ15N values (+10
to +25h) are significantly correlated to a high influx of
urban sewage or livestock effluent (Heaton, 1986; Kendall
and McDonnell, 2012). As these nutrients are transferred
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downstream, generally 50% are taken up by aquatic primary
consumers and functional feeding groups of primary consumers
and are therefore expected to be greatly reduced by the time
they reach the marine environment (Galloway et al., 2004; Craig
et al., 2008). Given this, high δ15N values recorded in seagrass
leaf tissue at Southend-on-Sea, Studland Bay, and Kircubbin Bay
are of specific serious concern. Based on the Urban Wastewater
Treatment Directive, no sites within this study were considered
sensitive bathing waters or sensitive eutrophic waters, yet all
sites had δ15N values of greater than 6h except for the Isles of
Scilly, suggesting urban sewage and livestock effluent inputs are
a prominent feature (Anderson and Fourqurean, 2003; Lepoint
et al., 2004). Similarly, other sites in agricultural areas little
affected by urban development, such as Porthdinllaen, Mannin
Bay, Langness, and Ramsey Bay on the Isle of Man also had
significantly higher δ15N values. Where livestock waste and
manure finds its way into rivers, δ15N values are positively
correlated with the percentage of land area devoted to animal
agriculture (Harrington et al., 1998; Hebert and Wassenaar, 2001;
Udy and Bunn, 2001).

Seagrass Ecosystem Service Provision
This study highlights wider concerns for the ecosystem services
that seagrass meadows provide given that over-enrichment
results in seagrass degradation (Burkholder et al., 2007)
through epiphyte smothering, decreasing light absorption ability
(Neverauskas, 1987; Lavery and Vanderklift, 2002; Jones and
Unsworth, 2016), and therefore results in the loss of the
habitat. Seagrass meadows around the British Isles are known to
support populations of juvenile fish of commercial importance
(Jackson et al., 2001; Bertelli and Unsworth, 2014; Lilley and
Unsworth, 2014). Additionally, evidence suggests that there
is a measurable effect of reduced seagrass cover on the
abundance and distribution of fauna. Both species composition
and species richness are higher in healthier seagrass (High cover,
above ground biomass, and larger leaves) indicating increasing
habitat value as seagrass complexity increases (McCloskey and
Unsworth, 2015).

While N plays a part in regulating seagrass morphometrics,
our evidence shows that where δ15N values were higher, key
seagrass morphometrics were reduced. There is no evidence to
suggest that δ15N is detrimental to seagrass health thus signaling
that N over-enrichment derived from urban sewage and livestock
effluent is driving seagrass decline within the United Kingdom.
Sites with high inputs of N born from human sewage and
livestock effluent were characteristically in a poor state of health
with reduced aboveground biomass, lower percentage cover
and smaller and thinner leaves. We hypothesize that other
elements of urban sewage and livestock effluent may also be
entering the system, including heavy metals and bacteria, but this
needs further study. Given it exists in a fairly large catchment,
seagrass at Gelliswick Bay in the Milford Haven Waterway was
somewhat an exception. Despite having high %N values and in
a characteristically poor state (Jones and Unsworth, 2016), levels
of δ15N were relatively low in comparison to other sites existing
near to or adjacent to large catchments. It is therefore, probable
that much of the N was of inorganic origin. Sub-tidal seagrass at

Gelliswick is showing long-term trends of decline (Nagle, 2013),
and the evidence here indicates that the probable driver of this is
catchment-wide fertilizer use.

While seagrasses are efficient at decreasing pollution, reducing
bacteria in water column by up to 50%, this can be at a detriment
for protecting themselves from pathogens (Lamb et al., 2017).
Ultimately, under stress, the plants are more susceptible to
instances of disease. Seagrass collected from Southend-on-Sea
had the highest δ15N values, and a recent study using plants from
the same population identified that nitrate enrichment increased
the susceptibility of Z. marina to wasting disease (Hughes et al.,
2017). What is more trivial given that livestock production is one
of the largest drivers of climate change and largest contributor of
greenhouse gas emissions worldwide (about 30%) (Tilman et al.,
2017), is that meadows of Z. marina in these areas, and a key
carbon sink (Greiner et al., 2013; Röhr et al., 2016), were in a
perilous state with their long-term resilience at risk (Jones and
Unsworth, 2016).

Significant progress in the development of a Marine Protected
Area network has occurred in some parts of the British Isles in
the last decade. The finding of the present study highlights that
management needs to consider catchment issues in addition to
the creation of MPAs. Evidence from other parts of the world
(Quiros et al., 2017) illustrates that creating marine protected
areas alone is insufficient to protect seagrass, as the major threats
arise from poor water quality.

Unquestionably, the nutrient enrichment of coastal marine
waters of the British Isles is of serious concern, with potential
system-wide consequences. Seagrass meadows may already be
nearing a point of no-return in some cases, with leaf N 75% higher
than global values. Solving this issue extends beyond “protecting”
seagrasses within a SAC legislation and challenges the way we
think about marine protection. Serious infrastructure changes are
key to this if we are to develop strategic wastewater management
plans that are effective in the long-term.
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