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Natural language descriptions of plant phenotypes are a rich source of information for 
genetics and genomics research. We computationally translated descriptions of plant 
phenotypes into structured representations that can be analyzed to identify biologically 
meaningful associations. These representations include the entity–quality (EQ) formalism, 
which uses terms from biological ontologies to represent phenotypes in a standardized, 
semantically rich format, as well as numerical vector representations generated using 
natural language processing (NLP) methods (such as the bag-of-words approach and 
document embedding). We compared resulting phenotype similarity measures to those 
derived from manually curated data to determine the performance of each method. 
Computationally derived EQ and vector representations were comparably successful in 
recapitulating biological truth to representations created through manual EQ statement 
curation. Moreover, NLP methods for generating vector representations of phenotypes 
are scalable to large quantities of text because they require no human input. These 
results indicate that it is now possible to computationally and automatically produce and 
populate large-scale information resources that enable researchers to query phenotypic 
descriptions directly.

Keywords: ontology, natural language processing, machine learning, semantic similarity, phenotype, phenologs

BACKGROUND
Phenotypes encompass a wealth of important and useful information about plants, potentially 
including states related to fitness, disease, and agricultural value. They comprise the material 
on which natural and artificial selection act to increase fitness or to achieve desired traits, 
respectively. Determining which genes are associated with traits of interest and understanding 
the nature of these relationships is crucial for manipulating phenotypes. When causal alleles 
for phenotypes of interest are identified, they can be selected for in populations, targeted for 
deletion, or employed as transgenes to introduce desirable traits within and across species. The 
process of identifying candidate genes and specific alleles associated with a trait of interest is 
called candidate gene prediction.

Genes with similar sequences often share biological functions and therefore can create similar 
phenotypes. This is one reason sequence similarity search algorithms like BLAST (Altschul et al., 
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1990) are so useful for candidate gene prediction. However, 
similar phenotypes can also be attributed to the function of 
genes that have no sequence similarity. This is how protein-
coding genes that are involved in different steps of the same 
metabolic pathway or transcription factors involved in regulating 
gene expression contribute to shared phenotypes. For example, 
knocking out any one of the many genes involved in the maize 
anthocyanin pathway can result in pigment changes (reviewed 
in Sharma et  al., 2011). This concept is modelled in Figure 1, 
where, notably, the sequence-based search with Gene 1 as a query 
can only return genes with similar sequences, but querying for 
similar phenotypes to those associated with Gene 1 returns many 
additional candidate genes.

High-throughput and computational phenotyping methods 
are largely sensor and image-based (Fahlgren et  al., 2015). 
These methods can produce standardized datasets such that, 
for example, an image can be analyzed, data can be extracted, 
and those data can be interrogated (Green et  al., 2012; Gehan 
et  al., 2017; Miller et  al., 2017). However, while such methods 
are adept at comparing phenotypic information between plants 
that are physically similar, they are limited in their ability to 
transfer this knowledge between physically dissimilar species. 
For example, traits such as leaf angle vary greatly among different 
species, and therefore cannot be compared directly. Moreover, 
where shared pathways and processes are conserved across broad 
evolutionary distances, it can be hard to identify equivalent 
phenotypes. McGary et al. (2010) call these non-obvious shared 
phenotypes phenologs. Between species, phenologs may present 
as equivalent properties in disparate biological structures (Braun 
et  al., 2018). For example, Arabidopsis KIN-13A mutants and 
mouse KIF2A mutants both show increased branching in single-
celled structures, but with respect to neurons in mouse (Homma 

et  al., 2003) and with respect to trichomes in Arabidopsis (Lu 
et al., 2004). Taken together, the ability to compute on phenotypic 
descriptions to identify phenologs within and across species has 
the potential to aid in the identification of novel candidate genes 
that cannot be identified by sequence-based methods alone and 
that cannot be identified via image analysis.

In order to identify phenologs, some methods rely on searching 
for shared orthologs between causal gene sets (McGary et al., 2010; 
Woods et al., 2013). For example, McGary et al. (2010) identified 
a phenolog relationship between “abnormal heart development” 
in mouse and “defective response to red light” in Arabidopsis by 
identifying four orthologous genes between the sets of known 
causal genes in each species. However, these methods are not 
applicable when the known causal gene set for one phenotype or 
the other is small or non-existent. In these cases, using natural 
language descriptions to identify phenologs avoids this problem 
by relying only on characteristics of the phenotypes, per se. These 
phenotypic descriptions are a rich source of information that, if 
leveraged to identify phenolog pairs, can enable identification 
of novel candidate genes potentially involved in generating 
phenotypes beyond what has already been described.

Unfortunately, computing on phenotype descriptions is not 
straightforward. Text descriptions of phenotypes present in the 
literature and in online databases are irregular because natural 
language representations of even very similar phenotypes can be 
highly variable. This makes reliable quantification of phenotype 
similarity particularly challenging (Thessen et  al., 2012; Braun 
et al., 2018). To represent phenotypes in a computable manner, 
researchers have recently begun to translate and standardize 
phenotype descriptions into entity–quality (EQ) statements 
composed of ontology terms, where an entity (e.g., “leaf ”) 
is modified by a quality (e.g., “increased length”; Mungall 

FiGURE 1 | Conceptual comparison of querying with a gene sequence or its associated phenotypic description. Genes are shown as white ovals. Methods of 
searching for related genes are shown as light gray boxes. Gray dashed arrows indicate the path from the query gene to the set of genes that are returned from 
the search. Solid black arrows indicate relationships between genes in a biological pathway or gene regulatory network. Dashed black arrows indicate relationships 
between the pathway or network and the resulting phenotype.
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et  al., 2010).1 Using this formalism, complex phenotypes are 
represented by multiple EQ statements. For example, multiple 
EQ statements are required to represent dwarfism, where the 
entity and quality pairs (“plant height,” “reduced”) and (“leaf 
width,” “increased”) may be used, among others. Each of these 
phenotypic components of the more general phenotype is termed 
a “phene.” Because both entities and qualities are represented by 
terms from biological ontologies (fixed vocabularies arranged as 
hierarchical concepts in a directed acyclic graph), quantifying the 
similarity between two phenotypes that have been translated to 
EQ statements can be accomplished using graph-based similarity 
metrics (Hoehndorf et al., 2011; Slimani, 2013). Such techniques 
for estimating semantic similarity based on arranging concepts 
hierarchically in a graph have long been employed in the field 
of natural language processing (NLP; e.g., Resnik, 1999) and, as 
applied to biological ontologies, have been useful in applications 
from clustering gene function annotations for data visualization 
(Supek et al., 2011) to assessing functional similarities between 
orthologous genes (Altenhoff et al., 2016).

Oellrich, Walls et al. (2015) developed Plant PhenomeNET, an 
EQ statement-based resource primarily consisting of a phenotype 
similarity network containing phenotypes across six different 
model plant species, namely, Arabidopsis (Arabidopsis thaliana), 
maize (Zea mays ssp. mays), tomato (Solanum lycopersicum), rice 
(Oryza sativa), Medicago (Medicago truncatula), and soybean 
(Glycine max). Their analysis demonstrated that the method 
developed by Hoehndorf et al. (2011) could be used to recover 
known genotype to phenotype associations for plants. The authors 
found that highly similar phenotypes in the network (phenologs) 
were likely to share causal genes that were orthologous or involved 
in the same biological pathways. In constructing the network, 
text statements comprising each phenotype were converted by 
hand into EQ statements primarily composed of terms from the 
Phenotype and Trait Ontology (PATO; Gkoutos et  al., 2005), 
Plant Ontology (PO; Cooper et al., 2013), Gene Ontology (GO; 
Ashburner et  al., 2000), and Chemical Entities of Biological 
Interest (ChEBI; Hastings et al., 2013) ontology.

The success of this plant phenotype pilot project was 
encouraging, but to scale up to computing on all available 
phenotypic data for each of the six species was not a reasonable 
goal given that curating data for this pilot project took 
approximately 2 years and covered only phenotypes of dominant 
alleles for 2,747 genes across the six species. More specifically, 
human translation of text statements into EQ statements is the 
most time-consuming aspect of generating phenotype similarity 
networks using this method. Automation of this translation 
promises to increase the rate at which such networks can be 
generated and expanded. Notable efforts to automate this process 
include Semantic Charaparser (Cui, 2012; Cui et al., 2015), which 
extracts characters (entities) and their corresponding states 
(qualities) after a curation step that involves assigning terms to 
categories and then mapping these characters and states to EQ 
statements constructed from input ontologies. Other existing 

1In relation to sentence structure, the entity represents the subject and the quality 
represents the predicate. Qualities are also elsewhere referred to as attributes, 
features, or characteristics of a biological structure or process.

annotation tools such as NCBO Annotator (Musen et al., 2012) 
and NOBLE Coder (Tseytlin et  al., 2016) are fully automated, 
relying only on input ontologies. Both map words in the input 
text to ontology terms without imposing an EQ statement 
structure. State-of-the-art machine learning approaches to 
annotating text with ontology terms also have been developed 
(Hailu et al., 2019). These can be trained using a dataset such as 
the Colorado Richly Annotated Full-Text corpus (CRAFT; Bada 
et al., 2012), but are not readily transferable to ontologies that are 
not represented in the training set.

In addition to using ontology-based methods, similarity 
between text descriptions of phenotypes can also be quantified 
using NLP techniques such as treating each description as a 
bag-of-words and comparing the presence or absence of those 
words between descriptions, or using neural network-based 
tools such as Doc2Vec to embed descriptions into abstract 
high-dimensional numerical vectors between which similarity 
metrics can then be easily applied (Mikolov et al., 2013; Le and 
Mikolov, 2014). Conceptually, this process involves converting 
natural language descriptions into locations in space, such that 
descriptions that are near each other are interpreted as having 
high similarity and those that are distant have low similarity.

In this work, we demonstrate that automated techniques for 
generating computable representations of natural language can 
be applied to a dataset of phenotypic descriptions in order to 
generate biologically meaningful phenotype similarity networks. 
See Figure 2 for an overview of how phenotype similarity 
networks are computationally generated as an output when 
text descriptions are provided as the input. We first show that 
these computational techniques are limited in their capability to 
exactly reproduce the annotations and corresponding phenotype 
similarity networks generated with hand-curation. However, 
we subsequently show that the hand-curated network does not 
outperform networks built with purely computational approaches 
on dataset-wide tasks of biological relevance, such as organizing 
genes by function and predicting membership in biochemical 
pathways. Most importantly, we discuss how we can now use 
these computational approaches to automatically generate new 
datasets necessary to identify phenotypic similarities and predict 
gene function within and across species without requiring the 
use of time-consuming and costly hand-curation.

METhODs

Dataset of Phenotypic Descriptions and 
Curated EQ statements
The pairwise phenotype similarity network described in Oellrich, 
Walls et al. (2015) was built based on a dataset of phenotype 
descriptions across six different model plant species (A. thaliana, 
Z. mays ssp. mays, S. lycopersicum, O. sativa, M. truncatula, and 
G. max). In that work, each phenotype description was split into 
one or more atomized statements describing individual phenes, 
each of which mapped to exactly one curated EQ statement 
(Table 1). The EQ statements in this dataset were primarily built 
from terms present in PATO, PO, GO, and ChEBI. For this work, 
we used this existing dataset as the source of genes and associated 
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phenotypic descriptions on which to test automated methods for 
assessing similarity networks between phenotypes and using the 
resulting phenotype similarity networks to perform comparative 
analyses across the whole dataset to predict gene function.

Computationally Generating EQ 
statements From Phenotypic Descriptions
For each phenotype and phene description in the dataset, we 
computationally generated corresponding EQ statements without 
human interaction. To accomplish this, terms were first annotated 
to each text description and then combined to form complete EQ 
statements. Two different existing computational tools and a simple 
machine learning technique were used to map ontology terms to text 
descriptions. Specifically, these were NCBO Annotator and NOBLE 
Coder, which are tools for matching ontology terms to specific words 
in text, and a Naïve Bayes bag-of-words classifier, which assigns 
terms to descriptions based on the observed frequencies of term–
word co-occurrence in a training dataset. The Oellrich, Walls et al. 
(2015) dataset of descriptions and curated EQ statements was split 
into four groups such that any three groups of the dataset were used 

to train a Naïve Bayes model that was then applied to the remaining 
group. The result of applying these three annotation methods was 
a set of ontology terms from PATO, PO, GO, and ChEBI assigned 
to each text description. Terms were then combined to form full 
EQ statements by assigning default root terms where none were 
matched, such as the entity term whole plant (PO:0000003), and 
organizing the matched terms into the different roles of the EQ 
statement by removing overlapping terms and automatically 
applying compositional rules used by curators in Oellrich, Walls 
et al. (2015). As an example, these rules include the fact that ChEBI 
terms cannot be the primary entity. The EQ statements were scored 
based on how well the terms aligned with the text description they 
were annotated to, so that the closest matching EQ statements for 
each text description were output and used downstream to generate 
phenotype similarity networks. See the Supplemental Methods 
section for a more detailed description of this process.

Computationally Generating Numerical 
Vectors From Phenotypic Descriptions
In addition to generating EQ statements for each phenotype and 
phene description in the dataset, Doc2Vec was used for generating 
numerical vectors for each description. A model pre-trained on 
Wikipedia was used (Lau and Baldwin, 2016). In these document 
embeddings, positions within the vector do not refer to the 
presence of specific words but rather abstract features learned by 
the model. A size of 300 was used for each vector representation, 
which is the fixed vector size of the pre-trained model. In addition, 
vectors were generated for each description using bag-of-words 
and set-of-words representations of the text. For these methods, 
each position within the vector refers to a particular word in the 
vocabulary. Each vector element with bag-of-words refers to the 
count of that word in the description, and each vector element 
with set-of-words is a binary value indicating presence or absence 
of the word. In cases where phene descriptions were used instead 
of phenotype descriptions, the descriptions were concatenated 
prior to embedding to obtain a single vector.

Creating Gene and Phenotype Networks
Oellrich, Walls et al. (2015) developed a network with phenotypes as 
nodes and similarity between them as edges for all the phenotypes 

FiGURE 2 | Overview of computational pipelines used here to generate phenotype similarity networks from text descriptions of phenotypes. Rounded white 
rectangles represent data in the form of text descriptions as input or network nodes as output. Rounded black rectangles represent the intermediate data forms 
that are computable representations of text descriptions. These allow for quantitative similarity metrics to be applied. Gray rectangles represent computational 
methods carried out at each step. Single-headed arrows represent flow of data through each pipeline. Double-headed arrows represent edges between nodes in 
resulting similarity networks. Values next to double-headed arrows indicate magnitude of phenotype similarity. One output network is created for each computable 
representation, but only one example is shown here.

TABlE 1 | Description of the Oellrich, Walls et al. (2015) dataset in terms of 
number of phenotype descriptions, phene descriptions, and EQ statements.

species Phenotypes Phenes1 EQ statements2

Arabidopsis 1385 5172 5172
Maize 117 373 373
Tomato 90 269 269
Rice 86 340 340
Medicago 40 149 149
Soybean 24 61 61

Example gene: 
Arabidopsis 
PKS2 
(ATIG14280.1)

Phenotype: 
short hypocotyl 
and expanded 
cotyledon under 
hourly far red 
pulses

Phene 1: short 
hypocotyl

PO:0020100 
(hypocotyl) + 
PATO:0000574 
(decreased length)

Phene 2: 
xpanded 
cotyledon

PO:0020030 
(cotyledon) +
PATO:0000586 
(increased size)

1Also referred to as ‘atomized statements’.
2Each EQ statement represents a single specific phene.
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in the dataset. For each type of text representations that we 
generated with computational methods, comparable networks were 
constructed. For EQ statement representations, Jaccard similarity 
either taking the structure and order of terms in the EQ statement 
into account (referred to as metric S1) or ignoring the structure and 
treating the ontology terms in the EQ statement as an unordered set 
(referred to as metric S2) were used to determine edge values. See 
the Supplemental Methods section for a more detailed description of 
these similarity metrics. For vector representations generated using 
Doc2Vec and bag-of-words, cosine similarity was used. For the vector 
representations generated using set-of-words, Jaccard similarity was 
used. These networks are considered to be simultaneously gene 
and phenotype similarity networks because each phenotype in 
the dataset corresponds to a specific causal gene and a node in the 
network represents both that causal gene and its cognate phenotype. 
However, two phenotype descriptions corresponding to the same 
gene are retained as two separate nodes in the network, so while 
each node represents a unique gene/phenotype pair, a single gene 
may be represented within more than one node.

REsUlTs

Performance of Computational Methods in 
Reproducing hand-Curated Annotations
We tested the ability of computational semantic annotation 
methods to assign ontology terms similar to those selected by 
curators to phenotype and phene descriptions in the Oellrich, 
Walls et al. (2015) dataset. Specifically, the ontology terms 
mapped by each method to a particular description were 
compared against the terms present in the EQ statement(s) that 
were created by hand-curation for that same description. Metrics 

of partial precision (PP) and partial recall (PR), as well as the 
harmonic mean of these values (PF1) as a summary statistic, were 
used to evaluate performance (Table 2). Metrics PP and PR were 
applied as in Dahdul et al. (2018); see the Supplemental Methods 
section for a detailed description of these metrics.

NOBLE Coder and NCBO Annotator generally produced 
semantic annotations more similar to the hand-curated 
dataset using phenotype descriptions as inputs than using the 
set of phene descriptions as inputs, a result consistent across 
ontologies. We considered this to be counterintuitive because 
the phene descriptions are more directly related to the individual 
EQ statements in terms of semantic content. However, the set 
of target ontology terms considered correct is larger in the case 
of the phenotype descriptions because this set of terms includes 
all terms in any EQ statements derived from that phenotype 
rather than a single EQ statement, which could contribute to this 
measured increase in both partial recall and partial precision. 
Accounting for synonyms and related words generated through 
Word2Vec models increased PR in the case of specific annotation 
methods as the threshold for word similarity was decreased 
(from 1.0 to 0.5), but did not increase PF1 in any instance due to 
the corresponding losses in PP (Supplemental Figure 1).

NOBLE Coder and NCBO Annotator performed comparably 
in the case of each type of text description and ontology, with 
NOBLE Coder using the precise matching parameter slightly 
outperforming the other annotation method with respect to 
these particular metrics for these particular descriptions. Both 
outperformed the Naïve Bayes classifier, for which performance 
dropped significantly for the ontologies with smaller relative 
representation in the dataset (GO and ChEBI), as might be 
expected. When the results were aggregated, the increase in partial 
recall for PATO, PO, and GO terms relative to the maximum recall 

TABlE 2 | Performance metrics for semantic annotation methods.

Annotator Ontology n1 Phenotype Description Phene Descriptions

PP3 PR3 PF1
3 PP3 PR3 PF1

3

NOBLE Coder (Precise) PATO 7882 0.641 0.627 0.634 0.601 0.572 0.586
PO 5634 0.622 0.380 0.472 0.546 0.294 0.382
GO 1505 0.514 0.521 0.517 0.510 0.514 0.512

NOBLE Coder (Partial) PATO 7882 0.412 0.748 0.532 0.375 0.689 0.486
PO 5634 0.309 0.758 0.439 0.269 0.659 0.382
GO 1505 0.102 0.846 0.182 0.091 0.839 0.165

NCBO Annotator PATO 7882 0.640 0.619 0.629 0.598 0.563 0.580
PO 5634 0.550 0.259 0.352 0.458 0.170 0.248
GO 1505 0.478 0.433 0.454 0.480 0.424 0.450
ChEBI 775 0.429 0.888 0.579 0.431 0.913 0.586

Naïve Bayes Classifier PATO 7882 0.517 0.394 0.447 0.642 0.484 0.552
PO 5634 0.474 0.258 0.334 0.636 0.429 0.512
GO 1505 0.091 0.073 0.081 0.155 0.157 0.156
ChEBI 775 0.035 0.031 0.033 0.001 0.001 0.001

Aggregate Annotations2 PATO 7882 0.412 0.798 0.543 0.383 0.815 0.522
PO 5634 0.351 0.809 0.489 0.304 0.831 0.445
GO 1505 0.107 0.839 0.190 0.090 0.839 0.163
ChEBI 775 0.366 0.890 0.519 0.305 0.913 0.457

1The number of terms from a given ontology in all curated EQ statements in the dataset.
2Annotation set formed by taking the union of the annotations from all other methods.
3Metrics are partial precision and recall (PP, PR; Dahdul et al., 2018) and their harmonic mean (PF1).
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achieved by any individual method indicates that the curated terms 
that were recalled by each method were not entirely overlapping. 
This is as expected given that different methods used for semantic 
annotation recalled target (curated) ontology terms to different 
degrees, as measured by Jaccard similarity of a given target term 
to the closest predicted term annotated by that particular method. 
These sets of obtained similarities to target terms were comparable 
between NCBO Annotator and NOBLE Coder (ρ = 0.84 with 
phene descriptions and ρ = 0.86 with phenotype descriptions) and 
dissimilar between either of those methods and the Naïve Bayes 
classifier (ρ < 0.10 in both cases for either type of description) 
using Spearman rank correlation adjusted for ties.

These results indicate that automated annotation methods 
(NCBO Annotator, NOBLE Coder, and Naïve Bayes classifier) do 
not reproduce the exact same ontology term annotations selected 
by hand-curation for each phenotypic description, as expected. 
Given this result, we next assessed how these differences between 
the hand-curated annotations and computationally generated 
annotations translated into differences between the phenotype 
similarity networks based on these annotations.

Comparing Computational Networks to 
the hand-Curated Network
Oellrich, Walls et al. (2015) developed a network with phenotype/
gene pairs as nodes and similarity between them as edges for all 
phenotypes in the dataset. In this work, comparable networks were 

constructed for the same dataset using a number of computational 
approaches for representing phenotype and phene descriptions and 
for predicting similarity. For the purposes of this assessment, the 
network built from hand-curated EQ statements and described in 
Oellrich, Walls et al. (2015) is considered the gold standard against 
which each network we produced is compared. The computational 
and gold standard networks were compared using the F1 metric to 
assess similarity in predicted phenolog pairs at a range of k values, 
where k is the allowed number of phenolog pairs predicted by the 
networks (the k most highly valued edges). Results are reported 
through k = 583,971, which is the number of non-zero similarities 
between phenotypes in the gold standard network, and were 
repeated using phenotype descriptions and phene descriptions as 
inputs to the computational methods (Figure 3). The simplest NLP 
methods for assessing similarity (set-of-words and bag-of-words) 
consistently recapitulated the gold standard network the best 
using phenotype descriptions, whereas the document embedding 
method using Doc2Vec outperformed these methods for values of 
k ≤ 200,000 based on phene descriptions. The differences in the 
performance of each method are robust to 80% subsampling of the 
phenotypes present in the dataset.

These results illustrate that computational methods do 
not exactly reproduce the phenotype similarity network built 
from the hand-curated EQ statements. However, this does not 
necessarily mean that the hand-curated network is inherently 
more biologically meaningful. To assess how useful each network 
is in a biological context, we next compared how the hand-curated 

FiGURE 3 | Comparison of phenolog pairs identified by predictive methods in comparison to the Oellrich, Walls et al. (2015) dataset. The x-axis indicates the 
number of phenologs pairs (highest valued edges in the phenotype similarity network) at each point. The standard deviation of resampling with 80% of the 
phenotypes in the dataset (network nodes) are indicated by ribbons for each method. Phene descriptions (left) or phenotype descriptions (right) were used as the 
text input for each particular method.
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network and each computational network performed on the task 
of sorting genes into functional groups.

Computational Methods Outperform 
hand-Curation for Gene Functional 
Categorization in Arabidopsis
Lloyd and Meinke (2012) previously organized a set of Arabidopsis 
genes with accompanying phenotype descriptions into a 
functional hierarchy of groups (e.g., “morphological”), classes 
(e.g., “reproductive”), and finally subsets (e.g., “floral”), in order 
from most general to most specific. See Supplemental Table 1 in 
Lloyd and Meinke (2012) for a full specification of this hierarchy 
to which the genes were assigned, and Supplemental Table 2 in 
Lloyd and Meinke (2012) for a mapping between genes and this 
hierarchical vocabulary. Oellrich, Walls et al. (2015) later used this 
set of genes and phenotypes to validate the quality of their dataset 
of hand-curated EQ statements by reporting the average similarity 
of phenotypes (translated into EQ statements) that belonged to the 
same functional subset. We used this same functional hierarchy 
categorization and a similar approach to assess the utility of 
computationally generated representations of phenotypes towards 
correctly categorizing the functions of the corresponding genes 
and to compare this utility against that of the dataset of hand-
curated EQ statements. For each class and subset in the hierarchy, 
the mean similarity between any two phenotypes related to genes 
within that class or subset (“within” mean) was quantified using 
each computable representation of interest and compared to the 
mean similarity between a phenotype related to a gene within that 
class or subset and one outside of it (“between” mean), quantified 

in terms of standard deviation of the distribution of all similarity 
scores generated for each given method. The difference between 
the “within” mean and “between” mean (referred to here as the 
Consistency Index) for each functional category for each method 
indicates the ability of that method to generate strong similarity 
signal for phenotypes in this dataset that share that function 
(Figure 4). In the case of these data, most computational methods 
using either phene or phenotype descriptions as the input text 
were able to recapitulate the signal present in the network Oellrich, 
Walls et al. (2015) generated from hand-curated EQ statements, 
and the simplest NLP methods (bag-of-words and set-of-words) 
produced the most consistent signal.

In order to more directly compare each method on a general 
classification task, networks constructed from curated EQ 
statements and those generated using each computational method 
were used to iteratively classify each Arabidopsis phenotype into 
classes and subsets. This was accomplished by removing one 
phenotype at a time and withholding the remaining phenotypes as 
training data, learning a threshold value from the training data, and 
then classifying the held-out phenotype by calculating its average 
similarity to each training data phenotype in each class or subset 
and classifying it as belonging to any category for which the average 
similarity to other phenotypes in that category exceeded the learned 
threshold. Performance on this classification task using each network 
was assessed using the F1 metric, where the functional category 
assignments for each gene reported by Lloyd and Meinke (2012) were 
considered to be the correct classifications (Table 3). The simplest 
NLP methods (bag-of-words and set-of-words) outperformed the 
Oellrich, Walls et al. (2015) hand-curated EQ statement network on 
this classification task in all cases, while using the computationally 

FiGURE 4 | Heatmap of Consistency Index. The difference between average similarity for two phenotypes within a subset and one phenotype within and one 
outside, for each functional subset defined in the dataset of Arabidopsis phenotypes, and for each method of quantifying similarity between phenotypes is shown, 
with darker cells indicating higher consistency within a subset. Differences are measured in standard deviations of the distributions of similarities obtained for each 
method. The meaning of subset abbreviations are specified in Supplemental Table 1 of Lloyd and Meinke (2012). Methods are listed at left. Input text for calculating 
similarities between the phenotypes were either derived from phenotype descriptions (top) or phene descriptions (bottom). The far right column in the heatmap 
refers to an average Consistency Index for a given method across all subsets.
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generated EQ statements or document embeddings generated with 
Doc2Vec only outperformed the curated EQ statement network in 
some cases.

Taken together, these results indicate that even though the 
computationally generated networks are significantly different 
than the hand-curated network (Figure 3), they generally 
perform equally well or better on tasks related to organizing 
Arabidopsis genes into functional groups. We next examined how 
these networks compare on the task of predicting biochemical 
pathway membership for specific genes, both within a single 
species and across multiple species.

Computational Methods Outperform 
hand-Curation for Recovering Genes 
involved in Anthocyanin Biosynthesis Both 
Within and Between species
Oellrich, Walls et al. (2015) illustrated the utility of using EQ 
statement representations of phenotypes to provide semantic 
information necessary to recover shared membership of causal genes 
in regulatory and metabolic pathways. Specifically, they showed 
that by querying a six-species phenotype similarity network with 
the c2 (colorless2) gene in maize, which is involved in anthocyanin 
biosynthesis, genes c1, r1, and b1 (colorless1, red1, and booster1), 
which are also involved in anthocyanin biosynthesis in maize, are 
recovered. Querying in this instance is defined as returning other 
genes in the similarity network, ranked using the maximal value 
of the edges connecting a phenotype corresponding to the query 
gene and a phenotype corresponding to each other gene in the 
network. There are 2,747 genes in the dataset, so querying with one 
gene returns a ranked list of 2,746 genes. This result was included 
by Oellrich, Walls et al. (2015) as a specific example of the general 
utility of the phenotype similarity network to return other members 
of a pathway or gene regulatory network when querying with a 
single gene. See Figure 1 for a general illustration of this concept.

To evaluate this same utility in the phenotype similarity 
networks we generated using computational methods and to 
compare their utility to that of the network from Oellrich, Walls 
et al. (2015) generated using hand-curated EQ statements, we 
first expanded the set of maize anthocyanin pathway genes to 
include those present in the description of the pathway given 
by Li et al. (2019), and listed in Supplementary Table 1 of that 
publication. Of those genes, 10 are present in the Oellrich, Walls 
et al. (2015) dataset (Table 4). Additionally, we likewise identified 
the set of Arabidopsis genes known to be involved in anthocyanin 

biosynthesis (listed in Table 1 of Appelhagen et  al., 2014) that 
were present in the Oellrich, Walls et al. (2015) dataset. This 
yielded a total of 16 Arabidopsis genes (Table 5).

Recovering Anthocyanin Biosynthesis Genes  
Within a Single Species
Using each phenotype similarity network, each anthocyanin 
biosynthesis gene from one species was iteratively used as a 
query against the network. The rank of each other gene in the set 
of anthocyanin biosynthesis genes corresponding to the same 
species as the query was quantified. We grouped the ranks into 
bins of width 10 for ranks less than or equal to 50 and combined 
all ranks greater than 50 into a single bin. For each phenotype 
similarity network, the mean and standard deviation of the 
number of anthocyanin biosynthesis genes in each bin were 
calculated (Figure 5). The average number of pathway genes 
ranked within the top 10 across all queries was greater for all 
computationally generated networks than for the network built 
from hand-curated EQ statements, although variance across the 
queries was high. In general, computational networks built from 
predicted EQ statements performed best for this task, whereas 
the network built using the hand-curated EQs performed the 
worst. The networks constructed using the numerical vector 
representations (set-of-words, bag-of-words, and Doc2Vec) 
were intermediate in performance as a group (Figure 5).

Recovering Anthocyanin Biosynthesis Genes 
Between Two Species
To determine whether the methods performed similarly both 
within and across species, we repeated the analysis described 
in the previous section (Recovering Anthocyanin Biosynthesis 
Genes Within a Single Species), but instead of quantifying 
the ranks of all anthocyanin biosynthesis genes from the 
same species as the query gene, we quantified the ranks of 
all anthocyanin genes that derived from the other species. In 
other words, Arabidopsis genes were used to query for maize 
genes, and maize genes were used to query for Arabidopsis 
genes. As shown in Figure 6, the phenotype similarity network 
constructed from hand-curated EQ statements did not recover 
(provide ranks of less than or equal to 50) any of the anthocyanin 
biosynthesis genes when queried with genes from the other 
species. Networks generated using the set-of-words and bag-
of-words approaches, or with Doc2Vec, performed similarly, 
recovering on average less than one anthocyanin biosynthesis 
gene per query. Only networks built from computationally 
generated EQ statements recovered an appreciable number of 
anthocyanin biosynthesis genes on average across the queries 
between species (Figure 6).

DisCUssiON

Computationally Generated Phenotype 
Representations Are Useful
A primary purpose for generating representations of phenotypes 
that are easy to compute on (EQ statements, vector embeddings, 
etc.) is to construct similarity networks that enable the use of one 

TABlE 3 | Evaluation (F1 scores) for each method used to categorize 
Arabidopsis genes by function.

Method Phenes Phenotypes

Class subset Class subset

Curated EQ 0.470 0.359 0.470 0.359
Pred EQ S1 0.472 0.472 0.369 0.320
Pred EQ S2 0.504 0.413 0.437 0.368
Set-of-words 0.613 0.447 0.587 0.426
Bag-of-words 0.595 0.423 0.549 0.409
Doc2Vec 0.455 0.331 0.486 0.377
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phenotype as a query to retrieve similar phenotypes. This process 
serves as a means of discovering relatedness between phenotypes 
(potential phenologs) within and across species, thus generating 
hypotheses about underlying genetic relatedness (reviewed in 
Oellrich, Walls et al., 2015).

The computational methods discussed in this work were 
demonstrated to only partially recapitulate the phenotype 
similarity network constructed by Oellrich, Walls et al. (2015) using 
hand-curated EQ statements (Comparing Computational Networks 
to the Hand-Curated Network). Despite the limited similarity 
between the network built from hand-curated annotations and 
the computationally generated networks, the computationally 
generated networks performed as well or better than the hand-
curated network (based on curated EQ statements) in terms 
of correctly organizing phenotypes and their causal genes into 
functional categories at multiple hierarchical levels (Computational 
Methods Outperform Hand-Curation for Gene Functional 
Categorization in Arabidopsis). In addition, each computationally 
generated network performed better than the hand-curated 
network for querying with either maize or Arabidopsis anthocyanin 

biosynthesis genes to return other anthocyanin biosynthesis genes 
from the same species (Recovering Anthocyanin Biosynthesis Genes 
Within a Single Species), a task originally used to demonstrate the 
utility of the phenotype similarity network constructed in Oellrich, 
Walls et al. (2015).

Moreover, the networks built from computationally generated 
EQ statements were useful for recapturing anthocyanin 
biosynthesis genes from a species different than the species 
of origin for the queried gene/phenotype pair. None of the 
other networks, including the network built from curated 
EQ statements, exhibited this utility for this task (Recovering 
Anthocyanin Biosynthesis Genes Between Two Species). This 
particular result indicates that high accuracy of constructed EQ 
statements is not specifically necessary for tasks such as querying 
for related genes across species because potentially inaccurate 
(computationally predicted) EQ statements generated a more 
successful network for the task. Replicating these analyses with 
phenotype descriptions in a different biological domain, such as 
vertebrates, would determine whether these results generalize to 
additional species groups and datasets.

TABlE 4 | Maize genes involved in anthocyanin biosynthesis.

Gene name (symbol) Gene model iD1 Category2 Encoded protein3

colorless2 (c2) GRMZM2G422750 Enzyme naringenin-chalcone
synthase

chalcone flavone GRMZM2G155329 Enzyme chalcone isomerase
isomerase1 (chi1)
red aleurone1 (pr1) GRMZM2G025832 Enzyme flavonoid

3'-hydroxylase
(flavonoid
3'-monooxygenase)

flavone 3-hydroxylase1 GRMZM2G062396 Enzyme flavonone
(fht1; F3H) 3'-hydroxylase

(flavonol synthase)
anthocyaninless1 (a1) GRMZM2G026930 Enzyme dihydroflavonol

4-reductase
(flavonone
4-reductase)

anthocyaninless2 (a2) GRMZM2G345717 Enzyme anthocyanidin
synthase
(leucoanthocyanidin
dioxygenase)

bronze1 (bz1) GRMZM2G165390 Enzyme flavonol
3-O-glucocyltransferase

bronze2 (bz2) GRMZM2G016241 Enzyme glutathione transferase
(maleylacetoacetate
isomerase)

multidrug resistance GRMZM2G111903 Transporter multidrug-resistance-
associated protein3 like-transporter
(mrpa3; ZmMrp4)
scutellar node color1 (sn1) GRMZM5G822829 T F bHLH
colorless1 (c1) GRMZM2G005066 T F R2 R3-MYB
pericarp color1 p1 GRMZM2G084799 T F R2 R3-MYB
purple plant 1 (pl1) GRMZM2G701063 T F R2 R3-MYB
colored1 (r1) GRMZM5G822829 T F bHLH
colored plant (b1) GRMZM2G172795 T F bHLH
pale aleurone color1 (pac1) GRMZM2G058432 T F WD40

1Gene model IDS in bold were present in the Oellrich, Walls et al. (2015) dataset.
2The abbreviation TF is short for transcription factor.
3Enzyme encoded protein names from the Plant Metabolic Network (Schläpfer et al., 2017).
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Taken together, these results over this particular dataset of 
phenotype descriptions suggest that while the EQ statements 
generated through manual curation are likely the most 
accurate and informative computable representation of a given 
phenotype in specific cases, other representations generated 
entirely computationally with no human intervention are 
capable of meeting or exceeding the performance of the hand-
curated annotations on dataset-wide tasks such as sorting 
phenotypes and genes into functional categories, as well as 
in the case of specific tasks such as querying with particular 
genes to recover other genes involved in the same pathway. 
Therefore, in cases where the volume of data is large, the 
results are understood to be predictive, and manual curation is 
impractical, using automated annotation methods to generate 
large-scale phenotype similarity networks is a worthwhile goal 
and can provide biologically relevant information that can be 
used for hypothesis generation, including novel candidate 
gene prediction.

Multiple Approaches to Representing 
Natural language Are Useful
EQ statement annotations comprising ontology terms allow for 
interoperability with compatible annotations from varied data 
sources. They are also a human-readable annotation format, 
meaning that a knowledgeable human could fix an incorrect 

annotation by selecting a more appropriate ontology term (a 
process that is not possible using abstract vector embeddings). 
Their uniform structure also provides a means of explicitly 
querying for phenotypes involving a biological entity that 
is similar to some structure or process (e.g., trichomes) or 
matches some quality (e.g., an increase in physical size). 
Ontology-based annotations have the potential to increase 
the information attached to a phenotype (through inferring 
ancestral terms which are not specifically referred to in the 
phenotype description), but do not necessarily fully capture 
the detail and semantics of the natural language description.

For this reason, future representations of phenotypes in 
relational databases for the purpose of generating phenotype 
similarity networks across a large volume of phenotypes 
described in literature and in databases likely should include 
both ontology-based annotations describing the phenotypes, as 
well as the original natural language descriptions. Although the 
number of phenotypes in the dataset used here and described 
in Oellrich, Walls et al. (2015) is relatively small, the results of 
this work suggest utility of original text representations as a 
powerful means of calculating similarity between phenotypes, 
especially within a single species. Computationally generated 
EQ statements, which in the context of this study do not often 
meet the criteria for a fully logical curated EQ statement, were 
demonstrated to be more useful in any other approach for 
recovering biologically related genes across species.

TABlE 5 | Arabidopsis genes involved in anthocyanin biosynthesis.

Gene Name (symbol) locus Name1 Category2 Encoded Protein3

TRANSPARENT TESTA 4 (TT4) At5g13930 Enzyme naringenin-chalcone synthase
TRANSPARENT TESTA 5 (TT5) At3g55120 Enzyme chalcone isomerase
TRANSPARENT TESTA 6 (TT6) At3g51240 Enzyme flavanone 3'-hydroxylase

(flavonol synthase)
TRANSPARENT TESTA 7 (TT7) At5g07990 Enzyme flavonoid 3'-hydroxylase

(flavonoid 3'-monooxygenase)
TRANSPARENT TESTA 3 (TT3) At5g42800 Enzyme dihydroflavonol 4-reductase

(flavonone 4-reductase)
TRANSPARENT TESTA 11 (TT11)
TRANSPARENT TESTA 17 (TT17)
TRANSPARENT TESTA 18 (TT18) At4g22880 Enzyme anthocyanidin synthase
TANNIN-DEFICIENT SEED 4(TDS4) (leucoanthocyanidindioxygenase)
ARABIDOPSIS SIP1 CLADE
TRIHELIX 1 (AST1) At1g61720 Enzyme anthocyanidin reductase
BANYULS (BAN1)
TRANSPARENT TESTA 14 (TT14) At5g17220 Enzyme glutathione transerase
TRANSPARENT TESTA 19 (TT19) (maleylacetoacetate isomerase)
AUTOINHIBITED H+ - ATPASE (AHA) At1g17260 Enzyme ATP-ase
TRANSPARENT TESTA 10 (TT10) At5g48100 Enzyme laccase
TRANSPARENT TESTA 5 (TT15) At1g43620 Enzyme 3β- hydroxy sterol

glucosyltransferase
TRANSPARENT TESTA 11 (TT12) At3g59030 Transporter MATEefflux proton antiporter
TRANSPARENT TESTA 16 (TT16) At5g23260 T F K-box, MADS-box
TRANSPARENT TESTA 1 (TT1) At1g34790 T F C2H2
TRANSPARENT TESTA 2 (TT2) At5g35550 T F bHLH
TRANSPARENT TESTA 8 (TT8) At4g09820 T F bHLH
TRANSPARENT TESTA GLABRA 1 At5g24520 T F WD40
(TTG1)
TRANSPARENT TESTA GLABRA 1(TTG2) At2g37260 T F WRKY
1Locus names in bold were present in the Oellrich, Walls et al. (2015) dataset.
2The abbreviation TF is short for transcription factor.
3Enzyme encoded protein names from the Plant Metabolic Network (Schläpfer et al., 2017).
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Ensemble methods are often applied in the field of machine 
learning, where multiple methods are used to solve a problem, 
with a higher-level model determining which method will be 
most useful in solving each new instance of the problem. It is 
possible that such an approach could be applied to measuring 
similarity between phenotypes to generate a single large-scale 
network, where similarity values are based on the best possible 
method to assess the text representations of each pair of 
particular phenotypes.

Additional Challenges With EQ 
statement Representation
Although ontology terms and EQ statements composed 
of ontology terms are an information-rich representation 
of phenes and phenotypes, flexibility in which terms and 
statements can represent a particular phenotype can limit the 
ability to computationally recognize true biological similarity. 
The graph structures of the ontologies themselves, the metrics 
used to assess semantic similarity, and the ambiguity inherent 

FiGURE 5 | Rankings of anthocyanin biosynthesis genes in either maize (A) or Arabidopsis (B) upon querying phenotype similarity networks generated with 
genes from the same species. Phenotype networks are organized by the method used to generate them (columns) and by whether those methods were applied 
to phenotype or phene descriptions (rows). Rank value specifies a range of rankings for each bar in the plots (1–10, 11–20, etc.) and rank quantity indicates the 
average number of anthocyanin biosynthesis genes that were ranked in a given range over all queries. Error bars indicate one standard deviation of the rank 
quantities in each range over all queries.
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in both natural language and EQ statement representations of 
phenes and phenotypes can all potentially contribute to this 
problem.

As one example in the Oellrich, Walls et al. (2015) dataset 
used here, the phene description “complete loss of flower 
formation” was annotated with an EQ statement whose entity 
is flower development, whereas the computationally identified 
entity using the methods described in this work was flower 
formation. In this instance, the Jaccard similarity between these 
two ontology terms was 0.286, which by comparison is less 

than the Jaccard similarity between flower formation and leaf 
formation in the context of the ontology graph. This selected 
example illustrates the possible discrepancies between true 
biological similarity and semantic similarity as measured using 
graph-based metrics. Although each semantic similarity metric 
calculates this value differently, those that use the hierarchical 
nature of the ontology are all constrained by the structure of 
the graph itself.

Variation in how humans and computational methods 
interpret how a phenotype as a whole should be conceptualized 

FiGURE 6 | Rankings of anthocyanin biosynthesis genes in either maize (A) or Arabidopsis (B) upon querying phenotype similarity networks generated with 
genes from the other species. Phenotype networks are organized by the method used to generate them (columns) and by whether those methods were applied 
to phenotype or phene descriptions (rows). Rank value specifies a range of rankings for each bar in the plots (1–10, 11–20, etc.) and rank quantity indicates the 
average number of anthocyanin biosynthesis genes that were ranked in a given range over all queries. Error bars indicate one standard deviation of the rank 
quantities in each range over all queries.
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also has the potential to produce representations that obscure 
true similarity, as measured by graph-based metrics. In another 
example from the Oellrich, Walls et al. (2015) dataset, the phene 
description “stamens transformed to pistils” was annotated with 
two different EQ statements. The first EQ statement uses the 
relational quality has fewer parts of type to indicate the absence 
of stamen in this phenotype, and the second uses the relational 
quality has extra parts of type to indicate the presence of pistils 
in this phenotype. This representation of the phenotype makes 
logical sense, but is not easy to generate computationally because 
it abstractly describes the outcome of the transformation that 
is explicitly present in the natural language description and is 
dissimilar from computationally generated representations that 
focus on the explicit content (i.e., those which use the relational 
quality transformed to).

Finally, this study looked at a dataset consisting entirely of 
phenotypic descriptions in English, and the generalizability of 
these methods to other languages is not discussed. It is certainly 
likely that structural differences between languages would 
result in differences in how certain methods of computing over 
descriptions in those languages perform, but such analysis is 
outside the scope of this work.

Extending This Work to the Wealth of 
Text Data Available in Databases and 
the literature
We plan to apply the methods of semantic annotation, 
ontology-based semantic similarity calculation, and natural 
language-based semantic similarity calculation to the wealth of 
text data available in existing plant model organism databases 
and biological literature. For the latter, doing so will involve 
the additional challenge of extracting phenotype descriptions 
as well as the genes causative to those phenotypes as a separate 
identification and processing step. We plan to leverage existing 
work in the areas of named entity recognition specific to genes 
(Wei et  al., 2015) and relation extraction, as well as existing 
methods for extracting information related to phenotypes 
such as those developed using vector-based representations 
of phenotype descriptions (Xing et  al., 2018) and grammar-
tree representations of phenotype descriptions (Collier et al., 
2015). As the size of the applicable dataset is increased by these 
means, we will continue to analyze the performance of methods 
from the domains of machine learning and NLP towards 
constructing biologically meaningful networks from this 
phenotypic data, including additional techniques that were not 
included in the results presented here. For example, Sent2Vec 
(Pagliardini et al., 2018) is another technique for assessing text 
similarity that takes a different approach from Doc2Vec for 
embedding text as numerical vectors and has been shown to 
perform well when trained on life science corpora (Chen et al., 
2018). These next steps are anticipated to enable researchers 
to begin to compute on phenotype descriptions directly and 
will drive a promising future for forward genetics research 
approaches where phenotypes can be used for novel candidate 
gene prediction as easily as sequence similarity searches can be 
used to identify putative homologs from sequence data.
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