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This article describes and discusses the self-related mechanisms of a general-purpose 
intelligent system, NARS. This system is designed to be adaptive and to work with insuf-
ficient knowledge and resources. The system’s various cognitive functions are uniformly 
carried out by a central reasoning-learning process following a “non-axiomatic” logic. 
This logic captures the regularities of human empirical reasoning, where all beliefs are 
revisable according to evidence, and the meaning of concepts are grounded in the sys-
tem’s experience. NARS perceives its internal environment basically in the same way as 
how it perceives its external environment although the sensors involved are completely 
different. Consequently, its self-knowledge is mostly acquired and constructive, while 
being incomplete and subjective. Similarly, self-control in NARS is realized using mental 
operations, which supplement and adjust the automatic inference control routine. It is 
argued that a general-purpose intelligent system needs the notion of a “self,” and the 
related knowledge and functions are developed gradually according to the system’s 
experience. Such a mechanism has been implemented in NARS in a preliminary form.

Keywords: general intelligence, non-axiomatic logic, self-awareness, self-control, self-organization, 
consciousness

1. inTrODUcTiOn

Phenomena and functions like “self-awareness,” “self-control,” “self-reference,” and “self-consciousness” 
are closely related to human intelligence, cognition, and thinking, and the related topics have been 
discussed in various fields (Hofstadter, 1979; Blackmore, 2004).

In the study of artificial intelligence (AI), although these issues have been addressed by the pio-
neers (Simon, 1962; Minsky, 1985; McCarthy, 1995), they nevertheless have been rarely considered 
in the technical works, as shown by the lack of coverage of these topics in the common textbooks 
(Luger, 2008; Russell and Norvig, 2010; Poole and Mackworth, 2017). The difficulty of realizing these 
functions in a machine is both technical and theoretical, as there is no widely accepted theory about 
them, and even their definitions are highly controversial.

On the contrary, researchers in the emerging field of artificial general intelligence (AGI) widely 
consider these functions as necessary for general intelligence and have proposed various ways to 
cover hem in AGI systems (Schmidhuber, 2007; Baars and Franklin, 2009; Bach, 2009; Shapiro and 
Bona, 2010; Chella and Manzotti, 2012; Thórisson, 2012; Goertzel, 2014; Rosenbloom et al., 2016). 
As these approaches are based on very different considerations and typically tangled with the other 
functions in the system, it is hard to compare them to say which one is the best.

The focus of this article is the relevant aspects of NARS (non-axiomatic reasoning system), a 
formal model of general intelligence, which has been mostly implemented and is under testing and 
tuning. In the following, the conceptual design of NARS is introduced first, then the parts mostly 
relevant to “self ” are described in more detail. Finally, the major design decisions are compared with 
the related works.
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2. nars OVerVieW

NARS (non-axiomatic reasoning system) is an AGI-designed 
framework of a reasoning system. The project has been described 
in many publications, including two books (Wang, 2006, 2013), 
so it is only briefly summarized here.

2.1. Theoretical and strategic 
assumptions
The working definition of “intelligence” in NARS is different from 
that in mainstream AI, where “Intelligence” is usually taken as 
an ability to solve problems that are only solvable by the human 
brain. A computer agent can obtain this ability by developing 
domain-specific solutions. Instead, NARS is designed according 
to the belief that “Intelligence” is the ability for a system to adapt 
to its environment and to work with insufficient knowledge and 
resources. It requires the system to have the capacities of accepting 
unanticipated problems and events, making real-time responses, 
working with finite resources, and learning from its experience in 
an application domain.

The behaviors of NARS are based on past experiences and gen-
erated by interacting with the environment in real time; therefore, 
the solutions provided by the system to the problems are usually 
not the optimum solutions but the best solution that the system 
can find at the moment. The system could always do better with 
more resources and knowledge, especially in a relatively stable 
environment. Compared to the other theories of rationality, 
the most significant feature of this “relative rationality” is the 
Assumption of Insufficient Knowledge and Resources, hereafter 
AIKR. Concretely, the following three features are demanded by 
AIKR, with respect to the problems to be solved by the system:

•	 Finite: The system is able to work with constant informa-
tion-processing capacity, in terms of processor speed, storage 
space, etc.

•	 Real time: The system is able to deal with problems that 
show up at any moment and the utility of their solutions may 
decrease over time.

•	 Open: The system is able to accept input data and problems of 
any content, as long as they are expressed in a format recog-
nizable by the system.

Due to the time and resources restriction, and also the uncer-
tainty about the coming problems, NARS usually cannot consider 
all possibilities when facing a problem, but will only consider 
some important and relevant possibilities, judged according to 
the system’s experience.

According to AIKR, NARS does not treat the storage space of 
itself as infinite. The mechanism of forgetting is a special feature 
of NARS to deal with limited storage space. Some beliefs or tasks 
will be removed from the storage of NARS when their priority (to 
be introduced later) is below a threshold.

AIKR is a fundamental assumption abstracted from the study 
of human problem solving in the real world. Humans obtain 
knowledge by learning and summarizing past experience. When 
humans deal with problems that they do not know how to solve 
at the moment, they will attempt to solve them with the help of 

relevant knowledge. This ability is exactly what we consider intel-
ligence, which is characterized not by what problems it can solve, 
but the restriction under which the problems are solved.

The research goal of NARS is to design and build a com-
puter system that can adapt to its environment and solve 
problems under AIKR. This is different from the objectives 
of the mainstream AI projects, which are specific problem-
solving abilities. The aim of NARS is to build a system with 
a given learning ability (at the meta-level) that allows the 
system to acquire various problem-solving skills from its 
experience.

Although being a reasoning system is neither a necessary nor 
sufficient condition for being intelligent, a reasoning system can 
provide a suitable framework for the study of intelligence, as it 
forces the system to be general purpose, instead of being domain 
specific. Reasoning is at a more abstract level than other low-level 
cognitive activities, and it is obviously a critical cognitive skill 
that qualitatively distinguishes human beings from other animals.

Many cognitive processes such as planning, learning, decision-
making, etc., can be formulated as types of reasoning; therefore, 
an intelligent system designed in the framework of a reasoning 
system can be extended to cover them easily. As a reasoning 
system follows a logic, each step of processing must be justifiable 
independently. As a result, inference steps can be linked at run 
time in novel orders to handle novel problems. This is a major 
reason why NARS is designed as a reasoning system.

2.2. Knowledge representation
As a reasoning system, NARS uses a formal language called 
“Narsese” for knowledge representation, which is defined by a 
formal grammar given in the study by Wang (2013). To fully 
specify and explain this language is beyond the scope of this 
article, so in the following, only the directly relevant part is 
introduced informally and described briefly.

The logic used in NARS belongs to a tradition of logic called 
“term logic,” where the smallest component of the representation 
language is a “term,” and the simplest statement has a “subject-
copula-predicate” format, where the subject and the predicate are 
both terms.

The basic form of statement in Narsese is inheritance state-
ment, which has a format “S → P,” where S is the subject term, and 
P is the predicate term, the “→” is the inheritance copula, which 
is defined as a reflexive and transitive relation from one term to 
another term. The intuitive meaning of “S → P” is “S is a special 
case of P” and “P is a general case of S.” For example, statement 
“robin → bird” intuitively means “Robin is a type of bird.”

We define the extension of a given term T to contain all of its 
known special cases and its intension to contain all of its known 
general cases. Therefore, “S→P” is equivalent to “S is included in 
the extension of P,” and “P is included in the intension of S.”

The simplest, or “atomic,” form of a term is a word, that is, a 
string of characters from a finite alphabet. In this article, typical 
terms are common English nouns like bird an animal, or mixed 
by English letters, digits 0–9, and a few special signs, such as 
hyphen(“-”) and underscore (“_”), but the system can also use 
other alphabets or use terms that are meaningless to human 
beings, such as “drib” and “aminal.”
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Beside atomic terms, Narsese also includes compound terms of 
various types. A compound term (con, C1, C2, …, Cn) is formed 
by a term connector, con, and one or more component terms (C1, 
C2, …, Cn). The term connector is a logical constant with prede-
fined meaning in the system. Major types of compound terms in 
Narsese include the following:

•	 Sets: Term {Tom, Jerry} is an extensional set specified by enu-
merating its instances; term [small, yellow] is an intensional set 
specified by enumerating its properties.

•	 Intersections and differences: Term (bird ∩ swimmer) 
represents “birds that can swim”; term (bird – swimmer) rep-
resents “birds that cannot swim.”

•	 Products and images: The relation “John is the uncle of Zack” 
is represented as “({John}  ×  {Zack}) → uncle-of,” “{John}→ 
(uncle-of  /  ◊  {Zack}),” and “{Zack}→ (uncle-of  /  {John}  ◊),” 
equivalently.1 Here, ◊ is a placeholder, which indicates the 
position in the uncle-of relation the subject term belongs to.

•	 Statement: “John knows soccer balls are round” can be rep-
resented as a higher-order statement “{John}→ (know / ◊ {soc-
cer-ball → [round]}),” where the statement “soccer-ball → 
[round]” is used as a term.

•	 Compound statements: Statements can be combined using 
term connectors for disjunction(“∨”), conjunction(“∧”), and 
negation(“¬”), which are intuitively similar to those in propo-
sitional logic, but not defined using truth-tables.2

Several term connectors can be extended to take more than 
two component terms, and the connector is often written before 
the components rather between them, such as (× {John}{Zack}).

Beside the inheritance copula (“→”, “is a type of ”), Narsese 
also has three other basic copulas: similarity (“↔”, “is similar to”), 
implication (“⇒”, “if-then”), and equivalence (“⇔”, “if-and-only-
if ”), and the last two are used between statements.

In NARS, an event is a statement with temporal attributes. 
Based on their occurrence order, two events E1 and E2 may have 
one of the following basic temporal relations:

•	 E1 happens before E2

•	 E1 happens after E2

•	 E1 happens when E2 happen

More complicated temporal relations can be expressed by 
taking about the subevents of the events.

Temporal statements are formed by combining the above 
basic temporal relations with the logical relations indicated by 
the term connectors and copulas. For example, implication state-
ment “E1 ⇒ E2” has three temporal versions, corresponding to the 
above three temporal orders, respectively3:

1 This treatment is similar to the set-theoretic definition of “relation” as set of tuples, 
where it is also possible to define what is related to a given element in the relation as 
a set. For detailed discussions, see the studies by Wang (2006, 2013).
2 The definitions of disjunction and conjunction in propositional logic do not 
require the components to be related in content, which lead to various issues under 
AIKR. In NARS, such a compound is formed only when the components are related 
semantically, temporally, or spatially. See the study by Wang (2013) for details.
3 Here, the direction of the arrowhead is the direction of the implication relation, 
while the direction of the slash is the direction of the temporal order. In principle, 
copulas like “/⇐” can also be defined, but they will be redundant. For more discus-
sion on this topic, see the study by Wang (2013).

•	 E1 /⇒ E2

•	 E1 \⇒ E2

•	 E1 |⇒ E2

All the previous statements can be seen as Narsese describ-
ing things or events from a third-person view. Narsese can also 
describe the actions of the system itself with a special kind of 
event called operation. An operation is an event directly realiz-
able by the system itself via executing the associated code or 
command.

Formally, an operation is an application of an operator on a list 
of arguments, written as op(a1, …, an) where op is the operator, and 
a1, …, an is a list of arguments. Such an operation is interpreted 
logically as statement“(× {SELF} {a1} … {an}) → op,” where SELF 
is a special term indicating the system itself, and op is an operator 
that has a procedural interpretation. For instance, if we want to 
describe an event “The system is holding key_001,” the statement 
can be expressed as “(× {SELF} {key_001})→ hold.”

Overall, there are three types of sentences defined in Narsese:

•	 A judgment is a statement with a truth value and represents a 
piece of new knowledge that system needs to learn or consider. 
For example, “robin → bird ⟨f, c⟩,” where the truth value ⟨f, c⟩ 
will be introduced in the next section.

•	 A question: is a statement without a truth value, and represents 
a question to be answered according to the system’s beliefs. For 
example, if the system has a belief “robin → bird” (with a truth 
value), it can be used to answer question “robin → bird?” by 
reporting the truth value, as well as to answer the question 
“robin → ?” by reporting the truth value together with the term 
bird, as it is in the intension of robin. Similarly, the same belief 
can also be used to answer question “? → bird” by reporting 
the truth value together with the term robin.

•	 A goal is statement without a truth value, and represents 
a statement to be realized by executing some operations, 
according to the system’s beliefs. For example, “(× {SELF} 
{door_001}) → open!” means the system has the goal to open 
the door_001 or to make sure that door_001 is opened. Each 
statement of goal always associates with a “desire-value,” 
indicating the extent to which the system hopes for a situation 
where the statement is true.

The experience of NARS consists of a stream of input sentences 
of the above types.

2.3. experience-grounded semantics
When studying a language, semantics relates the items in the 
language to the environment in which the language is used. It 
answers questions like “What is the meaning of this term?,” or 
“What is the truth value of that statement?”

Since NARS is designed under AIKR, the truth value of a 
statement measures its extent of evidential support, rather than 
that of agreement with a corresponding fact. NARS does not 
determine the truthfulness of its knowledge with respect to a 
static and completely described environment. Since the envi-
ronment changes over time, there is no guarantee that the past 
is always identical to the future. Hence, in NARS, the truth of 
each statement and the meaning of each term are grounded on 
nothing but the system’s experience. The formal definition of this 
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semantics and discussions of its implications can be found in the 
studies by Wang (2005, 2013) and are only briefly summarized 
in the following.

As mentioned previously, in Narsese, “robin → bird” states 
that “Robin is a type of bird,” and it is equivalent to saying that 
the extension of robin is included in the extension of bird, as 
well as the intension of bird is included in the intension of robin. 
Therefore, if a term is in the extension (or intension) of both robin 
and bird, then its existence supports the statement or provides 
positive evidence. On the contrary, if a term is in the extension of 
robin but not the extension of bird, or is in the intension of bird 
but not the intension of robin, it provides negative evidence for 
the statement.

For a given statement, we use w+, w–, and w to represent the 
amount of positive, negative, and total evidence, respectively. 
Based on them, a two-dimensional truth value is defined as a 
pair of real numbers ⟨f, c⟩ for the measurements. Here, f is called 
the frequency of the statement and is defined as the proportion 
of positive evidence among total evidence, that is, f = w+/w. The 
value c is called the confidence of the statement and is defined 
as the proportion of current evidence among total amount of 
evidence at a moment in the future after new evidence of a certain 
amount is collected, that is, c  =  w/(w  +  k), where k  ≥  1. This 
constant k is a “personality parameter” and is explained further 
in the study by Wang (2013). The value of k can be seen as a unit 
of evidence that decides how fast the c value increases as new 
evidence comes, and in the following, we use the default k = 1 to 
simplify the discussion. Roughly speaking, frequency represents 
the uncertainty of the statement, and confidence represents the 
uncertainty of the frequency (Wang, 2001). Defined in this way, 
truth value in NARS is “experience-grounded.”

Similarly, the meaning of a term is defined as its extension 
and intension, so it is determined by how it is related to other 
terms in the system’s experience. As the experience of a system 
grows over time, the truth value of statements and the meaning of 
terms in the system change accordingly. This experience-grounded 
semantics (EGS) is fundamentally different from the traditional 
model-theoretic semantics, since it defines truth value and mean-
ing according to a (dynamic and system-specific) experience, 
rather than a (static and system-independent) model. In the 
simplest implementation of NARS, its experience is a stream of 
Narsese sentences, which will be summarized to become the 
system’s beliefs, which is also called the system’s knowledge. This 
semantics is formally defined and fully discussed in the study by 
Wang (2005, 2006).

2.4. inference rules
The logic followed by NARS is NAL (non-axiomatic logic), 
and its inference rules use Narsese sentences as premises and 
conclusions. A recent version of NAL is formalized and justified 
in the study by Wang (2013). What is described in the following 
is only a small part of NAL that is directly related to the current 
topic.

NAL uses formal inference rules to recursively derive new 
knowledge from existing knowledge, which consists of statements 
with truth values, indicating the experienced relations between 

terms and the strength of these relations. Each inference rule 
has a truth value function that calculates the truth value of the 
conclusion according to the evidence provided by the premises.

In terms of the type of reasoning, inference rules of NARS are 
divided into three categories:

•	 Local rules: These rules do not derive new statements. Instead, 
the conclusion comes out from a revision or selection of the 
premises.

•	 Forward rules: New judgments are produced from a given 
judgment and a relevant belief.

•	 Backward rules: New questions (or goals) are produced from 
a given question (or goal) and a relevant belief.

In the following, these three groups of rules are introduced in 
that order.

Under AIKR, NARS may have inconsistent beliefs, that is, 
the same statement may obtain different truth values according 
to different evidential bases. When the system locates such an 
inconsistency, it either uses the revision rule (if the evidence 
bases are disjoint) or the choice rule (if the evidence bases are 
not disjoint). The revision rule accepts two judgments about the 
same statement as premises and generates a new judgment for the 
statement, with a truth value obtained by pooling the evidence of 
the premises. Consequently, the frequency of the conclusion is a 
weighted sum of those premises, and the confidence is higher than 
those of the premises. The choice rule simply choose the premise 
that has more positive evidence and less negative evidence, while 
preferring simpler candidates.4

As a term logic, typical inference rules in NAL are syllogistic, 
and each rule takes two premises (with one common term) to 
derive a conclusion (between the other two terms). The NAL rules 
of this type include deduction, induction, and abduction, similar 
to how the three are specified by Peirce (1931), although the truth 
value of every statement is extended from {0, 1} to [0,1] × (0,1). 
These three inference rules are the most basic forward rules of 
NAL, where M, P, and S represent arbitrary terms:

Deduction induction abduction

M → P ⟨f1, c1⟩ M → P ⟨f1, c1⟩ P → M ⟨f1, c1⟩ 
S → M ⟨f2, c2⟩ M → S ⟨f2, c2⟩ S → M ⟨f2, c2⟩ 

S → P ⟨f, c⟩ S → P ⟨f, c⟩ S → P ⟨f, c⟩ 

Different forward inference rules have different truth value 
functions that calculate ⟨f, c⟩ from ⟨f1, c1⟩ and ⟨f2, c2⟩. These func-
tions are established in the study by Wang (2013), and here, we do 
not describe the actual functions, but merely divide the inference 
rules into two groups, according to the maximum confidence 
value of the conclusions:

•	 Strong inference: The upper bound of confidence is 1. Among 
the rules introduced so far, only the deduction rule belongs to 
this group.

4 The truth value function of the choice rule and the syntactic complexity of a term 
is defined in the study by Wang (2013).
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•	 Weak inference: The upper bound of the confidence is 1/
(1 + k) ≤ 1/2. The abduction and induction rules belong to this 
group.

The weak inference rules in NARS usually carry out learning, 
where each piece of evidence generates a weak conclusion, and 
strong conclusions are accumulated by the revision rule from 
many weak conclusions. This is why “learning” and “reasoning” 
are basically the same process in NARS (Wang and Li, 2016).

NAL has other syllogistic rules and also has compositional 
rules to build compound terms to capture the observed patterns 
in experience. For example, from “swan → bird ⟨f1, c1⟩” and “swan 
→ swimmer ⟨f2, c2⟩,” a rule can produce “swan → (∩, bird, swim-
mer) ⟨f, c ⟩.”

The inference rules of NAL can be used in both forward 
inference (from existing beliefs to derived beliefs) and backward 
inference (from existing beliefs and questions/goals to derived 
questions/goals). For each forward inference rule that from two 
judgments J1 and J2 to derive a conclusion J, a backward inference 
rule can be established that takes J1 and a question on J as input 
and derives a question on J2, because an answer for the derived 
question can be used together with J1 to provide an answer to 
the original question. For example, if the question is “robin → 
animal?,” and there is a related belief “robin → bird ⟨f, c⟩,” then a 
derived question “bird → animal?” can be generated. The back-
ward inference on goals is similar.

2.5. inference control
Equipped with the inference rules of NAL, NARS can carry out 
the following types of inference tasks:

•	 To absorb new experience into the system’s beliefs, as well as to 
spontaneously derive some of their implications.

•	 To answer the input questions and the derived questions 
according to the system’s beliefs.

•	 To achieve the input goals and the derived goals by executing 
the related operations according to the system’s beliefs.

Under AIKR, new tasks can enter the system at any time, each 
with its own time requirement, and its content can be any Narsese 
sentence. Working in such a situation, usually NARS cannot per-
fectly accomplish all tasks in time, but has to allocate its limited 
time and space resources among them and to dynamically adjust 
the allocation according to the change of context, the feedback to 
its actions, and other relevant factors.

In the memory of NARS, beliefs and tasks are organized into 
concepts, according to the terms appearing in them. Roughly 
speaking, for a term T, concept CT refers to all beliefs and 
tasks containing T. For example, the beliefs on “robin → bird” 
are referred to within concepts Crobin and Cbird, as well as other 
relevant concepts. A “concept” in NARS is a unit of both stor-
age and processing and models the concepts found in human 
thinking.

To indicate the relative importance of concepts, tasks, and 
beliefs to the system, priority distributions are maintained among 
them. The priority of an item (concept, task, or belief) summarizes 
the attributes to be considered in resource allocation, including 
its intrinsic quality, usefulness in history, relevance to the current 

context, etc. Consequently, items with higher priority values will 
get more resources.

Bag is a data structure specially designed for resource alloca-
tion in NARS. A certain type of data items is contained in a bag 
with a constant capacity, with a priority distribution among the 
items maintained. There are three basic operations defined in a 
bag:

•	 put(item): put an item into the bag, and if the bag is full, 
remove an item with the lowest priority

•	 get(key): take an item from the bag with a given key that 
uniquely identifies the item

•	 select(): select an item from the bag, and the probability for 
each item to be selected is positively correlated with its priority 
value

NARS works by repeating an inference cycle consisting of the 
following major steps:

 1. Select a concept within the memory
 2. Select a task referred by the concept
 3. Select a belief referred by the concept
 4. Derive new tasks from the selected task and belief by the 

applicable inference rules
 5. Adjust the priority of the selected belief, task, and concept 

according to the context and feedback
 6. Selectively put the new tasks into the corresponding concepts 

and report some of them to the user

All selections in the above steps are probabilistic, and the 
probability for an item to be selected is positively correlated to 
its priority value. Consequently, the tasks will be processed in a 
time-sharing manner, with different speeds. For a specific task, its 
processing does not follow a predetermined algorithm, but it is 
the result of many inference steps, whose combination is formed 
at run time, so is usually neither predictable nor repeatable accu-
rately, as both the external environment and the internal state of 
the system change in a non-circular manner.

3. “selF” in nars

In this section, we focus on the aspects of NARS that are directly 
relevant to self-awareness and self-control.

3.1. self in Various Forms
“Self ” takes multiple forms in NARS. Some of the relevant 
properties are addressed by different mechanisms built into 
the system, and some others are shown in the system’s learning 
process, including the following:

•	 Higher-order statements: As described previously, the 
higher-order statements in Narsese cover “statement about 
statement,” “knowledge about operations,” etc., which are 
often taken as functions of “metacognition” (Cox, 2005). Since 
such knowledge is typically about individual statements or 
operations and not about the system as a whole, and they are 
not the focus of this article. This type of knowledge usually 
is processed using inference rules analogical to these used on 
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the statement level. For more details, see the studies by Wang 
(2006, 2013).

•	 Intrinsic mechanisms: As a part of the inference control 
process, NARS constantly compares the certainty of beliefs 
and dynamically allocates its resources among competing 
tasks. Even though the relevant mechanisms are indeed at a 
meta-level with respect to beliefs and tasks, they are implicitly 
embedded in the code, so not generally accessible to the sys-
tem’s deliberation nor can they be modified by the system itself. 
Therefore, they describe a constant aspect of the system itself 
that is not reflected in the object-level beliefs of the system.

•	 Experience-grounded semantics: As mentioned previously, 
the system’s beliefs and concepts are built from the viewpoint 
of the system itself rather than as an objective model of the 
world. In this sense, all beliefs in NARS are subjective, and 
all concepts have idiosyncratic meanings to various extents. 
Consequently, the system’s behaviors can be explained and 
predicted only when the unique experience of the system itself 
is taken into consideration.

Although the above mechanisms are all related to the system 
itself in a broad sense, they nevertheless can be described without 
explicitly using the notion of “self.” In the following, the discus-
sion will focus on “self ” in a narrow sense, where a reference to 
the system as a whole becomes necessary.

3.2. The “self”-concept
NARS’ beliefs about itself start at its built-in operations. As men-
tioned above, operation op(a1, …, an) corresponds to a relation 
that the system can establish between itself and the arguments, so 
it is equivalent to statement “(×{SELF} {a1}…{an}) → op” (where 
the subject term is a product term written in the prefix format), 
since it specifies a relation among the arguments plus the system 
identified by the special term SELF.

Similar to the case of logic programming (Kowalski, 1979), 
here the idea is to uniformly represent declarative knowledge 
and procedural knowledge. So in NARS, knowledge about 
the system itself is unified with knowledge about others. For 
instance, the operation “open this door” is represented as 
“(×{SELF}{door_1}) → open,” so the inheritance copula encodes 
that the relation between {SELF} and {door_1} is a special case 
of opening. On the other hand, “John opened this door” is 
represented as “(×{John}{door_1}) → open” (tense omitted to 
simplify the discussion). In this way, imitation can be carried 
out by analogical inference.

According to experience-grounded semantics (EGS), in 
NARS, the meaning of a concept is gradually acquired from 
the system’s experience. However, EGS does not exclude the 
existence of innate concepts, beliefs, and tasks. In the above 
example, SELF is such a concept, with built-in operations that 
can be directly executed from the very beginning of the system’s 
life. Such operations depend on the hardware/software of the 
host system, so are not specified as parts of NARS, except that 
they must obey the format requirements of Narsese. According 
to EGS, in the initial state of NARS, the meaning of a built-in 
operation is procedurally expressed in the corresponding rou-
tine, while the meaning of SELF consists of these operations. 

To the system, “I am whatever I can do and feel,” since in NARS 
sensation (converting signals into terms) and perception (organ-
izing terms into compounds) are also carried out by operations.

As the system begins to have experience, the meaning of every 
concept will be more or less adjusted as it is experienced, directly 
or indirectly. For a built-in operation, the system will gradually 
learn its preconditions and consequences, so as to associate it 
with the goals it can achieve and the context where it can be used. 
It is like we learn how to raise our hand first and then know it 
as a way to get the teacher’s attention. The SELF-concept will be 
enriched in this way, as well as through its relations with other 
concepts representing objects and other systems in the outside 
environment.

Therefore, self starts from “what I can do and feel” to 
include “what I am composed of,” “how I look like,” “what 
my position is in the society,” etc. The notion “self ” does 
not have a constant meaning determined by a denotation 
or definition. Instead, the system gradually learns who it is, 
and its self-image does not necessarily converge to a “true 
self.” Since the change of meaning of a concept is done via 
the additions, deletions, and revisions of its relations with 
other concepts, the system’s identity (determined by all the 
relations) is relatively stable in a short period, although in its 
whole life the system may change greatly, even to the extent of 
unrecognizable when compared to a previous image of itself. 
Under AIKR, the system is open to all kinds of experience, so 
in the design of NARS, there is no restriction on the extent of 
these changes.

When NARS is used to serve a practical purpose, we often 
need to bind its behaviors, but it should be achieved via the 
control of the system’s experience, rather than by designing the 
system in a special way, as also described in the study by Bieger 
and Thórisson (2016).

3.3. Mental Operations
An operation may be completely executed by the actuator of the 
host system (e.g., a NARS-controlled robot raises a hand or moves 
forward) or partly by another coupled system or device (e.g., a 
NARS-controlled robot pushes a button or issues a command 
to another system). NARS has an interface for such “external” 
operations to be registered. Consequently, all kinds of operations 
to be used in a “plug-and-play” manner, i.e., to be connected to 
the system at run time by a user or the system itself. A learning 
phase is usually needed for an operation to be used properly and 
effectively, as NARS will gradually learn its preconditions and 
consequences.

In principle, operations are not necessarily demanded in 
every NARS implementation, except a special type of “mental” 
operations that operate on the system’s own “mind.” There 
are several groups of mental operations in the current design, 
including

•	 Task generation: An inference task in NARS can either be 
input or derived recursively from an input task. The derivation 
process does not change the type of the task (judgment, ques-
tion, or goal). However, in certain situations, a task needs to be 
generated from another one of a different type. For example, 
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a new judgment (“It is cold.”) may trigger a new goal (“Close 
the window!”). This relation is represented as an implication 
statement where the consequent is not a statement, but an 
operation call, similar to a production rule (Luger, 2008).

•	 Evidence disqualification: By default, the amount of evidence 
for every belief accumulates over time. Therefore, although the 
frequency value of the belief may either increase or decrease 
(depending on whether the new evidence is positive or nega-
tive), its confidence value increases monotonically. This treat-
ment is supplemented by a mental operation that allows the 
system to doubt a belief of itself by decreasing its confidence 
value to a certain extent.

•	 Concept activation: The resource allocation mechanism 
of NARS already implements a process similar to activation 
spreading in neural networks (Russell and Norvig, 2010). 
When a new task is added into a concept, the priority of the 
concept is increased temporarily, and inference in the concept 
may cause derived tasks to be sent to its neighbors, so their 
priority levels will be increased, too. As a supplement, a mental 
operation allows the system to pay attention to a concept with-
out new tasks added, so as to allow the system to deliberately 
consider a concept.

In general, mental operations supplement and influence the 
automatic control mechanism, and let certain actions be taken 
as the consequence of inference. Mental operations contribute to 
the system’s self-concept by telling the system what is going on in 
its mind and allow the system to control its own thinking process 
to a certain extent. For instance, the system can explicitly plan its 
processing of a certain type of task. After the design and imple-
mentation phases, the system needs to learn how to properly use 
its mental operations, just like it needs to learn about the other 
(external) operations.

3.4. internal experience
In NARS, “experience” refers to the system’s input streams. In the 
simplest implementation of NARS, the system has only one input 
channel, where the experience from the channel is a stream of the 
form S1, T1, S2, T2, …, Sn, Tn, where each Si is a Narsese sentence, 
with Ti to be the time interval between it and the next sentence. 
A buffer of a constant size n holds the most recent experience.

In more complicated implementations, there are also “sensory” 
channels, each accepting a stream of Narsese terms from a sen-
sory organ. Here, a sensor can recognize a certain type of signal, 
either from the outside of the system (such as visual or audio 
signals) or from the inside of the system, either from its body 
(somatosensory) or from its mind (mental). An internal channel 
provides a certain type of “internal experience.” Somatosensory 
input will be especially important for a robotic system, as it needs 
to be aware of its energy level, network connection status, dam-
ages in parts, etc.

A mental sensation may come from the execution of a mental 
operation. Also, there are mental sensations appearing as the 
traces of the system’s inference activity. During each inference 
cycle, the system “senses” the concept that was selected for 
processing, as well as the derivation relationship between tasks. 
Later, this experience can be used to answer questions such as 

“What has been pondered?” or “Where does that conclusion 
come from?,” asked either by the system itself or by someone else. 
This information can also be used in future inference activities.

On the input buffers, the system carries out certain perceptive 
reasoning to form compound terms corresponding to the spati-
otemporal patterns of the input. There is also a global buffer that 
holds a stream of Narsese sentences that integrate inputs from all 
the channels. In this aspect, the external and internal experiences 
are handled basically in the same manner.

A special type of belief formed in perception is the temporal 
implications between the mental events sensed within the system 
and the outside events observed by the system. The system will 
believe that it is some of its ideas that “cause” a certain action to 
be performed in its environment, and such beliefs will coordinate 
its “mind” and its “body.” This is also arguably the origin of the 
notion of “causation” within the system. For a detailed discussion 
on temporal and causal inference in NARS, see the study by Wang 
and Hammer (2015).

The internal experience of NARS is the major source of its self-
knowledge. Under AIKR, this type of knowledge is also uncertain 
and incomplete and is under constant revision. Furthermore, it is 
subjective and from the first-person perspective. In these aspects, 
NARS is fundamentally different from the “logical AI” approach 
toward self-knowledge, where the system is assumed as “having 
certain kinds of facts about its own mental processes and state of 
mind” (McCarthy, 1995).

3.5. Feeling and emotion
According to AIKR, NARS needs to deal with different tasks 
with limited time and other resources. To ask the designer to 
provide a general optimizing algorithm to manage resources 
for all the possible situations is obviously impossible, and this is 
one of the reasons why NARS needs a mechanism to learn how 
to manage its resources and to make quick responses in various 
circumstances, all by itself. In the human mind, emotion and feel-
ing play major roles in situation appraisal and behavior control, 
which are also desired in computer systems (Arbib and Fellous, 
2004). In NARS, we have built a preliminary mechanism to carry 
out similar functions.

NARS has a basic satisfaction–evaluation mechanism at the 
event level. Every event has a truth value and a desire value, 
expressing the current status and what the system wants it to be, 
respectively. The closeness between them is called “satisfaction,” 
which indicates a basic appraisal of an individual aspect of the 
situation. The value of “satisfaction” is in the range [0, 1], where 
0 means “completely unsatisfied,” 1 for “completely satisfied,” and 
the other cases are in between.

Also there is system-level satisfaction, as the accumulation of 
recent event-level satisfactions, which represents an appraisal of 
the overall situation. Technically, this value is evaluated in every 
working cycle by adjusting the overall satisfaction value using 
the satisfaction value of the event just processed. This system-
level satisfaction indicates the system’s extent of “happiness” or 
“pleasure,” and it plays multiple roles within the system, such as 
influencing the resource allocation.

To make the system aware of the values of these satisfaction 
indicators, some “feeling” operators are implemented, which 
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reflect these satisfaction values into the internal experience of 
the system, so as to involve them explicitly into the inference 
processes. This happens by the usage of reserved terms and state-
ments, which form the category of “emotional concepts” within 
the memory of the system. These emotional concepts provide a 
perception of emotions within NARS to the system itself, just like 
how the perceptive concepts summarize the system’s experience 
when interacting with the outside world.

These emotional concepts interact with other concepts as 
generic (unemotional) concepts would, leading to the genera-
tion of compounds by the inference process, be represented by 
concepts that combine the emotional aspect with other aspects 
of the situation. Being unsatisfied about an event may be caused 
by other systems or the system itself, may be about the past or the 
future, may be controllable or inevitable, etc., and all these differ-
ences will lead to different categorization about the situation. For 
example, simply speaking, regret is the combination of negative 
emotion (unsatisfied situation) with other concepts like “things 
happened in the past” and “things caused by my own behaviors.” 
You will not feel regret about bad things that might happen in the 
future or caused by the behaviors of someone else.

In addition, desire value is extended to non-event concepts 
according to their correlation with overall satisfaction. For exam-
ple, an object will be liked by the system if the appearing of this 
object consistently concurs with high satisfaction level, and the 
contrary ones will be “disliked” by the system. Of course, there are 
many other things for which the system has little emotion. These 
different attitudes mainly come from the system’s experience and 
will influence the system’s treatment to the concepts.

In summary, in NARS, emotional information appears in two 
distinct forms:

•	 At the “subconscious level,” it appears as desire values and 
satisfaction values. They are outside of the experience of the 
system, since these values do not form statements the system 
could reason about.

•	 At the “conscious level,” it appears as events expressed using 
emotional concepts. They are inside of the experience of the 
system, since they are represented as statements that are con-
sidered in the inference process of the system.

Emotional information in both forms contributes to the 
system’s internal processes, as well as to the system’s external 
behaviors.

The emotional concepts in experience are processed as other 
concepts in inference. Consequently, they categorize the objects 
and situations according to the system’s appraisal and allow the 
system to behave accordingly. For instance, the system may 
develop behavior patterns for “danger,” even though each con-
crete danger has very different sources and causes.

The “emotion-specific” treatments also happen at the subcon-
scious level, where the emotional information is used in various 
processes.

•	 The desire values of concepts are taken into account in atten-
tion allocation, where the concepts associated with strong 
feeling (extreme desire values) get more resources than those 
with weak feeling (neutral desire values). These desire values 

not only help the system to judge how long data items should 
be stored in memory but also how much priority they should 
be given when under consideration.

•	 After an inference step, if a goal is relatively satisfied, its prior-
ity is decreased accordingly and the belief used in the step gets 
a higher priority because of its usefulness. This way, already 
satisfied goals get less attention by the system, while relevant 
knowledge that satisfied these goals tends to be kept in mem-
ory longer, with the related concepts “liked” by the system.

•	 In decisions made, the threshold on confidence is lower in 
high emotional situations to allow quick responses. This is 
especially desired in  situations where there is no lot of time 
available to react.

•	 The overall satisfaction is used as a feedback to adjust the 
priority values of data items (concepts, tasks, beliefs), so that 
the ones associated with positive feeling are rewarded, and the 
ones associated with negative feeling punished. In this way, 
the system shows a “pleasure-seeking” tendency, and its extent 
can be adjusted by a system parameter. This pleasure-seeking 
tendency can be considered as a motivation that is not directly 
based on any task, but as a “meta-task.”

•	 When the system is relatively satisfied, it is more likely to 
create new goals, while when the system is unhappy about the 
current situation, it is more likely to focus on the existing goals 
that have not been achieved.

Overall, the system’s feelings and emotions consist of a major 
part of its internal experience and contribute to its self-control. 
Emotion also plays roles in communication and socialization, but 
they, as well as topics like the self-control of emotion, are beyond 
the scope of this article.

3.6. examples
Here, we illustrate a few examples using the Open-NARS5 imple-
mentation of NARS. To simplify the description, the examples are 
slightly edited to remove the attributes not discussed in this arti-
cle (such as the tense of the sentences), and before each Narsese 
sentence, the type of the sentence and a rough English translation 
are added. The ASCII symbols in the actual input/output are not 
the same as the logical symbols in the publications (including the 
above sections), but since their correspondence is hinted by their 
similarity and suggested by the English translation, the format 
will not be explained in detail, except the following:

•	 Judgments, questions, and goals in Narsese end with “.”, “?”, 
and “!”, respectively.

•	 Prefix “˄” indicates an operator, prefix “#” indicates an anony-
mous term, and prefix “$” indicates a variable term that can be 
substituted by another term.

•	 When the truth value of an input judgment or the desire value 
of an input goal is unspecified, the default ⟨1, 0.9⟩ is used.

The first example demonstrates learning from observing the 
actions of another agent. Let’s assume that Michael sells a car and 
that it is observed that he is rich after that. Later, when the system 

5 Source code, working examples, and documentations of Open-NARS can be 
found at http://opennars.github.io/opennars/.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://opennars.github.io/opennars/


9

Wang et al. Self in NARS

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 20

gets the goal “to be rich,” it will want to sell a car, too, as it guesses 
that whatever worked for Michael will also work for itself.
    Input: "Michael sells a car." 
    <(*,{Michael},car) --> ^sell>. 
    Input: "Michael gets rich." 
    <{Michael} --> [rich]>. 
    Derived: "After someone sells a car, one gets rich." 
    <(&/,<(*,$1,car) --> ^sell>) =/> <$1 --> [rich]>>. 
    %1.00;0.31%  
    Input: "I want to be rich!" <{SELF} --> [rich]>! 
    Derived: "I want to sell a car!" 
    <(*,{SELF},car) --> ^sell>! %1.00;0.28%

This example shows that the system uses a temporal relation 
as evidence for a causal relation, which of course often leads to 
mistakes. In NARS, such mistakes are corrected by further nega-
tive evidences, that is, when the system learns other car-selling 
events that do not bring richness to the seller. This is also how 
the system resolves competing explanations and predictions, that 
is, by accumulating evidence on the competing hypotheses and 
choosing the best supported one.

The next example illustrates how the system summarizes 
its experience in relation to itself. In particular, it shows that 
picking up trash together with the knowledge that itself is 
a robot leads to the formation of a compound concept that 
contributes to the meaning of itself as a “robot that picks up 
trash”:
    Input: "I am a robot." 
    <{SELF} --> robot>. 
    Input: "I pick up trash." 
    <(*,{SELF},trash) --> ^pick>. 
    Derived: "I am somebody who picks up trash." 
    <{SELF} --> (/,^pick,_,trash)>. 
    Input: "What two things characterize you?" 
    <{SELF} --> (&,?1,?2)>? 
    Answer: "That I am a robot who picks up trash." 
    <{SELF} --> (&,(/,^pick,_,trash),robot)>. %1.00;0.81%

The intermediate result that transformed the second input 
statement into an inheritance statement about itself was crucial 
here. The same happens with mental operations. The case where 
the system wonders about whether cats are animals illustrates 
that:
    Input: "I wonder whether cats are animals." 
    <(*,{SELF},<cat --> animal>) --> ^wonder>. 
    Input: "What am I?" 
    <{SELF} --> ?1>? 
    Answer: "I am somebody who wonders whether cats  
    are animals.”  
    <{SELF} --> (/,^wonder,_,<cat --> animal>)>. 
    %1.00;0.90%

Such a wondering event is part of the internal experience of 
the system and is generated by a question:
    <cat --> animal>?

For this to happen, the question task needs to exceed a certain 
priority value, meaning the system has to consider it as sufficiently 
important to the current situation.

The next examples show other motivational and emotional 
aspects of the system, such as the usage of a “feel” operator. Besides 
that, it shows the system’s capability to consider the related event 
in question answering:

    Input: "I don’t want to get hurt." 
    (--,<{SELF} --> [hurt]>)!  
    Input: "When running away from a close wolf, I won’t  
    get hurt." 
    <(&/,<(*,{SELF}, wolf) --> close_to>, 
    <(*,{SELF}) --> ^run>) =/> (--,<{SELF} --> [hurt]>)>. 
    Input: "I am close to wolf_1 now." 
    <(*,{SELF}, {wolf_1}) --> close_to>. 
    Input: "Wolf_1 is a wolf" 
    <{wolf1} --> wolf>. 
    Execution: "I run away." 
    <(*,{SELF}) --> ^run>! 
    Input: "I did not get hurt." 
    (--,<{SELF} --> [hurt]>).

The system deriving that running away from the wolf is 
satisfying:

    "Feel the amount of satisfaction!" 
    (^feelSatisfied,{SELF})! 
    Feedback: "I am relatively satisfied." 
    <{SELF} --> [satisfied]>. %0.65;0.90% 
    Input: "How can I be satisfied?" 
    <?how =/> <{SELF} --> [satisfied]>>? 
    Answer: "Running away when a wolf is close makes me  
    satisfied." 
    <(&/,<wolf --> (/,close_to,{SELF},_)>,<(*,{SELF})  
    --> ^run>) 
        =/> <{SELF} --> [satisfied]>>. %0.59;0.40%

Such satisfaction-related events can lead to emotion-based 
decisions, and, as the example shows, compound term can be 
composed by combining these events with other knowledge in 
the system.

In animals, there is usually an innate link between getting hurt 
by another animal and experiencing fear by future appearances of 
this kind of animal. Also, the response to fear, namely to run away, 
is usually an innate reaction and at the same time a successful 
strategy to survive. The following example demonstrates this case:

    Innate belief: "If you are close to something that  
    frightens you, run away" 
    <(&/,<(*,{SELF}, #1) --> close_to>,<(*,#1,{SELF})  
    --> frightens>) 
    =/> <(*,{SELF},<(*,{SELF}) --> ^run>) --> ^want>>. 
    Innate belief: "If something hurts you, it frightens  
    you." 
    <<(*,$1,{SELF}) --> hurt> =/> <(*,$1,{SELF}) -->  
    frightens>>. 
    Innate belief: "If something frightens you, you feel  
    fear. 
    <<(*,#1,{SELF}) --> frightens> =|> <(*,{SELF},fear)  
    --> feel>>. 
    Input: "You are getting hurt by a wolf." 
    <(*,wolf,{SELF}) --> hurt>.

From here, it is expected that the system learned to be fearful 
of wolves and that it runs away whenever it encounters one.

    Input: "You are close to a wolf." 
    <(*,{SELF}, wolf) --> close_to>. 
    Input: "How do you feel?" 
    <(*,{SELF},?what) --> feel>? 
    Answer: "I feel fear." 
    <(*,{SELF},fear) --> feel>. %1.00;0.29% 
    Execution: "I run away." 
    <{SELF} --> ^run>!

Given this encoding, the system can also be asked what fright-
ens it:
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    Input: "What frightens you?" 
    <(*,?1,{SELF}) --> frightens>? 
    Answer: "The wolf frightens me." 
    <(*,wolf,{SELF}) --> frightens>. %1.00;0.43%

4. cOMParisOns anD DiscUssiOns

In this section, the design decisions in NARS that are directly 
related to “self ” are explained and compared with the alternatives.

4.1. The need for a self
Are self-awareness and self-control really required in an intel-
ligent system? Why are such functions absent in most of the AI 
systems developed so far?

Like many controversies in AI, the different opinions on this 
matter can be traced back to the different understandings of “AI” 
(Wang, 2008). As the mainstream AI aims at the solving of specific 
problems, the systems are usually equipped with problem-specific 
algorithms, which embed knowledge about the problem domain, 
but not about the system itself, as the properties of the problem 
solver are usually irrelevant to the problem-solving process.

Even in learning systems that do not demand algorithms to 
be manually coded, they are still approximated by generalizing 
training data (Flach, 2012). In general, such systems have little 
need to add itself into the picture, as the solutions should only 
depend on the data to be learned, not the learner. Even meta-
cognition can be carried out without an explicit “self ”-concept 
involved (Cox, 2005)—when all the decisions are made by the 
system, it is unnecessary to explicitly state that.

In AGI systems, the situation is different. Here, we have projects 
aimed at simulating the human mind according to psychological 
theories, such as LIDA (Franklin, 2007) and MicroPsi (Bach, 
2009), which surely need to simulate the self-related cognitive 
functions, simply because the well-known roles they play in 
human cognition (Blackmore, 2004).

In the function-oriented AGI projects, self-awareness and self-
control are introduced to meet the requirements for the system, 
rather than sorely to be human-like. For instances, GLAIR is 
able to “represent and reason about beliefs about itself ” (Shapiro 
and Bona, 2010). Sigma has the function of “architectural self-
monitoring” (Rosenbloom et  al., 2016). When facing varying 
problems, an AGI has to know itself and be able to adjust itself, 
so as to meet the changing situations. Since the existing AGI 
systems have very different overall designs, the exact form of 
the self-related functions differ greatly, and it is hard to compare 
and judge them in details without taking the whole system into 
consideration.

In general, NARS is more similar to GLAIR and Sigma than 
to LIDA and MicroPsi, as it is designed to realize a certain 
understanding of intelligence, which is generalized away from 
its realization in human beings. For NARS, the need for self-
awareness and self-control follows from its working definition 
of intelligence, that is, adaptation under AIKR (Wang, 2008). 
To adapt to the environment and to carry out its tasks, the 
system needs to know what it can do and how it is related 
to the objects and other systems in the environment, and an 
explicitly expressed SELF-concept organizes all the related 

tasks and beliefs together, so as to facilitate reasoning and 
decision-making.

It may be argued that there is already a “self ” in many AI 
systems, as knowledge in the system is often conceptually “about 
itself,” “by itself,” or “for itself.” Why bother to explicitly spell that 
out and to separate it from other knowledge?

It is indeed the case that many AI systems have self-knowledge 
without explicitly talking about itself, but taking it as the default. 
For example, many works under the name of “metacognition” 
(Cox, 2005) have knowledge about various algorithms within 
the system itself and use this knowledge to select a proper one 
for the current problem. Although this process is self-reflective 
by nature, the systems typically does not have an explicitly rep-
resented “self.” Instead, the processes are separated into “object-
level” and “meta-level,” where the latter monitor and control the 
former (Cox, 2005; Marshall, 2006).

Although an “implicit self ” is enough for many problems, an 
explicitly represented self-concept provides many advantages 
desired in general-purpose AI that must adapt to various situa-
tions. This idea is not really new, as it can be at least traced back 
to McCarthy (1995), who promoted the idea of “making robots 
conscious of their mental states.” In NARS, the SELF-concept 
provides a flexible unit for the representation and processing of 
self-knowledge coming from various sources and in different 
forms, although it does not cover all the self-related functions. 
As a reasoning system, this design allows NARS to uniformly rep-
resent and process knowledge about the system itself and about 
the other systems. As shown by the previous examples, imitation 
can be directly carried out as analogical reasoning, by substituting 
another system by SELF.

4.2. self-awareness
The self-knowledge of NARS shares many features as the system’s 
knowledge about the outside environment.

All types of knowledge in NARS are organized into concepts. 
According to the semantics of NARS, the meaning of a concept 
(or a term naming a concept) is normally determined by its 
relation with other concepts (or terms). While for most concepts 
such relations are all acquired from the system’s experience, the 
system is not necessarily born with a blank memory. Each built-in 
operation contributes meaning to the concept of SELF, by relating 
the system as a whole to the events it can perceive and/or realize. 
Starting from these operations, the SELF-concept will eventually 
involve beliefs about

•	 what the system can sense and do, not only using the built-in 
operations, but also the compound operations recursively 
composed from them, as well as the preconditions and conse-
quences of these operations;

•	 what the system desires and actively pursues, that is, its moti-
vational and emotional structure;

•	 how the system is related to the objects and events in the 
environment, in terms of their significance and affordance to 
the system;

•	 how the system is related to the other systems, that is, the 
“social roles” played by the system, as well as the conversions 
in communication and interactions.
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All these aspects will make the system’s self-concept richer and 
richer, even to the level of complexity that we can meaningfully 
talk about its “personality,” that is, what makes this system dif-
ferent from the others, due to its unique nature and nurture. It 
is possible to measure the complexity of a concept in terms of 
its conceptual relations whose truth value is stable (high confi-
dence) and unambiguous (extreme frequency), although such a 
measurement does not mean much, as the intuitive richness of a 
concept also depends on many other factors, such as the quality 
and diversity of the concepts it relates to, and so on.

This treatment is fundamentally different from identifying 
“self ” with a physical body or a constant mechanism within the 
system. The spatial scope of self is mainly determined by the 
range of the system’s sensors and effectors, which can distribute 
in distinct locations.

According to our approach, “self ” is not left completely to a 
mysterious “emergent process,” neither. In NARS, the concept 
SELF starts with a built-in core, then evolves according to the 
system’s experience. In the process, the self-concept organizes 
the relevant beliefs and tasks together to facilitate self-awareness 
and self-control. This is consistent with Piaget’s theory that a 
child learns about self and environment by coordinating sens-
ing (such as vision and hearing) with actions (such as grasping, 
sucking, and stepping) and gradually progresses from reflexive, 
instinctual action at birth to symbolic mental operations 
(Piaget, 1963).

NARS treats SELF like other concepts in the system, except 
that it is a “reserved word,” which has innate associations with 
the built-in operations, including the mental operations. NARS 
also treats internal and external experience uniformly, so self-
awareness and self-control are nothing magical or mysterious, 
but are similar to how the system perceives and acts upon the 
external environment.

An important type of self-knowledge is provided by the emo-
tion and feeling mechanism of NARS. As mentioned previously 
and described in detail in the study by Wang et al. (2016), such a 
mechanism is introduced into NARS, not for giving the system a 
“human face,” but for appraising the current situation and dealing 
with it efficiently.

McCarthy (1995) concluded that “Human-like emotional 
structures are possible but unnecessary for useful intelligent 
behavior.” We agree that “being emotional” often leads to bad 
judgments and undesired consequences, but still consider emo-
tion a necessary component of advanced intelligence. Of course, 
the emotions in NARS are not “human-like” in details, but play 
similar roles as in human cognition, that is, situation appraisal 
and behavior control.

Due to AIKR, NARS is not aware of all of its internal structures 
and processes, but only the most prominent parts, “the tip of an 
iceberg.” Most activities within the system are beyond the scope of 
self-awareness, so cannot be deliberately considered. The picture 
is like what Freud (1965) drew about human thinking, although 
in NARS the unconscious processes follow the same logic as the 
conscious processes, except unnoticed by the system’s limited 
attention.

In general, NARS treats its “external experience” and “internal 
experience” in the same way, and the knowledge about the system 

itself has the same nature as other knowledge in NARS. Under 
AIKR, self-knowledge is incomplete, uncertain, and often incon-
sistent, which is the contrary of what is assumed by the “logical 
AI” school (McCarthy, 1995). The system can only be aware of 
the knowledge reported by certain mental operations and those 
in the input buffers, and even this knowledge does not necessarily 
get enough attention to reveal its implications.

4.3. self-control
Although the system only has limited self-knowledge, it never-
theless make self-control possible.

First, it is necessary to clarify what “self-control” means in 
this context. As almost all control activities are carried out by the 
system and the results are often within the system, to consider 
all of them “self-control” would trivialize the notion. Instead, the 
label should be limited to the actions resulting from the system’s 
case-by-case reflective and introspective deliberation, rather than 
from the working routines that are in the system’s initial design, as 
the latter should not be considered as the decision “by the system 
itself,” but by the designer of the system.

A widely agreed conclusion in psychology is that a mental pro-
cess can be either automatic (implicit, unconscious) or controlled 
(explicit, conscious), with respect to the system itself. The former 
includes innate or acquired stimulus–response associations, 
while the latter includes processes under cognitive control, such as 
“response inhibition, attentional bias, performance monitoring, 
conflict monitoring, response priming, task setting, task switch-
ing, and the setting of subsystem parameters, as well as working 
memory control functions such as monitoring, maintenance, 
updating, and gating” (Cooper, 2010). Various “dual-process” 
models have been proposed in psychology to cover both mecha-
nisms, such as the study by Kahneman (2011). Such models are 
also needed in AI, even though the purpose here is not to simulate 
the human mind in all details, but to benefits from the advantages 
of both. In general, controlled processes are more flexible and 
adaptive, while automatic processes are more efficient and reli-
able. Such a model often uses meta-level processes to regulate 
object-level processes (Cox, 2005; Marshall, 2006; Shapiro and 
Bona, 2010; Rosenbloom et al., 2016), and such works are also 
covered in the study of machine consciousness (Chella et  al., 
2008; Baars and Franklin, 2009).

Even though this “object-level vs. meta-level” distinction exists 
in many systems, the exact form of the boundary between the two 
levels differs greatly, partly due to the architectures involved. A 
process should not be considered “meta” merely because it gets 
information from another process and also influences the latter, 
since the relation can be symmetric between the two, while nor-
mally the object-level processes have no access to the meta-level 
processes.

As a reasoning system, in NARS, “control” means to select the 
premise(s) and the rule(s) for each inference step, so as to link 
the individual inference steps into task-processing processes. The 
primary control mechanism of NARS is coded in a programming 
language and is independent of the system’s experience. It is 
automatic and unconscious, in the sense that the system does not 
“think” about what to do in each step, but is context driven and 
data driven, while the data involved come from selections biased 
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by dynamic priority distributions. On top of this, there are mental 
operations that are expressed in Narsese and invoked by the sys-
tem’s decisions, as a result of “conscious” inference activities. This 
meta-level deliberative control does not change the underlying 
automatic routines, but supplement and adjust them. This design 
is different from the metacognition implemented in the other sys-
tems (Cox, 2005) in that the operations in NARS are light weight 
and can be accomplished within a constant time, rather than 
decision-making procedures that compare the possible actions 
in detail with a high computational cost. In this aspect, they are 
similar to the “mental acts” in GLAIR (Shapiro and Bona, 2010).

Like the situation of self-awareness, in NARS, self-control is 
far from “complete” in any sense, because of AIKR. The system 
can only make limited adjustments in its control mechanism, so 
cannot “completely reprogram itself ” and nor can it guarantee the 
absolute correctness of its self-control decisions, as they are based 
on the experience of the system, while the future can be different.

4.4. self-Organization
There are processes in NARS where the SELF-concept and mental 
operations are not directly involved although the related issues 
are usually involved in the discussions related to “self.”

One natural expectation for AI systems is that their functions 
and capabilities should not be completely “handcrafted,” but self-
constructive and self-organizing (Simon, 1962; Thórisson, 2012). 
We share this opinion, and therefore in NARS, “self-organization” 
and “learning from experience” refer to the same group of activi-
ties, which happens in various aspects of the system:

•	 Knowledge. According to experience-grounded semantics, 
the “knowledge” of NARS is not an objective description of 
the environment, but a summary of the system’s subjective 
experience. The sensory experience is restricted by the system’s 
sensors and its social experience by its linguistic capability and 
communicational channels. Furthermore, the system does 
not merely remember whatever it has experienced, but selec-
tively keeps them, and generates conclusions and concepts to 
summarize and generalize the experience, so as to deal with 
new situations efficiently. NARS is not a traditional “symbolic 
system” that merely refers to the objects and events existing 
outside. Instead, the concepts and statements capture the reg-
ularities and invariants in its experience, so are fundamentally 
from the view point of the system itself. For an object, what the 
system knows is not its objective characters, but is “affordance” 
to the system, using the vocabulary of Gibson (1986).

•	 Skill. A special type of knowledge is the skills, i.e., procedural 
knowledge guiding the usage of the system’s operations. As 
described previously, each operation is evoked when a cer-
tain condition is satisfied, and compound operations can be 
formed. Although some of such knowledge is innate, similar to 
the primitive reflexes of human beings, they nevertheless can 
be modified by the system’s experience. Among all possible 
compounds, which ones will be actually formed also depends 
on the system’s experience, like skill acquisition in humans. 
NARS has the ability of self-programming, in the sense that 
the system can organize its atomic operations into compound 
operations recursively and use them as a whole, so as to avoid 

repeated planning or searching (Wang, 2012b). In this aspect, 
NARS is similar to the “recursive self-improvement” model in 
the study by Steunebrink et al. (2016).

•	 Motivation. The motivational structure of the system is under 
constant adjustments and developments and is not fully 
specified by its designer or users. NARS is built to accept any 
task expressible in Narsese in any time, although the priority 
of each task will be adjusted by the system, and the system may 
even ignore some given tasks, as the consequences of conflict 
resolution, preemptive action, redundancy reduction, etc. 
From the given tasks and the system’s beliefs, derived tasks 
are generated recursively via backward inference, initially as 
means to achieve the given tasks, but may gradually become 
autonomous. As the system “grows up,” its motivational struc-
ture gradually evolves, and all the tasks in it collectively decide 
what the system desires at the moment. Therefore, the goals 
and drives of the system are determined by the system’s design, 
the given tasks, and the experience of the system, but not by 
any of these factors alone (Wang, 2012a).

In summary, there is a relatively clear distinction between 
object-level and meta-level in NARS, where the former is specified 
in Narsese and formed via self-organization, while the latter is 
specified in the programming language (such as Java) and mostly 
independent of the system’s experience.

Since all aspects of the object-level can be learned, everything 
expressible in Narsese is learnable, in the sense that it can be 
entered into the system, derived by the inference rules, as well 
as modified by new experience. Consequently, NARS is more 
sensitive to its experience than most AI systems developed so far, 
and learning happens in several different forms in various parts 
of the system. This treatment of learning is fundamentally dif-
ferent from the current machine learning paradigm (Russell and 
Norvig, 2010; Flach, 2012), since in NARS the learning processes 
do not follow algorithms and nor do they necessarily produce 
problem-specific mappings (Wang and Li, 2016).

This sensitivity to experience does not mean pure subjective 
or arbitrary behaviors. The objectivity in knowledge comes from 
communication and socialization. Generally speaking, the more 
a NARS-based system communicates with other systems and 
humans, the more objective it usually becomes, and the less its 
idiosyncratic experience matters, because its beliefs are based 
more on the common experience shared by the community it 
belongs to, although it is hard, if not impossible, to quantify this 
“extent of objectiveness.”

On the other hand, in NARS, the meta-level knowledge is built 
into the system and immune to experience-triggered modifica-
tion. This level includes the grammar rules of Narsese, the infer-
ence rules of NAL, the basic routines of memory management 
and inference control, the set of mental operators, etc. Even taken 
self-awareness and self-control into consideration, this built-in 
core is still fixed. As stated in the study by Hofstadter (1979), 
“Below every tangled hierarchy lies an inviolate level.” Some 
approaches of recursive self-improvement suggest more radical 
and thorough self-modifications, but they usually ignore AIKR by 
assuming that the system can be sure that its self-modification can 
really improve its performance and that the system can afford the 
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computational cost of complex deliberation and modifications 
needed for such improvements (Schmidhuber, 2007; Goertzel, 
2014). We consider such assumptions unrealistic and therefore is 
irrelevant to the design and development of AGI systems.

4.5. consciousness
Among the issues related to “self,” consciousness is probably the 
most confusing one. This topic can be addressed from many 
different perspectives (Blackmore, 2004), and there is still less 
consensus on its basic form and function. Many people consider 
it impossible in AI, although there have been attempts to produce 
consciousness in computers (Baars and Franklin, 2009) or robots 
(Chella et  al., 2008), based on various interpretations of the 
notion.

Here, we focus on the so-called hard problem, that is, how 
physical processes in the brain give rise to subjective experience 
(Chalmers, 1996). Our position, briefly speaking, is that the prob-
lem is not between “physical process” and “subjective experience” 
but between different types of experience.

As explained previously, the experience-grounded semantics 
(EGS) of NARS defines truth value of statements and meaning 
of concepts according to the system’s experience and therefore 
rejects the assumption of an “objective description” of the world 
that is independent of any observer. Although the world (or 
call it “environment,” “universe,” etc.) exists independently of 
any observer, a description of it does not. First, a sensation is 
produced by a sensor; then, a perception depends on the gen-
eralization and association capability and the available concepts 
of the observer; finally, when the perception eventually becomes 
a description, the system must have paid enough attention to 
it, which in turn demands a relevant motivation, a proper emo-
tional status, and so on. Therefore, there is no description that 
is from the viewpoint of nobody and describes the world “as it 
is.” The so-called objective description is nothing but the shared 
opinions among human beings formed from communication, 
socialization, education, and so on, so it is not from any single 
person’s viewpoint, but that of a human society. Therefore, this 
“objective” is actually “intersubjective” (Gillespie and Cornish, 
2009). Beside the culture heritage, our descriptions of the world 
heavily depend on the common sensorimotor mechanism of the 
human species, which is not necessarily shared by all cognitive 
systems, like the other animals or robots, either the existing ones 
or the future ones.

Nagel (1974) raised the question of “What is it like to be a 
bat?,” which has an obvious analogy in AI, “What is it like to 
be a robot?” As the sensorimotor mechanisms of robot are not 
identical to those of the human beings, we should not expect 
them to form concepts whose contents are exactly the same as 
human concepts, although through communication with human, 
shared concepts with overlapping meaning are possible to various 
extents, depending on the design of the robot and its training 
and working environment. This conclusion is not limited to 
robots. Actually EGS can be applied to any system, as far as it has 
interaction without its environment. For such a system to become 
“grounded,” “embodied,” or “situated,” the key is not whether 
its input/output mechanisms are “human-like,” but whether its 
behaviors depend on its experience (Wang, 2009).

A direct implication of the above conclusion is that intelligent 
systems in the same world may form different descriptions of the 
world, due to their different sensorimotor organs, concept reposi-
tories, motivational orientations, etc., even when their cognitive 
mechanisms are basically the same. In this situation, all these 
descriptions are valid, even when they are incommensurable. 
This is not saying that any arbitrary description is valid, but that 
its validity can only be evaluated according to the system’s con-
figuration and experience, rather than according to “the facts.”

The same is true within the same system. If the system applies 
two different sets of sensorimotor mechanisms to the same 
process, it may get two descriptions, which are correlated, but 
incommensurable, and cannot be reduced into each other. We 
believe that this is exactly where the “explanatory gap” comes in 
consciousness.

As described above, NARS has internal experience about 
what is going on inside the system, which directly comes from 
the mental operations and the related introspective functions. 
When the system also learns how its own design works from a 
third-person perspective, even when it is given a way to observe 
its own running process at the machine language level, it will also 
have two incommensurable descriptions with a gap in between. 
In this case, it is incorrect to consider the high-level (mental) 
descriptions as “raised from” the low-level (physical) descrip-
tions, as the latter is not “more real” than the former in some 
sense. This position also rejects the possibility of “zombies” that 
behave just like us, but have no consciousness (Chalmers, 1996), 
because if the system does not have internal experience, it will 
lack certain cognitive functions and therefore will not behave just 
like conscious beings.

In summary, we believe that the design of NARS enables 
the system to have consciousness, and the related phenomena 
can be explained without being reduced into phenomena in 
neuroscience (Koch, 2004) or quantum physics (Penrose, 1994). 
In AGI systems, although initially the conscious functions will 
be relatively simple and poor, they will become more and more 
complicated and rich, as the research progresses. The fact that we 
cannot directly sense them cannot be used to deny their expe-
rience, just like one cannot deny the consciousness of another 
person simply because one cannot directly know what it is like 
to be that person.

5. cOnclUsiOn

Self-awareness and self-control are important cognitive functions 
needed by advanced AGI systems (Chella and Manzotti, 2012). 
For a system to solve various types of problems, especially novel 
ones, it needs to know about itself, as well as to adjust its own 
working processes, so as to efficiently produce the best answer it 
can find with the current evidence and resource supply.

Just as a system’s knowledge and control of its external envi-
ronment are usually incomplete and fallible, so are its knowledge 
and control of its internal environment. An AGI system can learn 
how itself works using its introspective capability, especially the 
mental operations. It can also deliberately invoke some mental 
operations to realize the system’s decisions and to adjust its 
working procedures. These functions enable the system to better 
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adapt to its environment and to carry out its various tasks more 
efficiently. Even so, it can never fully know itself nor can it have 
complete self-control.

Although the study of self-awareness and self-control in NARS 
is still at an early stage, the conceptual design described above 
has been implemented, and is under testing and tuning. There 
are many details to be refined, and many self-related issues to be 
further explored, like those discussed in the studies by Hofstadter 
(1979) and Blackmore (2004). We believe the overall design is 
in agreement with the scientific knowledge on these processes 
in the human mind and also meets the needs and restrictions in 
AGI systems. We also believe that almost all self-related functions 
observed in the human mind will be reproduced in AGI systems 
in principle although the details will be different. Furthermore, 

these functions should not be modeled one by one in isolation, but 
all together according to the same basic principles of intelligence.
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