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Modern statistical software makes it easier than ever to do thorough data screening/cleaning and 
to test assumptions associated with the analyses researchers perform. 

However, few authors (even in top-tier journals) seem to be reporting data cleaning/screening 
and testing assumptions associated with the statistical analyses being reported. Few popular 
textbooks seem to focus on these basics. 

In the 21st Century, with our complex modern analyses, is data screening and cleaning still 
relevant? Do outliers or extreme scores matter any more? Does having normally distributed 
variables improve analyses? Are there new techniques for screening or cleaning data that 
researchers should be aware of? 

Are most analyses robust to violations of most assumptions, to the point that researchers really 
don’t need to pay attention to assumptions any more? 

My goal for this special issue is examine this issue with fresh eyes and 21st century methods. 
I believe that we can demonstrate that these things do still matter, even when using “robust” 
methods or non-parametric techniques, and perhaps identify when they matter MOST or in 
what way they can most substantially affect the results of an analysis. 

I believe we can encourage researchers to change their habits through evidence-based 
discussions revolving around these issues. It is possible we can even convince editors of 
important journals to include these aspects in their evaluation /review criteria, as many journals 
in the social sciences have done with effect size reporting in recent years. 

I invite you to join me in demonstrating WHY paying attention to these mundane aspects of 
quantitative analysis can be beneficial to researchers.

SWEATING THE SMALL STUFF: 
DOES DATA CLEANING AND  
TESTING OF ASSUMPTIONS REALLY 
MATTER IN THE 21ST CENTURY?
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You must understand fully what your assumptions say and what
they imply. You must not claim that the “usual assumptions” are
acceptable due to the robustness of your technique unless you
really understand the implications and limits of this assertion in
the context of your application. And you must absolutely never
use any statistical method without realizing that you are implic-
itly making assumptions, and that the validity of your results
can never be greater than that of the most questionable of these
(Vardeman and Morris, 2003, p. 26).

Modern quantitative studies use sophisticated statistical anal-
yses that rely upon numerous important assumptions to ensure
the validity of the results and protection from mis-estimation of
outcomes. Yet casual inspection of respected journals in various
fields shows a marked absence of discussion of the mundane,
basic staples of quantitative methodology such as data cleaning
or testing of assumptions, leaving us in the troubling position
of being surrounded by intriguing quantitative findings but not
able to assess the quality or reliability of the knowledge base of
our field.

Few of us become scientists in order to do harm to the liter-
ature. Indeed most of us seek to help people, improve the world
in some way, to make a difference. However, all the effort in the
world will not accomplish these goals in the absence of valid,
reliable, generalizable results—which can only be had with clean
(non-faulty) data and assumptions of analyses met.

WHERE DOES THIS IDEA OF DATA CLEANING AND TESTING
ASSUMPTIONS COME FROM?
Researchers have discussed the importance of assumptions from
the introduction of our early modern statistical tests (e.g.,
Pearson, 1901; Student, 1908; Pearson, 1931). Even the most
recently-developed statistical tests are developed in a context of
certain important assumptions about the data.

Mathematicians and statisticians developing the tests we take
for granted today had to make certain explicit assumptions about
the data in order to formulate the operations that occur “under
the hood” when we perform statistical analyses. A common exam-
ple is that the data (or errors) are normally distributed, or that
all groups (errors) have roughly equal variance. Without these
assumptions the formulae and conclusions are not valid.

Early in the 20th century these assumptions were the focus of
vigorous debate and discussion. For example, since data rarely
are perfectly normally distributed, how much of a deviation
from normality is acceptable? Similarly, it is rare that two groups
would have exactly identical variances, how close to equal is good
enough to maintain the goodness of the results?

By the middle of the 20th century, researchers had assembled
some evidence that some minimal violations of some assumptions
had minimal effects on error rates under certain circumstances—
in other words, if your variances are not exactly identical across
all groups, but are relatively close, it is probably acceptable to
interpret the results of that test despite this technical violation
of assumptions. Box (1953) is credited with coining the term
“robust” (Boneau, 1960) which usually indicates that violation of
an assumption does not substantially influence the Type I error
rate of the test1. Thus, many authors published studies show-
ing that analyses such as simple one-factor ANOVA analyses are
“robust” to non-normality of the populations (Pearson, 1931)
and to variance inequality (Box, 1953) when group sizes are equal.
This means that they concluded that modest (practical) viola-
tions of these assumptions would not increase the probability of
Type I errors [although even Pearson (1931) notes that strong
non-normality can bias results toward increased Type II errors].

These fundamental, important debates focused on minor (but
practically insignificant) deviations from absolute normality or
exactly equal variance, (i.e., if a skew of 0.01 or 0.05 would
make results unreliable). Despite being relatively narrow in scope
(e.g., primarily concerned with Type I error rates in the con-
text of exactly equal sample sizes and relatively simple one-factor
ANOVA analyses) these early studies appear to have given social
scientists the impression that these basic assumptions are unim-
portant. These early studies do not mean, however, that all
analyses are robust to dramatic violations of these assumptions,
or attest to robustness without meeting the other conditions
(e.g., exactly equal cell sizes).

These findings do not necessarily generalize to broad viola-
tions of any assumption under any condition, and leave open
questions regarding Type II error rates and mis-estimation of
effect sizes and confidence intervals. Unfortunately, the latter
point seems to have been lost on many modern researchers. Recall
that these early researchers on “robustness” were often applied
statisticians working in places such as chemical and agricultural
companies as well as research labs such as Bell Telephone Labs,
not in the social sciences where data may be more likely to be
messy. Thus, these authors are viewing “modest deviations” as
exactly that- minor deviations from mathematical models of per-
fect normality and perfect equality of variance that are practically
unimportant. Social scientists rarely see data that are as clean as
that discussed in these robustness studies.

1Note that Type II error rates and mis-estimation of parameters is much less
rarely discussed and investigated.
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Further, important caveats came with conclusions around
“robustness”—such as adequate sample sizes, equal group sizes,
and relatively simple analyses such as one-factor ANOVA.

This mythology of robustness, however, appears to have taken
root in the social sciences and may have been accepted as
broad fact rather than narrowly, as intended. Through the lat-
ter half of the 20th century this term came to be used more
often as researchers published narrowly-focused studies that
appeared to reinforce the mythology of robustness, perhaps inad-
vertently indicating that robustness was the rule rather than the
exception.

In one example of this type of research, studies reported
that simple statistical procedures such as the Pearson Product-
Moment Correlation and the One-Way ANOVA (e.g., Feir-Walsh
and Toothaker, 1974; Havlicek and Peterson, 1977) were robust
to even “substantial violations” of assumptions. It is perhaps not
surprising that “robustness” appears to have become unques-
tioned canon among quantitative social scientists, despite the
caveats to these latter assertions, and the important point that
these assertions of robustness usually relates only to Type I error
rates, yet other aspects of analyses (such as Type II error rates or
the accuracy of the estimates of effects) might still be strongly
influenced by violation of assumptions.

However, the finding that simple correlations might be robust
to certain violations is not to say that similar but more complex
procedures (e.g., multiple regression, path analysis, or structural
equation modeling) are equally robust to these same violations.
Similarly, should one-way ANOVA be robust to violations of
assumptions2, it is not clear that similar but more complex pro-
cedures (e.g., factorial ANOVA or ANCOVA) would be equally
robust to these violations. Yet recent surveys of quantitative
research in many sciences affirms that a relatively low percentage
of authors in recent years report basic information such as having
checked for extreme scores, normality of the data, or having tested
assumptions of the statistical procedures being used (Keselman
et al., 1998; Osborne, 2008; Osborne et al., 2012). It seems, then,
that this “mythology of robustness” has led a substantial percent-
age of social science researchers to believe it unnecessary to check
the goodness of their data and the assumptions that their tests are
based on (or report having done so).

Recent surveys of top research journals in the social sciences3

confirm that authors (and reviewers and editors) are discon-
certingly casual about data cleaning and reporting of tests of
assumptions. One prominent review of education and psychology
research by Keselman et al. (1998) provided a thorough review of
empirical social science during the 1990s. The authors reviewed
studies from 17 prominent journals spanning different areas of
education and psychology, focusing on empirical articles with
ANOVA-type designs.

In looking at 61 studies utilizing univariate ANOVA between-
subjects designs, the authors found that only 11.48% of
authors reported anything related to assessing normality, almost
uniformly assessing normality through descriptive rather than

2To be clear, it is debatable as to whether these relatively simple procedures
are as robust as previously asserted.
3Other reviewers in other sciences tend to find similar results, unfortunately.

inferential methods. Further, only 8.20% reported assessing
homogeneity of variance, and only 4.92% assessed both distri-
butional assumptions and homogeneity of variance. While some
earlier studies asserted ANOVA to be robust to violations of
these assumptions (Feir-Walsh and Toothaker, 1974), more recent
work contradicts this long-held belief, particularly where designs
extend beyond simple One-Way ANOVA and where cell sizes
are unbalanced (which seems fairly common in modern ANOVA
analyses within the social sciences) (Wilcox, 1987; Lix et al., 1996).

In examining articles reporting multivariate analyses,
Keselman et al. (1998) describe a more dire situation. None of
the 79 studies utilizing multivariate ANOVA procedures reported
examining relevant assumptions of variance homogeneity, and in
only 6.33% of the articles was there any evidence of examining of
distributional assumptions (such as normality).

Similarly, in their examination of 226 articles that utilized
some type of repeated-measures analysis, only 15.50% made ref-
erence to some aspect of assumptions, but none appeared to
report assessing sphericity, an important assumption in these
designs that can lead to substantial inflation of error rates and
mis-estimation of effects, when violated (Maxwell and Delaney,
1990, p. 474).

Finally, their assessment of articles utilizing covariance designs
(N = 45) was equally disappointing—75.56% of the studies
reviewed made no mention of any assumptions or sample dis-
tributions, and most (82.22%) failed to report any information
about the assumption of homogeneity of regression slope, an
assumption critical to the validity of ANCOVA designs.

Another survey of articles published in 1998 and 1999 volumes
of well-respected Educational Psychology journals (Osborne,
2008) showed that indicators of high quality data cleaning in pub-
lished articles were sorely lacking. Specifically, authors in these
top educational psychology journals almost never reported test-
ing any assumptions of the analyses used (only 8.30% reported
having tested any assumption), only 26.0% reported reliability of
data being analyzed, and none reported any significant data clean-
ing (e.g., examination of data for outliers, normality, analysis of
missing data, random responding, etc.).

Finally, a recent survey of recent articles published in promi-
nent APA journals 2009 volumes (Osborne et al., 2012) found
improved, but uninspiring results (see Figure 1.1). For exam-
ple, the percentage of authors reporting anything resembling
minimal data cleaning ranged from 22 to 38% across journals.
This represents a marked improvement from previous surveys,
but still leaves a majority of authors failing to report any type
of data cleaning or testing of assumptions, a troubling state of
affairs. Similarly, between 10 and 32% reported checking for
distributional assumptions, and 32–45% reported dealing with
missing data in some way (although usually through methods
considered sub-optimal). Clearly, even in the 21st century, the
majority of authors in highly-respected scholarly journals fail
to report information about these basic issues of quantitative
methods.

When I wrote a whole book on data cleaning (Osborne, 2012),
my goal was to debunk this mythology of robustness and laissez-
faire that seems to have seeped into the zeitgeist of quantitative
methods. The challenge handed to authors in this book was to
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go beyond the basics of data cleaning and testing assumptions—
to show that assumptions and quality data are still relevant and
important in the 21st century. They went above and beyond
this challenge in many interesting—and unexpected ways. I hope
that this is the beginning—or a continuation—of an important

discussion that strikes at the very heart of our quantitative
disciplines; namely, whether we can trust any of the results
we read in journals, and whether we can apply (or gener-
alize) those results beyond the limited scope of the original
sample.
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A valid interpretation of most statistical techniques requires that one or more assumptions
be met. In published articles, however, little information tends to be reported on whether
the data satisfy the assumptions underlying the statistical techniques used. This could be
due to self-selection: Only manuscripts with data fulfilling the assumptions are submit-
ted. Another explanation could be that violations of assumptions are rarely checked for in
the first place. We studied whether and how 30 researchers checked fictitious data for
violations of assumptions in their own working environment. Participants were asked to
analyze the data as they would their own data, for which often used and well-known tech-
niques such as the t -procedure, ANOVA and regression (or non-parametric alternatives)
were required. It was found that the assumptions of the techniques were rarely checked,
and that if they were, it was regularly by means of a statistical test. Interviews afterward
revealed a general lack of knowledge about assumptions, the robustness of the techniques
with regards to the assumptions, and how (or whether) assumptions should be checked.
These data suggest that checking for violations of assumptions is not a well-considered
choice, and that the use of statistics can be described as opportunistic.

Keywords: assumptions, robustness, analyzing data, normality, homogeneity

INTRODUCTION
Most statistical techniques require that one or more assumptions
be met, or, in the case that it has been proven that a technique is
robust against a violation of an assumption, that the assumption
is not violated too extremely. Applying the statistical techniques
when assumptions are not met is a serious problem when ana-
lyzing data (Olsen, 2003; Choi, 2005). Violations of assumptions
can seriously influence Type I and Type II errors, and can result
in overestimation or underestimation of the inferential measures
and effect sizes (Osborne and Waters, 2002). Keselman et al.
(1998) argue that “The applied researcher who routinely adopts
a traditional procedure without giving thought to its associated
assumptions may unwittingly be filling the literature with non-
replicable results” (p. 351). Vardeman and Morris (2003) state
“. . .absolutely never use any statistical method without realizing
that you are implicitly making assumptions, and that the validity
of your results can never be greater than that of the most question-
able of these” (p. 26). According to the sixth edition of the APA
Publication Manual, the methods researchers use “. . .must sup-
port their analytic burdens, including robustness to violations of
the assumptions that underlie them...” [American Psychological
Association (APA, 2009); p. 33]. The Manual does not explic-
itly state that researchers should check for possible violations of
assumptions and report whether the assumptions were met, but
it seems reasonable to assume that in the case that researchers do
not check for violations of assumptions, they should be aware of
the robustness of the technique.

Many articles have been written on the robustness of certain
techniques with respect to violations of assumptions (e.g., Kohr

and Games, 1974; Bradley, 1980; Sawilowsky and Blair, 1992;
Wilcox and Keselman, 2003; Bathke, 2004), and many ways of
checking to see if assumptions have been met (as well as solu-
tions to overcoming problems associated with any violations)
have been proposed (e.g., Keselman et al., 2008). Using a statis-
tical test is one of the frequently mentioned methods of check-
ing for violations of assumptions (for an overview of statistical
methodology textbooks that directly or indirectly advocate this
method, see e.g., Hayes and Cai, 2007). However, it has also
been argued that it is not appropriate to check assumptions by
means of tests (such as Levene’s test) carried out before decid-
ing on which statistical analysis technique to use because such
tests compound the probability of making a Type I error (e.g.,
Schucany and Ng, 2006). Even if one desires to check whether
or not an assumption is met, two problems stand in the way.
First, assumptions are usually about the population, and in a
sample the population is by definition not known. For exam-
ple, it is usually not possible to determine the exact variance of
the population in a sample-based study, and therefore it is also
impossible to determine that two population variances are equal,
as is required for the assumption of equal variances (also referred
to as the assumption of homogeneity of variances) to be satis-
fied. Second, because assumptions are usually defined in a very
strict way (e.g., all groups have equal variances in the popula-
tion, or the variable is normally distributed in the population),
the assumptions cannot reasonably be expected to be satisfied.
Given these complications, researchers can usually only exam-
ine whether assumptions are not violated “too much” in their
sample; for deciding on what is too much, information about
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the robustness of the technique with regard to violations of the
assumptions is necessary.

The assumptions of normality and of homogeneity of vari-
ances are required to be met for the t-test for independent group
means, one of the most widely used statistical tests (Hayes and
Cai, 2007), as well as for the frequently used techniques ANOVA
and regression (Kashy et al., 2009). The assumption of normality
is that the scores in the population in case of a t-test or ANOVA,
and the population residuals in case of regression, be normally
distributed. The assumption of homogeneity of variance requires
equal population variances per group in case of a t-test or ANOVA,
and equal population variances for every value of the independent
variable for regression. Although researchers might be tempted to
think that most statistical procedures are relatively robust against
most violations, several studies have shown that this is often not
the case, and that in the case of one-way ANOVA, unequal group
sizes can have a negative impact on the technique’s robustness
(e.g., Havlicek and Peterson, 1977; Wilcox, 1987; Lix et al., 1996).

Many textbooks advise that the assumptions of normality and
homogeneity of variance be checked graphically (Hazelton, 2003;
Schucany and Ng, 2006), such as by making normal quantile plots
for checking for normality. Another method, which is advised
in many other textbooks (Hayes and Cai, 2007), is to use a so-
called preliminary test to determine whether to continue with
the intended technique or to use an alternative technique instead.
Preliminary tests could, for example, be used to choose between
a pooled t-test and a Welch t-test or between ANOVA and a
non-parametric alternative. Following the argument that prelim-
inary tests should not be used because, amongst others, they can
inflate the probability of making a Type I error (e.g., Gans, 1981;
Wilcox et al., 1986; Best and Rayner, 1987; Zimmerman, 2004,
2011; Schoder et al., 2006; Schucany and Ng, 2006; Rochon and
Kieser, 2011), it has also been argued that in many cases uncondi-
tional techniques should be the techniques of choice (Hayes and
Cai, 2007). For example, the Welch t-test, which does not require
homogeneity of variance,would be seen a priori as preferable to the
pooled variance t-test (Zimmerman, 1996; Hayes and Cai, 2007).

Although the conclusions one can draw when analyzing a data
set with statistical techniques depend on whether the assumptions
for that technique are met, and, if that is not the case, whether
the technique is robust against violations of the assumption, no
work, to our knowledge, describing whether researchers check for
violations of assumptions in practice has been published. When
possible violations of assumptions are checked, and why they
sometimes are not, is a relevant question given the continuing
prevalence of preliminary tests. For example, an inspection of the
most recent 50 articles published in 2011 in Psychological Science
that contained at least one t-test, ANOVA or regression analysis,
revealed that in only three of these articles was the normality of the
data or the homogeneity of variances discussed, leaving open the
question of whether these assumptions were or were not checked
in practice, and how. Keselman et al. (1998) showed in a review
of 61 articles that used a between-subject univariate design that in
only a small minority of articles anything about the assumptions
of normality (11%) or homogeneity (8%) was mentioned, and
that in only 5% of the articles something about both assumptions
was mentioned. In the same article, Keselman et al. present results

of another study in which 79 articles with a between-subject mul-
tivariate design were checked for references to assumptions, and
again the assumptions were rarely mentioned. Osborne (2008)
found similar results: In 96 articles published in high quality jour-
nals, checking of assumptions was reported in only 8% of the
cases.

In the present paper a study is presented in which the behav-
ior of researchers while analyzing data was observed, particularly
with regard to the checking for violations of assumptions when
analyzing data. It was hypothesized that the checking of assump-
tions might not routinely occur when analyzing data. There can,
of course, be rational reasons for not checking assumptions.
Researchers might, for example, have knowledge about the robust-
ness of the technique they are using with respect to violations of
assumptions, and therefore consider the checking of possible vio-
lations unnecessary. In addition to observing whether or not the
data were checked for violations of assumptions, we therefore also
administered a questionnaire to assess why data were not always
checked for possible violations of assumptions. Specifically, we
focused on four possible explanations for failing to check for vio-
lations of assumptions: (1) lack of knowledge of the assumption,
(2) not knowing how to check whether the assumption has been
violated, (3) not considering a possible violation of an assumption
problematic (for example, because of the robustness of the tech-
nique), and (4) lack of knowledge of an alternative in the case that
an assumption seems to be violated.

MATERIALS AND METHODS
PARTICIPANTS
Thirty Ph.D. students, 13 men and 17 women (mean age = 27,
SD = 1.5), working at Psychology Departments (but not in the
area of methodology or statistics) throughout The Netherlands,
participated in the study. All had at least 2 years experience
conducting research at the university level. Ph.D. students were
selected because of their active involvement in the collection and
analysis of data. Moreover, they were likely to have had their
statistical education relatively recently, assuring a relatively up-
to-date knowledge of statistics. They were required to have at least
once applied a t -procedure, a linear regression analysis and an
ANOVA, although not necessarily in their own research project.
Ten participants were randomly selected from each of the Uni-
versities of Tilburg, Groningen, and Amsterdam, three cities in
different regions of The Netherlands. In order to get 30 partici-
pants, 41 Ph.D. students were approached for the study, of whom
11 chose not to participate. Informed consent was obtained from
all participants, and anonymity was ensured.

TASK
The task consisted of two parts: data analysis and questionnaire.
For the data analysis task participants were asked to analyze six
data sets, and write down their inferential conclusions for each data
set. The t-test, ANOVA and regression (or unconditional alterna-
tives to those techniques) were intended to be used, because they
are relatively simple, frequently used, and because it was expected
that most participants would be familiar with those techniques.
Participants could take as much time as they wanted, and no limit
was given to the length of the inferential conclusions. The second
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part of the task consisted of filling in a questionnaire with questions
about the participants’ choices during the data analysis task, and
about the participants’ usual behavior with respect to assumption
checking when analyzing data. All participants needed between
30 and 75 min to complete the data analysis task and between 35
and 65 min to complete the questionnaire. The questionnaire also
included questions about participants’ customs regarding visual-
ization of data and inference, but these data are not presented
here. All but three participants performed the two tasks at their
own workplace. The remaining three used an otherwise unoccu-
pied room in their department. During task performance, the first
author was constantly present.

Data analysis task
The data for the six data sets that the participants were asked
to analyze were offered in SPSS format, since every participant
indicated using SPSS as their standard statistical package. Before
starting to analyze the data, the participants were given a short
description of a research question without an explicit hypothe-
sis, but with a brief description of the variables in the SPSS file.
The participants were asked to analyze the data sets and interpret
the results as they do when they analyze and interpret their own
data sets. Per data set, they were asked to write down an answer to
the following question: “What do these results tell you about the
situation in the population? Explain how you came to your con-
clusion”. An example of such an instruction for which participants
were expected to use linear regression analysis, translated from the
Dutch, is shown in Figure 1. Participants were explicitly told that
consultation of any statistical books or the internet was allowed,
but only two participants availed themselves of this opportunity.

The short description of the six research questions was written
in such a way as to suggest that two t-tests, two linear regression
analyses and two ANOVAs should be carried out, without explic-
itly naming the analysis techniques. Of course, non-parametric or
unconditional alternatives were considered appropriate, as well.
The results of a pilot experiment indicated that the descrip-
tions were indeed sufficient to guide people in using the desired
technique: The five people tested in the pilot used the intended
technique for each of the six data sets. All six research question
descriptions, also in translated form, can be found in the Appendix
to this study.

The six data sets differed with respect to the effect size, the sig-
nificance of the outcomes, and to whether there was a “strong”

violation of an assumption. Four of the six data sets contained
significant effects, one of the two data sets for which a t-test was
supposed to be used contained a clear violation of the assump-
tion of normality, one of the two data sets for which ANOVA was
supposed to be used contained a clear violation of the assumption
of homogeneity of variance, and effect size was relatively large in
three data sets and relatively small in the other data sets (see Table 1
for an overview).

To get more information on which choices were made by the
participants during task performance, and why these choices were
made, participants were asked to “think aloud” during task perfor-
mance. This was recorded on cassette. During task performance,
the selections made within the SPSS program were noted by the
first author, in order to be able to check whether there was any
check for the assumptions relevant for the technique that was used.
Furthermore, participants were asked to save the SPSS syntax files.
For the analysis of task performance, the information from the
notes made by the first author, the tape recordings and the syntax
files were combined to examine behavior with respect to checking
for violations of the assumptions of normality and homogene-
ity of variance. Of course, had participants chosen unconditional
techniques for which one or both of these assumptions were
not required to be met, their data for the scenario in question
would not have been used, provided that a preliminary test was
not carried out to decide whether to use the unconditional tech-
nique. However, in no cases were unconditional techniques used
or even considered. The frequency of selecting preliminary tests
was recorded separately.

Each data set was scored according to whether violations of
the assumptions of normality and homogeneity of variance were
checked for. A graphical assessment was counted as correctly

Table 1 | An overview of the properties of the six scenarios.

Scenario Technique to be

used

Effect size p-Value Violations of

assumption

1 t-Test Medium 0.04 Normality

2 t-Test Very small 0.86 None

3 Regression analysis Large 0.00 None

4 Regression analysis Medium 0.01 None

5 ANOVA Large 0.05 Homogeneity

6 ANOVA Close to 0 0.58 None

FIGURE 1 | An example of one of the research question descriptions. In this example, participants were supposed to answer this question by means of a
regression analysis.
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checking for the assumption, provided that the assessment was
appropriate for the technique at hand. A correct check for the
assumption of normality was recorded if, for the t-test and
ANOVA, a graphical representation of the different groups was
requested, except when the graph was used only to detect out-
liers. Merely looking at the numbers, without making a visual
representation was considered insufficient. For regression analy-
sis, making a plot of the residuals was considered to be a correct
check of the assumption of normality. Deciding whether this was
done explicitly was based on whether the participant made any
reference to normality when thinking aloud. A second option
was to make a QQ- or PP-plot of the residuals. Selecting the
Kolmogorov–Smirnov test or the Shapiro–Wilk test within SPSS
was considered checking for the assumption of normality using a
preliminary test.

Three ways of checking for the assumption of homogeneity of
variance for the t-test and ANOVA were considered adequate. The
first was to make a graphical representation of the data in such a
way that difference in variance between the groups was visible (e.g.,
boxplots or scatter plots, provided that they are given per group).
A second way was to make an explicit reference to the variance
of the groups. A final possibility was to compare standard devi-
ations of the groups in the output, with or without making use
of a rule of thumb to discriminate between violations and non-
violations. For regression analysis, a scatter plot or a residual plot
was considered necessary to check the assumption of homogeneity
of variance. Although the assumption of homogeneity of variance
assumes equality of the population variations, an explicit reference
to the population was not required. The preliminary tests that were
recorded included Levene’s test, the F-ratio test, Bartlett’s test, and
the Brown–Forsythe test.

The frequency of using preliminary tests was reported sepa-
rately from other ways of checking for assumptions. Although
the use of preliminary tests is often considered an inappropriate
method for checking assumptions, their use does show awareness
of the existence of the assumption. Occurrences of checking for
irrelevant assumptions, such as equal group sizes for the t-test, or
normality of all scores for one variable (instead of checking for
normality per group) for all three techniques were also counted,
but scored as incorrectly checking for an assumption.

Questionnaire
The questionnaire addressed four explanations for why an
assumption was not checked: (1) Unfamiliarity with the assump-
tion, (2) Unfamiliarity with how to check the assumptions, (3)
Violation of the assumption not being regarded problematic, and
(4) Unfamiliarity with a remedy against a violation of the assump-
tion. Each of these explanations was operationalized before the
questionnaires were analyzed. The experimenter was present dur-
ing questionnaire administration to stimulate the participants to
answer more extensively, if necessary, or ask them to reformulate
their answer when they seemed to have misread the question.

Unfamiliarity with the assumptions. Participants were asked to
write down the assumptions they thought it was necessary to check
for each of the three statistical techniques used in the study. Sim-
ply mentioning the assumption of normality or homogeneity of

variance was scored as being familiar with the assumption, even
if the participants did not specify what, exactly, was required
to follow a normal distribution or which variances were sup-
posed to be equal. Explaining the assumptions without explicitly
mentioning them was also scored as being familiar with this
assumption.

Unfamiliarity with how to check the assumptions. Participants
were asked if they could think of a way to investigate whether
there was a violation of each of the two assumptions (normality
and homogeneity of variance) for t-tests, ANOVA and regression,
respectively. Thus, the assumptions per technique were explicitly
given, whether or not they had been correctly reported in answer
to the previous question. For normality, specifying how to visual-
ize the data in such a way that a possible violation was visible was
categorized as a correct way of checking for assumption violations
(for example: making a QQ-plot, or making a histogram), even
when no further information was given about how to make such a
visualization. Mentioning a measure of or a test for normality was
also considered correct. For studying homogeneity of variance,
rules of thumb or tests, such as Levene’s test for testing equality
of variances, were categorized as a correct way of checking this
assumption, and the same holds for eyeballing visual representa-
tions from which variances could be deduced. Note that the criteria
for a correct check are lenient, since they include preliminary tests
that are usually considered inappropriate.

Violation of the assumption not being regarded problematic.
For techniques for which it has been shown that they are robust
against certain assumption violations, it can be argued that it
makes sense not to check for these assumptions, because the
outcome of this checking process would not influence the interpre-
tation of the data anyway. To study this explanation, participants
were asked per assumption and for the three techniques whether
they considered a possible violation to be influential. Afterward,
the answers that indicated that this influence was small or absent
were scored as satisfying the criteria for this explanation.

Unfamiliarity with a remedy against a violation of an assump-
tion. One could imagine that a possible violation of assumptions
is not checked because no remedy for such violations is known.
Participants were thus asked to note remedies for possible viola-
tions of normality and homogeneity of variance for each of the
three statistical analysis techniques. Correct remedies were defined
as transforming the data (it was not required that participants
specify which transformation), using a different technique (e.g., a
non-parametric technique when the assumption of normality has
been violated) and increasing the sample size.

DATA ANALYSIS
All results are presented as percentages of the total number of par-
ticipants or of the total number of analyzed data sets, depending
on the specific research question. Confidence intervals (CIs) are
given, but should be interpreted cautiously because the sample
cannot be regarded as being completely random. The CIs for per-
centages were calculated by the so-called Score CIs (Wilson, 1927).
All CIs are 95% CIs.
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RESULTS
Of the six datasets that the 30 participants were required to analyze,
in all but three instances the expected technique was chosen. In the
remaining three instances, ANOVA was used to analyze data sets
that were meant to be analyzed by means of a t-test. Since ANOVA
is in this case completely equivalent to an independent-samples t-
test, it can be concluded that an appropriate technique was chosen
for all data sets. In none of these cases, an unconditional technique
was chosen.

Violations of,or conformance with, the assumptions of normal-
ity and homogeneity of variance were correctly checked in 12%
(95%CI = [8%, 18%]) and 23% (95%CI = [18%, 30%]), respec-
tively, of the analyzed data sets. Figure 2 shows for each of the three
techniques how frequently possible violations of the assumptions
of normality and homogeneity of variance occurred, and whether
the checking was done correctly, or whether a preliminary test was
used. Note that the assumption of normality was rarely checked for
regression, and never correctly. In the few occasions that normality
was checked the normality of the scores instead of the residuals
was examined. Although this approach might be useful for study-
ing the distribution of the scores, it is insufficient for determining
whether the assumption of normality has been violated.

The percentages of participants giving each of the four reasons
for not checking assumptions as measured by the questionnaire
are given in Figure 3. A majority of the participants were unfamil-
iar with the assumptions. For each assumption, only a minority of

participants mentioned at least one of the correct ways to check
for a violation of the assumption. The majority of the participants
failed to indicate that the alleged robustness of a technique against
violations of the relevant assumption was a reason not to check
these assumptions in the first place. Many participants did not
know whether a violation of an assumption was important or not.
Only in a minority of instances was an acceptable remedy for a
violation of an assumption mentioned. No unacceptable remedies
were mentioned. In general, participants indicated little knowl-
edge of how to overcome a violation of one of the assumptions,
and most participants reported never having looked for a remedy
against a violation of statistical assumptions.

Participants had been told what the relevant assumptions were
before they had to answer these questions. Therefore, the results
for the last three explanations per assumption in Figure 3 are
reported for all participants, despite the fact that many participants
reported being unfamiliar with the assumption. This implies that,
especially for the assumption of normality and to a lesser extent
for the assumption of equal variances, the results regarding the last
three explanations should be interpreted with caution.

DISCUSSION
In order to examine people’s understanding of the assumptions
of statistical tests and their behavior with regard to checking
these assumptions, 30 researchers were asked to analyze six data
sets using the t-test, ANOVA, regression or a non-parametric

FIGURE 2 |The frequency of whether two assumptions were checked at

all, whether they were checked correctly, and whether a preliminary test

was used for three often used techniques in percentages of the total

number of cases. Between brackets are 95% CIs for the percentages.
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FIGURE 3 | Percentages of participants giving each of the explanations for not checking assumptions as a function of assumption and technique.

Error bars indicate 95% CIs.

alternative, as appropriate. All participants carried out nominally
appropriate analyses, but only in a minority of cases were the data
examined for possible violations of assumptions of the chosen
techniques. Preliminary test outcomes were rarely consulted, and
only if given by default in the course of carrying out an analysis.
The results of a questionnaire administered after the analyses
were performed revealed that the failure to check for violations of
assumptions could be attributed to the researchers’ lack of knowl-
edge about the assumptions, rather than to a deliberate decision
not to check the data for violations of the assumptions.

Homogeneity of variance was checked for in roughly a third of
all cases and the assumption of normality in less than a quarter
of the data sets that were analyzed. Moreover, for the assumption
of normality checks were often carried out incorrectly. An expla-
nation for the finding that the assumption of homogeneity of
variance was checked more often than the assumption of normal-
ity is the fact that a clear violation of this assumption can often be
directly deduced from the standard deviations, whereas measures
indicating normality are less common. Furthermore, many partic-
ipants seemed familiar with a rule of thumb to check whether the

assumption of homogeneity of variance for ANOVA is violated
(e.g., largest standard deviation is larger than twice the smallest
standard deviation), whereas such rules of thumb for checking
possible violations of the assumption of normality were unknown
to our participants. It was also found that Levene’s test was often
used as a preliminary test to choose between the pooled t-test and
the Welch t-test, despite the fact that the use of preliminary tests
is often discouraged (e.g., Wilcox et al., 1986; Zimmerman, 2004,
2011; Schucany and Ng, 2006). An obvious explanation for this
could be that the outcomes of Levene’s test are given as a default
option for the t procedure in SPSS (this was the case in all versions
that were used by the participants). The presence of Levene’s test
together with the corresponding t-tests may have led researchers
to think that they should use this information. Support for this
hypothesis is that preliminary tests were not carried out in any
other cases.

It is possible that researchers have well-considered reasons for
not checking for possible violations of assumption. For example,
they may be aware of the robustness of a technique with respect to
violations of a particular assumption, and quite reasonably chose
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not to check to see if the assumption is violated. Our questionnaire,
however, revealed that many researchers simply do not know which
assumptions should be met for the t-test, ANOVA, and regres-
sion analysis. Only a minority of the researchers correctly named
both assumptions, despite the fact that the statistical techniques
themselves were well-known to the participants. Even when the
assumptions were provided to the participants during the course
of filling out the questionnaire, only a minority of the participants
reported knowing a means of checking for violations, let alone
which measures could be taken to remedy any possible violations
or which tests could be used instead when violations could not be
remedied.

A limitation of the present study is that, although researchers
were asked to perform the tasks in their own working environ-
ment, the setting was nevertheless artificial, and for that reason
the outcomes might have been biased. Researchers were obvi-
ously aware that they were being watched during this observation
study, which may have changed their behavior. However, we expect
that if they did indeed conduct the analyses differently than they
would normally do, they likely attempted to perform better rather
than worse than usual. A second limitation of the study is the
relatively small number of participants. Despite this limited num-
ber and the resulting lower power, however, the effects are large,
and the CIs show that the outcomes are unlikely to be due to
chance alone. A third limitation is the possible presence of selec-
tion bias. The sample was not completely random because the
selection of the universities involved could be considered a con-
venience sample. However, we have no reason to think that the

sample is not representative of Ph.D. students at research uni-
versities. A fourth and last limitation is the fact that it is not
clear what training each of the participants had on the topic
of assumptions. However, all had their education in Psychology
Departments in The Netherlands, where statistics is an important
part of the basic curriculum. It is thus unlikely that they were not
subjected to extensive discussion on the importance of meeting
assumptions.

Our findings show that researchers are relatively unknowledge-
able when it comes to when and how data should be checked
for violations of assumptions of statistical tests. It is notable that
the scientific community tolerates this lack of knowledge. One
possible explanation for this state of affairs is that the scien-
tific community as a whole does not consider it important to
verify that the assumptions of statistical tests are met. Alterna-
tively, other scientists may assume too readily that if nothing is
said about assumptions in a manuscript, any crucial assump-
tions were met. Our results suggest that in many cases this
might be a premature conclusion. It seems important to con-
sider how statistical education can be improved to draw atten-
tion to the place of checking for assumptions in statistics and
how to deal with possible violations (including deciding to use
unconditional techniques). Requiring that authors describe how
they checked for the violation of assumptions when the tech-
niques applied are not robust to violations would, as Bakker
and Wicherts (2011) have proposed, force researchers on both
ends of the publishing process to show more awareness of this
important issue.
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APPENDIX
RESEARCH QUESTION DESCRIPTIONS
In this Appendix, the six research question descriptions are pre-
sented in translated form. Descriptions 1 and 2 were supposed
to be answered by means of a t-test, Descriptions 3 and 4 by
means of regression analysis, and Descriptions 5 and 6 by means
of ANOVA.

1. A researcher is interested in the extent to which group A and
group B differ in cognitive transcentivity. He has scores of 25
randomly selected participants from each of the two groups on
a cognitive transcentivity test (with the range of possible scores
from 0 to 25). In Column 1 of the SPSS file, the scores of the
participants on the test are given, and in column 2 the group
membership (group A or B) is given.

2. A researcher is interested in the extent to which group C and
group D differ in cognitive transcentivity. He has scores of 25
randomly selected participants from each of the two groups on
a cognitive transcentivity test (with the range of possible scores
from 0 to 25). In Column 1 of the SPSS file, the scores of the
participants on the test are given, and in column 2 the group
membership (group C or D) is given.

3. A researcher is interested to what extent the weight of men
can predict their self-esteem. She expects a linear relationship
between weight and self-esteem. To study the relationship, she
takes a random sample of 100 men, and administers a question-
naire to them to measure their self-esteem (on a scale from 0 to
50), and measures the participants’ weight. In Column 1 of the

SPSS file, the scores on the self-esteem questionnaire are given.
The second column shows the weights of the men, measured in
kilograms.

4. A researcher is interested to what extent the weight of women
can predict their self-esteem. She expects a linear relationship
between weight and self-esteem. To study the relationship, she
takes a random sample of 100 women, and administers a ques-
tionnaire to them to measure their self-esteem (on a scale from
0 to 50), and measures the participants’ weight. In Column 1
of the SPSS file, the scores on the self-esteem questionnaire are
given. The second column shows the weights of the women,
measured in kilograms.

5. A researcher is interested to what extent young people of three
nationalities differ with respect to the time in which they can
run the 100 meters. To study this, 20 persons between 20 and
30 years of age per nationality are randomly selected, and the
times in which they run the 100 meters is measured. In Column
1 of the SPSS file, their times are given in seconds. The num-
bers “1, “2,” and “3” in Column 2 represent the three different
nationalities.

6. A researcher is interested to what extent young people of three
other nationalities differ with respect to time in which they can
run the 100 meters. To study this, 20 persons between 20 and
30 years of age per nationality are randomly selected, and the
times in which they run the 100 meters is measured. In Column
1 of the SPSS file, their times are given in seconds. The num-
bers “1, “2,” and “3” in Column 2 represent the three different
nationalities.
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The ultimate goal of research is to produce dependable knowledge or to provide the evi-
dence that may guide practical decisions. Statistical conclusion validity (SCV) holds when
the conclusions of a research study are founded on an adequate analysis of the data, gen-
erally meaning that adequate statistical methods are used whose small-sample behavior
is accurate, besides being logically capable of providing an answer to the research ques-
tion. Compared to the three other traditional aspects of research validity (external validity,
internal validity, and construct validity), interest in SCV has recently grown on evidence
that inadequate data analyses are sometimes carried out which yield conclusions that a
proper analysis of the data would not have supported. This paper discusses evidence of
three common threats to SCV that arise from widespread recommendations or practices
in data analysis, namely, the use of repeated testing and optional stopping without control
of Type-I error rates, the recommendation to check the assumptions of statistical tests,
and the use of regression whenever a bivariate relation or the equivalence between two
variables is studied. For each of these threats, examples are presented and alternative
practices that safeguard SCV are discussed. Educational and editorial changes that may
improve the SCV of published research are also discussed.
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Psychologists are well aware of the traditional aspects of research
validity introduced by Campbell and Stanley (1966) and fur-
ther subdivided and discussed by Cook and Campbell (1979).
Despite initial criticisms of the practically oriented and some-
what fuzzy distinctions among the various aspects (see Cook
and Campbell, 1979, pp. 85–91; see also Shadish et al., 2002,
pp. 462–484), the four facets of research validity have gained
recognition and they are currently covered in many textbooks
on research methods in psychology (e.g., Beins, 2009; Good-
win, 2010; Girden and Kabacoff, 2011). Methods and strate-
gies aimed at securing research validity are also discussed in
these and other sources. To simplify the description, construct
validity is sought by using well-established definitions and mea-
surement procedures for variables, internal validity is sought by
ensuring that extraneous variables have been controlled and con-
founds have been eliminated, and external validity is sought by
observing and measuring dependent variables under natural con-
ditions or under an appropriate representation of them. The
fourth aspect of research validity, which Cook and Campbell
called statistical conclusion validity (SCV), is the subject of this
paper.

Cook and Campbell, 1979, pp. 39–50) discussed that SCV
pertains to the extent to which data from a research study can rea-
sonably be regarded as revealing a link (or lack thereof) between
independent and dependent variables as far as statistical issues are
concerned. This particular facet was separated from other factors
acting in the same direction (the three other facets of validity) and
includes three aspects: (1) whether the study has enough statistical

power to detect an effect if it exists, (2) whether there is a risk
that the study will “reveal” an effect that does not actually exist,
and (3) how can the magnitude of the effect be confidently esti-
mated. They nevertheless considered the latter aspect as a mere
step ahead once the first two aspects had been satisfactorily solved,
and they summarized their position by stating that SCV “refers
to inferences about whether it is reasonable to presume covaria-
tion given a specified α level and the obtained variances” (Cook
and Campbell, 1979, p. 41). Given that mentioning “the obtained
variances” was an indirect reference to statistical power and men-
tioning α was a direct reference to statistical significance, their
position about SCV may have seemed to only entail consideration
that the statistical decision can be incorrect as a result of Type-I
and Type-II errors. Perhaps as a consequence of this literal inter-
pretation, review papers studying SCV in published research have
focused on power and significance (e.g., Ottenbacher, 1989; Otten-
bacher and Maas, 1999), strategies aimed at increasing SCV have
only considered these issues (e.g., Howard et al., 1983), and tutori-
als on the topic only or almost only mention these issues along with
effect sizes (e.g., Orme, 1991; Austin et al., 1998; Rankupalli and
Tandon, 2010). This emphasis on issues of significance and power
may also be the reason that some sources refer to threats to SCV as
“any factor that leads to a Type-I or a Type-II error” (e.g., Girden
and Kabacoff, 2011, p. 6; see also Rankupalli and Tandon, 2010,
Section 1.2), as if these errors had identifiable causes that could be
prevented. It should be noted that SCV has also occasionally been
purported to reflect the extent to which pre-experimental designs
provide evidence for causation (Lee, 1985) or the extent to which

www.frontiersin.org August 2012 | Volume 3 | Article 325 | 17

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/10.3389/fpsyg.2012.00325/abstract
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/10.3389/fpsyg.2012.00325/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MiguelGarc�a_P�rez&UID=8533
mailto:miguel@psi.ucm.es
http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


García-Pérez Statistical conclusion validity

meta-analyses are based on representative results that make the
conclusion generalizable (Elvik, 1998).

But Cook and Campbell’s (1979, p. 80) aim was undoubtedly
broader, as they stressed that SCV “is concerned with sources of
random error and with the appropriate use of statistics and statisti-
cal tests” (italics added). Moreover, Type-I and Type-II errors are
an essential and inescapable consequence of the statistical decision
theory underlying significance testing and, as such, the potential
occurrence of one or the other of these errors cannot be prevented.
The actual occurrence of them for the data on hand cannot be
assessed either. Type-I and Type-II errors will always be with us
and, hence, SCV is only trivially linked to the fact that research will
never unequivocally prove or reject any statistical null hypothesis
or its originating research hypothesis. Cook and Campbell seemed
to be well aware of this issue when they stressed that SCV refers
to reasonable inferences given a specified significance level and a
given power. In addition, Stevens (1950, p. 121) forcefully empha-
sized that“it is a statistician’s duty to be wrong the stated number of
times,” implying that a researcher should accept the assumed risks
of Type-I and Type-II errors, use statistical methods that guaran-
tee the assumed error rates, and consider these as an essential part
of the research process. From this position, these errors do not
affect SCV unless their probability differs meaningfully from that
which was assumed. And this is where an alternative perspective
on SCV enters the stage, namely, whether the data were analyzed
properly so as to extract conclusions that faithfully reflect what the
data have to say about the research question. A negative answer
raises concerns about SCV beyond the triviality of Type-I or Type-
II errors. There are actually two types of threat to SCV from this
perspective. One is when the data are subjected to thoroughly inad-
equate statistical analyses that do not match the characteristics of
the design used to collect the data or that cannot logically give an
answer to the research question. The other is when a proper sta-
tistical test is used but it is applied under conditions that alter the
stated risk probabilities. In the former case, the conclusion will be
wrong except by accident; in the latter, the conclusion will fail to
be incorrect with the declared probabilities of Type-I and Type-II
errors.

The position elaborated in the foregoing paragraph is well sum-
marized in Milligan and McFillen’s (1984, p. 439) statement that
“under normal conditions (. . .) the researcher will not know when
a null effect has been declared significant or when a valid effect
has gone undetected (. . .) Unfortunately, the statistical conclusion
validity, and the ultimate value of the research, rests on the explicit
control of (Type-I and Type-II) error rates.” This perspective on
SCV is explicitly discussed in some textbooks on research methods
(e.g., Beins, 2009, pp. 139–140; Goodwin, 2010, pp. 184–185) and
some literature reviews have been published that reveal a sound
failure of SCV in these respects.

For instance, Milligan and McFillen’s (1984, p. 438) reviewed
evidence that “the business research community has succeeded
in publishing a great deal of incorrect and statistically inade-
quate research” and they dissected and discussed in detail four
additional cases (among many others that reportedly could have
been chosen) in which a breach of SCV resulted from gross mis-
matches between the research design and the statistical analysis.
Similarly, García-Pérez (2005) reviewed alternative methods to

compute confidence intervals for proportions and discussed three
papers (among many others that reportedly could have been cho-
sen) in which inadequate confidence intervals had been computed.
More recently, Bakker and Wicherts (2011) conducted a thorough
analysis of psychological papers and estimated that roughly 50%
of published papers contain reporting errors, although they only
checked whether the reported p value was correct and not whether
the statistical test used was appropriate. A similar analysis carried
out by Nieuwenhuis et al. (2011) revealed that 50% of the papers
reporting the results of a comparison of two experimental effects
in top neuroscience journals had used an incorrect statistical pro-
cedure. And Bland and Altman (2011) reported further data on
the prevalence of incorrect statistical analyses of a similar nature.

An additional indicator of the use of inadequate statistical pro-
cedures arises from consideration of published papers whose title
explicitly refers to a re-analysis of data reported in some other
paper. A literature search for papers including in their title the
terms “a re-analysis,” “a reanalysis,” “re-analyses,” “reanalyses,” or
“alternative analysis” was conducted on May 3, 2012 in the Web
of Science (WoS; http://thomsonreuters.com), which rendered 99
such papers with subject area “Psychology” published in 1990 or
later. Although some of these were false positives, a sizeable num-
ber of them actually discussed the inadequacy of analyses carried
out by the original authors and reported the results of proper alter-
native analyses that typically reversed the original conclusion. This
type of outcome upon re-analyses of data are more frequent than
the results of this quick and simple search suggest, because the
information for identification is not always included in the title of
the paper or is included in some other form: For a simple exam-
ple, the search for the clause “a closer look” in the title rendered
131 papers, many of which also presented re-analyses of data that
reversed the conclusion of the original study.

Poor design or poor sample size planning may, unbeknownst to
the researcher, lead to unacceptable Type-II error rates, which will
certainly affect SCV (as long as the null is not rejected; if it is, the
probability of a Type-II error is irrelevant). Although insufficient
power due to lack of proper planning has consequences on sta-
tistical tests, the thread of this paper de-emphasizes this aspect of
SCV (which should perhaps more reasonably fit within an alter-
native category labeled design validity) and emphasizes the idea
that SCV holds when statistical conclusions are incorrect with the
stated probabilities of Type-I and Type-II errors (whether the lat-
ter was planned or simply computed). Whether or not the actual
significance level used in the research or the power that it had
is judged acceptable is another issue, which does not affect SCV:
The statistical conclusion is valid within the stated (or computed)
error probabilities. A breach of SCV occurs, then, when the data
are not subjected to adequate statistical analyses or when control
of Type-I or Type-II errors is lost.

It should be noted that a further component was included into
consideration of SCV in Shadish et al.’s (2002) sequel to Cook and
Campbell’s (1979) book, namely, effect size. Effect size relates to
what has been called a Type-III error (Crawford et al., 1998), that
is, a statistically significant result that has no meaningful practical
implication and that only arises from the use of a huge sample.
This issue is left aside in the present paper because adequate con-
sideration and reporting of effect sizes precludes Type-III errors,
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although the recommendations of Wilkinson and The Task Force
on Statistical Inference (1999) in this respect are not always fol-
lowed. Consider, e.g., Lippa’s (2007) study of the relation between
sex drive and sexual attraction. Correlations generally lower than
0.3 in absolute value were declared strong as a result of p values
below 0.001. With sample sizes sometimes nearing 50,000 paired
observations, even correlations valued at 0.04 turned out signifi-
cant in this study. More attention to effect sizes is certainly needed,
both by researchers and by journal editors and reviewers.

The remainder of this paper analyzes three common practices
that result in SCV breaches, also discussing simple replacements
for them.

STOPPING RULES FOR DATA COLLECTION WITHOUT
CONTROL OF TYPE-I ERROR RATES
The asymptotic theory that provides justification for null hypoth-
esis significance testing (NHST) assumes what is known as fixed
sampling, which means that the size n of the sample is not itself a
random variable or, in other words, that the size of the sample has
been decided in advance and the statistical test is performed once
the entire sample of data has been collected. Numerous procedures
have been devised to determine the size that a sample must have
according to planned power (Ahn et al., 2001; Faul et al., 2007;
Nisen and Schwertman, 2008; Jan and Shieh, 2011), the size of the
effect sought to be detected (Morse, 1999), or the width of the
confidence intervals of interest (Graybill, 1958; Boos and Hughes-
Oliver,2000; Shieh and Jan,2012). For reviews, see Dell et al. (2002)
and Maxwell et al. (2008). In many cases, a researcher simply strives
to gather as large a sample as possible. Asymptotic theory supports
NHST under fixed sampling assumptions, whether or not the size
of the sample was planned.

In contrast to fixed sampling, sequential sampling implies that
the number of observations is not fixed in advance but depends
by some rule on the observations already collected (Wald, 1947;
Anscombe, 1953; Wetherill, 1966). In practice, data are analyzed
as they come in and data collection stops when the observations
collected thus far satisfy some criterion. The use of sequential
sampling faces two problems (Anscombe, 1953, p. 6): (i) devis-
ing a suitable stopping rule and (ii) finding a suitable test statistic
and determining its sampling distribution. The mere statement
of the second problem evidences that the sampling distribution
of conventional test statistics for fixed sampling no longer holds
under sequential sampling. These sampling distributions are rela-
tively easy to derive in some cases, particularly in those involving
negative binomial parameters (Anscombe, 1953; García-Pérez and
Núñez-Antón, 2009). The choice between fixed and sequential
sampling (sometimes portrayed as the “experimenter’s intention”;
see Wagenmakers, 2007) has important ramifications for NHST
because the probability that the observed data are compatible (by
any criterion) with a true null hypothesis generally differs greatly
across sampling methods. This issue is usually bypassed by those
who look at the data as a “sure fact” once collected, as if the sam-
pling method used to collect the data did not make any difference
or should not affect how the data are interpreted.

There are good reasons for using sequential sampling in psycho-
logical research. For instance, in clinical studies in which patients
are recruited on the go, the experimenter may want to analyze

data as they come in to be able to prevent the administration of a
seemingly ineffective or even hurtful treatment to new patients. In
studies involving a waiting-list control group, individuals in this
group are generally transferred to an experimental group mid-
way along the experiment. In studies with laboratory animals, the
experimenter may want to stop testing animals before the planned
number has been reached so that animals are not wasted when an
effect (or the lack thereof) seems established. In these and anal-
ogous cases, the decision as to whether data will continue to be
collected results from an analysis of the data collected thus far, typ-
ically using a statistical test that was devised for use in conditions
of fixed sampling. In other cases, experimenters test their statistical
hypothesis each time a new observation or block of observations is
collected, and continue the experiment until they feel the data are
conclusive one way or the other. Software has been developed that
allows experimenters to find out how many more observations
will be needed for a marginally non-significant result to become
significant on the assumption that sample statistics will remain
invariant when the extra data are collected (Morse, 1998).

The practice of repeated testing and optional stopping has
been shown to affect in unpredictable ways the empirical Type-I
error rate of statistical tests designed for use under fixed sampling
(Anscombe, 1954; Armitage et al., 1969; McCarroll et al., 1992;
Strube, 2006; Fitts, 2011a). The same holds when a decision is
made to collect further data on evidence of a marginally (non)
significant result (Shun et al., 2001; Chen et al., 2004). The inac-
curacy of statistical tests in these conditions represents a breach
of SCV, because the statistical conclusion thus fails to be incorrect
with the assumed (and explicitly stated) probabilities of Type-I
and Type-II errors. But there is an easy way around the inflation
of Type-I error rates from within NHST, which solves the threat
to SCV that repeated testing and optional stopping entail.

In what appears to be the first development of a sequential
procedure with control of Type-I error rates in psychology, Frick
(1998) proposed that repeated statistical testing be conducted
under the so-called COAST (composite open adaptive sequen-
tial test) rule: If the test yields p < 0.01, stop collecting data and
reject the null; if it yields p > 0.36, stop also and do not reject
the null; otherwise, collect more data and re-test. The low crite-
rion at 0.01 and the high criterion at 0.36 were selected through
simulations so as to ensure a final Type-I error rate of 0.05 for
paired-samples t tests. Use of the same low and high criteria
rendered similar control of Type-I error rates for tests of the
product-moment correlation, but they yielded slightly conserv-
ative tests of the interaction in 2× 2 between-subjects ANOVAs.
Frick also acknowledged that adjusting the low and high criteria
might be needed in other cases, although he did not address them.
This has nevertheless been done by others who have modified and
extended Frick’s approach (e.g., Botella et al., 2006; Ximenez and
Revuelta, 2007; Fitts, 2010a,b, 2011b). The result is sequential pro-
cedures with stopping rules that guarantee accurate control of final
Type-I error rates for the statistical tests that are more widely used
in psychological research.

Yet, these methods do not seem to have ever been used in actual
research, or at least their use has not been acknowledged. For
instance, of the nine citations to Frick’s (1998) paper listed in WoS
as of May 3, 2012, only one is from a paper (published in 2011) in
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which the COAST rule was reportedly used, although unintend-
edly. And not a single citation is to be found in WoS from papers
reporting the use of the extensions and modifications of Botella
et al. (2006) or Ximenez and Revuelta (2007). Perhaps researchers
in psychology invariably use fixed sampling, but it is hard to believe
that “data peeking” or “data monitoring” was never used, or that
the results of such interim analyses never led researchers to collect
some more data. Wagenmakers (2007, p. 785) regretted that “it
is not clear what percentage of p values reported in experimen-
tal psychology have been contaminated by some form of optional
stopping. There is simply no information in Results sections that
allows one to assess the extent to which optional stopping has
occurred.” This incertitude was quickly resolved by John et al.
(2012). They surveyed over 2000 psychologists with highly reveal-
ing results: Respondents affirmatively admitted to the practices of
data peeking, data monitoring, or conditional stopping in rates
that varied between 20 and 60%.

Besides John et al.’s (2012) proposal that authors disclose these
details in full and Simmons et al.’s (2011) proposed list of require-
ments for authors and guidelines for reviewers, the solution to
the problem is simple: Use strategies that control Type-I error
rates upon repeated testing and optional stopping. These strate-
gies have been widely used in biomedical research for decades
(Bauer and Köhne, 1994; Mehta and Pocock, 2011). There is no
reason that psychological research should ignore them and give up
efficient research with control of Type-I error rates, particularly
when these strategies have also been adapted and further devel-
oped for use under the most common designs in psychological
research (Frick, 1998; Botella et al., 2006; Ximenez and Revuelta,
2007; Fitts, 2010a,b).

It should also be stressed that not all instances of repeated test-
ing or optional stopping without control of Type-I error rates
threaten SCV. A breach of SCV occurs only when the conclu-
sion regarding the research question is based on the use of these
practices. For an acceptable use, consider the study of Xu et al.
(2011). They investigated order preferences in primates to find
out whether primates preferred to receive the best item first rather
than last. Their procedure involved several experiments and they
declared that “three significant sessions (two-tailed binomial tests
per session, p < 0.05) or 10 consecutive non-significant sessions
were required from each monkey before moving to the next
experiment. The three significant sessions were not necessarily
consecutive (. . .) Ten consecutive non-significant sessions were
taken to mean there was no preference by the monkey” (p. 2304).
In this case, the use of repeated testing with optional stopping at
a nominal 95% significance level for each individual test is part
of the operational definition of an outcome variable used as a
criterion to proceed to the next experiment. And, in any event,
the overall probability of misclassifying a monkey according to
this criterion is certainly fixed at a known value that can eas-
ily be worked out from the significance level declared for each
individual binomial test. One may object to the value of the resul-
tant risk of misclassification, but this does not raise concerns
about SCV.

In sum, the use of repeated testing with optional stopping
threatens SCV for lack of control of Type-I and Type-II error
rates. A simple way around this is to refrain from these practices

and adhere to the fixed sampling assumptions of statistical tests;
otherwise, use the statistical methods that have been developed for
use with repeated testing and optional stopping.

PRELIMINARY TESTS OF ASSUMPTIONS
To derive the sampling distribution of test statistics used in para-
metric NHST, some assumptions must be made about the proba-
bility distribution of the observations or about the parameters of
these distributions. The assumptions of normality of distributions
(in all tests), homogeneity of variances (in Student’s two-sample
t test for means or in ANOVAs involving between-subjects fac-
tors), sphericity (in repeated-measures ANOVAs), homoscedas-
ticity (in regression analyses), or homogeneity of regression slopes
(in ANCOVAs) are well known cases. The data on hand may or
may not meet these assumptions and some parametric tests have
been devised under alternative assumptions (e.g., Welch’s test for
two-sample means, or correction factors for the degrees of free-
dom of F statistics from ANOVAs). Most introductory statistics
textbooks emphasize that the assumptions underlying statistical
tests must be formally tested to guide the choice of a suitable test
statistic for the null hypothesis of interest. Although this recom-
mendation seems reasonable, serious consequences on SCV arise
from following it.

Numerous studies conducted over the past decades have shown
that the two-stage approach of testing assumptions first and subse-
quently testing the null hypothesis of interest has severe effects on
Type-I and Type-II error rates. It may seem at first sight that this is
simply the result of cascaded binary decisions each of which has its
own Type-I and Type-II error probabilities; yet, this is the result of
more complex interactions of Type-I and Type-II error rates that
do not have fixed (empirical) probabilities across the cases that end
up treated one way or the other according to the outcomes of the
preliminary test: The resultant Type-I and Type-II error rates of
the conditional test cannot be predicted from those of the prelim-
inary and conditioned tests. A thorough analysis of what factors
affect the Type-I and Type-II error rates of two-stage approaches
is beyond the scope of this paper but readers should be aware that
nothing suggests in principle that a two-stage approach might be
adequate. The situations that have been more thoroughly stud-
ied include preliminary goodness-of-fit tests for normality before
conducting a one-sample t test (Easterling and Anderson, 1978;
Schucany and Ng, 2006; Rochon and Kieser, 2011), preliminary
tests of equality of variances before conducting a two-sample t
test for means (Gans, 1981; Moser and Stevens, 1992; Zimmerman,
1996,2004; Hayes and Cai,2007),preliminary tests of both equality
of variances and normality preceding two-sample t tests for means
(Rasch et al., 2011), or preliminary tests of homoscedasticity before
regression analyses (Caudill, 1988; Ng and Wilcox, 2011). These
and other studies provide evidence that strongly advises against
conducting preliminary tests of assumptions. Almost all of these
authors explicitly recommended against these practices and hoped
for the misleading and misguided advice given in introductory
textbooks to be removed. Wells and Hintze (2007, p. 501) con-
cluded that “checking the assumptions using the same data that
are to be analyzed, although attractive due to its empirical nature,
is a fruitless endeavor because of its negative ramifications on the
actual test of interest.” The ramifications consist of substantial but
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unknown alterations of Type-I and Type-II error rates and, hence,
a breach of SCV.

Some authors suggest that the problem can be solved by replac-
ing the formal test of assumptions with a decision based on a
suitable graphical display of the data that helps researchers judge
by eye whether the assumption is tenable. It should be emphasized
that the problem still remains, because the decision on how to ana-
lyze the data is conditioned on the results of a preliminary analysis.
The problem is not brought about by a formal preliminary test,
but by the conditional approach to data analysis. The use of a non-
formal preliminary test only prevents a precise investigation of the
consequences on Type-I and Type-II error rates. But the “out of
sight, out of mind” philosophy does not eliminate the problem.

It thus seems that a researcher must make a choice between two
evils: either not testing assumptions (and, thus, threatening SCV
as a result of the uncontrolled Type-I and Type-II error rates that
arise from a potentially undue application of the statistical test) or
testing them (and, then, also losing control of Type-I and Type-
II error rates owing to the two-stage approach). Both approaches
are inadequate, as applying non-robust statistical tests to data that
do not satisfy the assumptions has generally as severe implica-
tions on SCV as testing preliminary assumptions in a two-stage
approach. One of the solutions to the dilemma consists of switch-
ing to statistical procedures that have been designed for use under
the two-stage approach. For instance, Albers et al. (2000) used
second-order asymptotics to derive the size and power of a two-
stage test for independent means preceded by a test of equality of
variances. Unfortunately, derivations of this type are hard to carry
out and, hence, they are not available for most of the cases of inter-
est. A second solution consists of using classical test statistics that
have been shown to be robust to violation of their assumptions.
Indeed, dependable unconditional tests for means or for regres-
sion parameters have been identified (see Sullivan and D’Agostino,
1992; Lumley et al., 2002; Zimmerman, 2004, 2011; Hayes and Cai,
2007; Ng and Wilcox, 2011). And a third solution is switching to
modern robust methods (see, e.g., Wilcox and Keselman, 2003;
Keselman et al., 2004; Wilcox, 2006; Erceg-Hurn and Mirosevich,
2008; Fried and Dehling, 2011).

Avoidance of the two-stage approach in either of these ways
will restore SCV while observing the important requirement that
statistical methods should be used whose assumptions are not
violated by the characteristics of the data.

REGRESSION AS A MEANS TO INVESTIGATE BIVARIATE
RELATIONS OF ALL TYPES
Correlational methods define one of the branches of scientific psy-
chology (Cronbach, 1957) and they are still widely used these days
in some areas of psychology. Whether in regression analyses or
in latent variable analyses (Bollen, 2002), vast amounts of data
are subjected to these methods. Regression analyses rely on an
assumption that is often overlooked in psychology, namely, that
the predictor variables have fixed values and are measured without
error. This assumption, whose validity can obviously be assessed
without recourse to any preliminary statistical test, is listed in all
statistics textbooks.

In some areas of psychology, predictors actually have this
characteristic because they are physical variables defining the

magnitude of stimuli, and any error with which these magnitudes
are measured (or with which stimuli with the selected magnitudes
are created) is negligible in practice. Among others, this is the
case in psychophysical studies aimed at estimating psychophysi-
cal functions describing the form of the relation between physical
magnitude and perceived magnitude (e.g., Green, 1982) or psy-
chometric functions describing the form of the relation between
physical magnitude and performance in a detection, discrimina-
tion, or identification task (Armstrong and Marks, 1997; Saberi
and Petrosyan, 2004; García-Pérez et al., 2011). Regression or anal-
ogous methods are typically used to estimate the parameters of
these relations, with stimulus magnitude as the independent vari-
able and perceived magnitude (or performance) as the dependent
variable. The use of regression in these cases is appropriate because
the independent variable has fixed values measured without error
(or with a negligible error). Another area in which the use of regres-
sion is permissible is in simulation studies on parameter recovery
(García-Pérez et al., 2010), where the true parameters generating
the data are free of measurement error by definition.

But very few other predictor variables used in psychology meet
this requirement, as they are often test scores or performance mea-
sures that are typically affected by non-negligible and sometimes
large measurement error. This is the case of the proportion of hits
and the proportion of false alarms in psychophysical tasks, whose
theoretical relation is linear under some signal detection mod-
els (DeCarlo, 1998) and, thus, suggests the use of simple linear
regression to estimate its parameters. Simple linear regression is
also sometimes used as a complement to statistical tests of equality
of means in studies in which equivalence or agreement is assessed
(e.g., Maylor and Rabbitt, 1993; Baddeley and Wilson, 2002), and
in these cases equivalence implies that the slope should not differ
significantly from unity and that the intercept should not differ
significantly from zero. The use of simple linear regression is also
widespread in priming studies after Greenwald et al. (1995; see also
Draine and Greenwald, 1998), where the intercept (and sometimes
the slope) of the linear regression of priming effect on detectability
of the prime are routinely subjected to NHST.

In all the cases just discussed and in many others where the
X variable in the regression of Y on X is measured with error,
a study of the relation between X and Y through regression is
inadequate and has serious consequences on SCV. The least of
these problems is that there is no basis for assigning the roles of
independent and dependent variable in the regression equation
(as a non-directional relation exists between the variables, often
without even a temporal precedence relation), but regression para-
meters will differ according to how these roles are assigned. In
influential papers of which most researchers in psychology seem
to be unaware, Wald (1940) and Mandansky (1959) distinguished
regression relations from structural relations, the latter reflecting
the case in which both variables are measured with error. Both
authors illustrated the consequences of fitting a regression line
when a structural relation is involved and derived suitable estima-
tors and significance tests for the slope and intercept parameters
of a structural relation. This topic was brought to the attention
of psychologists by Isaac (1970) in a criticism of Treisman and
Watts’ (1966) use of simple linear regression to assess the equiva-
lence of two alternative estimates of psychophysical sensitivity (d ′
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measures from signal detection theory analyses). The difference
between regression and structural relations is briefly mentioned in
passing in many elementary books on regression, the issue of fitting
structural relations (sometimes referred to as Deming’s regression
or the errors-in-variables regression model) is addressed in detail in
most intermediate and advance books on regression (e.g., Fuller,
1987; Draper and Smith, 1998) and hands-on tutorials have been
published (e.g., Cheng and Van Ness, 1994; Dunn and Roberts,
1999; Dunn, 2007). But this type of analysis is not in the toolbox
of the average researcher in psychology1. In contrast, recourse to
this type analysis is quite common in the biomedical sciences.

Use of this commendable method may generalize when
researchers realize that estimates of the slope β and the intercept α

of a structural relation can be easily computed through

β̂ =

S2
y − λS2

x +

√(
S2

y − λS2
x

)2
+ 4λS2

xy

2Sxy
, (1)

α̂ = Ȳ − β̂X̄ , (2)

where X̄ , Ȳ , S2
x , S2

y , and Sxy are the sample means, variances, and

covariance of X and Y, and λ = σ2
εy

/σ2
εx

is the ratio of the vari-

ances of measurement errors in Y and in X. When X and Y are
the same variable measured at different times or under different
conditions (as in Maylor and Rabbitt, 1993; Baddeley and Wilson,
2002), λ= 1 can safely be assumed (for an actual application, see
Smith et al., 2004). In other cases, a rough estimate can be used,
as the estimates of α and β have been shown to be robust except
under extreme departures of the guesstimated λ from its true value
(Ketellapper, 1983).

For illustration, consider Yeshurun et al. (2008) comparison of
signal detection theory estimates of d ′ in each of the intervals of a
two alternative forced-choice task, which they pronounced differ-
ent as revealed by a regression analysis through the origin. Note
that this is the context in which Isaac (1970) had illustrated the
inappropriateness of regression. The data are shown in Figure 1,
and Yeshurun et al. rejected equality of d ′1 and d ′2 because the
regression slope through the origin (red line, whose slope is 0.908)
differed significantly from unity: The 95% confidence interval for
the slope ranged between 0.844 and 0.973. Using Eqs 1 and 2,
the estimated structural relation is instead given by the blue line
in Figure 1. The difference seems minor by eye, but the slope of
the structural relation is 0.963, which is not significantly differ-
ent from unity (p= 0.738, two-tailed; see Isaac, 1970, p. 215). This
outcome, which reverses a conclusion raised upon inadequate data
analyses, is representative of other cases in which the null hypoth-
esis H 0: β= 1 was rejected. The reason is dual: (1) the slope of
a structural relation is estimated with severe bias through regres-
sion (Riggs et al., 1978; Kalantar et al., 1995; Hawkins, 2002) and

1SPSS includes a regression procedure called “two-stage least squares” which only
implements the method described by Mandansky (1959) as “use of instrumental
variables” to estimate the slope of the relation between X and Y. Use of this method
requires extra variables with specific characteristics (variables which may simply not
be available for the problem at hand) and differs meaningfully from the simpler and
more generally applicable method to be discussed next

d̂’
1

d̂
’ 2

0 1 2 3 4 5

0

1

2

3

4

5

FIGURE 1 | Replot of data fromYeshurun et al. (2008, their Figure 8)
with their fitted regression line through the origin (red line) and a
fitted structural relation (blue line). The identity line is shown with
dashed trace for comparison. For additional analyses bearing on the SCV of
the original study, see García-Pérez and Alcalá-Quintana (2011).

(2) regression-based statistical tests of H 0: β= 1 render empiri-
cal Type-I error rates that are much higher than the nominal rate
when both variables are measured with error (García-Pérez and
Alcalá-Quintana, 2011).

In sum, SCV will improve if structural relations instead of
regression equations were fitted when both variables are measured
with error.

CONCLUSION
Type-I and Type-II errors are essential components of the statis-
tical decision theory underlying NHST and, therefore, data can
never be expected to answer a research question unequivocally.
This paper has promoted a view of SCV that de-emphasizes con-
sideration of these unavoidable errors and considers instead two
alternative issues: (1) whether statistical tests are used that match
the research design, goals of the study, and formal characteristics
of the data and (2) whether they are applied in conditions under
which the resultant Type-I and Type-II error rates match those
that are declared as limiting the validity of the conclusion. Some
examples of common threats to SCV in these respects have been
discussed and simple and feasible solutions have been proposed.
For reasons of space, another threat to SCV has not been covered
in this paper, namely, the problems arising from multiple testing
(i.e., in concurrent tests of more than one hypothesis). Multiple
testing is commonplace in brain mapping studies and some impli-
cations on SCV have been discussed, e.g., by Bennett et al. (2009),
Vul et al. (2009a,b), and Vecchiato et al. (2010).

All the discussion in this paper has assumed the frequentist
approach to data analysis. In closing, and before commenting on
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how SCV could be improved, a few words are worth about how
Bayesian approaches fare on SCV.

THE BAYESIAN APPROACH
Advocates of Bayesian approaches to data analysis, hypothesis
testing, and model selection (e.g., Jennison and Turnbull, 1990;
Wagenmakers, 2007; Matthews, 2011) overemphasize the prob-
lems of the frequentist approach and praise the solutions offered
by the Bayesian approach: Bayes factors (BFs) for hypothesis test-
ing, credible intervals for interval estimation, Bayesian posterior
probabilities, Bayesian information criterion (BIC) as a tool for
model selection and, above all else, strict reliance on observed data
and independence of the sampling plan (i.e., fixed vs. sequential
sampling). There is unquestionable merit in these alternatives and
a fair comparison with their frequentist counterparts requires a
detailed analysis that is beyond the scope of this paper. Yet, I cannot
resist the temptation of commenting on the presumed problems of
the frequentist approach and also on the standing of the Bayesian
approach with respect to SCV.

One of the preferred objections to p values is that they relate to
data that were never collected and which, thus, should not affect
the decision of what hypothesis the observed data support or fail
to support. Intuitively appealing as it may seem, the argument is
flawed because the referent for a p value is not other data sets
that could have been observed in undone replications of the same
experiment. Instead, the referent is the properties of the test sta-
tistic itself, which is guaranteed to have the declared sampling
distribution when data are collected as assumed in the derivation
of such distribution. Statistical tests are calibrated procedures with
known properties, and this calibration is what makes their results
interpretable. As is the case for any other calibrated procedure or
measuring instrument, the validity of the outcome only rests on
adherence to the usage specifications. And, of course, the test sta-
tistic and the resultant p value on application cannot be blamed for
the consequences of a failure to collect data properly or to apply
the appropriate statistical test.

Consider a two-sample t test for means. Those who need a ref-
erent may want to notice that the p value for the data from a given
experiment relates to the uncountable times that such test has been
applied to data from any experiment in any discipline. Calibration
of the t test ensures that a proper use with a significance level of,
say, 5% will reject a true null hypothesis on 5% of the occasions,
no matter what the experimental hypothesis is, what the variables
are, what the data are, what the experiment is about, who carries
it out, or in what research field. What a p value indicates is how
tenable it is that the t statistic will attain the observed value if
the null were correct, with only a trivial link to the data observed
in the experiment of concern. And this only places in a precise
quantitative framework the logic that the man on the street uses
to judge, for instance, that getting struck by lightning four times
over the past 10 years is not something that could identically have
happened to anybody else, or that the source of a politician’s huge
and untraceable earnings is not the result of allegedly winning top
lottery prizes numerous times over the past couple of years. In any
case, the advantage of the frequentist approach as regards SCV is
that the probability of a Type-I or a Type-II error can be clearly and
unequivocally stated, which is not to be mistaken for a statement

that a p value is the probability of a Type-I error in the current
case, or that it is a measure of the strength of evidence against the
null that the current data provide. The most prevalent problems of
p values are their potential for misuse and their widespread mis-
interpretation (Nickerson, 2000). But misuse or misinterpretation
do not make NHST and p values uninterpretable or worthless.

Bayesian approaches are claimed to be free of these presumed
problems, yielding a conclusion that is exclusively grounded on the
data. In a naive account of Bayesian hypothesis testing, Malakoff
(1999) attributes to biostatistician Steven Goodman the assertion
that the Bayesian approach “says there is an X% probability that
your hypothesis is true–not that there is some convoluted chance
that if you assume the null hypothesis is true, you will get a similar
or more extreme result if you repeated your experiment thou-
sands of times.” Besides being misleading and reflecting a poor
understanding of the logic of calibrated NHST methods, what
goes unmentioned in this and other accounts is that the Bayesian
potential to find out the probability that the hypothesis is true will
not materialize without two crucial extra pieces of information.
One is the a priori probability of each of the competing hypothe-
ses, which certainly does not come from the data. The other is
the probability of the observed data under each of the competing
hypothesis, which has the same origin as the frequentist p value
and whose computation requires distributional assumptions that
must necessarily take the sampling method into consideration.

In practice, Bayesian hypothesis testing generally computes BFs
and the result might be stated as “the alternative hypothesis is x
times more likely than the null,” although the probability that this
type of statement is wrong is essentially unknown. The researcher
may be content with a conclusion of this type, but how much of
these odds comes from the data and how much comes from the
extra assumptions needed to compute a BF is undecipherable. In
many cases research aims at gathering and analyzing data to make
informed decisions such as whether application of a treatment
should be discontinued, whether changes should be introduced
in an educational program, whether daytime headlights should be
enforced, or whether in-car use of cell phones should be forbidden.
Like frequentist analyses, Bayesian approaches do not guarantee
that the decisions will be correct. One may argue that stating how
much more likely is one hypothesis over another bypasses the deci-
sion to reject or not reject any of them and, then, that Bayesian
approaches to hypothesis testing are free of Type-I and Type-II
errors. Although this is technically correct, the problem remains
from the perspective of SCV: Statistics is only a small part of a
research process whose ultimate goal is to reach a conclusion and
make a decision, and researchers are in a better position to defend
their claims if they can supplement them with a statement of the
probability with which those claims are wrong.

Interestingly, analyses of decisions based on Bayesian
approaches have revealed that they are no better than frequentist
decisions as regards Type-I and Type-II errors and that parametric
assumptions (i.e., the choice of prior and the assumed distribu-
tion of the observations) crucially determine the performance of
Bayesian methods. For instance, Bayesian estimation is also subject
to potentially large bias and lack of precision (Alcalá-Quintana and
García-Pérez, 2004; García-Pérez and Alcalá-Quintana, 2007), the
coverage probability of Bayesian credible intervals can be worse
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than that of frequentist confidence intervals (Agresti and Min,
2005; Alcalá-Quintana and García-Pérez, 2005), and the Bayesian
posterior probability in hypothesis testing can be arbitrarily large
or small (Zaslavsky, 2010). On another front, use of BIC for model
selection may discard a true model as often as 20% of the times,
while a concurrent 0.05-size chi-square test rejects the true model
between 3 and 7% of times, closely approximating its stated per-
formance (García-Pérez and Alcalá-Quintana, 2012). In any case,
the probabilities of Type-I and Type-II errors in practical decisions
made from the results of Bayesian analyses will always be unknown
and beyond control.

IMPROVING THE SCV OF RESEARCH
Most breaches of SCV arise from a poor understanding of statisti-
cal procedures and the resultant inadequate usage. These problems
can be easily corrected, as illustrated in this paper, but the prob-
lems will not have arisen if researchers had had a better statistical
training in the first place. There was a time in which one simply
could not run statistical tests without a moderate understanding
of NHST. But these days the application of statistical tests is only a
mouse-click away and all that students regard as necessary is learn-
ing the rule by which p values pouring out of statistical software
tell them whether the hypothesis is to be accepted or rejected, as
the study of Hoekstra et al. (2012) seems to reveal.

One way to eradicate the problem is by improving statisti-
cal education at undergraduate and graduate levels, perhaps not
just focusing on giving formal training on a number of meth-
ods but by providing students with the necessary foundations
that will subsequently allow them to understand and apply meth-
ods for which they received no explicit formal training. In their
analysis of statistical errors in published papers, Milligan and
McFillen (1984, p. 461) concluded that “in doing projects, it is
not unusual for applied researchers or students to use or apply a
statistical procedure for which they have received no formal train-
ing. This is as inappropriate as a person conducting research in
a given content area before reading the existing background lit-
erature on the topic. The individual simply is not prepared to
conduct quality research. The attitude that statistical technology
is secondary or less important to a person’s formal training is
shortsighted. Researchers are unlikely to master additional sta-
tistical concepts and techniques after leaving school. Thus, the

statistical training in many programs must be strengthened. A
single course in experimental design and a single course in mul-
tivariate analysis is probably insufficient for the typical student
to master the course material. Someone who is trained only
in theory and content will be ill-prepared to contribute to the
advancement of the field or to critically evaluate the research of
others.” But statistical education does not seem to have changed
much over the subsequent 25 years, as revealed by survey stud-
ies conducted by Aiken et al. (1990), Friedrich et al. (2000),
Aiken et al. (2008), and Henson et al. (2010). Certainly some
work remains to be done in this arena, and I can only second
the proposals made in the papers just cited. But there is also
the problem of the unhealthy over-reliance on narrow-breadth,
clickable software for data analysis, which practically obliterates
any efforts that are made to teach and promote alternatives (see
the list of “Pragmatic Factors” discussed by Borsboom, 2006,
pp. 431–434).

The last trench in the battle against breaches of SCV is occupied
by journal editors and reviewers. Ideally, they also watch for prob-
lems in these respects. There is no known in-depth analysis of the
review process in psychology journals (but see Nickerson, 2005)
and some evidence reveals that the focus of the review process is
not always on the quality or validity of the research (Sternberg,
2002; Nickerson, 2005). Simmons et al. (2011) and Wicherts et al.
(2012) have discussed empirical evidence of inadequate research
and review practices (some of which threaten SCV) and they have
proposed detailed schemes through which feasible changes in edi-
torial policies may help eradicate not only common threats to
SCV but also other threats to research validity in general. I can
only second proposals of this type. Reviewers and editors have
the responsibility of filtering out (or requesting amendments to)
research that does not meet the journal’s standards, including SCV.
The analyses of Milligan and McFillen (1984) and Nieuwenhuis
et al. (2011) reveal a sizeable number of published papers with
statistical errors. This indicates that some remains to be done in
this arena too, and some journals have indeed started to take action
(see Aickin, 2011).
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Coefficient alpha has been a widely used measure by which internal consistency reliabil-
ity is assessed. In addition to essential tau-equivalence and uncorrelated errors, normality
has been noted as another important assumption for alpha. Earlier work on evaluating this
assumption considered either exclusively non-normal error score distributions, or limited
conditions. In view of this and the availability of advanced methods for generating univariate
non-normal data, Monte Carlo simulations were conducted to show that non-normal distri-
butions for true or error scores do create problems for using alpha to estimate the internal
consistency reliability. The sample coefficient alpha is affected by leptokurtic true score
distributions, or skewed and/or kurtotic error score distributions. Increased sample sizes,
not test lengths, help improve the accuracy, bias, or precision of using it with non-normal
data.

Keywords: coefficient alpha, true score distribution, error score distribution, non-normality, skew, kurtosis, Monte

Carlo, power method polynomials

INTRODUCTION
Coefficient alpha (Guttman, 1945; Cronbach, 1951) has been one
of the most commonly used measures today to assess internal
consistency reliability despite criticisms of its use (e.g., Raykov,
1998; Green and Hershberger, 2000; Green andYang, 2009; Sijtsma,
2009). The derivation of the coefficient is based on classical test
theory (CTT; Lord and Novick, 1968), which posits that a person’s
observed score is a linear function of his/her unobserved true score
(or underlying construct) and error score. In the theory, measures
can be parallel (essential) tau-equivalent, or congeneric, depend-
ing on the assumptions on the units of measurement, degrees of
precision, and/or error variances. When two tests are designed to
measure the same latent construct, they are parallel if they mea-
sure it with identical units of measurement, the same precision,
and the same amounts of error; tau-equivalent if they measure it
with the same units, the same precision, but have possibly differ-
ent error variance; essentially tau-equivalent if they assess it using
the same units, but with possibly different precision and differ-
ent amounts of error; or congeneric if they assess it with possibly
different units of measurement, precision, and amounts of error
(Lord and Novick, 1968; Graham, 2006). From parallel to con-
generic, tests are requiring less strict assumptions and hence are
becoming more general. Studies (Lord and Novick, 1968, pp. 87–
91; see also Novick and Lewis, 1967, pp. 6–7) have shown formally
that the population coefficient alpha equals internal consistency
reliability for tests that are tau-equivalent or at least essential tau-
equivalent. It underestimates the actual reliability for the more
general congeneric test. Apart from essential tau-equivalence, coef-
ficient alpha requires two additional assumptions: uncorrelated
errors (Guttman, 1945; Novick and Lewis, 1967) and normality
(e.g., Zumbo, 1999). Over the past decades, studies have well doc-
umented the effects of violations of essential tau-equivalence and
uncorrelated errors (e.g., Zimmerman et al., 1993; Miller, 1995;
Raykov, 1998; Green and Hershberger, 2000; Zumbo and Rupp,

2004; Graham, 2006; Green and Yang, 2009), which have been
considered as two major assumptions for alpha. The normality
assumption, however, has received little attention. This could be
a concern in typical applications where the population coeffi-
cient is an unknown parameter and has to be estimated using
the sample coefficient. When data are normally distributed, sam-
ple coefficient alpha has been shown to be an unbiased estimate
of the population coefficient alpha (Kristof, 1963; van Zyl et al.,
2000); however, less is known about situations when data are
non-normal.

Over the past decades, the effect of departure from normality
on the sample coefficient alpha has been evaluated by Bay (1973),
Shultz (1993), and Zimmerman et al. (1993) using Monte Carlo
simulations. They reached different conclusions on the effect of
non-normal data. In particular, Bay (1973) concluded that a lep-
tokurtic true score distribution could cause coefficient alpha to
seriously underestimate internal consistency reliability. Zimmer-
man et al. (1993) and Shultz (1993), on the other hand, found
that the sample coefficient alpha was fairly robust to departure
from the normality assumption. The three studies differed in the
design, in the factors manipulated and in the non-normal distribu-
tions considered, but each is limited in certain ways. For example,
Zimmerman et al. (1993) and Shultz (1993) only evaluated the
effect of non-normal error score distributions. Bay (1973), while
looked at the effect of non-normal true score or error score dis-
tributions, only studied conditions of 30 subjects and 8 test items.
Moreover, these studies have considered only two or three scenar-
ios when it comes to non-normal distributions. Specifically, Bay
(1973) employed uniform (symmetric platykurtic) and exponen-
tial (non-symmetric leptokurtic with positive skew) distributions
for both true and error scores. Zimmerman et al. (1993) generated
error scores from uniform, exponential, and mixed normal (sym-
metric leptokurtic) distributions, while Shultz (1993) generated
them using exponential, mixed normal, and negative exponential
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(non-symmetric leptokurtic with negative skew) distributions.
Since the presence of skew and/or kurtosis determines whether
and how a distribution departs from the normal pattern, it is
desirable to consider distributions with varying levels of skew
and kurtosis so that a set of guidelines can be provided. Gen-
erating univariate non-normal data with specified moments can
be achieved via the use of power method polynomials (Fleish-
man, 1978), and its current developments (e.g., Headrick, 2010)
make it possible to consider more combinations of skew and
kurtosis.

Further, in the actual design of a reliability study, sample size
determination is frequently an important and difficult aspect. The
literature offers widely different recommendations, ranging from
15 to 20 (Fleiss, 1986), a minimum of 30 (Johanson and Brooks,
2010) to a minimum of 300 (Nunnally and Bernstein, 1994).
Although Bay (1973) has used analytical derivations to suggest
that coefficient alpha shall be robust against the violation of the
normality assumption if sample size is large, or the number of
items is large and the true score kurtosis is close to zero, it is
never clear how many subjects and/or items are desirable in such
situations.

In view of the above, the purpose of this study is to investigate
the effect of non-normality (especially the presence of skew and/or
kurtosis) on reliability estimation and how sample sizes and test
lengths affect the estimation with non-normal data. It is believed
that the results will not only shed insights on how non-normality
affects coefficient alpha, but also provide a set of guidelines for
researchers when specifying the numbers of subjects and items in
a reliability study.

MATERIALS AND METHODS
This section starts with a brief review of the CTT model for coef-
ficient alpha. Then the procedures for simulating observed scores
used in the Monte Carlo study are described, followed by measures
that were used to evaluate the performance of the sample alpha in
each simulated situation.

PRELIMINARIES
Coefficient alpha is typically associated with true score the-
ory (Guttman, 1945; Cronbach, 1951; Lord and Novick, 1968),
where the test score for person i on item j, denoted as Xij, is
assumed to be a linear function of a true score (tij) and an error
score (eij):

Xij = tij + eij , (1)

i = 1, . . ., n and j = 1, . . ., k, where E(eij) = 0, ρte = 0, and
ρeij ,eij′ = 0. Here, eij denotes random error that reflects unpre-

dictable trial-by-trial fluctuations. It has to be differentiated from
systematic error that reflects situational or individual effects that
may be specified. In the theory, items are usually assumed to be tau-
equivalent, where true scores are restricted to be the same across
items, or essentially tau-equivalent, where they are allowed to dif-
fer from item to item by a constant (υ j). Under these conditions
(1) becomes

Xij = ti + eij (2)

for tau-equivalence, and

Xij = ti + υj + eij , (3)

where Σjυ j = 0, for essential tau-equivalence.
Summing across k items, we obtain a composite score (Xi+)

and a scale error score (ei+). The variance of the composite scores
is then the summation of true score and scale error score variances:

σ2
X+ = σ2

t + σ2
e+ . (4)

The reliability coefficient, ρXX
′, is defined as the proportion of

composite score variance that is due to true score variance:

ρXX ′ = σ2
t

σ2
X+

. (5)

Under (essential) tau-equivalence, that is, for models in (2) and
(3), the population coefficient alpha, defined as

α = k

k − 1

∑∑
j �=j ′σXj Xj′

σ2
X+

,

or

α = k

k − 1

⎛

⎝1 −
∑k

j=1 σ2
j

σ2
X+

⎞

⎠ , (6)

is equal to the reliability as defined in (5). As was noted, ρXX′ and
α focus on the amount of random error and do not evaluate error
that may be systematic.

Although the derivation of coefficient alpha based on Lord and
Novick (1968) does not require distributional assumptions for ti

and eij, its estimation does (see Shultz, 1993; Zumbo, 1999), as the
sample coefficient alpha estimated using sample variances s2,

α̂ = k

k − 1

⎛

⎝1 −
∑k

j=1 s2
j

s2
X+

⎞

⎠ , (7)

is shown to be the maximum likelihood estimator of the popu-
lation alpha assuming normal distributions (Kristof, 1963; van
Zyl et al., 2000). Typically, we assume ti ∼ N (μt , σ2

t ) and
eij ∼ N (0, σ2

e ), where σ2
e has to be differentiated from the scale

error score variance σ2
e+ defined in (4).

STUDY DESIGN
To evaluate the performance of the sample alpha as defined in
(7) in situations where true score or error score distributions
depart from normality, a Monte Carlo simulation study was car-
ried out, where test scores of n persons (n = 30, 50, 100, 1000) for k
items (k = 5, 10, 30) were generated assuming tau-equivalence and
where the population reliability coefficient (ρXX

′) was specified to
be 0.3, 0.6, or 0.8 to correspond to unacceptable, acceptable, or
very good reliability (Caplan et al., 1984, p. 306; DeVellis, 1991,
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p. 85; Nunnally, 1967, p. 226). These are referred to as small,
moderate, and high reliabilities in subsequent discussions. Specifi-
cally, true scores (ti) and error scores (eij) were simulated from their

respective distributions with σ2
e = 1, μt = 5 and σ2

t = σ2
e ρXX ′

(1−ρXX ′ )k .

The observed scores (Xij) were subsequently obtained using
Eq. (2).

In addition, true score or error score distributions were manip-
ulated to be symmetric (so that skew, γ1, is 0) or non-symmetric
(γ1 > 0) with kurtosis (γ2) being 0, negative or positive. It is
noted that only positively skewed distributions were considered
in the study because due to the symmetric property, negative
skew should have the same effect as positive skew. Generating
non-normal distributions in this study involves the use of power
method polynomials. Fleishman (1978) introduced this popu-
lar moment matching technique for generating univariate non-
normal distributions. Headrick (2002, 2010) further extended
from third-order to fifth-order polynomials to lower the skew
and kurtosis boundary. As is pointed out by Headrick (2010, p.
26), for distributions with a mean of 0 and a variance of 1, the
skew and kurtosis have to satisfy γ2 � γ2

1 − 2, and hence it is
not plausible to consider all possible combinations of skew and
kurtosis using power method polynomials. Given this, six distrib-
utions with the following combinations of skew and kurtosis were
considered:

1. γ1 = 0, γ2 = 0 (normal distribution);
2. γ1 = 0, γ2 = − 1.385 (symmetric platykurtic distribution);
3. γ1 = 0, γ2 = 25 (symmetric leptokurtic distribution);
4. γ1 = 0.96, γ2 = 0.13 (non-symmetric distribution);
5. γ1 = 0.48, γ2 = − 0.92 (non-symmetric platykurtic distribu-

tion);
6. γ1 = 2.5, γ2 = 25 (non-symmetric leptokurtic distribution).

A normal distribution was included so that it could be used as
a baseline against which the non-normal distributions could be
compared. To actually generate univariate distributions using the
fifth-order polynomial transformation, a random variate Z is first
generated from a standard normal distribution, Z ∼ N (0,1). Then
the following polynomial,

Y = c0 + c1Z + c2Z 2 + c3Z 3 + c4Z 4 + c5Z 5 (8)

is used to obtain Y. With appropriate coefficients (c0, . . ., c5), Y
would follow a distribution with a mean of 0, a variance of 1, and
the desired levels of skew and kurtosis (see Headrick, 2002, for a
detailed description of the procedure). A subsequent linear trans-
formation would rescale the distribution to have a desired location
or scale parameter. In this study, Y could be the true score (ti) or
the error score (eij). For the six distributions considered for ti or
eij herein, the corresponding coefficients are:

1. c0 = 0, c1 = 1, c2 = 0, c3 = 0, c4 = 0, c5 = 0;
2. c0 = 0, c1 = 1.643377, c2 = 0, c3 = −0.319988, c4 = 0, c5 =

0.011344;
3. c0 = 0, c1 = 0.262543, c2 = 0, c3 = 0.201036, c4 = 0, c5 =

0.000162;

4. c0 = −0.446924, c1 = 1.242521, c2 = 0.500764, c3 = −0.184710,
c4 = −0.017947, c5 = 0.003159;

5. c0 = −0.276330, c1 = 1.506715, c2 = 0.311114, c3 = −0.274078,
c4 = −0.011595, c5 = 0.007683;

6. c0 = −0.304852, c1 = 0.381063, c2 = 0.356941, c3 = 0.132688,
c4 = −0.017363, c5 = 0.003570.

It is noted that the effect of the true score or error score distrib-
ution was investigated independently, holding the other constant
by assuming it to be normal.

Hence, a total of 4 (sample sizes) × 3 (test lengths) × 3 (lev-
els of population reliability) × 6 (distributions) × 2 (true or error
score) = 432 conditions were considered in the simulation study.
Each condition involved 100,000 replications, where coefficient
alpha was estimated using Eq. (7) for simulated test scores (Xij).
The 100,000 estimates of α can be considered as random samples
from the sampling distribution of α̂, and its summary statistics
including the observed mean, SD, and 95% interval provide infor-
mation about this distribution. In particular, the observed mean
indicates whether the sample coefficient is biased. If it equals α, α̂
is unbiased; otherwise, it is biased either positively or negatively
depending on whether it is larger or smaller than α. The SD of
the sampling distribution is what we usually call the SE. It reflects
the uncertainty in estimating α, with a smaller SE suggesting more
precision and hence less uncertainty in the estimation. The SE is
directly related to the 95% observed interval, as the larger it is, the
more spread the distribution is and the wider the interval will be.
With respect to the observed interval, it contains about 95% of
α̂ around its center location from its empirical sampling distrib-
ution. If α falls inside the interval, α̂ is not significantly different
from α even though it is not unbiased. On the other hand, if α

falls outside of the interval, which means that 95% of the esti-
mates differ from α, we can consider α̂ to be significantly different
from α.

In addition to these summary statistics, the accuracy of the
estimate was evaluated by the root mean square error (RMSE) and
bias, which are defined as

RMSE =
√
∑(

α̂ − α
)2

100, 000
, (9)

and

bias =
∑(

α̂ − α
)

100, 000
, (10)

respectively. The larger the RMSE is, the less accurate the sample
coefficient is in estimating the population coefficient. Similarly,
the larger the absolute value of the bias is, the more bias the sam-
ple coefficient involves. As the equations suggest, RMSE is always
positive, with values close to zero reflecting less error in estimating
the actual reliability. On the other hand, bias can be negative or
positive. A positive bias suggests that the sample coefficient tends
to overestimate the reliability, and a negative bias suggests that it
tends to underestimate the reliability. In effect, bias provides simi-
lar information as the observed mean of the sampling distribution
of α̂.
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RESULTS
The simulations were carried out using MATLAB (MathWorks,
2010), with the source code being provided in the Section “Appen-
dix.” Simulation results are summarized in Tables 1–3 for condi-
tions where true scores follow one of the six distributions specified
in the previous section. Here, results from the five non-normal
distributions were mainly compared with those from the normal

distribution to determine if α̂ was affected by non-normality in
true scores. Take the condition where a test of 5 items with the
actual reliability being 0.3 was given to 30 persons as an example.
A normal distribution resulted in an observed mean of 0.230 and
a SE of 0.241 for the sampling distribution of α̂ (see Table 1).
Compared with it, a symmetric platykurtic distribution, with an
observed mean of 0.234 and a SE of 0.235, did not differ much.

Table 1 | Observed mean and SD of the sample alpha (α̂) for the simulated situations where the true score (ti) distribution is normal or

non-normal.

n k Mean (α̂) SD (α̂)

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.230 0.234 0.198 0.230 0.231 0.201 0.241 0.235 0.290 0.242 0.237 0.288

10 0.231 0.234 0.199 0.229 0.233 0.202 0.229 0.223 0.278 0.230 0.224 0.276

30 0.231 0.233 0.199 0.230 0.233 0.200 0.221 0.215 0.269 0.222 0.216 0.270

50 5 0.252 0.253 0.233 0.253 0.254 0.232 0.176 0.172 0.214 0.177 0.172 0.214

10 0.252 0.256 0.232 0.252 0.254 0.233 0.166 0.161 0.205 0.166 0.162 0.204

30 0.254 0.254 0.231 0.252 0.254 0.233 0.160 0.156 0.202 0.160 0.157 0.199

100 5 0.269 0.269 0.258 0.268 0.269 0.258 0.118 0.116 0.148 0.119 0.117 0.148

10 0.268 0.269 0.257 0.269 0.270 0.258 0.112 0.109 0.143 0.112 0.110 0.142

30 0.269 0.270 0.257 0.268 0.269 0.256 0.108 0.105 0.141 0.108 0.106 0.140

1000 5 0.282 0.282 0.281 0.282 0.282 0.281 0.036 0.035 0.048 0.036 0.035 0.048

10 0.282 0.282 0.281 0.282 0.282 0.281 0.034 0.033 0.046 0.034 0.033 0.046

30 0.282 0.282 0.281 0.282 0.282 0.281 0.033 0.032 0.045 0.033 0.032 0.045

ρXX
′ = 0.6

30 5 0.549 0.556 0.479 0.549 0.554 0.482 0.142 0.125 0.239 0.142 0.131 0.238

10 0.551 0.557 0.481 0.549 0.554 0.480 0.133 0.117 0.232 0.136 0.122 0.232

30 0.550 0.557 0.480 0.550 0.555 0.481 0.129 0.112 0.230 0.131 0.118 0.229

50 5 0.563 0.567 0.517 0.563 0.566 0.517 0.103 0.092 0.179 0.104 0.095 0.180

10 0.563 0.567 0.516 0.563 0.566 0.517 0.097 0.086 0.176 0.098 0.089 0.174

30 0.563 0.567 0.516 0.563 0.566 0.518 0.093 0.082 0.174 0.094 0.086 0.172

100 5 0.572 0.574 0.545 0.572 0.573 0.546 0.069 0.062 0.128 0.070 0.065 0.126

10 0.572 0.574 0.545 0.572 0.573 0.547 0.066 0.057 0.126 0.066 0.060 0.124

30 0.572 0.574 0.545 0.572 0.573 0.546 0.063 0.055 0.124 0.064 0.058 0.122

1000 5 0.580 0.580 0.576 0.580 0.580 0.577 0.021 0.019 0.043 0.021 0.020 0.042

10 0.580 0.580 0.577 0.580 0.580 0.576 0.020 0.018 0.042 0.020 0.018 0.042

30 0.580 0.580 0.576 0.580 0.580 0.576 0.019 0.017 0.042 0.019 0.018 0.041

ρXX
′ = 0.8

30 5 0.771 0.778 0.701 0.770 0.776 0.703 0.072 0.056 0.171 0.075 0.062 0.172

10 0.771 0.778 0.702 0.770 0.776 0.702 0.068 0.052 0.167 0.070 0.057 0.169

30 0.771 0.778 0.701 0.771 0.776 0.702 0.066 0.049 0.166 0.068 0.055 0.167

50 5 0.778 0.782 0.733 0.778 0.780 0.733 0.052 0.041 0.125 0.053 0.045 0.125

10 0.778 0.782 0.733 0.778 0.781 0.733 0.049 0.038 0.123 0.050 0.042 0.123

30 0.778 0.782 0.732 0.778 0.781 0.733 0.048 0.036 0.122 0.049 0.040 0.122

100 5 0.782 0.784 0.757 0.782 0.784 0.757 0.035 0.028 0.086 0.036 0.031 0.085

10 0.783 0.784 0.757 0.782 0.784 0.757 0.033 0.026 0.085 0.034 0.028 0.084

30 0.783 0.784 0.757 0.782 0.784 0.757 0.032 0.024 0.084 0.033 0.027 0.084

1000 5 0.786 0.787 0.783 0.786 0.787 0.783 0.011 0.009 0.028 0.011 0.009 0.027

10 0.786 0.787 0.783 0.787 0.787 0.783 0.010 0.008 0.028 0.010 0.009 0.027

30 0.787 0.787 0.783 0.786 0.787 0.784 0.010 0.007 0.027 0.010 0.008 0.027

dist1, Normal distribution for ti; dist2, distribution with negative kurtosis for ti; dist3, distribution with positive kurtosis for ti; dist4, skewed distribution for ti; dist5,

skewed distribution with negative kurtosis for ti; dist6, skewed distribution with positive kurtosis for ti.
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Table 2 | Root mean square error and bias for estimating α for the simulated situations where the true score (t i ) distribution is normal or

non-normal.

n k RMSE bias

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.251 0.244 0.308 0.252 0.247 0.305 −0.070 −0.066 −0.102 −0.070 −0.069 −0.100

10 0.240 0.233 0.296 0.241 0.234 0.292 −0.069 −0.067 −0.101 −0.071 −0.067 −0.098

30 0.232 0.226 0.287 0.232 0.226 0.288 −0.069 −0.067 −0.101 −0.070 −0.067 −0.101

50 5 0.182 0.178 0.224 0.183 0.178 0.224 −0.048 −0.047 −0.067 −0.047 −0.046 −0.068

10 0.173 0.167 0.216 0.173 0.169 0.215 −0.048 −0.044 −0.068 −0.048 −0.046 −0.067

30 0.166 0.162 0.213 0.167 0.164 0.210 −0.046 −0.046 −0.069 −0.048 −0.046 −0.067

100 5 0.122 0.120 0.154 0.123 0.121 0.154 −0.031 −0.031 −0.042 −0.032 −0.031 −0.042

10 0.116 0.114 0.149 0.116 0.114 0.148 −0.032 −0.031 −0.043 −0.031 −0.031 −0.042

30 0.112 0.109 0.147 0.113 0.110 0.147 −0.031 −0.030 −0.043 −0.032 −0.031 −0.044

1000 5 0.040 0.040 0.052 0.041 0.040 0.051 −0.018 −0.018 −0.019 −0.018 −0.018 −0.019

10 0.038 0.038 0.050 0.039 0.038 0.050 −0.018 −0.018 −0.019 −0.018 −0.018 −0.020

30 0.038 0.037 0.049 0.038 0.037 0.049 −0.018 −0.018 −0.019 −0.018 −0.018 −0.019

ρXX
′ = 0.6

30 5 0.151 0.132 0.268 0.151 0.139 0.266 −0.051 −0.044 −0.121 −0.051 −0.046 −0.118

10 0.142 0.125 0.261 0.145 0.131 0.261 −0.050 −0.043 −0.120 −0.051 −0.046 −0.120

30 0.139 0.120 0.260 0.140 0.126 0.258 −0.050 −0.043 −0.120 −0.051 −0.045 −0.119

50 5 0.109 0.097 0.198 0.110 0.101 0.198 −0.037 −0.033 −0.083 −0.037 −0.035 −0.083

10 0.104 0.092 0.195 0.105 0.096 0.193 −0.037 −0.033 −0.084 −0.037 −0.034 −0.083

30 0.100 0.088 0.193 0.102 0.092 0.191 −0.037 −0.033 −0.084 −0.037 −0.034 −0.083

100 5 0.075 0.067 0.139 0.076 0.070 0.137 −0.028 −0.026 −0.055 −0.028 −0.027 −0.054

10 0.071 0.063 0.137 0.072 0.066 0.135 −0.028 −0.026 −0.056 −0.028 −0.027 −0.053

30 0.069 0.061 0.135 0.070 0.064 0.133 −0.028 −0.026 −0.055 −0.028 −0.027 −0.054

1000 5 0.029 0.028 0.049 0.029 0.028 0.049 −0.020 −0.020 −0.024 −0.020 −0.020 −0.024

10 0.028 0.027 0.048 0.029 0.027 0.048 −0.020 −0.020 −0.023 −0.020 −0.020 −0.024

30 0.028 0.026 0.048 0.028 0.027 0.048 −0.020 −0.020 −0.024 −0.020 −0.020 −0.024

ρXX
′ = 0.8

30 5 0.078 0.060 0.197 0.080 0.066 0.198 −0.030 −0.022 −0.099 −0.030 −0.024 −0.097

10 0.074 0.056 0.194 0.076 0.062 0.196 −0.029 −0.023 −0.098 −0.030 −0.024 −0.099

30 0.072 0.053 0.193 0.074 0.060 0.193 −0.029 −0.022 −0.099 −0.029 −0.024 −0.098

50 5 0.057 0.045 0.142 0.058 0.049 0.142 −0.022 −0.018 −0.067 −0.023 −0.020 −0.067

10 0.054 0.042 0.140 0.055 0.046 0.140 −0.022 −0.018 −0.067 −0.022 −0.020 −0.067

30 0.052 0.040 0.140 0.054 0.044 0.139 −0.022 −0.018 −0.068 −0.022 −0.019 −0.067

100 5 0.039 0.032 0.096 0.040 0.035 0.095 −0.018 −0.016 −0.043 −0.018 −0.016 −0.043

10 0.038 0.030 0.095 0.038 0.033 0.094 −0.018 −0.016 −0.043 −0.018 −0.016 −0.043

30 0.037 0.029 0.094 0.037 0.032 0.094 −0.018 −0.016 −0.043 −0.018 −0.016 −0.043

1000 5 0.017 0.016 0.033 0.017 0.016 0.032 −0.014 −0.013 −0.017 −0.014 −0.013 −0.017

10 0.017 0.016 0.032 0.017 0.016 0.032 −0.014 −0.013 −0.017 −0.014 −0.013 −0.017

30 0.017 0.015 0.032 0.017 0.016 0.032 −0.014 −0.013 −0.017 −0.014 −0.013 −0.017

dist1, Normal distribution for ti; dist2, distribution with negative kurtosis for ti; dist3, distribution with positive kurtosis for ti; dist4, skewed distribution for ti; dist5,

skewed distribution with negative kurtosis for ti; dist6, skewed distribution with positive kurtosis for ti.

On the other hand, a symmetric leptokurtic distribution resulted
in a much smaller mean (0.198) and a larger SE (0.290), indicat-
ing that the center location of the sampling distribution of α̂ was
further away from the actual value (0.3) and more uncertainty
was involved in estimating α. With respect to the accuracy of the
estimate, Table 2 shows that the normal distribution had a RMSE
of 0.251 and a bias value of −0.070. The platykurtic distribution
gave rise to smaller but very similar values: 0.244 for RMSE and

−0.066 for bias, whereas the leptokurtic distribution had a rela-
tively larger RMSE value (0.308) and a smaller bias value (−0.102),
indicating that it involved more error and negative bias in estimat-
ing α. Hence, under this condition, positive kurtosis affected (the
location and scale of) the sampling distribution of α̂ as well as the
accuracy of using it to estimate α whereas negative kurtosis did
not. Similar interpretations are used for the 95% interval shown
in Table 3, except that one can also use the intervals to determine
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Table 3 | Observed 95% interval of the sample alpha (α̂) for the simulated situations where the true score (t i ) distribution is normal or

non-normal.

n k dist1 dist2 dist3 dist4 dist5 dist6

LB UB LB UB LB UB LB UB LB UB LB UB

ρXX
′ = 0.3

30 5 −0.351 0.580 −0.329 0.577 −0.490 0.635 −0.356 0.580 −0.342 0.576 −0.481 0.637

10 −0.323 0.563 −0.305 0.556 −0.457 0.630 −0.328 0.561 −0.308 0.558 −0.450 0.624

30 −0.303 0.550 −0.285 0.545 −0.435 0.618 −0.303 0.551 −0.286 0.547 −0.435 0.616

50 5 −0.155 0.528 −0.143 0.524 −0.252 0.587 −0.155 0.529 −0.147 0.524 −0.255 0.583

10 −0.136 0.512 −0.115 0.508 −0.233 0.576 −0.134 0.514 −0.123 0.510 −0.229 0.573

30 −0.116 0.505 −0.106 0.500 −0.219 0.571 −0.119 0.504 −0.109 0.501 −0.216 0.568

100 5 0.005 0.469 0.013 0.465 −0.062 0.522 0.004 0.469 0.010 0.466 −0.062 0.521

10 0.020 0.457 0.027 0.454 −0.050 0.515 0.021 0.458 0.025 0.455 −0.046 0.512

30 0.030 0.452 0.039 0.447 −0.044 0.512 0.028 0.451 0.035 0.447 −0.040 0.508

1000 5 0.208 0.350 0.211 0.349 0.186 0.374 0.208 0.350 0.210 0.348 0.186 0.373

10 0.213 0.346 0.215 0.344 0.189 0.371 0.213 0.346 0.214 0.345 0.190 0.371

30 0.215 0.343 0.217 0.342 0.192 0.369 0.215 0.344 0.217 0.343 0.192 0.369

ρXX
′ = 0.6

30 5 0.212 0.754 0.258 0.742 −0.088 0.836 0.206 0.754 0.239 0.746 −0.086 0.834

10 0.231 0.743 0.277 0.730 −0.067 0.833 0.219 0.744 0.261 0.734 −0.071 0.832

30 0.239 0.737 0.289 0.723 −0.063 0.831 0.235 0.737 0.273 0.727 −0.059 0.828

50 5 0.325 0.723 0.357 0.713 0.111 0.809 0.322 0.724 0.348 0.718 0.105 0.807

10 0.338 0.716 0.371 0.704 0.118 0.807 0.335 0.716 0.358 0.707 0.122 0.801

30 0.349 0.711 0.377 0.697 0.127 0.806 0.343 0.710 0.370 0.702 0.130 0.801

100 5 0.417 0.689 0.439 0.680 0.270 0.770 0.416 0.689 0.430 0.683 0.274 0.768

10 0.426 0.682 0.448 0.672 0.277 0.768 0.426 0.684 0.440 0.676 0.280 0.768

30 0.432 0.678 0.452 0.668 0.283 0.767 0.430 0.679 0.446 0.672 0.286 0.764

1000 5 0.537 0.619 0.541 0.616 0.492 0.660 0.537 0.620 0.539 0.617 0.493 0.659

10 0.539 0.617 0.544 0.613 0.494 0.660 0.539 0.617 0.543 0.615 0.495 0.658

30 0.541 0.616 0.546 0.612 0.494 0.658 0.540 0.616 0.544 0.613 0.495 0.657

ρXX
′ = 0.8

30 5 0.596 0.875 0.646 0.864 0.281 0.930 0.590 0.875 0.630 0.868 0.274 0.928

10 0.607 0.869 0.655 0.857 0.292 0.929 0.598 0.869 0.641 0.861 0.283 0.926

30 0.612 0.866 0.663 0.852 0.300 0.927 0.604 0.867 0.645 0.858 0.291 0.926

50 5 0.656 0.860 0.688 0.849 0.436 0.917 0.653 0.860 0.677 0.853 0.433 0.914

10 0.664 0.855 0.696 0.844 0.444 0.916 0.660 0.856 0.686 0.848 0.439 0.913

30 0.667 0.853 0.700 0.840 0.444 0.915 0.664 0.853 0.690 0.845 0.443 0.913

100 5 0.704 0.842 0.723 0.833 0.562 0.896 0.703 0.842 0.717 0.837 0.564 0.896

10 0.708 0.838 0.728 0.829 0.567 0.896 0.706 0.840 0.722 0.833 0.568 0.895

30 0.711 0.836 0.731 0.827 0.569 0.896 0.710 0.837 0.725 0.830 0.568 0.894

1000 5 0.764 0.807 0.769 0.803 0.726 0.837 0.764 0.807 0.768 0.804 0.728 0.836

10 0.766 0.805 0.771 0.802 0.728 0.836 0.766 0.806 0.769 0.803 0.728 0.836

30 0.766 0.805 0.772 0.801 0.728 0.836 0.766 0.805 0.770 0.802 0.729 0.836

dist1, Normal distribution for ti; dist2, distribution with negative kurtosis for ti; dist3, distribution with positive kurtosis for ti; dist4, skewed distribution for ti; dist5,

skewed distribution with negative kurtosis for ti; dist6, skewed distribution with positive kurtosis for ti; LB, lower bound; UB, upper bound.

whether the sample coefficient was significantly different from α

as described in the previous section.
Guided by these interpretations, one can make the following

observations:

1. Among the five non-normal distributions considered for ti,
skewed or platykurtic distributions do not affect the mean or
the SE for α̂(see Table 1). They do not affect the accuracy

or bias in estimating α, either (see Table 2). On the other
hand, symmetric or non-symmetric distributions with posi-
tive kurtosis tend to result in a much smaller average of α̂

with a larger SE (see Table 1), which in turn makes the 95%
observed interval wider compared with the normal distribu-
tion (see Table 3). In addition, positive kurtosis tends to involve
more bias in underestimating α with a reduced accuracy (see
Table 2).
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2. Sample size (n) and test length (k) play important roles for
α̂ and its sampling distribution, as increased n or k tends to
result in the mean of α̂ that is closer to the specified population
reliability (ρXX

′) with a smaller SE. We note that n has a larger
and more apparent effect than k. Sample size further helps off-
set the effect of non-normality on the sampling distribution
of α̂. In particular, when sample size gets large, e.g., n = 1000,
departure from normal distributions (due to positive kurto-
sis) does not result in much different mean of α̂ although the
SE is still slightly larger compared with normal distributions
(see Table 1).

3. Increased n or k tends to increase the accuracy in estimating
α while reducing bias. However, the effect of non-normality
(due to positive kurtosis) on resulting in a larger estimating
error and bias remains even with increased n and/or k (see
Table 2). It is also noted that for all the conditions considered,
α̂ has a consistently negative bias regardless of the shape of the
distribution for ti.

4. The 95% observed interval shown in Table 3 agrees with the
corresponding mean and SE shown in Table 1. It is noted that
regardless of the population distribution for ti, when n or k gets
larger, α̂ has a smaller SE, and hence a narrower 95% interval,
as the precision in estimating α increases. Given this, and that
all intervals in the table, especially those for n = 1000, cover
the specified population reliability (ρXX

′), one should note that
although departure from normality affects the accuracy, bias,
and precision in estimating α, it does not result in systematically
different α̂. In addition, when the actual reliability is small (i.e.,
ρXX

′ = 0.3), the use of large n is suggested, as when n < 1000,
the 95% interval covers negative values of α̂. This is especially
the case for the (symmetric or non-symmetric) distributions
with positive kurtosis. For these distributions, at least 100 sub-
jects are needed for α̂ to avoid relatively large estimation error
when the actual reliability is moderate to large. For the other
distributions, including the normal distribution, a minimum
of 50 subjects is suggested for tests with a moderate reliability
(i.e., ρXX

′ = 0.6), and 30 or more subjects are needed for tests
with a high reliability (i.e., ρXX

′ = 0.8; see Table 2).

In addition, results for conditions where error scores depart from
normal distributions are summarized in Tables 4–6. Given the
design of the study, the results for the condition where eij followed
a normal distribution are the same as those for the condition where
the distribution for ti was normal. For the purpose of comparisons,
they are displayed in the tables again. Inspections of these tables
result in the following findings, some of which are quite different
from what are observed from Tables 1–3:

1. Symmetric platykurtic distributions or non-symmetric lep-
tokurtic distributions consistently resulted in a larger mean but
not a larger SE of α̂ than normal distributions (see Table 4).
Some of the means, and especially those for non-symmetric
leptokurtic distributions, are larger than the specified popula-
tion reliability (ρXX

′). This is consistent with the positive bias
values in Table 5. On the other hand, symmetric leptokurtic,
non-symmetric, or non-symmetric platykurtic distributions
tend to have larger SE of α̂ than the normal distribution (see
Table 4).

2. Sample size (n) and test length (k) have different effects on α̂

and its sampling distribution. Increased n consistently results
in a larger mean of α̂ with a reduced SE. However, increased
k may result in a reduced SE, but it has a negative effect on
the mean in pushing it away from the specified population reli-
ability (ρXX

′), especially when ρXX
′ is not large. In particular,

with larger k, the mean of α̂ decreases to be much smaller for the
non-normal distributions that are leptokurtic, non-symmetric,
or non-symmetric platykurtic; but it increases to exceed ρXX

′
for symmetric platykurtic or non-symmetric leptokurtic dis-
tributions. It is further observed that with increased n, the
difference between non-normal and normal distributions of
eij on the mean and SE of α̂ reduces. This is, however, not
observed for increased k (see Table 4).

3. The RMSE and bias values presented in Table 5 indicate that
non-normal distributions for eij, especially leptokurtic, non-
symmetric, or non-symmetric platykurtic distributions tend
to involve larger error, if not bias, in estimating α. In addition,
when k increases, RMSE or bias does not necessarily reduce.
On the other hand, when n increases, RMSE decreases while
bias increases. Hence, with larger sample sizes, there is more
accuracy in estimating α, but bias is not necessarily reduced for
symmetric platykurtic or non-symmetric leptokurtic distribu-
tions, as some of the negative bias values increase to become
positive and non-negligible.

4. The effect of test length on the sample coefficient is more
apparent in Table 6. From the 95% observed intervals for α̂,
and particularly those obtained when the actual reliability is
small to moderate (i.e., ρXX

′ ≤ 0.6) with large sample sizes (i.e.,
n = 1000), one can see that when test length gets larger (e.g.,
k = 30), the intervals start to fail to cover the specified popula-
tion reliability (ρXX

′) regardless of the degree of the departure
from the normality for eij. Given the fact that larger sample sizes
result in less dispersion (i.e., smaller SE) in the sampling dis-
tribution of α̂ and hence a narrower 95% interval, and the fact
that increased k pushes the mean of α̂ away from the specified
reliability, this finding suggests that larger k amplifies the effect
of non-normality of eij on α̂ in resulting in systematically biased
estimates of α, and hence has to be avoided when the actual reli-
ability is not large. With respect to sample sizes, similar patterns
arise. That is, the use of large n is suggested when the actual
reliability is small (i.e., ρXX

′ = 0.3), especially for tests with 30
items, whereas for tests with a high reliability (i.e.,ρXX

′ = 0.8), a
sample size of 30 may be sufficient. In addition, when the actual
reliability is moderate, a minimum of 50 subjects is needed for
α̂ to be fairly accurate for short tests (k ≤ 10), and at least 100
are suggested for longer tests (k = 30; see Table 5).

Given the above results, we see that non-normal distributions
for true or error scores do create problems for using coefficient
alpha to estimate the internal consistency reliability. In particu-
lar, leptokurtic true score distributions that are either symmetric
or skewed result in larger error and negative bias in estimat-
ing population α with less precision. This is similar to Bay’s
(1973) finding, and we see in this study that the problem remains
even after increasing sample size to 1000 or test length to 30,
although the effect is getting smaller. With respect to error score
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Table 4 | Observed mean and SD of the sample alpha (α̂) for the simulated situations where the error score (eij) distribution is normal or

non−normal.

n k Mean (α̂) SD (α̂)

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.230 0.255 0.215 0.206 0.213 0.313 0.241 0.233 0.257 0.252 0.250 0.223

10 0.231 0.295 0.158 0.174 0.185 0.367 0.229 0.207 0.256 0.248 0.248 0.195

30 0.231 0.371 0.103 0.155 0.139 0.460 0.221 0.177 0.258 0.244 0.249 0.160

50 5 0.252 0.279 0.232 0.231 0.237 0.324 0.176 0.169 0.191 0.183 0.181 0.166

10 0.252 0.316 0.180 0.198 0.213 0.380 0.166 0.150 0.187 0.180 0.178 0.143

30 0.254 0.390 0.128 0.181 0.164 0.474 0.160 0.128 0.188 0.176 0.181 0.116

100 5 0.269 0.295 0.245 0.247 0.255 0.332 0.118 0.113 0.130 0.124 0.122 0.115

10 0.268 0.331 0.196 0.216 0.229 0.390 0.112 0.101 0.128 0.121 0.120 0.098

30 0.269 0.403 0.146 0.198 0.182 0.484 0.108 0.086 0.127 0.119 0.122 0.078

1000 5 0.282 0.308 0.254 0.261 0.269 0.338 0.036 0.035 0.040 0.038 0.037 0.036

10 0.282 0.343 0.208 0.231 0.244 0.398 0.034 0.031 0.039 0.037 0.037 0.030

30 0.282 0.414 0.161 0.213 0.197 0.493 0.033 0.026 0.039 0.036 0.037 0.024

ρXX
′ = 0.6

30 5 0.549 0.550 0.565 0.552 0.551 0.571 0.142 0.140 0.163 0.141 0.140 0.159

10 0.551 0.560 0.547 0.543 0.545 0.586 0.133 0.127 0.157 0.141 0.139 0.132

30 0.550 0.615 0.452 0.482 0.500 0.669 0.129 0.102 0.180 0.160 0.156 0.093

50 5 0.563 0.564 0.574 0.565 0.564 0.579 0.103 0.100 0.121 0.103 0.101 0.118

10 0.563 0.573 0.559 0.557 0.560 0.595 0.097 0.092 0.115 0.102 0.100 0.099

30 0.563 0.625 0.472 0.499 0.518 0.676 0.093 0.074 0.131 0.115 0.112 0.068

100 5 0.572 0.573 0.579 0.574 0.574 0.584 0.069 0.068 0.084 0.069 0.068 0.082

10 0.572 0.582 0.567 0.567 0.570 0.600 0.066 0.062 0.078 0.069 0.067 0.068

30 0.572 0.633 0.484 0.511 0.530 0.681 0.063 0.050 0.088 0.078 0.075 0.046

1000 5 0.580 0.581 0.583 0.582 0.582 0.588 0.021 0.021 0.026 0.021 0.021 0.026

10 0.580 0.589 0.574 0.576 0.578 0.605 0.020 0.019 0.024 0.021 0.020 0.021

30 0.580 0.638 0.496 0.522 0.540 0.686 0.019 0.015 0.027 0.024 0.023 0.014

ρXX
′ = 0.8

30 5 0.771 0.771 0.777 0.772 0.772 0.779 0.072 0.070 0.094 0.072 0.070 0.092

10 0.771 0.771 0.776 0.773 0.772 0.777 0.068 0.067 0.081 0.068 0.067 0.080

30 0.771 0.782 0.760 0.763 0.766 0.798 0.066 0.058 0.085 0.076 0.073 0.057

50 5 0.778 0.778 0.782 0.779 0.779 0.783 0.052 0.051 0.070 0.052 0.051 0.070

10 0.778 0.778 0.781 0.779 0.779 0.784 0.049 0.048 0.060 0.049 0.048 0.059

30 0.778 0.788 0.768 0.771 0.774 0.802 0.048 0.042 0.060 0.054 0.052 0.042

100 5 0.782 0.783 0.785 0.783 0.783 0.787 0.035 0.034 0.049 0.035 0.034 0.049

10 0.783 0.783 0.785 0.784 0.784 0.787 0.033 0.033 0.041 0.033 0.033 0.041

30 0.783 0.792 0.774 0.777 0.779 0.805 0.032 0.028 0.040 0.036 0.034 0.029

1000 5 0.786 0.787 0.788 0.787 0.787 0.789 0.011 0.010 0.015 0.011 0.011 0.015

10 0.786 0.787 0.788 0.788 0.788 0.791 0.010 0.010 0.013 0.010 0.010 0.013

30 0.787 0.795 0.779 0.781 0.784 0.807 0.010 0.009 0.012 0.011 0.010 0.009

dist1, Normal distribution for eij; dist2, distribution with negative kurtosis for eij; dist3, distribution with positive kurtosis for eij; dist4, skewed distribution for eij; dist5,

skewed distribution with negative kurtosis for eij; dist6, skewed distribution with positive kurtosis for eij.

distributions, unlike conclusions from previous studies, depar-
ture from normality does create problems in the sample coeffi-
cient alpha and its sampling distribution. Specifically, leptokurtic,
skewed, or non-symmetric platykurtic error score distributions
tend to result in larger error and negative bias in estimating popu-
lation α with less precision, whereas platykurtic or non-symmetric
leptokurtic error score distributions tend to have increased posi-
tive bias when sample size, test length, and/or the actual reliability
increases. In addition, different from conclusions made by Bay

(1973) and Shultz (1993), an increase in test length does have an
effect on the accuracy and bias in estimating reliability with the
sample coefficient alpha when error scores are not normal, but
it is in an undesirable manner. In particular, as is noted earlier,
increased test length pushes the mean of α̂ away from the actual
reliability, and hence causes the sample coefficient alpha to be sig-
nificantly different from the population coefficient when the actual
reliability is not high (e.g., ρXX

′ ≤ 0.6) and the sample size is large
(e.g., n = 1000). This could be due to the fact that eij is involved
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Table 5 | Root mean square error and bias for estimating α for the simulated situations where the error score (eij ) distribution is normal or

non−normal.

n k RMSE bias

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.251 0.237 0.271 0.269 0.264 0.224 −0.070 −0.045 −0.085 −0.094 −0.087 0.013

10 0.240 0.208 0.293 0.278 0.273 0.206 −0.069 −0.005 −0.142 −0.126 −0.115 0.067

30 0.232 0.191 0.325 0.284 0.297 0.226 −0.069 0.071 −0.197 −0.145 −0.162 0.160

50 5 0.182 0.170 0.202 0.195 0.192 0.167 −0.048 −0.022 −0.068 −0.069 −0.063 0.024

10 0.173 0.151 0.222 0.207 0.198 0.164 −0.048 0.016 −0.120 −0.103 −0.088 0.080

30 0.166 0.157 0.255 0.212 0.226 0.209 −0.046 0.090 −0.172 −0.119 −0.136 0.174

100 5 0.122 0.113 0.141 0.135 0.130 0.119 −0.031 −0.006 −0.055 −0.053 −0.045 0.032

10 0.116 0.106 0.165 0.148 0.140 0.133 −0.032 0.031 −0.105 −0.084 −0.071 0.090

30 0.112 0.134 0.200 0.157 0.170 0.200 −0.031 0.103 −0.154 −0.102 −0.118 0.184

1000 5 0.040 0.035 0.061 0.054 0.048 0.052 −0.018 0.008 −0.046 −0.039 −0.031 0.038

10 0.038 0.053 0.100 0.079 0.067 0.102 −0.018 0.043 −0.092 −0.070 −0.056 0.098

30 0.038 0.117 0.144 0.095 0.109 0.194 −0.018 0.114 −0.139 −0.087 −0.103 0.193

ρXX
′ = 0.6

30 5 0.151 0.148 0.166 0.149 0.149 0.161 −0.051 −0.050 −0.035 −0.048 −0.050 −0.029

10 0.142 0.133 0.165 0.152 0.149 0.133 −0.050 −0.040 −0.053 −0.057 −0.055 −0.014

30 0.139 0.103 0.233 0.199 0.185 0.116 −0.050 0.015 −0.148 −0.118 −0.100 0.069

50 5 0.109 0.106 0.124 0.108 0.107 0.120 −0.037 −0.036 −0.026 −0.035 −0.036 −0.021

10 0.104 0.096 0.123 0.111 0.107 0.099 −0.037 −0.027 −0.041 −0.043 −0.040 −0.005

30 0.100 0.078 0.183 0.153 0.139 0.102 −0.037 0.025 −0.128 −0.101 −0.082 0.076

100 5 0.075 0.073 0.087 0.074 0.073 0.084 −0.028 −0.027 −0.022 −0.026 −0.026 −0.016

10 0.071 0.065 0.085 0.076 0.074 0.068 −0.028 −0.018 −0.033 −0.033 −0.031 0.000

30 0.069 0.060 0.146 0.118 0.103 0.093 −0.028 0.033 −0.116 −0.089 −0.070 0.081

1000 5 0.029 0.028 0.032 0.028 0.028 0.029 −0.020 −0.019 −0.017 −0.018 −0.018 −0.012

10 0.028 0.022 0.036 0.032 0.030 0.022 −0.020 −0.011 −0.026 −0.024 −0.022 0.005

30 0.028 0.041 0.108 0.082 0.064 0.087 −0.020 0.038 −0.104 −0.078 −0.060 0.086

ρXX
′ = 0.8

30 5 0.078 0.076 0.097 0.077 0.076 0.095 −0.030 −0.029 −0.023 −0.028 −0.029 −0.021

10 0.074 0.073 0.085 0.073 0.073 0.084 −0.029 −0.029 −0.024 −0.027 −0.028 −0.023

30 0.072 0.060 0.094 0.085 0.080 0.057 −0.029 −0.018 −0.040 −0.037 −0.034 −0.003

50 5 0.057 0.055 0.073 0.057 0.055 0.072 −0.022 −0.022 −0.018 −0.021 −0.021 −0.017

10 0.054 0.053 0.063 0.053 0.053 0.062 −0.022 −0.022 −0.019 −0.021 −0.021 −0.016

30 0.052 0.044 0.068 0.061 0.058 0.042 −0.022 −0.012 −0.032 −0.029 −0.026 0.002

100 5 0.039 0.038 0.051 0.039 0.038 0.050 −0.018 −0.017 −0.015 −0.017 −0.017 −0.013

10 0.038 0.037 0.044 0.037 0.037 0.043 −0.018 −0.017 −0.015 −0.016 −0.016 −0.013

30 0.037 0.030 0.048 0.043 0.040 0.029 −0.018 −0.008 −0.026 −0.024 −0.021 0.005

1000 5 0.017 0.017 0.020 0.017 0.017 0.019 −0.014 −0.013 −0.012 −0.013 −0.013 −0.011

10 0.017 0.016 0.017 0.016 0.016 0.016 −0.014 −0.013 −0.012 −0.012 −0.012 −0.010

30 0.017 0.010 0.024 0.022 0.019 0.012 −0.014 −0.005 −0.021 −0.019 −0.016 0.007

dist1, Normal distribution for eij; dist2, distribution with negative kurtosis for eij; dist3, distribution with positive kurtosis for eij; dist4, skewed distribution for eij; dist5,

skewed distribution with negative kurtosis for eij; dist6, skewed distribution with positive kurtosis for eij.

in each item, and hence an increase in the number of items would
add up the effect of non-normality on the sample coefficient.

DISCUSSION
In practice, coefficient alpha is often used to estimate reliabil-
ity with little consideration of the assumptions required for the
sample coefficient to be accurate. As noted by Graham (2006, p.
942), students and researchers in education and psychology are
often unaware of many assumptions for a statistical procedure,

and this situation is much worse when it comes to measurement
issues such as reliability. In actual applications, it is vital to not only
evaluate the assumptions for coefficient alpha, but also understand
them and the consequences of any violations.

Normality is not commonly considered as a major assump-
tion for coefficient alpha and hence has not been well investigated.
This study takes the advantage of recently developed techniques
in generating univariate non-normal data to suggest that different
from conclusions made by Bay (1973), Zimmerman et al. (1993),
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Table 6 | Observed 95% interval of the sample alpha (α̂) for the simulated situations where the error score (eij ) distribution is normal or

non-normal.

n k dist1 dist2 dist3 dist4 dist5 dist6

LB UB LB UB LB UB LB UB LB UB LB UB

ρXX
′ = 0.3

30 5 −0.351 0.580 −0.305 0.592 −0.404 0.587 −0.403 0.572 −0.392 0.574 −0.220 0.638

10 −0.323 0.563 −0.203 0.595 −0.459 0.529 −0.421 0.536 −0.416 0.543 −0.104 0.647

30 −0.303 0.550 −0.058 0.629 −0.522 0.478 −0.437 0.508 −0.462 0.501 0.070 0.688

50 5 −0.155 0.528 −0.114 0.544 −0.212 0.531 −0.193 0.516 −0.179 0.519 −0.057 0.585

10 −0.136 0.512 −0.031 0.551 −0.256 0.475 −0.223 0.481 −0.199 0.493 0.050 0.604

30 −0.116 0.505 0.094 0.591 −0.307 0.423 −0.229 0.458 −0.257 0.447 0.203 0.653

100 5 0.005 0.469 0.042 0.486 −0.045 0.464 −0.031 0.456 −0.016 0.461 0.077 0.525

10 0.020 0.457 0.107 0.501 −0.087 0.411 −0.052 0.421 −0.039 0.431 0.172 0.554

30 0.030 0.452 0.211 0.549 −0.136 0.361 −0.067 0.399 −0.089 0.387 0.310 0.616

1000 5 0.208 0.350 0.237 0.372 0.172 0.330 0.184 0.332 0.193 0.338 0.264 0.405

10 0.213 0.346 0.280 0.400 0.128 0.282 0.155 0.300 0.170 0.313 0.336 0.454

30 0.215 0.343 0.360 0.463 0.082 0.234 0.139 0.280 0.122 0.267 0.444 0.537

ρXX
′ = 0.6

30 5 0.212 0.754 0.212 0.752 0.171 0.794 0.212 0.756 0.210 0.752 0.186 0.796

10 0.231 0.743 0.253 0.745 0.167 0.768 0.197 0.744 0.210 0.743 0.267 0.778

30 0.239 0.737 0.370 0.766 0.015 0.711 0.099 0.713 0.121 0.721 0.444 0.803

50 5 0.325 0.723 0.331 0.722 0.289 0.758 0.326 0.725 0.329 0.722 0.302 0.762

10 0.338 0.716 0.360 0.717 0.286 0.736 0.319 0.715 0.328 0.714 0.363 0.749

30 0.349 0.711 0.455 0.743 0.167 0.675 0.229 0.680 0.256 0.691 0.520 0.783

100 5 0.417 0.689 0.422 0.688 0.389 0.716 0.420 0.691 0.422 0.689 0.398 0.721

10 0.426 0.682 0.444 0.687 0.392 0.697 0.415 0.682 0.420 0.682 0.448 0.714

30 0.432 0.678 0.521 0.718 0.287 0.632 0.338 0.643 0.363 0.656 0.579 0.759

1000 5 0.537 0.619 0.539 0.620 0.528 0.631 0.539 0.621 0.539 0.620 0.534 0.636

10 0.539 0.617 0.551 0.624 0.524 0.619 0.533 0.614 0.537 0.616 0.562 0.644

30 0.541 0.616 0.607 0.667 0.441 0.546 0.473 0.566 0.494 0.582 0.657 0.712

ρXX
′ = 0.8

30 5 0.596 0.875 0.602 0.872 0.543 0.903 0.598 0.876 0.602 0.874 0.549 0.904

10 0.607 0.869 0.611 0.868 0.575 0.889 0.608 0.870 0.611 0.869 0.581 0.890

30 0.612 0.866 0.646 0.868 0.550 0.875 0.577 0.867 0.589 0.867 0.661 0.882

50 5 0.656 0.860 0.661 0.858 0.613 0.885 0.657 0.861 0.661 0.858 0.617 0.885

10 0.664 0.855 0.667 0.854 0.637 0.872 0.665 0.856 0.667 0.855 0.644 0.873

30 0.667 0.853 0.692 0.855 0.624 0.858 0.643 0.853 0.653 0.853 0.705 0.869

100 5 0.704 0.842 0.707 0.840 0.672 0.863 0.705 0.842 0.707 0.841 0.675 0.863

10 0.708 0.838 0.711 0.838 0.692 0.853 0.711 0.840 0.711 0.839 0.696 0.854

30 0.711 0.836 0.729 0.841 0.683 0.840 0.695 0.836 0.702 0.836 0.741 0.854

1000 5 0.764 0.807 0.766 0.806 0.756 0.816 0.766 0.807 0.766 0.807 0.757 0.817

10 0.766 0.805 0.767 0.806 0.762 0.812 0.767 0.807 0.767 0.806 0.765 0.814

30 0.766 0.805 0.778 0.812 0.754 0.802 0.759 0.802 0.762 0.803 0.789 0.824

dist1, Normal distribution for eij; dist2, distribution with negative kurtosis for eij; dist3, distribution with positive kurtosis for eij; dist4, skewed distribution for eij; dist5,

skewed distribution with negative kurtosis for eij; dist6, skewed distribution with positive kurtosis for eij; LB, lower bound; UB, upper bound.

and Shultz (1993), coefficient alpha is not robust to the viola-
tion of the normal assumption (for either true or error scores).
Non-normal data tend to result in additional error or bias in
estimating internal consistency reliability. A larger error makes
the sample coefficient less accurate, whereas more bias causes it
to further under- or overestimate the actual reliability. We note
that compared with normal data, leptokurtic true or error score
distributions tend to result in additional negative bias, whereas
platykurtic error score distributions tend to result in a positive

bias. Neither case is desired in a reliability study, as the sample
coefficient would paint an incorrect picture of the test’s internal
consistency by either estimating it with a larger value or a much
smaller value and hence is not a valid indicator. For example, for a
test with reliability being 0.6, one may calculate the sample alpha
to be 0.4 because the true score distribution has a positive kurtosis,
and conclude that the test is not reliable at all. On the other hand,
one may have a test with actual reliability being 0.4. But because
the error score distribution has a negative kurtosis, the sample
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coefficient is calculated to be 0.7 and hence the test is concluded to
be reliable. In either scenario, the conclusion on the test reliability
is completely the opposite of the true situation, which may lead to
an overlook of a reliable measure or an adoption of an unreliable
instrument. Consequently, coefficient alpha is not suggested for
estimating internal consistency reliability with non-normal data.
Given this, it is important to make sure that in addition to satisfying
the assumptions of (essential) tau-equivalence and uncorrelated
errors, the sample data conform to normal distributions before
one uses alpha in a reliability study.

Further, it is generally said that increased data sizes help approx-
imate non-normal distributions to be normal. This is the case with
sample sizes, not necessarily test lengths, in helping improve the
accuracy, bias and/or precision of using the sample coefficient in
reliability studies with non-normal data. Given the results of the
study, we suggest that in order for the sample coefficient alpha to
be fairly accurate and in a reasonable range, a minimum of 1000
subjects is needed for a small reliability, and a minimum of 100
is needed for a moderate reliability when the sample data depart
from normality. It has to be noted that for the four sample size
conditions considered in the study, the sample coefficient alpha
consistently underestimates the population reliability even when

normality is assumed (see Table 2). However, the degree of bias
becomes negligible when sample size increases to 1000 or beyond.

In the study, we considered tests of 5, 10, or 30 items admin-
istered to 30, 50, 100, or 1000 persons with the actual reliability
being 0.3, 0.6, or 0.8. These values were selected to reflect levels
ranging from small to large in the sample size, test length, and
population reliability considerations. When using the results, one
should note that they pertain to these simulated conditions and
may not generalize to other conditions. In addition, we evaluated
the assumption of normality alone. That is, in the simulations,
data were generated assuming the other assumptions, namely
(essential) tau-equivalence and uncorrelated error terms, were sat-
isfied. In practice, it is common for observed data to violate more
than one assumption. Hence, it would also be interesting to see
how non-normal data affect the sample coefficient when other
violations are present. Further, this study looked at the sample
coefficient alpha and its empirical sampling distribution without
considering its sampling theory (e.g., Kristof, 1963; Feldt, 1965).
One may focus on its theoretical SE (e.g., Bay, 1973; Barchard and
Hakstian, 1997a,b; Duhachek and Iacobucci, 2004) and compare
them with the empirical ones to evaluate the robustness of an
interval estimation of the reliability for non-normal data.

REFERENCES
Barchard, K. A., and Hakstian, R.

(1997a). The effects of sampling
model on inference with coeffi-
cient alpha. Educ. Psychol. Meas. 57,
893–905.

Barchard, K. A., and Hakstian, R.
(1997b). The robustness of confi-
dence intervals for coefficient alpha
under violation of the assumption
of essential parallelism. Multivariate
Behav. Res. 32, 169–191.

Bay, K. S. (1973). The effect of non-
normality on the sampling distribu-
tion and standard error of reliability
coefficient estimates under an analy-
sis of variance model. Br. J. Math.
Stat. Psychol. 26, 45–57.

Caplan, R. D., Naidu, R. K., and Tripathi,
R. C. (1984). Coping and defense:
constellations vs. components. J.
Health Soc. Behav. 25, 303–320.

Cronbach, L. J. (1951). Coefficient alpha
and the internal structure of tests.
Psychometrika 16, 297–334.

DeVellis, R. F. (1991). Scale Develop-
ment. Newbury Park, NJ: Sage Pub-
lications.

Duhachek, A., and Iacobucci, D. (2004).
Alpha’s standard error (ASE): an
accurate and precise confidence
interval estimate. J. Appl. Psychol. 89,
792–808.

Feldt, L. S. (1965). The approximate
sampling distribution of Kuder-
Richardson reliability coefficient
twenty. Psychometrika 30, 357–370.

Fleishman, A. I. (1978). A method
for simulating non-normal distrib-
utions. Psychometrika 43, 521–532.

Fleiss, J. L. (1986). The Design
and Analysis of Clinical

Experiment. New York:
Wiley.

Graham, J. M. (2006). Congeneric and
(essential) tau-equivalent estimates
of score reliability. Educ. Psychol.
Meas. 66, 930–944.

Green, S. B., and Hershberger, S. L.
(2000). Correlated errors in true
score models and their effect on
coefficient alpha. Struct. Equation
Model. 7, 251–270.

Green, S. B., and Yang, Y. (2009).
Commentary on coefficient alpha:
a cautionary tale. Psychometrika 74,
121–135.

Guttman, L. A. (1945). A basis for
analyzing test-retest reliability. Psy-
chometrika 10, 255–282.

Headrick, T. C. (2002). Fast fifth-order
polynomial transforms for generat-
ing univariate and multivariate non-
normal distributions. Comput. Stat.
Data Anal. 40, 685–711.

Headrick, T. C. (2010). Statistical Sim-
ulation: Power Method Polynomi-
als and Other Transformations. Boca
Raton, FL: Chapman & Hall.

Johanson, G. A., and Brooks, G. (2010).
Initial scale development: sample
size for pilot studies. Educ. Psychol.
Meas. 70, 394–400.

Kristof, W. (1963). The statistical theory
of stepped-up reliability coefficients
when a test has been divided into
several equivalent parts. Psychome-
trika 28, 221–238.

Lord, F. M., and Novick, M. R. (1968).
Statistical Theories of Mental Test
Scores. Reading: Addison-Wesley.

MathWorks. (2010). MATLAB (Version
7.11) [Computer software]. Natick,
MA: MathWorks.

Miller, M. B. (1995). Coefficient alpha:
a basic introduction from the per-
spectives of classical test theory
and structural equation modeling.
Struct. Equation Model. 2, 255–273.

Novick, M. R., and Lewis, C. (1967).
Coefficient alpha and the reliabil-
ity of composite measurements. Psy-
chometrika 32, 1–13.

Nunnally, J. C. (1967). Psychometric
Theory. New York: McGraw-Hill.

Nunnally, J. C., and Bernstein, I. H.
(1994). Psychometric Theory, 3rd
Edn. New York: McGraw-Hill.

Raykov, T. (1998). Coefficient alpha and
composite reliability with interre-
lated nonhomogeneous items. Appl.
Psychol. Meas. 22, 69–76.

Shultz, G. S. (1993). A Monte Carlo study
of the robustness of coefficient alpha.
Masters thesis, University of Ottawa,
Ottawa.

Sijtsma, K. (2009). On the use, the mis-
use, and the very limited usefulness
of Cronbach’s alpha. Psychometrika
74, 107–120.

van Zyl, J. M., Neudecker, H., and Nel,
D. G. (2000). On the distribution of
the maximum likelihood estimator
for Cronbach’s alpha. Psychometrika
65, 271–280.

Zimmerman, D. W., Zumbo, B. D.,
and Lalonde, C. (1993). Coefficient
alpha as an estimate of test reliabil-
ity under violation of two assump-
tions. Educ. Psychol. Meas. 53,
33–49.

Zumbo, B. D. (1999). A Glance at Coef-
ficient Alpha With an Eye Towards
Robustness Studies: Some Mathemat-
ical Notes and a Simulation Model
(Paper No. ESQBS-99-1). Prince

George, BC: Edgeworth Labora-
tory for Quantitative Behavioral Sci-
ence, University of Northern British
Columbia.

Zumbo, B. D., and Rupp, A. A. (2004).
“Responsible modeling of measure-
ment data for appropriate infer-
ences: important advances in reli-
ability and validity theory,” in The
SAGE Handbook of Quantitative
Methodology for the Social Sciences,
ed. D. Kaplan (Thousand Oaks:
Sage), 73–92.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 29 October 2011; paper pending
published: 22 November 2011; accepted:
30 January 2012; published online: 15
February 2012.
Citation: Sheng Y and Sheng Z (2012)
Is coefficient alpha robust to non-
normal data? Front. Psychology 3:34. doi:
10.3389/fpsyg.2012.00034
This article was submitted to Frontiers
in Quantitative Psychology and Measure-
ment, a specialty of Frontiers in Psychol-
ogy.
Copyright © 2012 Sheng and Sheng . This
is an open-access article distributed under
the terms of the Creative Commons Attri-
bution Non Commercial License, which
permits non-commercial use, distribu-
tion, and reproduction in other forums,
provided the original authors and source
are credited.

www.frontiersin.org February 2012 | Volume 3 | Article 34 | 38

http://dx.doi.org/10.3389/fpsyg.2012.00034
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Sheng and Sheng Effect of non-normality on coefficient alpha

APPENDIX
CODE IN MATLAB

function result=mcalpha(n,k,evar,rho,rep)
%
% mcalpha - obtain summary statistics for sample alphas
%
% result=mcalpha(n,k,evar,rho,rep)
%
% returns the observed mean, standard deviation, and 95% interval (qtalpha)
% for sample alphas as well as the root mean square error (rmse) and bias for
% estimating the population alpha.
%
% The INPUT arguments:
% n - sample size
% k - test length
% evar - error variance
% rho - population reliability
% rep - number of replications
%

alphav=zeros(rep,1);
tbcd=[0,1,0,0,0,0];
ebcd=[0,1,0,0,0,0];

%
% note: tbcd and ebcd are vectors containing the six coefficients, c0,…,c5,
% used in equation (8) for true scores and error scores, respectively. Each
% of them can be set as:
% 1. [0,1,0,0,0,0] (normal)
% 2. [0,1.643377,0,-.319988,0,.011344] (platykurtic)
% 3. [0,0.262543,0,.201036,0,.000162] (leptokurtic)
% 4. [-0.446924 1.242521 0.500764 -0.184710 -0.017947,0.003159] (skewed)
% 5. [-.276330,1.506715,.311114,-.274078,-.011595,.007683] (skewed
% platykurtic)
% 6. [-.304852,.381063,.356941,.132688,-.017363,.003570] (skewed leptokurtic)
%

for i=1:rep
alphav(i)=alpha(n,k,evar,rho,tbcd,ebcd);

end
rmse=sqrt(mean((alphav-rho).ˆ2));
bias=mean(alphav-rho);
qtalpha=quantile(alphav,[.025,.975]);
result=[mean(alphav),std(alphav),qtalpha,rmse,bias];

function A=alpha(n,k,evar,rho,tbcd,ebcd)
%
% alpha - calculate sample alpha
%
% alp=alpha(n,k,evar,rho,tbcd,ebcd)
%
% returns the sample alpha.
%
% The INPUT arguments:
% n - sample size
% k - test length
% evar - error variance
% rho - population reliability
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% rep - number of replications
% tbcd - coefficients for generating normal/nonnormal true score
% distributions using power method polynomials
% ebcd - coefficients for generating normal/nonnormal error score
% distributions using power method polynomials
%

tvar=evar*rho/((1-rho)*k);
t=rfsimu(tbcd,n,1,5,tvar);
e=rfsimu(ebcd,n,k,0,evar);
xn=t*ones(1,k)+e;
x=round(xn);
alp=k/(k-1)*(1-sum(var(x,1))/var(sum(x,2),1));

function X=rfsimu(bcd,n,k,mean,var)
%
% rfsimu - generate normal/nonnormal distributions using 5-th order power
% method polynomials
%
% X=rfsimu(bcd,n,k,mean,var)
%
% returns samples of size n by k drawn from a distribution with the desired
% moments.
%
% The INPUT arguments:
% bcd - coefficients for generating normal/nonnormal distributions using
% the 5-th order polynomials
% k - test length
% evar - error variance
% rho - population reliability
% rep - number of replications
% tbcd - coefficients for generating normal/nonnormal true score
% distributions using power method polynomials
% ebcd - coefficients for generating normal/nonnormal error score
% distributions using power method polynomials
%

Z=randn(n,k);
Y=bcd(1)+bcd(2)*Z+bcd(3)*Z.ˆ2+bcd(4)*Z.ˆ3+bcd(5)*Z.ˆ4+bcd(6)*Z.ˆ5;
X=mean+sqrt(var)*Y;
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The purpose of this article is to help researchers avoid common pitfalls associated with
reliability including incorrectly assuming that (a) measurement error always attenuates
observed score correlations, (b) different sources of measurement error originate from the
same source, and (c) reliability is a function of instrumentation.To accomplish our purpose,
we first describe what reliability is and why researchers should care about it with focus on
its impact on effect sizes. Second, we review how reliability is assessed with comment on
the consequences of cumulative measurement error. Third, we consider how researchers
can use reliability generalization as a prescriptive method when designing their research
studies to form hypotheses about whether or not reliability estimates will be acceptable
given their sample and testing conditions. Finally, we discuss options that researchers may
consider when faced with analyzing unreliable data.
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The vast majority of commonly used parametric statistical pro-
cedures assume data are measured without error (Yetkiner and
Thompson, 2010). However, research indicates that there are
at least three problems concerning application of the statisti-
cal assumption of reliable data. First and foremost, researchers
frequently neglect to report reliability coefficients for their data
(Vacha-Haase et al., 1999, 2002; Zientek et al., 2008). Presum-
ably, these same researchers fail to consider if data are reliable and
thus ignore the consequences of results based on data that are
confounded with measurement error. Second, researchers often
reference reliability coefficients from test manuals or prior research
presuming that the same level of reliability applies to their data
(Vacha-Haase et al., 2000). Such statements ignore admonitions
from Henson (2001), Thompson (2003a),Wilkinson and APA Task
Force on Statistical Inference (1999), and others stating that relia-
bility is a property inured to scores not tests. Third, researchers that
do consider the reliability of their data may attempt to correct
for measurement error by applying Spearman’s (1904) correction
formula to sample data without considering how error in one
variable relates to observed score components in another variable
or the true score component of its own variable (cf. Onwueg-
buzie et al., 2004; Lorenzo-Seva et al., 2010). These so-called
nuisance correlations, however, can seriously influence the accuracy
of the statistics that have been corrected by Spearman’s formula
(Wetcher-Hendricks, 2006; Zimmerman, 2007). In fact, as readers
will see, the term correction for attenuation may be considered a
misnomer as unreliable data do not always produce effects that are
smaller than they would have been had data been measured with
perfect reliability.

PURPOSE
The purpose of this article is to help researchers avoid common
pitfalls associated with reliability including incorrectly assuming

that (a) measurement error always attenuates observed score
correlations, (b) different sources of measurement error originate
from the same source, and (c) reliability is a function of instru-
mentation. To accomplish our purpose, the paper is organized as
follows.

First, we describe what reliability is and why researchers should
care about it. We focus on bivariate correlation (r) and discuss how
reliability affects its magnitude. [Although the discussion is lim-
ited to r for brevity, the implications would likely extend to many
other commonly used parametric statistical procedures (e.g., t -
test, analysis of variance, canonical correlation) because many are
“correlational in nature” (Zientek and Thompson, 2009, p. 344)
and “yield variance-accounted-for effect sizes analogous to r2”
(Thompson, 2000, p. 263).] We present empirical evidence that
demonstrates why measurement error does not always attenuate
observed score correlations and why simple steps that attempt
to correct for unreliable data may produce misleading results.
Second, we review how reliability is commonly assessed. In addi-
tion to describing several techniques, we highlight the cumulative
nature of different types of measurement error. Third, we con-
sider how researchers can use reliability generalization (RG) as
a prescriptive method when designing their research studies to
form hypotheses about whether or not reliability estimates will be
acceptable given their sample and testing conditions. In addition
to reviewing RG theory and studies that demonstrate that relia-
bility is a function of data and not instrumentation, we review
barriers to conducting RG studies and propose a set of metrics
to be included in research reports. It is our hope that editors will
champion the inclusion of such data and thereby broaden what
is known about the reliability of educational and psychological
data published in research reports. Finally, we discuss options that
researchers may consider when faced with analyzing unreliable
data.
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RELIABILITY: WHAT IS IT AND WHY DO WE CARE?
The predominant applied use of reliability is framed by classi-
cal test theory (CTT, Hogan et al., 2000) which conceptualizes
observed scores into two independent additive components: (a)
true scores and (b) error scores:

Observed Score (OX) = True Score (TX)+Error Score (EX) (1)

True scores reflect the construct of interest (e.g., depression,
intelligence) while error scores reflect error in the measurement of
the construct of interest (e.g., misunderstanding of items, chance
responses due to guessing). Error scores are referred to as mea-
surement error (Zimmerman and Williams, 1977) and stem from
random and systematic occurrences that keep observed data from
conveying the “truth” of a situation (Wetcher-Hendricks, 2006, p.
207). Systematic measurement errors are“those which consistently
affect an individual’s score because of some particular character-
istic of the person or the test that has nothing to do with the
construct being measured” (Crocker and Algina, 1986, p. 105).
Random errors of measurement are those which “affect an indi-
vidual’s score because of purely chance happenings” (Crocker and
Algina, 1986, p. 106).

The ratio between true score variance and observed score vari-
ance is referred to as reliability. In data measured with perfect
reliability, the ratio between true score variance and observed score
variance is 1 (Crocker and Algina, 1986). However, the nature of
educational and psychological research means that most, if not all,
variables are difficult to measure and yield reliabilities less than 1
(Osborne and Waters, 2002).

Researchers should care about reliability as the vast majority
of parametric statistical procedures assume that sample data are
measured without error (cf. Yetkiner and Thompson, 2010). Poor
reliability even presents a problem for descriptive statistics such
as the mean because part of the average score is actually error.
It also causes problems for statistics that consider variable rela-
tionships because poor reliability impacts the magnitude of those
results. Measurement error is even a problem in structural equa-
tion model (SEM) analyses, as poor reliability affects overall fit
statistics (Yetkiner and Thompson, 2010). In this article, though,
we focus our discussion on statistical analyses based on observed
variable analyses because latent variable analyses are reported less
frequently in educational and psychological research (cf. Kieffer
et al., 2001; Zientek et al., 2008).

Contemporary literature suggests that unreliable data always
attenuate observed score variable relationships (e.g., Muchinsky,
1996; Henson, 2001; Onwuegbuzie et al., 2004). Such literature
stems from Spearman’s (1904) correction formula that estimates
a true score correlation (rTXTY) by dividing an observed score cor-
relation (rOXOY) by the square root of the product of reliabilities
(rXXrYY):

rTXTY = rOXOY√
rXXrYY

(2)

Spearman’s formula suggests that the observed score correlation is
solely a function of the true score correlation and the reliability of
the measured variables such that the observed correlation between
two variables can be no greater than the square root of the product

of their reliabilities:

rOXOY = rTXTY

√
rXXrYY (3)

Using derivatives of Eqs 2 and 3, Henson (2001) claimed, for
example, that if one variable was measured with 70% reliabil-
ity and another variable was measured with 60% reliability, the
maximum possible observed score correlation would be 0.65 (i.e.,√

0.70 × 0.60). He similarly indicated that the observed correla-
tion between two variables will only reach its theoretical maximum
of 1 when (a) the reliability of the variables are perfect and (b)
the correlation between the true score equivalents is equal to 1.
(Readers may also consult Trafimow and Rice, 2009 for an inter-
esting application of this correction formula to behavioral task
performance via potential performance theory).

The problem with the aforementioned claims is that they do
not consider how error in one variable relates to observed score
components in another variable or the true score component of its
own variable. In fact, Eqs 2 and 3, despite being written for sample
data, should only be applied to population data in the case when
error does not correlate or share common variance (Zimmerman,
2007), as illustrated in Figure 1. However, in the case of correlated
error in the population (see Figure 2) or in the case of sample

FIGURE 1 | Conceptual representation of observed score variance in

the case of no correlated error. T, true scores; E, error scores. Note:
shaded area denotes shared variance between T X and TY.

FIGURE 2 | Conceptual representation of observed score variance in

the case of correlated error.T, true scores; E, error scores. Note: lighted
shaded area denotes shared variance between T X and TY. Dark shaded area
denotes shared variance between EX and EY.
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data, the effect of error on observed score correlation is more
complicated than Eqs 2 or 3 suggest. In fact, it is not uncommon
for observed score correlations to be greater than the square root
of the product of their reliabilities (e.g., see Dozois et al., 1998).
In such cases, Spearman’s correction formula (Eq. 2) will result
in correlations greater than 1.00. While literature indicates that
such correlations should be truncated to unity (e.g., Onwuegbuzie
et al., 2004), a truncated correlation of 1.00 may be a less accurate
estimate of the true score correlation than its observed score coun-
terpart. As readers will see, observed score correlations may be less
than or greater than their true score counterparts and therefore less
or more accurate than correlations adjusted by Spearman’s (1904)
formula.

To understand why observed score correlations may not always
be less than their true score counterparts, we present Charles’s“cor-
rection for the full effect of measurement error” (Charles, 2005, p.
226). Although his formula cannot be used when “true scores and
error scores are unknown,”the formula clarifies the roles that relia-
bility and error play in the formation of observed score correlation
and identifies “the assumptions made in the derivation of the
correction for attenuation” formula (Zimmerman, 2007, p. 923).
Moreover, in the case when observed scores are available and true
and error scores are hypothesized, the quantities in his formula
can be given specific values and the full effect of measurement
error on sample data can be observed.

Charles’s (2005) formula extends Spearman’s (1904) formula by
taking into account correlations between error scores and between
true scores and error scores that can occur in sample data:

rTXTY = rOXOY√
rXXrYY

− rEXEY

√
eXX

√
eYY√

rXXrYY
− rTXEY

√
eYY√

rYY
− rTYEX

√
eXX√

rXX

(4)

Although not explicit, Charles’s formula considers the correlations
that exist between true scores and error scores of individual mea-
sures by defining error (e.g., eXX, eYY) as the ratio between error
and observed score variance. Although error is traditionally rep-
resented as 1 – reliability (e.g., 1 − rXX), such representation is
only appropriate for population data as the correlation between
true scores and error scores for a given measure (e.g., rTXEX ) is
assumed to be 0 in the population. Just as with rEXEY , rTXEY , rTYEX ,
correlations between true and error scores of individual measures
(rTXEX , rTYEY) are not necessarily 0 in sample data. Positive corre-
lations between true and error scores result in errors (e.g., eXX)
that are less than 1 – reliability (e.g., 1 − rxx), while negative cor-
relations result in errors that are greater than 1 – reliability, as
indicated in the following formula (Charles, 2005):

eXX =
(

1 − rXX − covTXEX

S2
OX

)

(5)

Through a series of simulation tests, Zimmerman (2007)
demonstrated that an equivalent form of Eq. 4 accurately produces
true score correlations for sample data and unlike Spearman’s
(1904) formula, always yields correlation coefficients between
−1.00 and 1.00. From Eq. 4, one sees that Spearman’s formula

results in over corrected correlations when rEXEY , rTXEY , and rTYEX

are greater than 0, and under-corrected correlations when they are
less than 0.

By taking Eq. 4 and solving for rOXOY , one also sees that
the effect of unreliable data is more complicated than what is
represented in Eq. 3:

rOXOY = rTXTY

√
rXXrYY + rEXEY

√
eXX

√
eYY + rTXEY

√
eYY

√
rXX

+ rTYEX

√
eXX

√
rYY (6)

Equation 6 demonstrates why observed score correlations can be
greater than the square root of the product of reliabilities and
that the full effect of unreliable data on observed score correlation
extends beyond true score correlation and includes the correla-
tion between error scores, and correlations between true scores
and error scores.

To illustrate the effect of unreliable data on observed score cor-
relation, consider the case where rTXTY = 0.50, rXX = rYY = 0.80,
rEXEY = 0.50, and rTXEY = rTYEX = 0.10. For the sake
of parsimony, we assume rTXEX = rTYEY = 0 and there-
fore that eXX = 1 − rXX and eYY = 1 − rYY. Based on Eq. 3, one
would expect that the observed score correlation to be 0.40
(0.50

√
0.80 × 0.80). However, as can be seen via the boxed points

in Figure 3, the effect of correlated error, the correlation between
T X and EY, and the correlation between TY and EX respectively
increase the expected observed score correlation by 0.10, 0.04, and
0.04 resulting in an observed score correlation of 0.58, which is
greater than the true score correlation of 0.50, and closer to the
true score correlation of 0.50 than the Spearman (1904) correction
resulting from Eq. 2 which equals 0.725 (i.e., 0.58/

√
0.80 × 0.80).

This example shows that the attenuating effect of unreliable data
(first term inEq. 6) is mitigated by the effect of correlated error
(second term in Eq. 6) and the effects of correlations between true
and error scores (third and forth terms in Eq. 6), assuming that the
correlations are in the positive direction. Correlations in the neg-
ative direction serve to further attenuate the true score correlation
beyond the first term in Eq. 6. This example further shows that
observed score correlations are not always attenuated by measure-
ment error and that in some cases an observed score correlation
may provide an estimate that is closer to the true score correlation
than a correlation that has been corrected by Spearman’s formula.

As illustrated in Figure 3, the effect of correlated error and
correlations between true and error scores tend to increase as reli-
ability decreases and the magnitudes of rTXEY , rTYEX , and rEXEY

increase. The question, of course, is how big are these so-called
“nuisance correlations” in real sample data? One can expect that,
on average, repeated samples of scores would yield correlations
of 0 for rTXEY and rTYEX , as these correlations are assumed to be
0 in the population (Zimmerman, 2007). However, correlations
between errors scores are not necessarily 0 in the population. Cor-
relation between error scores can arise, for example, whenever
tests are administered on the same occasion, consider the same
construct, or are based on the same set of items (Zimmerman and
Williams, 1977). In such cases, one can expect that, on average,
repeated samples of error scores would approximate the level of
correlated error in the population (Zimmerman, 2007). One can
also expect that the variability of these correlations would increase
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FIGURE 3 | Effect of unreliable data on observed score correlation

as a function of reliability, correlated error (rEX EY
), and correlations

between true and error scores (rTX EY
, rTY EX

). Note: rTXEX
= rTYEY

= 0;
eXX = eYY = 1 − reliability. The boxed point on the left-hand panel
indicates the effect of correlated error on an observed score

correlation when rTX TY
= 0.50, r XX = rYY = 0.80, and rEX EY

= 0.50. The
boxed point on the right-hand panel indicates the effect of a
correlation between true and error scores (e.g., rTYEX

) on an observed
score correlation when rTXTY

= 0.50, rXX = rYY = 0.80, and
rTXEY

= rTYEX
= 0.10.

Table 1 | SAT data observed, error, and true scores.

Writing scores Reading scores

State Observed (OY) True (TY) Error (EY) Observed (OY) True (TY) Error (EY)

Connecticut 513.0 512.0 1.0 509.0 509.8 −0.8

Delaware 476.0 485.0 −9.0 489.0 495.8 −6.8

Georgia 473.0 481.2 −8.2 485.0 491.4 −6.4

Maryland 491.0 496.4 −5.4 499.0 500.6 −1.6

Massachusetts 509.0 510.6 −1.6 513.0 513.2 −0.2

New Hampshire 511.0 510.4 0.6 523.0 521.0 2.0

New Jersey 497.0 495.8 1.2 495.0 495.4 −0.4

New York 476.0 480.4 −4.4 485.0 488.2 −3.2

North Carolina 474.0 481.2 −7.2 493.0 495.6 −2.6

Pennsylvania 479.0 482.2 −3.2 493.0 493.0 0.0

Rhode Island 489.0 491.4 −2.4 495.0 495.6 −0.6

South Carolina 464.0 473.8 −9.8 482.0 486.6 −4.6

Virginia 495.0 498.4 −3.4 512.0 511.4 0.6

M 488.2 492.2 −4.0 497.9 499.9 −1.9

SD 16.1 12.9 3.8 12.6 10.6 2.7

as the sample size (n) decreases. Indeed, Zimmerman (2007) found
that the distributions for rTXEY , rTYEX , and rEXEY yielded SDs of
∼ 1/

√
n − 1. The fact that there is sampling variance in these val-

ues makes “dealing with measurement error and sampling error
pragmatically inseparable” (Charles, 2005, p. 226).

To empirically illustrate the full effect of unreliable data on
observed score correlation, we build on the work of Wetcher-
Hendricks (2006) and apply Eq. 6 to education and psychology
examples. For education data, we analyzed SAT writing and read-
ing scores (Benefield, 2011; College Board, 2011; Public Agenda,
2011). For psychology data, we analyzed scores from the Beck

Depression Inventory-II (BDI-II; Beck, 1996) and Beck Anxiety
Inventory (BAI; Beck, 1990). We close this section by contrasting
CTT assumptions relating to reliability to population and sam-
ple data and summarizing how differences in those assumptions
impact the full effect of reliability on observed score correlations.

EDUCATION EXAMPLE
We applied Eq. 6 to average SAT scores from 13 states associ-
ated with the original USA colonies (see Table 1). We selected
these states as they were a cohesive group and were among the 17
states with the highest participation rates (Benefield, 2011; College
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Board, 2011; Public Agenda, 2011). We used data reported for 2011
as observed data and the long-run average of SAT scores reported
since the new form of the SAT was introduced as true scores,
given the psychometric principle from Allen and Yen (1979) that
long-run averages equal true score values (cf. Wetcher-Hendricks,
2006). To compute error scores, we subtracted true scores from
observed scores. The components of Eq. 6 applied to the SAT data
are presented in Table 2 and yield the observed score correlation
(0.90), as follows:

rOXOY = 0.91
√

0.71 × 0.65 + 0.84
√

0.05
√

0.06

+ 0.62
√

0.06
√

0.71 + 0.68
√

0.05
√

0.65

0.90 = 0.62 + 0.04 + 0.12 + 0.12

(7)

While the reliability of the SAT data served to attenuate the
true score correlation between reading and writing scores (cf. first
term in Eq. 7), the correlations between (a) reading error scores
and writing errors scores (cf. second term in Eq. 7), (b) reading
error scores and writing true scores (cf. third term in Eq. 7), and
(c) writing errors scores and reading true scores (cf. forth term
in Eq. 7), served to mitigate the effect of that attenuation. Also
note that the observed score correlation (0.90) is more in-line with
the true score correlation (0.91) than what Spearman’s (1904) cor-
rection formula yielded (i.e., 0.90/

√
0.71 × 0.65 = 1.33). Given

that Spearman’s correction produced a value in excess of 1.00, it

Table 2 | Values for observed score correlation computation for SAT

and beck data.

Component SAT Beck

r (T X, TY) 0.91 0.69

r (EX, EY) 0.84 0.76

r (T X, EY) 0.62 0.47

r (TY, EX) 0.68 −0.14

rXX(SD2
TX

/SD2
OX

) 0.71 0.79

rYY(SD2
TY

/SD2
OY

) 0.65 0.83

eXX(SD2
TX

/SD2
OX

) 0.05 0.21

eYY (SD2
TY

/SD2
OY

) 0.06 0.17

would be more accurate to report the observed score correlation,
rather than follow conventional guidelines (e.g., Onwuegbuzie
et al., 2004) and report 1.00.

PSYCHOLOGY EXAMPLE
We applied Eq. 6 to average class BDI-II (Beck, 1996) and BAI
(Beck, 1990) scores from Nimon and Henson, 2010; see Table 3).
In their study, students responded to the BDI-II and BAI at two
times within the same semester (i.e., time-1, time-2). Following
Wetcher-Hendricks’ (2006) example of using predicted scores as
true scores, we used scores for time-1 as observed data and the
predicted scores (regressing time-2 on time-1) as true scores. As in
the education example, we subtracted true scores from observed
scores to compute error scores. The components of Eq. 6 applied
to Nimon and Henson’s (2010) data are presented in Table 2 and
yield the observed score correlation of 0.81, as follows:

rOXOY = 0.69
√

0.79 × 0.83 + 0.76
√

0.21
√

0.17

+ 0.47
√

0.17
√

0.79 − 0.14
√

0.21
√

0.83

0.81 = 0.56 + 0.14 + 0.17 − 0.06

(8)

In Nimon and Henson’s (2010) data, the true score correla-
tion (0.69) is lower than the observed score correlation (0.81).
In this case, the attenuating effect of unreliability in scores was
mitigated by other relationships involving error scores which,
in the end, served to increase the observed correlation rather
than attenuate it. As in the SAT data, Spearman’s (1904) cor-
rection (0.81/

√
0.79 × 0.83 = 1.00) produced an over corrected

correlation coefficient. The over-correction resulting from Spear-
man’s correction was largely due to the formula not taking into
account the correlation between the error scores and the corre-
lation between the true anxiety score and the error depression
score.

SUMMARY
Classical test theory can be used to prove that ρTX EX

, ρTY EY
, ρTX EY

,
and ρTY EX

all equal to 0 in a given population (Zimmerman, 2007).
However, the tenets of CTT do not provide proof that ρEX EY

= 0.
Furthermore, in the case of sample data, rTXEX , rTYEY , rTXEY , rTYEX ,
and rEXEY are not necessarily zero.

Table 3 | Beck data observed, error, and true scores.

Class Depression scores (BDI-II) Anxiety scores (BAI)

Observed (OY) True (TY) Error (EY) Observed (OY) True (TY) Error (EY)

1 6.67 7.76 −1.10 7.34 9.08 −1.74

2 10.26 10.45 −0.19 11.04 11.26 −0.22

3 5.92 4.75 1.17 9.69 8.69 1.00

4 7.21 7.40 −0.19 7.00 6.98 0.02

5 6.85 7.28 −0.43 7.31 6.40 0.91

6 6.78 6.67 0.12 9.27 8.84 0.43

7 6.13 6.82 −0.70 6.60 7.70 −1.09

8 11.54 10.23 1.32 12.62 11.93 0.69

M 7.67 7.67 0.00 8.86 8.86 0.00

SD 2.06 1.88 0.85 2.17 1.94 0.98
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Because rTXEX , rTYEY , rTXEY , rTYEX , and rEXEY may not be zero
in any given sample, researchers cannot assume that poor reliabil-
ity will always result in lower observed score correlations. As we
have demonstrated, observed score correlations may be less than
or greater than their true score counterparts and therefore less or
more accurate than correlations adjusted by Spearman’s (1904)
formula.

Just as reliability affects the magnitude of observed score corre-
lations, it follows that statistical significance tests are also impacted
by measurement error. While error that causes observed score cor-
relations to be greater than their true score counterparts increases
the power of statistical significance tests, error that causes observed
score correlations to be less than their true score counterparts
decreases the power of statistical significance tests, with all else
being constant. Consider the data from Nimon and Henson (2010)
as an example. As computed by G∗Power 3 (Faul et al., 2007), with
all other parameters held constant, the power of the observed score
correlation (rOXOY = 0.81, 1 − β = 0.90) is greater than the power
of true score correlation (rTXTY = 0.69, 1 − β = 0.62). In this case,
error in the data served to decrease the Type II error rate rather
than increase it.

As we leave this section, it is important to note that the effect
of reliability on observed score correlation decreases as reliability
and sample size increase. Consider two research settings reviewed
in Zimmerman (2007): In large n studies involving standardized
tests, “many educational and psychological tests have generally
accepted reliabilities of 0.90 or 0.95, and studies with 500 or 1,000
or more participants are not uncommon” (p. 937). In this research
setting, the correction for and the effect of reliability on observed
score correlation may be accurately represented by Eqs 2 and 3,
respectively, as long as there is not substantial correlated error
in the population. However, in studies involving a small number
of participants and new instrumentation, reliability may be 0.70,
0.60, or lower. In this research setting, Eq. 2 may not accurately
correct and Eq. 3 may not accurately represent the effect of mea-
surement error on an observed score correlation. In general, if the
correlation resulting from Eq. 2 is much greater than the observed
score correlation, it is probably inaccurate as it does not consider
the full effect of measurement error and error score correlations
on the observed score correlation (cf. Eq. 4, Zimmerman, 2007).

RELIABILITY: HOW DO WE ASSESS?
Given that reliability affects the magnitude and statistical sig-
nificance of sample statistics, it is important for researchers to
assess the reliability of their data. The technique to assess reliabil-
ity depends on the type of measurement error being considered.
Under CTT, typical types of reliability assessed in educational
and psychological research are test–retest, parallel-form, inter-
rater, and internal consistency. After we present the aforemen-
tioned techniques to assess reliability, we conclude this section by
countering a common myth regarding their collective nature.

TEST–RETEST
Reliability estimates that consider the consistency of scores across
time are referred to as test–retest reliability estimates. Test–retest
reliability is assessed by having a set of individuals take the same
assessment at different points in time (e.g., week 1, week 2) and

correlating the results between the two measurement occasions.
For well-developed standardized achievement tests administered
reasonably close together, test–retest reliability estimates tend to
range between 0.70 and 0.90 (Popham, 2000).

PARALLEL-FORM
Reliability estimates that consider the consistency of scores across
multiple forms are referred to as parallel-form reliability estimates.
Parallel-form reliability is assessed by having a set of individuals
take different forms of an instrument (e.g., short and long; Form
A and Form B) and correlating the results. For well-developed
standardized achievement tests, parallel-form reliability estimates
tend to hover between 0.80 and 0.90 (Popham, 2000).

INTER-RATER
Reliability estimates that consider the consistency of scores across
raters are referred to as inter-rater reliability estimates. Inter-rater
reliability is assessed by having two (or more) raters assess the
same set of individuals (or information) and analyzing the results.
Inter-rater reliability may be found by computing consensus esti-
mates, consistency estimates, or measurement estimates (Stemler,
2004):

Consensus
Consensus estimates of inter-rater reliability are based on the
assumption that there should be exact agreement between
raters. The most popular consensus estimate is simple percent-
agreement, which is calculated by dividing the number of cases
that received the same rating by the number of cases rated. In
general, consensus estimates should be 70% or greater (Stemler,
2004). Cohen’s kappa (κ; Cohen, 1960) is a derivation of simple
percent-agreement, which attempts to correct for the amount of
agreement that could be expected by chance:

κ = po − pc

1 − pc
(9)

where po is the observed agreement among raters and pc is
the hypothetical probability of chance agreement. Kappa val-
ues between 0.40 and 0.75 are considered moderate, and values
between 0.75 and 1.00 are considered excellent (Fleiss, 1981).

Consistency
Consistency estimates of inter-rater reliability are based on the
assumption that it is unnecessary for raters to yield the same
responses as long as their responses are relatively consistent. Inter-
rater reliability is typically assessed by correlating rater responses,
where correlation coefficients of 0.70 or above are generally
considered acceptable (Barrett, 2001).

Measurement
Measurement estimates of inter-rater reliability are based on the
assumption that all rater information (including discrepant rat-
ings) should be used in creating a scale score. Principal compo-
nents analysis is a popular technique to compute the measurement
estimate of inter-rater reliability (Harman, 1967). If the amount
of shared variance in ratings that is accounted for by the first prin-
cipal component is greater than 60%, it is assumed that raters are
assessing a common construct (Stemler, 2004).
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INTERNAL CONSISTENCY
Reliability estimates that consider item homogeneity, or the degree
to which items on a test are internally consistent, are referred to
as internal consistency reliability estimates. Measures of internal
consistency are the most commonly reported form of reliability
coefficient because they are readily available from a single admin-
istration of a test (Hogan et al., 2000; Henson, 2001). Internal con-
sistency reliability is typically assessed by computing coefficient
alpha (α; Cronbach, 1951):

α = k

(k − 1)

[

1 −
(∑

SD2
i

SD2
Total

)]

(10)

where k refers to the number of items on the assessment device, i
refers to item, and Total refers to the total scale score.

Note that the first part of the formula [k/(k − 1)] attempts to
“correct” for potential bias in scales that have a small number of
items. The rationale is that the more items in a scale, the less likely
items will be biased. As k increases, the correction for bias becomes
smaller. For two items, the correction is 2 [2/(2 − 1)]. For 10 items,
the correction is 1.1, and for 100 items, the correction is only 1.01.

Due to the impact that internal consistency has on the inter-
pretation of scale scores and variable relationships, researchers
typically relate estimates of internal consistency to established
benchmarks. Henson (2001) reviewed such benchmarks and cited
0.90 as a minimum internal consistency estimate for standard-
ized test scores used for important educational decisions and 0.80
for scores used for general research purposes. Nunnally (1967)
suggested minimum reliabilities of 0.60 or 0.50 for early stages
of research, but this was increased to an exploratory standard of
0.70 in his second edition (1978, see also Nunnally and Bern-
stein, 1994). This change may have resulted in “many researchers
citing Nunnally (1978) if they attained this loftier standard and
citing the first edition if they did not!” (Henson, 2001, p. 181). In
general, internal consistency estimates should be strong for most
research purposes, although the exact magnitude of an acceptable
coefficient alpha would depend on the purposes of the research.

For example, it is conceivable that coefficient alpha can be too
high, which would occur when the items of measurement are
highly redundant and measuring the same aspect of a construct.
At the extreme of this case, all items would be perfectly correlated
and thus alpha would be a perfect 1.00 (see Henson, 2001, for a
demonstration). This would reflect poor measurement because of
redundancy and, possibly, failure to reflect an appropriate breadth
of items from the range of all possible items that could be used
to measure the construct (cf. Hulin et al., 2001). Furthermore, a
high coefficient alpha is sometimes misinterpreted as an indicator
of unidimensionality. This is not the case, and in his summary
thoughts on the history of his formula, Cronbach (2004) noted he
had “cleared the air by getting rid of the assumption that the items
of a test were unidimensional” (p. 397). It is certainly possible to
find substantial alpha coefficients even when there are multiple
(sometimes subtle) constructs represented in the data.

Conversely, low alphas may indeed reflect a failure to recog-
nize multiple dimensions within a data set, particularly when
those dimensions or factors are weakly correlated. In such cases,
researchers should first explore the factor structure of their data

prior to computation of alpha, and alpha generally should be com-
puted at the subscale (e.g., factor) level rather than on a global
test level when there are multiple constructs being assessed. The
bottom line is that the interpretation of coefficient alpha when
assessing constructs should consider (a) item representativeness
and breadth and (b) desired overlap between items.

MULTIPLE SOURCES OF MEASUREMENT ERROR
It is important to note that the sources of measurement error
described in this section are separate and cumulative (cf. Anastasi
and Urbina, 1997). As noted by Henson (2001),

Too many researchers believe that if they obtain α = 0.90
for their scores, then the same 10% error would be found
in a test–retest or inter-rater coefficient. Instead, assuming
10% error for internal consistency, stability, and inter-rater,
then the overall measurement error would be 30%, not 10%
because these estimates explain different sources of error (p.
182).

The point to be made here is that measurement error can origi-
nate from a variety of sources, which can lead to more cumulative
measurement error than the researcher might suspect. Of course,
this can impact observed relationships, effect sizes, and statistical
power.

In order to get a better understanding of the sources of mea-
surement error in scores, generalizability theory (G theory) can be
employed which allows researchers to“(a) consider simultaneously
multiple sources of measurement error, (b) consider measurement
error interaction effects, and (c) estimate reliability coefficients
for both “relative” and “absolute” decisions” (Thompson, 2003b,
p. 43). As a full discussion of G theory is beyond the scope of this
article, readers are directed to Shavelson and Webb (1991) for an
accessible treatment. We continue with a discussion of how pub-
lished reliability estimates can be used to inform research design
and RG studies.

HOW DO WE PLAN? THE ROLE OF RG
As defined by Vacha-Haase (1998), RG is a method that helps
characterize the reliability estimates for multiple administrations
of a given instrument. Vacha-Haase further described RG as an
extension of validity generalization (Schmidt and Hunter, 1977;
Hunter and Schmidt, 1990) and stated that RG “characterizes (a)
the typical reliability of scores for a given test across studies, (b) the
amount of variability in reliability coefficients for given measures,
and (c) the sources of variability in reliability coefficients across
studies” (p. 6). RG assesses the variability in reliability estimates
and helps identify how sample characteristics and sampling design
impacts reliability estimates.

In a meta-analysis of 47 RG studies, Vacha-Haase and Thomp-
son (2011) found that the average of the coefficient alpha means
from these studies was 0.80 (SD = 0.09) with a range from 0.45
to 0.95. These results illustrate the extent to which reliability
estimates can vary across studies, and in this case, across instru-
ments. Because any given RG study quantifies the variation of
reliability across studies for a given instrument, the results empir-
ically demonstrate that the phrases “the reliability of the test” and
“the test is not reliable” are inappropriate and that reliability is
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a property inured to data, not instrumentation (Thompson and
Vacha-Haase, 2000, p. 175).

Results from RG studies also provide empirical evidence that
reliability estimates can vary according to sample characteristics.
In their meta-analysis, Vacha-Haase and Thompson (2011) found
that “the most commonly used predictor variables included gen-
der (83.3% of the 47 RG studies), sample size (68.8%), age in years
(54.2%), and ethnicity (52.1%)” (p. 162). Upon evaluating pre-
dictor variables across studies, they found number of items and
the sample SD of scale scores to be noteworthy, as well as age
and gender. However, as is true with all analyses Vacha-Haase and
Thompson’s review was contingent on the independent variables
included in the models, as variable omission can impact results
(cf. Pedhazur, 1997).

USING RG TO PLAN
While RG studies demonstrate the importance of assessing relia-
bility estimates for the data in hand, they can also help researchers
make educated decisions about the design of future studies.
Researchers typically devote considerable energies toward study
design because a poorly designed study is likely to produce results
that are not useful or do not provide reliable answers to research
questions. When data need to be collected from study partici-
pants, researchers must determine the most suitable instrument
and should consult existing literature to understand the relation-
ship between the reliability of the data to be measured and the
population of interest. When available, an RG study can help
guide researchers in the instrument selection process. By consult-
ing reliability estimates from published reports, researchers can
form hypotheses about whether or not reliability estimates will be
acceptable given their sample and testing conditions.

To illustrate how RG studies can improve research design, we
provide a hypothetical example. Presume that we want to conduct
a study on a sample of fifth-grade students and plan to admin-
ister the Self-Description Questionnaire (SDQ; cf. Marsh, 1989).
Because we want to conduct a study that will produce useful results,
we endeavor to predict if scores from our sample are likely to
produce acceptable levels of reliability estimates. Also, presume
we are considering modifications such as shortening the 64-item
instrument (because of limitations in the available time for admin-
istration) and changing the original five-point Likert type scale to
a six-point Likert type scale (because of concern about response
tendency with a middle option).

Results from Leach et al.’s (2006) RG study of the SDQ may
help us decide if the SDQ might be an appropriate instrument to
administer to our sample and if our proposed modifications might
result in acceptable reliability estimates. For each domain of the
SDQ, Leach et al. found that the reliability estimates tended to be
within an acceptable range with general self-concept (GSC) scores
yielding lower reliability estimates. However, even for GSC scores,
the majority of the reliability estimates were within the acceptable
range. Furthermore, Leach et al. found that “the most pervasive
(predictor of reliability variation) seemed to be the role of the five-
point Likert scale and use of the original version (unmodified) of
the SDQ I” (p. 300).

The RG study suggests that SDQ I scores for our hypothet-
ical example would likely yield acceptable levels of reliability

presuming we did not modify the original instrument by short-
ening the instrument or changing the five-point Likert scale, and
also assuming we employ a sample that is consistent with that for
which the instrument was developed. These decisions help us with
study design and mitigate our risk of producing results that might
not be useful or yield biased effect sizes.

As illustrated, prior to administering an instrument, researchers
should consult the existing literature to determine if an RG study
has been conducted. RG studies have been published on a vari-
ety of measures and in a variety of journals. Researchers might
first want to consult Vacha-Haase and Thompson (2011), as the
authors provided references to 47 RG studies, including reports
from Educational and Psychological Measurement, Journal of
Nursing Measurement, Journal of Personality Assessment, Person-
ality and Individual Differences, Personal Relationships, Journal of
Marriage and Family, Assessment, Psychological Methods, Jour-
nal of Cross-Cultural Psychology, Journal of Managerial Issues,
and International Journal of Clinical and Health Psychology. The
fundamental message is that RG studies are published, and con-
tinue to be published, on a variety of measures in a variety of
journals including journals focusing on measurement issues and
substantive analyses.

BARRIERS TO CONDUCTING RG STUDIES
Researchers need to be cognizant of the barriers that impact RG
results, as these barriers limit the generalization of results. Insuf-
ficient reporting of reliability estimates and sample characteristics
are primary difficulties that impact the quality of RG results. When
details about measurement and sampling designs are not provided,
model misspecifications in RG studies may occur (Vacha-Haase
and Thompson, 2011). As Dimitrov (2002) noted, misspecifi-
cations may “occur when relevant characteristics of the study
samples are not coded as independent variables in RG analysis”
(p. 794). When sampling variance is not included, the ability to
conduct extensions to Vacha-Haase’s (1998) RG method may also
be impeded. For example, Rodriguez and Maeda (2006) noted
that some RG studies make direct adjustments of alpha coeffi-
cients. However they noted problems with adjusting some but not
all alphas in RG studies when researchers fail to publish sample
variances.

Reliability estimates
Meticulous RG researchers have been discouraged to find that
many of the studies they consult either (a) only report the relia-
bilities from previous studies (i.e., induct reliability coefficients)
and not report reliabilities from their sample at hand or (b) do not
report reliabilities at all (cf. Vacha-Haase et al., 2002). Vacha-Haase
and Thompson (2011) found that “in an astounding 54.6% of the
12,994 primary reports authors did not even mention reliability!”
and that “in 15.7% of the 12,994 primary reports, authors did
mention score reliability but merely inducted previously reported
values as if they applied to their data” (p. 161).

The file drawer problem of researchers not publishing results
that were not statistically significant might be another factor
that limits RG results. As discussed above, when reliability esti-
mates are low, the ability to obtain noteworthy effect sizes can
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be impacted. Rosenthal (1979) noted that the file drawer prob-
lem might, in the extreme case, result in journals that “are filled
with the 5% of the studies that show Type I errors, while the file
drawers back at the lab are filled with the 95% of the studies that
show non-significant (e.g., p > 0.05) results” (p. 638). As noted by
Rosenthal (1995), when conducting meta-analyses, a solution to
the file drawer problem does not exist, “but reasonable bound-
aries can be established on the problem, and the degree of damage
to any research conclusion that could be done by the file drawer
problem can be estimated” (Rosenthal, 1995, p. 189). Because RG
studies are meta-analyses of reliability estimates, RG studies are
not immune to a biased sample of statistically significant studies
and reliability estimates that never make it out of the file drawer
might be lower than the estimates published in refereed journal
publications.

Sample characteristics
Insufficient reporting of sample variance, sample characteris-
tics, and sample design is another barrier impacting RG results.
Insufficient reporting practices have been documented by sev-
eral researchers. Miller et al. (2007) noted “given the archival
nature of the analysis, however, selection of predictor variables
was also limited to those that were reported in the reviewed
articles” (p. 1057). Shields and Caruso (2004) noted limita-
tions on coding variables and stated that “practical considera-
tions and insufficient reporting practices in the literature restrict
the number and type of predictor variables that can be coded”
(p. 259). Within teacher education research, for example, Zien-
tek et al. (2008) found that only 9% of the articles “included
all of the elements necessary to possibly conduct a replication
study” (p. 210) and that many studies fail to report both means
and SD.

REPORTING RECOMMENDATIONS
In order to improve RG studies and remove barriers encoun-
tered with insufficient reporting practices, we propose a list
of relevant information in Figure 4 to be included in journal
articles and research publications. Reporting this information
will facilitate RG researchers’ ability to conduct meaningful RG
studies. Many of these items are necessary for study replica-
tion; hence they adhere to recommendations from the Amer-
ican Educational Research Association (AERA, 2006) and the
American Psychological Association (APA, 2009b). We want to
emphasize the importance of providing (a) the means and SD
for each subscale, (b) the number of items for each subscale,
and (c) the technique used to compute scale scores (e.g., sum,
average).

To illustrate how these can be presented succinctly within a
journal article format, we present a sample write-up in the Appen-
dix. This narrative can serve as a guide for journal publications and
research reports and follows the American Psychological Associa-
tion (APA, 2009a) guidelines to help reduce bias when reporting
sample characteristics. According to APA (2009a),

Human samples should be fully described with respect to
gender, age, and, when relevant to the study, race or eth-
nicity. Where appropriate, additional information should be
presented (generation, linguistic background, socioeconomic
status, national origin, sexual orientation, special interest
group membership, etc.). (p. 4)

In addition to improving the ability to conduct RG studies, pro-
viding this information will allow future researchers to replicate
studies and compare future findings with previous findings. To
address journal space limitations and ease in readability, group
means, SD, and reliability estimates may be disaggregated within

FIGURE 4 | Recommended data to report for each set of scores subjected

to an inferential test. Note: Data should be reported for each set of scores
analyzed across all measurement occasions (e.g., pre-test, post-test) and

groups (e.g., gender, management level). aThe Appendix adheres to the APA
(2009a) recommendations for reporting race. Reporting of sample
characteristics by race should follow APA (2009a) guidelines.
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a table, as illustrated in the Appendix. Readers can also consult
Pajares and Graham (1999) as a guide for presenting data.

WHAT DO WE DO IN THE PRESENCE OF UNRELIABLE DATA?
Despite the best-laid plans and research designs, researchers will at
times still find data with poor reliability. In the real-world problem
of conducting analyses on unreliable data, researchers are faced
with many options which may include: (a) omitting variables from
analyses, (b) deleting items from scale scores, (c) conducting“what
if” reliability analyses, and (d) correcting effect sizes for reliability.

OMITTING VARIABLES FROM ANALYSES
Yetkiner and Thompson (2010) suggested that researchers omit
variables (e.g., depression, anxiety) that exhibit poor reliability
from their analyses. Alternatively, researchers may choose to con-
duct SEM analyses in the presence of poor reliability whereby
latent variables are formed from item scores. The former become
the units of analyses and yield statistics as if multiple-item scale
scores had been measured without error. However, as noted by
Yetkiner and Thompson, reliability is important even when SEM
methods are used, as score reliability affects overall fit statistics.

DELETING ITEMS FROM SCALE SCORES
Rather than omitting an entire variable (e.g., depression, anxiety)
from an analysis, a researcher may choose to omit one or more
items (e.g., BDI-1, BAI-2) that are negatively impacting the relia-
bility of the observed score. Dillon and Bearden (2001) suggested
that researchers consider deleting items when scores from pub-
lished instruments suffer from low reliability. Although “extensive
revisions to prior scale dimensionality are questionable . . . one or
a few items may well be deleted” in order to increase reliability
(Dillon and Bearden, p. 69). Of course, the process of item dele-
tion should be documented in the methods section of the article.
In addition, we suggest that researchers report the reliability of the
scale with and without the deleted items in order to add to the
body of knowledge of the instrument and to facilitate the ability
to conduct RG studies.

CONDUCTING “WHAT IF” RELIABILITY ANALYSES
Onwuegbuzie et al. (2004) proposed a “what if reliability” analysis
for assessing the statistical significance of bivariate relationships.
In their analysis, they suggested researchers use Spearman’s (1904)
correction formula and determine the “minimum sample size
needed to obtain a statistically significant r based on observed
reliability levels for x and y” (p. 236). They suggested, for example,
that when rOXOY = 0.30, rxx = 0.80, ryy = 0.80, rTXTY , based on
Spearman’s formula, yields 0.38 (0.30/

√
(0.80 × 0.80)) and “that

this corrected correlation would be statistically significant with a
sample size as small as 28” (p. 235).

Underlying the Onwuegbuzie et al. (2004) reliability analysis,
presumably, is the assumption the error is uncorrelated in the
population and sample. However, even in the case that such an
assumption in tenable, the problem of “what if reliability” analysis
is that the statistical significance of correlation coefficients that
have been adjusted by Spearman’s formula cannot be tested for
statistical significance (Magnusson, 1967). As noted by Muchinsky
(1996):

Suppose an uncorrected validity coefficient of 0.29 is signifi-
cantly different than zero at p = 0.06. Upon application of the
correction for attenuation (Spearman’s formula), the validity
coefficient is elevated to 0.36. The inference cannot be drawn
that the (corrected) validity coefficient is now significantly
different from zero at p < 0.05 (p. 71).

As Spearman’s formula does not fully account for the measure-
ment error in an observed score correlation, correlations based on
the formula have a different sampling distribution than correla-
tions based on reliable data (Charles, 2005). Only in the case when
the full effect of measurement error on a sample observed score
correlation has been calculated (i.e., Eq. 4 or its equivalent) can
inferences be drawn about the statistical significance of rTXTY .

CORRECTING EFFECT SIZES FOR RELIABILITY
In this article we presented empirical evidence that identified limi-
tations associated with reporting correlations based on Spearman’s
(1904) correction. Based on our review of the theoretical and
empirical literature concerning Spearman’s correction, we offer
researchers the following suggestions.

First, consider whether correlated errors exist in the population.
If a research setting is consistent with correlated error (e.g., tests are
administered on the same occasion, similar constructs, repeated
measures), SEM analyses may be more appropriate to conduct
where measurement error can be specifically modeled. However,
as noted by Yetkiner and Thompson (2010), “score reliability esti-
mates do affect our overall fit statistics, and so the quality of our
measurement error estimates is important even in SEM” (p. 9).

Second, if Spearman’s correction is greater than 1.00, do not
truncate to unity. Rather consider the role that measurement and
sampling error is playing in the corrected estimate. In some cases,
the observed score correlation may be closer to the true score
correlation than a corrected correlation that has been truncated
to unity. Additionally, reporting the actual Spearman’s correction
provides more information than a value that has been truncated
to unity.

Third, examine the difference between the observed score cor-
relation and Spearman’s correction. Several authors have suggested
that a corrected correlation “very much higher than the original
correlation” (i.e., 0.85 vs. 0.45) is “probably inaccurate” (Zim-
merman, 2007, p. 938). A large difference between an observed
correlation and corrected correlation “could be explained by cor-
related errors in the population, or alternatively because error are
correlated with true scores or with each other in an anomalous
sample” (Zimmerman, 2007, p. 938).

Fourth, if analyses based on Spearman’s correction are reported,
at a minimum also report results based on observed score correla-
tions. Additionally, explicitly report the level of correlation error
that is assumed to exist in the population.

CONCLUSION
In the present article, we sought to help researchers understand
that (a) measurement error does not always attenuate observed
score correlations in the presence of correlated errors, (b) different
sources of measurement error are cumulative, and (c) reliability
is a function of data, not instrumentation. We demonstrated that
reliability impacts the magnitude and statistical significance tests
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that consider variable relationships and identified techniques that
applied researchers can use to fully understand the impact of mea-
surement error on their data. We synthesized RG literature and
proposed a reporting methodology that can improve the quality
of future RG studies as well as substantive studies that they may
inform.

In a perfect world, data would be perfectly reliable and
researchers would not have worry to what degree their analyses
were subject to nuisance correlations that exist in sample data.

However, in the real-world, measurement error exists, can be
systematic, and is unavoidably coupled with sampling error. As
such, researchers must be aware of the full impact that measure-
ment error has on their results and do all that they can a priori
to select instruments that are likely to yield appropriate levels of
reliability for their given sample. If considering these factors, we
can better inform our collective research and move the fields of
education and psychology forward by meticulously reporting the
effects of reliability in our data.
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APPENDIX
EXAMPLE WRITE-UP FOR SAMPLE, INSTRUMENT, AND RESULT SECTIONS
Sample
A convenience sample of 420 students (200 fifth graders, 220 sixth graders) were from a suburban public intermediate school in the
southwest of the United States and included 190 Whites (100 males, 90 females; 135 regular education, 55 gifted education), 105 Blacks
(55 males, 50 females; 83 regular education, 22 gifted education), 95 Hispanics (48 males, 47 females; 84 regular education, 11 gifted
education), 18 Asians (9 males, 9 females; 13 regular education, 5 gifted education), and 12 Others (5 males, 7 females; 10 regular
education, 2 gifted education). The school consisted of 45% of students in high-poverty as defined by number of students on free
lunch. None of the students were in special education. Parental and/or student consent was obtained by 94% of the students, providing
a high response rate.

INSTRUMENT
Marat (2005) included an instrument that contained several predictors of self-efficacy (see Pintrich et al., 1991; Bandura, 2006). In
the present study, five constructs were included: Motivation Strategies (MS: 5 items); Cognitive Strategies (CS; 15 items); Resource
Management Strategies (MS; 12 items); Self-Regulated Learning (SRL; 16 items); and Self-Assertiveness (SA; 6 items). No modifications
were made to the items or the subscales but only five of the subscales from the original instrument listed above were administered. The
English version of the instrument was administered via paper to students by the researchers during regular class time and utilized a
five-point Likert scale anchored from 1 (not well) to 5 (very well). Composite scores were created for each construct by averaging the
items for each subscale.

RESULTS
Coefficient alpha was calculated for the data in hand resulting in acceptable levels of reliability for MS (0.82, 0.84), CS (0.85, 0.84), RMS
(0.91, 0.83), SRL (0.84, 86), and SA (0.87, 0.83), fall and spring, respectively (Thompson, 2003a).

GIFTED AND REGULAR STUDENTS
Table A1 provides the reliability coefficients, bivariate correlations, means, SD for each factor disaggregated by gifted and regular
students.

Table A1 | Bivariate correlations, means, SD, and reliability coefficient disaggregated by gifted and

regular education students.

α, Coefficient alpha; M, mean; SD, standard deviation. Bivariate correlations below the diagonal are for Gifted students

and above the diagonal are for Regular education students. MS, motivation strategies; CS, cognitive strategies; RMS,

resource management strategies; SRL, self-regulated learning; SA, self-assertiveness.
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The focus of this paper is to analyze whether the unreliability of results related to cer-
tain controversial psychological phenomena may be a consequence of their low statistical
power. Applying the Null Hypothesis StatisticalTesting (NHST), still the widest used statisti-
cal approach, unreliability derives from the failure to refute the null hypothesis, in particular
when exact or quasi-exact replications of experiments are carried out. Taking as example
the results of meta-analyses related to four different controversial phenomena, sublimi-
nal semantic priming, incubation effect for problem solving, unconscious thought theory,
and non-local perception, it was found that, except for semantic priming on categorization,
the statistical power to detect the expected effect size (ES) of the typical study, is low or
very low. The low power in most studies undermines the use of NHST to study phenom-
ena with moderate or low ESs. We conclude by providing some suggestions on how to
increase the statistical power or use different statistical approaches to help discriminate
whether the results obtained may or may not be used to support or to refute the reality of
a phenomenon with small ES.

Keywords: incubation effect, non-local perception, power, subliminal priming, unconscious thought theory

INTRODUCTION
ARE THERE ELUSIVE PHENOMENA OR IS THERE AN “ELUSIVE” POWER
TO DETECT THEM?
When may a phenomenon be considered to be real or very
probable, following the rules of current scientific methodology?
Among the many requirements, there is a substantial consen-
sus that replication is one of the more fundamental (Schmidt,
2009). In other words, a phenomenon may be considered real
or very probable when it has been observed many times and
preferably by different people or research groups. Whereas a
failure to replicate is quite expected in the case of conceptual
replication, or when the experimental procedure or materials
entail relevant modifications, a failure in the case of an exact
or quasi-exact replication, give rise to serious concerns about
the reality of the phenomenon under investigation. This is the
case in the four phenomena used as examples in this paper,
namely, semantic subliminal priming, incubation effects on prob-
lem solving,unconscious thought,and non-local perception (NLP;
e.g., Kennedy, 2001; Pratte and Rouder, 2009; Waroquier et al.,
2009).

The focus of this paper is to demonstrate that for all phenomena
with a moderate or small effect size (ES), approximately below 0.5
if we refer to standardized differences such as Cohen’s d, the typical
study shows a power level insufficient to detect the phenomenon
under investigation.

Given that the majority of statistical analyses are based on the
Null Hypothesis Statistical Testing (NHST) frequentist approach,
their failure is determined by the rejection of the (nil) null hypoth-
esis H0, usually setting α < 0.05. Even if this procedure is consid-
ered incorrect because the frequentist approach only supports H0

rejection and not H0 validity1, it may be tolerated if there is proof
of a high level of statistical power as recommended in the recent
APA statistical recommendations [American Psychological Asso-
ciation, APA (2010)]: “Power: When applying inferential statistics,
take seriously the statistical power considerations associated with
the tests of hypotheses. Such considerations relate to the likeli-
hood of correctly rejecting the tested hypotheses, given a particular
alpha level, ES, and sample size. In that regard, routinely provide
evidence that the study has sufficient power to detect effects of sub-
stantive interest. Be similarly careful in discussing the role played
by sample size in cases in which not rejecting the null hypoth-
esis is desirable (i.e., when one wishes to argue that there are no
differences), when testing various assumptions underlying the sta-
tistical model adopted (e.g., normality, homogeneity of variance,
homogeneity of regression), and in model fitting. pag. 30.”

HOW MUCH POWER?
Statistical power depends on three classes of parameters: (1) the
significance level (i.e., the Type I error probability) of the test, (2)
the size(s) of the sample(s) used for the test, and (3) an ES para-
meter defining H1 and thus indexing the degree of deviation from
H0 in the underlying population.

Power analysis should be used prospectively to calculate the
minimum sample size required so that one can reasonably detect
an effect of a given size. Power analysis can also be used to calculate

1The line of reasoning from “the null hypothesis is false” to “the theory is therefore
true” involves the logical fallacy of affirming the consequent: “If the theory is true,
the null hypothesis will prove to be false. The null hypothesis proved to be false;
therefore, the theory must be true” (Nickerson, 2000).
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the minimum ES that is likely to be detected in a study using a given
sample size.

In most experimental designs, the accepted probability of mak-
ing a Type I error is α= 0.05 and the desired power is not less
than 0.80. However, in order to define how to obtain such a level
of power, it is necessary to know the ES of the phenomena being
identified. It is intuitive that the smaller the phenomenon, the
greater should be the means to detect it. This analogy is similar to
the signal/noise relationship. The smaller the signal, the stronger
must be the means to detect it in the noise. In psychological exper-
iments, these means are the number of participants taking part in
the study and the number of trials they are requested to perform.

Given that Power= 1−β= ES∗
√

N/SD∗ α, if we know the esti-
mated ES of a phenomenon, after the definition of the desired
power and the α level, the only free parameters is N, that is the
number of participants or trials.

A review of 322 meta-analyses published before 1998, summa-
rizing 25,000 studies referred to 474 social psychological effects,
reports that the mean ES reported is r = 0.21 and the mode was less
than r = 0.10 (Richard et al., 2003). For this observed mean ES, to
obtain a statistical power for independent sample t tests=>0.9,
the sample size for each group should be at least 90, a number
rarely observed in the studies.

Setting aside the strong criticisms of the use of NHST (Cohen,
1994; Kline, 2004), a neglected aspect of this approach, is the con-
trol of how much statistical power is necessary to detect what the
researcher aims to find2.

This problem is not new and has already been raised by
Sedlmeier and Gigerenzer (1989), Cohen (1992), Bezeau and
Graves (2001), and Maxwell (2004) among others. However
the widespread adherence to “The Null Ritual” as discussed by
Gigerenzer et al. (2004), which consists in: (a) Set up a statistical
null hypothesis of “no mean difference” or “zero correlation.” (b)
Don’t specify the predictions of your research hypothesis or of
any alternative substantive hypotheses; (c) Use 5% as a conven-
tion for rejecting the null; (d) If significant, accept your research
hypothesis (e) Always perform this procedure, seems to prevent
most researchers taking into account such fundamental statistical
parameter. In Gigerenzer et al. (2004) check, covering the years
2000–2002, and encompassing with some 220 empirical articles,
only nine researchers who computed the power of their tests were
found.

Using the results of four recent meta-analyses related to “con-
troversial” or “elusive” psychological phenomena, we illustrate the
importance of using the available ESs to derive the appropriate
number of participants to achieve a power=>0.90. Only if a
replication fails with this level of power, it is legitimate to raise
doubts about the reality of the phenomena under investigation.

CAN SUBLIMINALLY PRESENTED INFORMATION INFLUENCE
BEHAVIOR?
This question is one of the most controversial questions in psychol-
ogy and it remains an intriguing and strongly debated issue. Apart
from the controversies relating to the controls that information

2Even if power estimate is important in meta-analyses (i.e., Valentine et al., 2009),
in this paper we focus only on power estimates in single studies.

(priming) was effectively masked and the identification of serious
methodological flaws which caused great doubt as to the existence
of subliminal processing, the debate is even hotter around the topic
of the level of influence of this unconscious (subliminal) informa-
tion. Hitherto, the debate as to whether subliminal priming reflects
genuine semantic processing of the subliminal information or the
formation of automatic S–R mappings remains unresolved.

The meta-analysis of Van den Bussche et al. (2009) tried to
shed light on these questions by analyzing all the available litera-
ture between 1983 and December 2006. Their analysis was carried
out separately from the two most studied protocols, subliminal
priming for semantic categorization and subliminal priming for
lexical decision and naming. If semantic subliminal priming facil-
itated the subsequent categorization of targets belonging to the
same semantic category, it suggests that the primes were uncon-
sciously categorized and processed semantically. The same effect is
postulated if lexical decision and naming are faster or more accu-
rate to semantically subliminal related prime–target pairs than to
unrelated pairs. A naming task is similar to the lexical decision task
except that the targets are all words, and participants are asked to
name the targets aloud.

The synthesis of the main results is reported in Table 1.

DOES INCUBATION ENHANCE PROBLEM SOLVING?
The “incubation period” is the temporary shift away from an
unsolved problem in order to allow a solution to emerge in the
mind of the individual, seemingly with no additional effort, after
he or she has put the problem aside for a period of time, having
failed in initial attempts to solve it.

Among the questions under debate there is the problem of
whether the nature of the discovery of the solution is really uncon-
scious and if it is qualitatively different from that used to tackle
problems that do not require such insight.

The meta-analysis of Sio and Ormerod (2009) tried to shed light
on this and other related questions, analyzing all the available liter-
ature from 1964 to 2007. The main findings of their meta-analysis
are reported in Table 1.

UNCONSCIOUS THOUGHT THEORY
The key assumption of Unconscious Thought Theory (UTT, Dijk-
sterhuis et al., 2006) is that unconscious thought and conscious
thought are characterized by different processes. That is, “uncon-
scious thought” processes have a relatively large capacity – hence,
they allow for an optimal decision strategy in which all attributes
of chosen alternatives are weighted according to their importance.
These unconscious processes require time, therefore the quality
of decisions increases with the duration of unconscious thought.
“Conscious thought” processes on the other hand, have a small
capacity and therefore only allow for simplified decision making
strategies. As summarized by Dijksterhuis et al., 2006, p. 105):
“When a decision strategy warrants the careful and strict appli-
cation of one specific rule, as in a lexicographic strategy, use
conscious thought. When matters become more complicated and
weighting is called for, as in the weighting strategy, use unconscious
thought.”

As expected, among the questions raised by this theory, a criti-
cal problem is whether really optimal decisions are obtained after

Frontiers in Psychology | Quantitative Psychology and Measurement July 2012 | Volume 3 | Article 218 | 55

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Tressoldi Power replication unreliability

Table 1 | Descriptive statistics of the four meta-analyses, related to Unconscious Semantic Priming, Incubation effect, UTT, and NLP with the

estimated power of a typical study, the mean and 95% CI power calculated from all studies included in the meta-analysis and the number of

participants necessary to obtain a Power=0.90.

Phenomena Protocols Source N

studies

Averaged

N × study

(range)

ES*

(mean and

95% CI)

p Estimated

power of

a typical

study

Observed

power

(mean and

95% CI)

Estimated

N to

achieve

power=0.90

Semantic

priming

Semantic

categorization

Van den

Bussche et

al. (2009)

23 20 (6–80) 0.80±0.2 n.a. 0.96 0.90 (±1.7)

Lexical and

naming

Van den

Bussche et

al. (2009)

32 33 (9–132) 0.47±0.11 n.a. 0.84 0.69 (±0.4.6) 40

Incubation

effect

Sio and

Ormerod

(2009)

117 31 (7–278) 0.29±0.09 n.a. 0.21 0.43 (±3.3) 100

Unconscious

thought theory

Strick et al.

(2011)

92 26 (14–55) 0.22±0.08 1.2×10−8 0.20§ 0.19 (±0.72) 400§

Non-local

perception

Remote Vision Milton

(1997)

78 34 (1–74) 0.16±0.06 6×10−9 0.55 n.a. 73

Ganzfeld Storm et al.

(2010)

108 40 (7–128) 0.13±0.04 8.3×10−11 0.46 0.45 (±3.8) 110

Forced-choice

with normal state

of consciousness

Storm et al.

(in press)

72 128 (12–887) 0.011±0.004 5.3×10−7 0.07 0.065 (±0.81) 3450

*Random effect Cohen’s d; §two groups comparison.

a period of distraction from deliberate conscious mental activity
for the same amount of time as would be the case had the decisions
been taken deliberately.

The meta-analysis of Strick et al. (2011), aimed to give an
answer to this and other related questions by analyzing all the
available evidence up to May 2011. The main findings are reported
in Table 1.

NON-LOCAL PERCEPTION
Non-local perception (NLP) is based on the hypothesis that the
human mind may have quantum like properties, that is, that some
of its functions, such as perceptual abilities, reasoning, etc., may
be analyzed using quantum formalism.

The main non-local properties which are studied within the
realm of quantum physics and which are supported by “extraor-
dinary evidence” (see Genovese, 2005, 2010), are “entanglement”
and“measurement interference.”The first property, entanglement,
allows two or more physical objects to behave as one even if they
are separated in space and time. This “strange” property allows
a form of immediate communication of the objects’ character-
istics over distances between or among the entangled objects, as
has been observed in teleportation experiments (i.e., Bouwmeester
et al., 1997). The possibility that quantum-like properties may be
observed not only in physics but also even in biology and psy-
chology has not only been studied theoretically (von Lucadou
et al., 2007; Khrennikov, 2010; Walach and von Stillfried, 2011)
but also experimentally (see Gutiérrez et al., 2010 for biology and
Busemeyer et al., 2011, for psychology).

One of the main concerns about the studies related to different
aspects of NLP, is their inconsistency in obtaining results satisfying
the statistical cut off criteria to refute the null hypothesis that extra
sensory perception does not exist, usually setting α < 0.05.

This problem is recognized by some researchers involved in this
field of research (Kennedy, 2001) and even more by all deniers of
NLP evidence (e.g., Alcock, 2003).

The main findings of three meta-analysis related to three NLP
different protocols, Remote Vision, that is NLP using a free-choice
response (Milton, 1997), NLP in a Ganzfeld state using free-choice
response (Storm et al., 2010) and NLP in a normal state of con-
sciousness using a forced-choice response (Storm et al., in press),
covering all evidence available from 1964 to 1992, 1974 to 2009,
and 1987 to 2010 respectively, are reported in Table 1

POWER ESTIMATION
A synthesis of the descriptive statistics related to the four phenom-
ena described above is presented in Table 1 in decreasing order of
magnitude of ESs. For each meta-analysis, the retrospective sta-
tistical power with α= 0.05, achieved by a typical study using the
mean of the number of participants of all studies included in the
meta-analysis was estimated.

For all but one meta-analysis, it was also possible to calcu-
late the mean and 95% CI post hoc power, using the number of
participants of each study included in the meta-analyses and the
estimated random ES, setting α= 0.05.

Furthermore, for each of the four psychological phenom-
ena, the number of participants necessary to obtain a statistical

www.frontiersin.org July 2012 | Volume 3 | Article 218 | 56

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Tressoldi Power replication unreliability

power= 0.9 with α= 0.05 given the observed random ESs, was
estimated.

Statistical power was calculated using the software G∗Power
(Faul et al., 2007).

COMMENT
The results are quite clear: apart from the unconscious semantic
priming for semantic categorization, where the number of partic-
ipants in a typical experiment is sufficient to obtain a statistical
power above 0.90, for all remaining phenomena, to achieve this
level of power, it is necessary to increase the number of partici-
pants in a typical study, from a minimum of seven participants for
the unconscious semantic priming for lexical decision and nam-
ing to around 3400 to investigate NLP using the forced-choice with
normal state of consciousness protocol.

GENERAL DISCUSSION
The response to the question posed in the introduction, as to
whether there are elusive phenomena or an elusive power to detect
them, is quite clear. If there are clear estimates of ESs from the
evidence of the phenomenon derived from a sufficient number
of studies analyzed meta-analytically and their values are moder-
ate or low, it is mandatory to increase the number of participants
to achieve a statistical power of 0.90, with the inevitable conse-
quence of investing more time and money into each study before
interpreting the results as support for reality or unreality of a
phenomenon.

Are there alternatives to this obligation? Yes, and we briefly illus-
trate some of these, also providing references for those interested
in using them.

CONFIDENCE INTERVALS
In line with the statistical reform movement (i.e., Cumming,2012),
in the APA manual (American Psychological Association, APA,
2010), there are the following statistical recommendations “Alter-
natively, (to the use of NHST) use calculations based on a chosen
target precision (confidence interval width) to determine sample
sizes. Use the resulting confidence intervals to justify conclusions
concerning ESs (e.g., that some effect is negligibly small) p. 30.”

EQUIVALENCE TESTING
Equivalence tests are inferential statistics designed to provide
evidence for a null hypothesis. Like effect tests, the nil–null is
eschewed in equivalence testing. However unlike standard NHST,
equivalence tests provide evidence that there is little difference
or effect. A significant result in an equivalence test means that

the hypothesis that the effects or differences are substantial can be
rejected. Hence, equivalence tests are appropriate when researchers
want to show little difference or effect (Levine et al., 2008).

EVALUATING INFORMATIVE HYPOTHESES
Evaluating specific expectations directly produces more useful
results than sequentially testing traditional null hypotheses against
catch-all rivals. Researchers are often interested in the evaluation
of informative hypotheses and already know that the traditional
null hypothesis is an unrealistic hypothesis. This presupposes that
prior knowledge is often available; if this is not the case, testing the
traditional null hypothesis is appropriate. In most applied stud-
ies, however, prior knowledge is indeed available in the form of
specific expectations about the ordering of statistical parameters
(Kuiper and Hoijtink, 2010; Van de Schoot et al., 2011).

BAYESIAN APPROACH
Another alternative is to abandon the frequentist approach and
use a Bayesian one (Wagenmakers et al., 2011). With a Bayesian
approach the problem of statistical power is substituted with para-
meter estimation and/or model comparison (Kruschke, 2011). In
the first approach, assessing null values, the analyst simply sets
up a range of candidate values, including the null value, and uses
Bayesian inference to compute the relative credibility of all the
candidate values. In the model comparison approach, the ana-
lyst sets up two competing models of what values are possible.
One model posits that only the null value is possible whereas the
alternative model posits that a broad range of other values is also
possible. Bayesian inference is used to compute which model is
more credible, given the data.

FINAL COMMENT
Is there a chance to abandon “The Null Ritual” in the near future
and to think of science as cumulative knowledge? The answer is
“yes”if we approach scientific discovery thinking meta-analytically
(Cumming, 2012), that is, simply reporting observed (standard-
ized) ES and the corresponding confidence intervals, both when
NHST is refuted and when it is not refuted (Nickerson, 2000;
American Psychological Association, APA, 2010) without drawing
dichotomous decisions. The statistical approaches listed above are
good tools to achieve this goal.

How many editors and reviewers are committed to pursuing it?
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The presence of outliers can very problematic in data analysis, leading statisticians to
develop a wide variety of methods for identifying them in both the univariate and multivari-
ate contexts. In case of the latter, perhaps the most popular approach has been Mahalanobis
distance, where large values suggest an observation that is unusual as compared to the
center of the data. However, researchers have identified problems with the application
of this metric such that its utility may be limited in some situations. As a consequence,
other methods for detecting outlying observations have been developed and studied. How-
ever, a number of these approaches, while apparently robust and useful have not made
their way into general practice in the social sciences. Thus, the goal of this study was to
describe some of these methods and demonstrate them using a well known dataset from
a popular multivariate textbook widely used in the social sciences. Results demonstrated
that the methods do indeed result in datasets with very different distributional character-
istics. These results are discussed in light of how they might be used by researchers and
practitioners.

Keywords: Mahalanobis distance, minimum covariance determinant, minimum generalized variance, minimum
volume ellipsoid, outliers, projection

INTRODUCTION
The presence of outliers is a ubiquitous and sometimes prob-
lematic aspect of data analysis. They can result from a variety
of processes, including data recording and entry errors, obtain-
ing samples from other than the target population, and sampling
unusual individuals from the target population itself (Kruskal,
1988). Based on the standard definition of outliers, it is entirely
possible that a dataset may not have any such cases, or it might
have many. Given that they can arise from very different processes,
outliers should not all be treated in the same manner. For example,
those caused by data collection problems are likely to be removed
from the sample prior to analysis, while those that are simply
unusual members of the target population would be retained for
data analysis. Finally, Kruskal noted that in some cases understand-
ing the mechanism that caused outliers is the most important
aspect of a given study. In other words, outliers can themselves
provide useful information to researchers, and are not necessar-
ily problematic in the sense of being bad data. The focus of this
manuscript is not on the mechanism giving rise to outliers, but
rather on methods for detecting them once they are present in the
sample.

A number of authors have sought to precisely define what
constitutes an outlier (e.g., Evans, 1999), and methods for detect-
ing and dealing with them once detected remain an active area
of research. It is well known that outliers can have a dra-
matic impact on the performance of common statistical analyses
such as Pearson’s correlation coefficient (Marascuilo and Ser-
lin, 1988), univariate, and multivariate means comparisons (Kirk,
1995; Huberty and Olejnik, 2006), cluster analysis (Kaufman and
Rousseeuw, 2005), multivariate means comparisons, and factor
analysis (Brown, 2006), among others. For this reason researchers
are strongly encouraged to investigate their data for the presence of

outliers prior to conducting data analysis (Tabachnick and Fidell,
2007).

In the multivariate context, the most commonly recommended
approach for outlier detection is the Mahalanobis Distance (D2).
While this approach can be an effective tool for such purpose,
it also has weaknesses that might render it less than effective
in many circumstances (Wilcox, 2005). The focus of this manu-
script is on describing several alternative methods for multivariate
outlier detection; i.e., observations that have unusual patterns
on multiple variables as opposed to extreme scores on a sin-
gle variable (univariate outliers). In addition, these approaches
will be demonstrated, along with D2, using a set of data taken
from Tabachnick and Fidell (2007). The demonstration will utilize
functions from the R software package for both outlier detec-
tion and data analysis after removal of the outliers. It should
be noted that the focus of this manuscript is not on attempt-
ing to identify some optimal approach for dealing with outliers
once they have been identified, which is an area of statistics itself
replete with research, and which is well beyond the scope of
this study. Suffice it to say that identification of outliers is only
the first step in the process, and much thought must be given
to how outliers will be handled. In the current study, they will
be removed from the dataset in order to clearly demonstrate
the differential impact of the various outlier detection meth-
ods on the data and subsequent analyses. However, it is not
recommended that this approach to outliers be taken in every
situation.

IMPACT OF OUTLIERS IN MULTIVARIATE ANALYSIS
Outliers can have a dramatic impact on the results of common
multivariate statistical analyses. For example, they can distort cor-
relation coefficients (Marascuilo and Serlin, 1988; Osborne and
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Overbay, 2004), and create problems in regression analysis, even
leading to the presence of collinearity among the set of predictor
variables in multiple regression (Pedhazur, 1997). Distortions to
the correlation may in turn lead to biased sample estimates, as out-
liers artificially impact the degree of linearity present between a
pair of variables (Osborne and Overbay, 2004). In addition, meth-
ods based on the correlation coefficient such as factor analysis
and structural equation modeling are also negatively impacted
by the presence of outliers in data (Brown, 2006). Cluster analy-
sis is particularly sensitive to outliers with a distortion of cluster
results when outliers are the center or starting point of the analy-
sis (Kaufman and Rousseeuw, 2005). Outliers can also themselves
form a cluster, which is not truly representative of the broader
array of values in the population. Outliers have also been shown
to detrimentally impact testing for mean differences using ANOVA
through biasing group means where they are present (Osborne and
Overbay, 2004).

While outliers can be problematic from a statistical perspective,
it is not always advisable to remove them from the data. When these
observations are members of the target population, their presence
in the dataset can be quite informative regarding the nature of the
population (e.g., Mourão-Miranda et al., 2011). To remove out-
liers from the sample in this case would lead to loss of information
about the population at large. In such situations, outlier detection
would be helpful in terms of identifying members of the target
population who are unusual when compared to the rest, but these
individuals should not be removed from the sample (Zijlstra et al.,
2011).

METHODS OF MULTIVARIATE OUTLIER DETECTION
Given the negative impact that outliers can have on multivari-
ate statistical methods, their accurate detection is an important
matter to consider prior to data analysis (Tabachnick and Fidell,
2007; Stevens, 2009). In popular multivariate statistics texts, the
reader is recommended to use D2 for multivariate outlier detec-
tion, although as is described below, there are several alternatives
for multivariate outlier detection that may prove to be more effec-
tive than this standard approach. Prior to discussing these methods
however, it is important to briefly discuss general qualities that
make for an effective outlier detection method. Readers interested
in a more detailed treatment are referred to two excellent texts by
Wilcox (2005, 2010).

When thinking about the impact of outliers, perhaps the key
consideration is the breakdown point of the statistical analy-
sis in question. The breakdown point can be thought of as the
minimum proportion of a sample that can consist of outliers
after which point they will have a notable impact on the sta-
tistic of interest. In other words, if a statistic has a breakdown
point of 0.1, then 10% of the sample could consist of outliers
without markedly impacting the statistic. However, if the next
observation beyond this 10% was also an outlier, the statistic
in question would then be impacted by its presence (Maronna
et al., 2006). Comparatively, a statistic with a breakdown point
of 0.3 would be relatively more impervious to outliers, as it
would not be impacted until more than 30% of the sample was
made up of outliers. Of course, it should be remembered that
the degree of this impact is dependent on the magnitude of the

outlying observation, such that more extreme outliers would have
a greater impact on the statistic than would a less extreme value.
A high breakdown point is generally considered to be a positive
attribute.

While the breakdown point is typically thought of as a charac-
teristic of a statistic, it can also be a characteristic of a statistic in
conjunction with a particular method of outlier detection. Thus,
if a researcher calculates the sample mean after removing outliers
using a method such as D2, the breakdown point of the combina-
tion of mean and outlier detection method will be different than
that of the mean by itself. Finally, although having a high break-
down point is generally desirable, it is also true that statistics with
higher breakdown points (e.g., the median, the trimmed mean) are
often less accurate in estimating population parameters when the
data are drawn from a multivariate normal distribution (Genton
and Lucas, 2003).

Another important property for a statistical measure of loca-
tion (e.g., mean) is that it exhibit both location and scale equi-
variance (Wilcox, 2005). Location equivariance means that if
a constant is added to each observation in the data set, the
measure of location will be increased by that constant value.
Scale equivariance occurs when multiplication of each obser-
vation in the data set by a constant leads to a change in the
measure of location by the same constant. In other words, the
scale of measurement should not influence relative compar-
isons of individuals within the sample or relative comparisons
of group measures of location such as the mean. In the context
of multivariate data, these properties for measures of location
are referred to as affine equivariance. Affine equivariance extends
the notion of equivariance beyond changes in location and scale
to measures of multivariate dispersion. Covariance matrices are
affine equivariant, for example, though they are not particu-
larly robust to the presence of outliers (Wilcox, 2005). A viable
approach to dealing with multivariate outliers must maintain
affine equivariance.

Following is a description of several approaches for outlier
detection. For the most part, these descriptions are presented
conceptually, including technical details only when they are vital
to understanding how the methods work. References are pro-
vided for the reader who is interested in learning more about the
technical aspects of these approaches. In addition to these descrip-
tions, Table 1 also includes a summary of each method, including
fundamental equations, pertinent references, and strengths and
weaknesses.

MAHALANOBIS DISTANCE
The most commonly recommended approach for multivariate
outlier detection is D2, which is based on a measure of multivari-
ate distance first introduced by Mahalanobis (1936), and which
has been used in a wide variety of contexts. D2 has been suggested
as the default outlier detection method by a number of authors
in popular textbooks used by researchers in a variety of fields
(e.g., Johnson and Wichern, 2002; Tabachnick and Fidell, 2007).
In practice, a researcher would first calculate the value of D2 for
each subject in the sample, as follows:

D2
i = (xi − x̄)′ S−1 (xi − x̄) (1)
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Table 1 | Summary of outlier detection methods.

Method Equation Reference Strengths Weaknesses

D2
i (xi − x̄)′ S−1 (xi − x̄) Mahalanobis (1936) Intuitively easy to understand;

easy to calculate; familiar to

other researchers

Sensitive to outliers; assumes

data are continuous

MVE Identify subset of data contained within the

ellipsoid that has minimized volume

Rousseeuw and

Leroy (1987)

Yields mean with maximum

possible breakdown point

May remove as much as 50%

of sample

MCD Identify subset of data that minimizes the

determinant of the covariance matrix

Rousseeuw and van

Driessen (1999)

Yields mean with maximum

possible breakdown point

May remove as much as 50%

of sample

MGV Calculate MAD version of D2 as∑n
j=1

√∑p
l=1

(
xjl−xil
MADl

)2
to identify most central

points; calculate variance of this central set as

additional observations are added one by one;

examine this generalized variance and retain

those with values less than the adjusted median

MG +
√

χ2
0.975.p(q3 − q1)

Wilcox (2005) Typically removes fewer

observations than either MVE or

MCD

Generally does not have as

high a breakdown point as

MVE or MCD

P1 Identify the multivariate center of data using

MCD or MVE and then determine its relative

distance from this center (depth); use the MGV

criteria based on this depth to identify outliers

Donoho and Gasko

(1992)

Approximates an affine

equivariant outlier detection

method; may not exclude as

many cases as MVE or MCD

Will not typically lead to a

mean with the maximum

possible breakdown point

P2 Identify all possible lines between all pairs of

observations in order to determine depth of

each point

Donoho and Gasko

(1992)

Some evidence that this method

is more accurate than P1 in

terms of identifying outliers

Extensive computational

time, particularly for large

datasets

P3 Same approach as P1 except that the criteria for

identifying outliers is MD +
√

χ2
0.975.p(

MADi
0.6745 )

Donoho and Gasko

(1992)

May yield a mean with a higher

breakdown point than other

projection methods

Will likely lead to exclusion of

more observations as outliers

than will other projection

approaches

where

xi = Vector of scores on the set of p variables for subject i

x̄ = Vector of sample means on the set of p variables

S = Covariance matrix for the p variables

A number of recommendations exist in the literature for identify-
ing when this value is large; i.e., when an observation might be an
outlier. The approach used here will be to compare D2

i to the χ2

distribution with p degrees of freedom and declare an observation
to be an outlier if its value exceeds the quantile for some inverse
probability; i.e., χ2

p(0.005) (Mahalanobis).

D2 is easy to compute using existing software and allows for
direct hypothesis testing regarding outlier status (Wilcox, 2005).
Despite these advantages, D2 is sensitive to outliers because it is
based on the sample covariance matrix, S, which is itself sensitive
to outliers (Wilcox, 2005). In addition, D2 assumes that the data
are continuous and not categorical so that when data are ordinal,
for example, it may be inappropriate for outlier detection (Zijlstra
et al., 2007). Given these problems, researchers have developed
alternatives to multivariate outlier detection that are more robust
and more flexible than D2.

MINIMUM VOLUME ELLIPSOID
One of the earliest of alternative approach to outlier detection was
the Minimum Volume Ellipsoid (MVE), developed by Rousseeuw

and Leroy (1987). In concept, the goal behind this method is to
identify a subsample of observations of size h (where h < n) that
creates the smallest volume ellipsoid of data points, based on the
values of the variables. By definition, this ellipsoid should be free of
outliers, and estimates of central tendency and dispersion would be
obtained using just this subset of observations. The MVE approach
to dealing with outliers can, in practice, be all but intractable to
carry out as the number of possible ellipsoids to investigate will
typically be quite large. Therefore, an alternative approach is to
take a large number of random samples of size h with replacement,
where

h = n
2 + 1, (2)

and calculate the volume of the ellipsoids created by each. The
final sample to be used in further analyses is that which yields
the smallest ellipsoid. An example of such an ellipsoid based on
MVE can be seen in Figure 1. The circles represent observations
that have been retained, while those marked with a star represent
outliers that will be removed from the sample for future analyses.

MINIMUM COVARIANCE DETERMINANT
The minimum covariance determinant (MCD) approach to out-
lier detection is similar to the MVE in that it searches for a portion
of the data that eliminates the presence and impact of outliers.
However, whereas MVE seeks to do this by minimizing the vol-
ume of an ellipsoid created by the retained points, MCD does it by
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FIGURE 1 | Scatterplot of observations identified as outliers based on
the MVE method.

minimizing the determinant of the covariance matrix, which is an
estimate of the generalized variance in a multivariate set of data
(Rousseeuw and van Driessen, 1999). The dataset with the smallest
determinant will be the one least influenced by outliers and which
can then be used for future statistical analyses. Statistics calculated
on data to which MCD and MVE have been applied will typically
have high breakdown points (Rousseeuw and van Driessen, 1999).

As with MVE, the logistics of searching every possible sub-
set of the data of size h to find the one that yields the smallest
determinant are not practical in the vast majority of situations. As
a consequence Rousseeuw and van Driessen (1999) developed a
multiple step algorithm to approximate the MCD, obviating the
need to examine all possible subsets of the data. This approach,
known as Fast MCD involves the random selection of an initial
subsample from the data of size h, for which the values of D2

i are
calculated and ordered from smallest to largest. The h smallest D2

i
values (and thus the data points associated with them) are then
retained into a new subset of the data, after which individuals from
the full dataset are randomly added and the value of the determi-
nant calculated. The algorithm stops when it attains a subsample
(size h) of the full data that yields the smallest determinant. Vari-
ants of this algorithm involve the selection of multiple subsamples
in the initial step, and with several minimization procedures run-
ning parallel to one another simultaneously (Hardin and Rocke,
2004). Figure 2 includes a scatterplot identifying individuals as
outliers based on the MCD method. Again, outliers are marked
with a star.

MINIMUM GENERALIZED VARIANCE
One potential difficulty with both MVE and MCD is that they
tend to identify a relatively large number of outliers when the
variables under examination are not independent of one another
(Wilcox, 2005). A third approach for outlier detection that was

FIGURE 2 | Scatterplot of observations identified as outliers based on
the MCD method.

designed to avoid this problem is the Minimum Generalized Vari-
ance (MGV). MGV is based on a similar principle to MCD in that
the set of data with the smallest overall variance is identified. How-
ever, rather than relying on the random addition of observations to
the core data set to be retained, it includes those individuals whose
inclusion increases the generalized variance as little as possible.

As with MVE and MCD, MGV is an iterative procedure. In the
first step the p most centrally located points are identified using a
non-parametric estimate of Di which is calculated as

Di =

n∑
j=1

√√√√ p∑
l=1

(
xjl−xil

MADl

)2
, (3)

where

MADl = MED{[xi − M]}. (4)

In other words, MAD, the median absolute deviation, is the
median of the deviations between each individual data point and
the median of the data set, M. The most centrally located obser-
vations are those with the smallest value of Di as calculated above.
These points are then placed in a new data set, after which the
generalized variance associated with adding each of the remaining
observations not originally placed in this new data is calculated.
The observation with the smallest generalized variance is then
added to the new data set. For each data point remaining outside of
the new data set, the generalized variance is recalculated, account-
ing for the new observation that was just added. Once again, the
observation with the lowest generalized variance is then added to
the new data set. This process is repeated until all of the original
data points are included in the new data set; i.e., the new data set
is identical in terms of membership to the old one. However, now
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each observation has associated with it a value for the generalized
variance. Observations that are more distant from the bulk of the
data will have larger values of the generalized variance. For p= 2
variables, observations with a generalized variance greater than

q3 + 1.5(q3 − q1) (5)

would be considered outliers, where q1 and q2 are the lower and
upper quartiles, respectively,of the generalized variances. For more
than two variables, the generalized variances are compared with

MG +

√
χ2

0.975.p(q3 − q1), (6)

where M G is the median of the generalized variance values and
χ2

0.975.p . Figure 3 is a plot of X and Y, with outliers identified using
the MGV approach. In this graph, outliers are denoted by 0, which
is different than notation used in Figures 1 and 2. These graphs are
included here exactly as taken from the R software output, which
will be used extensively in the following examples.

PROJECTION-BASED OUTLIER DETECTION
Another alternative for identifying multivariate outliers is based
on the notion of the depth of one data point among a set of other
points. The idea of depth was described by Tukey (1975), and
later expanded upon by Donoho and Gasko (1992). In general,
depth can be thought of as the relative location of an obser-
vation vis-à-vis either edge (upper or lower) in a set of data.
In the univariate case, this simply means determining to which
edge a given observation more closely lies (i.e., maximum or
minimum value), and then calculating the proportion of cases
between that observation and its closest edge. The larger this
proportion, the deeper the observation lies in the univariate

FIGURE 3 | Scatterplot of observations identified as outliers based on
the MGV method.

data. While mathematically somewhat more challenging, con-
ceptually projection methods of multivariate outlier detection
work in much the same way. However, rather than determin-
ing the proximity to a single edge, the algorithm must identify
the proximity to the edge of the multivariate space. This process
is carried out using the method of projection that is described
below.

For the purposes of this explanation, we will avoid presenting
the mathematical equations that underlie the projection-based
outlier detection approach. The interested reader is encouraged
to refer to Wilcox (2005) for a more technical treatment of this
methodology. Following is a conceptual description of two com-
monly used approaches to carrying out this technique when p= 2.
In the first method, the algorithm begins by identifying the mul-
tivariate center of the data using an acceptable approach, such as
the multivariate mean after application of MCD or MVE. Next,
for each point (Xi) the following steps are carried out:

(1) A line is drawn connecting the multivariate center and point
Xi.

(2) A line perpendicular to the line in 1 is then drawn from each
of the other observations, Xj.

(3) The location where the line in 2 intersects with the line in 1 is
the projected depth (dij) of that data point for the line.

(4) Steps 1–3 are then repeated such that each of the n data points
is connected to the multivariate center of the data with a line,
and corresponding values of dij are calculated for each of the
other observations.

(5) For a given observation, each of its depth values, dij, is com-
pared with a standard (to be described below). If for any single
projection the observation is an outlier, then it is classified as
an outlier for purposes of future analyses.

As mentioned earlier, there is an alternative approach to the
projection method, which is not based on finding the multivari-
ate center of the distribution. Rather, all (n2

− n)/2 possible lines
are drawn between all pairs of observations in the dataset. Then,
the approach outlined above for calculating dij is used for each
of these lines. Thus, rather than having n−1 such dij values, each

observation will have (n2
−n)
2 − 1 indicators of depth. In all other

ways, this second approach is identical to the first, however. Prior
research has demonstrated that this second method might be more
accurate than the first, but it is not clear how great an advantage
it actually has in practice (Wilcox, 2005). Furthermore, because it
must examine all possible lines in the set of data, method 2 can
require quite a bit more computational time, particularly for large
datasets.

The literature on multivariate outlier detection using the
projection-based method includes two different criteria against
which an observation can be judged as an outlier. The first of these
is essentially identical to that used for the MGV in Eq. 6, with the
exception that M G is replaced by MD, the median of the dij for that
projection. Observations associated with values of dij larger than
this cut score are considered to be outliers for that projection. An
alternative comparison criterion is

MD +

√
χ2

0.975.p

(
MADi
0.6745

)
(7)
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where MADi is the median of all |dij−MD|. Here, MADi is scaled
by the divisor 0.6745 so that it approximates the standard deviation
obtained when sampling from a normal distribution. Regardless
of the criterion used, an observation is declared to be an outlier in
general if it is an outlier for any of the projections.

GOALS OF THE CURRENT STUDY
The primary goal of this study was to describe alternatives to D2 for
multivariate outlier detection. As noted above, D2 has a number
of weaknesses in this regard, making it less than optimal for many
research situations. Researchers need outlier detection methods
on which they can depend, particularly given the sensitivity of
many multivariate statistical techniques to the presence of out-
liers. Those described here may well fill that niche. A secondary
goal of this study was to demonstrate, for a well known dataset,
the impact of the various outlier detection methods on measures
of location, variation and covariation. It is hoped that this study
will serve as a useful reference for applied researchers working
in the multivariate context who need to ascertain whether any
observations are outliers, and if so which ones.

MATERIALS AND METHODS
The Women’s Health and Drug study that is described in detail
in Tabachnick and Fidell (2007) was used for demonstrative pur-
poses. This dataset was selected because it appears in this very
popular text in order to demonstrate data screening and as such
was deemed an excellent source for demonstrating the methods
studied here. A subset of the variables were used in the study,
including number of visits to a health care provider (TIMEDRS),
attitudes toward medication (ATTDRUG) and attitudes toward
housework (ATTHOUSE). These variables were selected because
they were featured in Tabachnick and Fidell’s own analysis of the
data. The sample used in this study consisted of 465 females aged
20–59 years who were randomly sampled from the San Fernando
Valley in California and interviewed in 1976. Further description
of the sample and the study from which it was drawn can be found
in Tabachnick and Fidell.

In order to explore the impact of the various outlier detec-
tion methods included here, a variety of statistical analyses were
conducted subsequent to the application of each approach. In par-
ticular, distributions of the three variables were examined for the

FIGURE 4 | Continued
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FIGURE 4 | Boxplots.

datasets created by the various outlier detection methods, as well
as the full dataset. The strategy in this study was to remove all
observations that were identified as outliers by each method, thus
creating datasets for each approach that included only those not
deemed to be outliers. It is important to note that this is not typi-
cally recommended practice, nor is it being suggested here. Rather,
the purpose of this study was to demonstrate the impact of each
method on the data itself. Therefore, rather than take the approach
of examining each outlier carefully to ascertain whether it was truly
part of the target population, the strategy was to remove those cases
identified as outliers prior to conducting statistical analyses. In this
way, it was hoped that the reader could clearly see the way in which
each detection method worked and how this might impact result-
ing analyses. In terms of the actual data analysis, the focus was on
describing the resulting datasets. Therefore, distributional char-
acteristics of each variable within each method were calculated,
including the mean, median, standard deviation, skewness, kur-
tosis, and first and third quartiles. In addition, distributions of

the variables were examined using the boxplot. Finally, in order
to demonstrate the impact of these approaches on relational mea-
sures, Pearson’s correlation coefficient was estimated between each
pair of variables. All statistical analyses including identification
of outliers was carried out using the R software package, version
2.12.1 (R Foundation for Statistical Computing, 2010). The R code
used to conduct these analyses appears in the Appendix at the end
of the manuscript.

RESULTS
An initial examination of the full dataset using boxplots appears
in Figure 4. It is clear that in particular the variable TIME-
DRS is positively skewed with a number of fairly large values,
even while the median is well under 10. Descriptive statistics for
the full dataset (Table 2) show that indeed, all of the variables
are fairly kurtotic, particularly TIMEDRS, which also displays a
strong positive skew. Finally, the correlations among the three
variables for the full dataset appear in Table 3. All of these
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Table 2 | Descriptive statistics.

Variable Mean

Full (N = 465) D2 (N = 452) MCD (N = 235) MVE (N = 235) MGV (N = 463) P1 (N = 425) P2 (N = 422) P3 (N = 425)

TIMEDRS 7.90 6.67 2.45 3.37 7.64 5.27 5.17 5.27

ATTDRUG 7.69 7.67 7.69 7.68 7.68 7.65 7.64 7.65

ATTHOUSE 23.53 23.56 23.36 23.57 23.50 23.54 23.54 23.54

MEDIAN

TIMEDRS 4.00 4.00 2.00 3.00 2.00 2.00 2.00 2.00

ATTDRUG 8.00 8.00 8.00 8.00 7.00 7.00 7.00 7.00

ATTHOUSE 24.00 24.00 23.00 23.00 21.00 21.00 21.00 21.00

Q1

TIMEDRS 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00

ATTDRUG 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

ATTHOUSE 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00

Q3

TIMEDRS 10.00 9.00 4.00 5.00 9.50 7.00 7.00 7.00

ATTDRUG 9.00 8.25 8.00 8.00 8.00 8.00 8.00 8.00

ATTHOUSE 27.00 26.25 26.00 26.00 26.50 26.00 26.75 26.00

STANDARD DEVIATION

TIMEDRS 10.95 7.35 1.59 2.22 10.23 4.72 4.58 4.72

ATTDRUG 1.16 1.16 0.89 0.81 1.15 1.56 1.52 1.56

ATTHOUSE 4.48 4.22 3.67 3.40 4.46 4.25 4.26 4.25

SKEWNESS

TIMEDRS 3.23 2.07 0.23 0.46 3.15 1.12 1.08 1.12

ATTDRUG −0.12 −0.11 −0.16 0.01 −0.12 −0.09 −0.09 −0.09

ATTHOUSE −0.45 −0.06 −0.03 0.06 −0.46 −0.03 −0.03 −0.03

KURTOSIS

TIMEDRS 15.88 7.92 2.32 2.49 15.77 3.42 3.29 3.42

ATTDRUG 2.53 2.51 2.43 2.31 2.54 2.51 2.51 2.51

ATTHOUSE 4.50 2.71 2.16 2.17 4.54 2.69 2.68 2.69

are below 0.15, indicating fairly weak relationships among the
measures. However, it is not clear to what extent these correla-
tions may be impacted by the distributional characteristics just
described.

Given these distributional issues, the researcher working with
this dataset would be well advised to investigate the possibility that
outliers are present. For this example, we can use R to calculate D2

for each observation, with appropriate program code appearing in
the Appendix. In order to identify an observation as an outlier, we
compare the D2 value to the chi-square distribution with degrees
of freedom equal to the number of variables (three in this case),
and α= 0.001. Using this criterion, 13 individuals were identified
as outliers. In order to demonstrate the impact of using D2 for
outlier detection, these individuals were removed, and descriptive
graphics and statistics were generated for the remaining 452 obser-
vations. An examination of the boxplot for the Mahalanobis data
reveals that the range of values is more truncated than for the orig-
inal, particularly for TIMEDRS. A similar result is evident in the
descriptive statistics found in Table 1, where we can see that the
standard deviation, skewness, kurtosis and mean are all smaller in
the Mahalanobis data for TIMEDRS. In contrast, the removal of
the 13 outliers identified by D2 did not result in great changes for
the distributional characteristics of ATTDRUG or ATTHOUSE.

The correlations among the three variables were comparable to
those in the full dataset, if not slightly smaller.

As discussed previously, there are some potential problems with
using D2 as a method for outlier detection. For this reason, other
approaches have been suggested for use in the context of multivari-
ate data in particular. A number of these, including MCD, MVE,
MGV, and three projection methods, were applied to this dataset,
followed by generation of graphs and descriptive statistics as was
done for both the full dataset and the Mahalanobis data. Boxplots
for the three variables after outliers were identified and removed
by each of the methods appear in Figure 4. As can be seen, the
MCD and MVE approaches resulted in data that appear to be the
least skewed, particularly for TIMEDRS. In contrast, the data from
MGV was very similar to that of the full dataset, while the three
projection methods resulted in data that appeared to lie between
MCD/MVE and the Mahalanobis data in terms of the distributions
of the three variables. An examination of Table 1 confirms that
making use of the different outlier detection methods results in
datasets with markedly different distributional characteristics. Of
particular note are differences between MCD/MVE as compared
to the full dataset, and the Mahalanobis and MGV data. Specifi-
cally, the skewness and kurtosis evident in these two samples was
markedly lower than that of any of the datasets, particularly the full
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Table 3 | Correlations.

Variable TIMEDRS ATTDRUG ATTHOUSE

FULL DATA SET (N=465)

TIMEDRS 1.00 0.10 0.13

ATTDRUG 0.10 1.00 0.03

ATTHOUSE 0.13 0.03 1.00

MAHALANOBIS DISTANCE (N=452)

TIMEDRS 1.00 0.07 0.08

ATTDRUG 0.07 1.00 0.02

ATTHOUSE 0.08 0.02 1.00

MCD (N=235)

TIMEDRS 1.00 0.25 0.19

ATTDRUG 0.25 1.00 0.26

ATTHOUSE 0.19 0.26 1.00

MVE (N=235)

TIMEDRS 1.00 0.33 0.05

ATTDRUG 0.33 1.00 0.32

ATTHOUSE 0.05 0.32 1.00

MGV (N=463)

TIMEDRS 1.00 0.07 0.10

ATTDRUG 0.07 1.00 0.02

ATTHOUSE 0.10 0.02 1.00

PROJECTION 1 (N=425)

TIMEDRS 1.00 0.06 0.10

ATTDRUG 0.06 1.00 0.03

ATTHOUSE 0.10 0.03 1.00

PROJECTION 2 (N=422)

TIMEDRS 1.00 0.04 0.11

ATTDRUG 0.04 1.00 0.03

ATTHOUSE 0.11 0.03 1.00

PROJECTION 3 (N=425)

TIMEDRS 1.00 0.06 0.10

ATTDRUG 0.06 1.00 0.03

ATTHOUSE 0.10 0.03 1.00

and MGV datasets. In addition, probably as a result of removing
a number of individuals with large values, the mean of TIME-
DRS was substantially lower for the MCD and MVE data than
for the full, Mahalanobis, and MGV datasets. As noted with the
boxplot, the three projection methods produced means, skewness,
and kurtosis values that generally fell between those of MCD/MVE
and the other approaches. Also of interest in this regard is the rel-
ative similarity in distributional characteristics of the ATTDRUG
variable across outlier detection methods. This would suggest that
there were few if any outliers present in the data for this variable.
Finally, the full and MGV datasets had kurtosis values that were
somewhat larger than those of the other methods included here.

Finally, in order to ascertain how the various outlier detection
methods impacted relationships among the variables we estimated
correlations for each approach, with results appearing in Table 3.
For the full data, correlations among the three variables were all
low, with the largest being 0.13. When outliers were detected and
removed using D2, MGV and the three projection methods, the
correlations were attenuated even more. In contrast, correlations
calculated using the MCD data were uniformly larger than those

of any method, except for the value between TIMEDRS and
ATTDRUG, which was larger for the MVE data. On the other
hand, the correlation between TIMEDRS and ATTHOUSE was
smaller for MVE than for any of the other methods used here.

DISCUSSION
The purpose of this study was to demonstrate seven methods of
outlier detection designed especially for multivariate data. These
methods were compared based upon distributions of individual
variables, and relationships among them. The strategy involved
first identification of outlying observations followed by their
removal prior to data analysis. A brief summary of results for
each methodology appears in Table 4. These results were markedly
different across methods, based upon both distributional and
correlational measures. Specifically, the MGV and Mahalanobis
distance approaches resulted in data that was fairly similar to
the full data. In contrast, MCD and MVE both created datasets
that were very different, with variables more closely adhering to
the normal distribution, and with generally (though not univer-
sally) larger relationships among the variables. It is important to
note that these latter two methods each removed 230 observa-
tions, or nearly half of the data, which may be of some concern
in particular applications and which will be discussed in more
detail below. Indeed, this issue is not one to be taken lightly.
While the MCD/MVE approaches produced datasets that were
more in keeping with standard assumptions underlying many sta-
tistical procedures (i.e., normality), the representativeness of the
sample may be called into question. Therefore, it is important
that researchers making use of either of these methods closely
investigate whether the resulting sample resembles the population.
Indeed, it is possible that identification of such a large proportion
of the sample as outliers is really more of an indication that the
population is actually bimodal. Such major differences in perfor-
mance depending upon the methodology used point to the need
for researchers to be familiar with the panoply of outlier detec-
tion approaches available. This work provides a demonstration of
the methods, comparison of their relative performance with a well
known dataset, and computer software code so that the reader can
use the methods with their own data.

There is not one universally optimal approach for identifying
outliers, as each research problem presents the data analyst with
specific challenges and questions that might be best addressed
using a method that is not optimal in another scenario. This study
helps researchers and data analysts to see the range of possibilities
available to them when they must address outliers in their data.
In addition, these results illuminate the impact of using the vari-
ous methods for a representative dataset, while the R code in the
Appendix provides the researcher with the software tools neces-
sary to use each technique. A major issue that researchers must
consider is the tradeoff between a method with a high breakdown
point (i.e., that is impervious to the presence of many outliers)
and the desire to retain as much of the data as possible. From this
example, it is clear that the methods with the highest breakdown
points, MCD/MVE, retained data that more clearly conformed to
the normal distribution than did the other approaches, but at the
cost of approximately half of the original data. Thus, researchers
must consider the purpose of their efforts to detect outliers. If they
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Table 4 | Summary of results for outlier detection methods.

Method Outliers

removed

Impact on distributions Impact on

correlations

Comments

D2
i 13 Reduced skewness and kurtosis when

compared to full data set, but did not fully

eliminate them. Reduced variation in

TIMEDRS

Comparable correlations

to the full dataset

Resulted in a sample with somewhat less skewed and

kurtotic variables, though they did remain clearly

non-normal in nature. The correlations among the

variables remained low, as with the full dataset

MVE 230 Largely eliminated skewness and greatly

lowered kurtosis in TIMEDRS. Also reduced

kurtosis in ATTHOUSE when compared to

full data. Greatly lowered both the mean and

standard deviation of TIMEDRS

Resulted in markedly

higher correlations for

two pairs of variables,

than was seen with the

other methods, except

for MCD

Reduced the sample size substantially, but also yielded

variables with distributional characteristics much more

favorable to use with common statistical analyses; i.e.,

very little skewness or kurtosis. In addition, correlation

coefficients were generally larger than for the other

methods, suggesting greater linearity in relationships

among the variables

MCD 230 Very similar pattern to that displayed by MVE Yielded relatively higher

correlation values than

any of the other

methods, except MVE,

and no very low values

Provided a sample with very characteristics to that of

MVE

MGV 2 Yielded distributional results very similar to

those of the full dataset

Very similar correlation

structure as found in the

full dataset and for D2

Identified very few outliers, leading to a sample that did

not differ meaningfully from the original

P1 40 Resulted in lower mean, standard deviation,

skewness, and kurtosis values for TIMEDRS

when compared to the full data, D2, and

MGV, though not when compared to MVE

and MCD. Yielded comparable skewness and

kurtosis to other methods for ATTDRUG and

ATTHOUSE, and somewhat greater variation

for these other variables, as well

Very comparable

correlation results to the

full dataset, as well as D2

and MGV

Appears to find a “middle ground” between MVE/MCD

and D2/MGV in terms of the number of outliers

identified and the resulting impact on variable

distributions and correlations

P2 43 Very similar results to P1 Very similar results to P1 Provided a sample yielding essentially the same results

as P1

P3 40 Identical results to P1 Identical results to P1 In this case, resulted in an identical sample to that of P1

are seeking a “clean” set of data upon which they can run a variety
of analyses with little or no fear of outliers having an impact, then
methods with a high breakdown point, such as MCD and MVE are
optimal. On the other hand, if an examination of outliers reveals
that they are from the population of interest, then a more careful
approach to dealing with them is necessary. Removing such out-
liers could result in a dataset that is more tractable with respect
to commonly used parametric statistical analyses but less repre-
sentative of the general population than is desired. Of course, the
converse is also true in that a dataset replete with outliers might
produce statistical results that are not generalizable to the popu-
lation of real interest, when the outlying observations are not part
of this population.

FUTURE RESEARCH
There are a number of potential areas for future research in the
area of outlier detection. Certainly, future work should use these
methods with other extant datasets having different characteris-
tics than the one featured here. For example, the current set of
data consisted of only three variables. It would be interesting to
compare the relative performance of these methods when more

variables are present. Similarly, examining them for much smaller
groups would also be useful, as the current sample is fairly large
when compared to many that appear in social science research. In
addition, a simulation study comparing these methods with one
another would also be warranted. Specifically, such a study could
be based upon the generation of datasets with known outliers
and distributional characteristics of the non-outlying cases. The
various detection methods could then be used and the resulting
retained datasets compared to the known non-outliers in terms of
these various characteristics. Such a study would be quite useful in
informing researchers regarding approaches that might be optimal
in practice.

CONCLUSION
This study should prove helpful to those faced with a multi-
variate outlier problem in their data. Several methods of outlier
detection were demonstrated and great differences among them
were observed, in terms of the characteristics of the observations
retained. These findings make it clear that researchers must be
very thoughtful in their treatment of outlying observations. Sim-
ply relying on Mahalanobis Distance because it is widely used
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might well yield statistical results that continue to be influenced
by the presence of outliers. Thus, other methods described here
should be considered as viable options when multivariate out-
liers are present. In the final analysis, such an approach must
be based on the goals of the data analysis and the study as a

whole. The removal of outliers, when done, must be carried
out thoughtfully and with purpose so that the resulting dataset
is both representative of the population of interest and use-
ful with the appropriate statistical tools to address the research
questions.
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APPENDIX
library(MASS)
mahalanobis.out < -mahalanobis(full.data,colMeans(full.data),
cov(full.data))
mcd.output < -cov.rob(full.data,method=“mcd,” nsamp=
“best”)
mcd.keep < -full.data[mcd.output$best,]
mve.output < -cov.rob(full.data,method=“mve,” nsamp=
“best”)
mve.keep < -full.data[mve.output$best,]
mgv.output < -outmgv(full.data,y=NA,outfun= outbox)
mgv.keep < -full.data[mgv.output$keep,]
projection1.output < -outpro(full.data,cop= 2)
projection1.keep < -full.data[projection1.output$keep,]
projection2.output < -outpro(full.data.matrix,cop= 3)
projection2.keep < -full.data[projection2.output$keep,]
projection3.output < -outpro(full.data,cop= 4)
projection3.keep < -full.data[projection3.output$keep,]

∗Note that for the projection methods, the center of the distrib-
ution may be determined using one of four possible approaches.
The choice of method is specified in the cop command. For this
study, three of these were used, including MCD (cop= 2), median
of the marginal distributions (cop= 3), and MVE (cop= 4).
∗∗The functions for obtaining the mahalanobis distance

(mahalanobis) and MCD/MVE (cov.rob) are part of the MASS
library in R, and will be loaded when it is called. The out-
mgv and outpro functions are part of a suite of functions
written by Rand Wilcox with information for obtaining them
available at his website (http://dornsife.usc.edu/cf/faculty-and-
staff/faculty.cfm?pid= 1003819&CFID= 259154&CFTOKEN=
86756889) and his book, Introduction to Robust Estimation and
Hypothesis Testing.
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The validity of inferences drawn from statistical test results depends on how well data
meet associated assumptions.Yet, research (e.g., Hoekstra et al., 2012) indicates that such
assumptions are rarely reported in literature and that some researchers might be unfamiliar
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associated with substantive statistical tests across the general linear model. Additionally,
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Keywords: assumptions, robustness, analyzing data, normality, homogeneity

The degree to which valid inferences may be drawn from the
results of inferential statistics depends upon the sampling tech-
nique and the characteristics of population data. This dependency
stems from the fact that statistical analyses assume that sample(s)
and population(s) meet certain conditions. These conditions are
called statistical assumptions. If violations of statistical assump-
tions are not appropriately addressed, results may be interpreted
incorrectly. In particular, when statistical assumptions are violated,
the probability of a test statistic may be inaccurate, distorting Type
I or Type II error rates.

This article focuses on the assumptions associated with sub-
stantive statistical analyses across the general linear model (GLM),
as research indicates they are reported with more frequency
in educational and psychological research than analyses focus-
ing on measurement (cf. Kieffer et al., 2001; Zientek et al.,
2008). This review is organized around Table 1, which relates
key statistical assumptions to associated analyses and classifies
them into the following categories: randomization, independence,
measurement, normality, linearity, and variance. Note that the
assumptions of independence, measurement, normality, linear-
ity, and variance apply to population data and are tested by
examining sample data and using test statistics to draw infer-
ences about the population(s) from which the sample(s) were
selected.

RANDOMIZATION
A basic statistical assumption across the GLM is that sample data
are drawn randomly from the population. However, much social
science research is based on unrepresentative samples (Thomp-
son, 2006) and many quantitative researchers select a sample
that suits the purpose of the study and that is convenient (Gall
et al., 2007). When the assumption of random sampling is not
met, inferences to the population become difficult. In this case,

researchers should describe the sample and population in suffi-
cient detail to justify that the sample was at least representative of
the intended population (Wilkinson and APA Task Force on Sta-
tistical Inference, 1999). If such a justification is not made, readers
are left to their own interpretation as to the generalizability of the
results.

INDEPENDENCE
Across GLM analyses, it is assumed that observations are inde-
pendent of each other. In quantitative research, data often do not
meet the independence assumption. The simplest case of non-
independent data is paired sample or repeated measures data. In
these cases, only pairs of observations (or sets of repeated data) can
be independent because the structure of the data is by design paired
(or repeated). More complex data structures that do not meet the
assumption of independence include nested data (e.g., employees
within teams and teams within departments) and cross-classified
data (e.g., students within schools and neighborhoods).

When data do not meet the assumption of independence, the
accuracy of the test statistics (e.g., t, F, χ2) resulting from a GLM
analysis depends on the test conducted. For data that is paired
(e.g., pretest-posttest, parent-child), paired samples t test is an
appropriate statistical analysis as long as the pairs of observations
are independent and all other statistical assumptions (see Table 1)
are met. Similarly, for repeated measures data, repeated measures
ANOVA is an appropriate statistical analysis as long as sets of
repeated measures data are independent and all other statistical
assumptions (see Table 1) are met. For repeated measures and/or
non-repeated measures data that are nested or cross-classified,
multilevel modeling (MLM) is an appropriate statistical analytic
strategy because it models non-independence. Statistical tests that
do not model the nested or cross-classified structure of data will
lead to a higher probability of rejecting the null hypotheses (i.e.,
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Table 1 | Statistical assumptions associated with substantive analyses across the general linear model.

Statistical analysisa Independence Measurement Normality Linearity Variance

Level of variable(s)b

Dependent Independent

CHI-SQUARE

Single sample Independent observations Nominal+ N/A

2+ samples Independent observations Nominal+ Nominal+

T -TEST

Single sample Independent observations Continuous N/A Univariate

Dependent sample Independent paired observations Continuous N/A Univariate

Independent sample Independent observations Continuous Dichotomous Univariate Homogeneity of variance

OVA-RELATEDTESTS

ANOVA Independent observations Continuous Nominal Univariate Homogeneity of variance

ANCOVAc Independent observations Continuous Nominal Univariate X Homogeneity of variance

RM ANOVA Independent repeated observations Continuous Nominal (opt.) Multivariate X Sphericity

MANOVA Independent observations Continuous Nominal Multivariate X Homogeneity of covariance matrix

MANCOVAc Independent observations Continuous Nominal Multivariate X Homogeneity of covariance matrix

REGRESSION

Simple linear Independent observations Continuous Continuous Bivariate X

Multiple linear Independent observations Continuous Continuous Multivariate X Homoscedasticity

Canonical correlation Independent observations Continuous Continuous Multivariate X Homoscedasticity

aAcross all analyses, data are assumed to be randomly sampled from the population. bData are assumed to be reliable. cANCOVA and MANCOVA also assumes

homogeneity of regression and continuous covariate(s). Continuous refers to data that may be dichotomous, ordinal, interval, or ratio (cf.Tabachnick and Fidell, 2001).

Type I error) than if an appropriate statistical analysis were per-
formed or if the data did not violate the independence assumption
(Osborne, 2000).

Presuming that statistical assumptions can be met, MLM can
be used to conduct statistical analyses equivalent to those listed
in Table 1 (see Garson, 2012 for a guide to a variety of MLM
analyses). Because multilevel models are generalizations of multi-
ple regression models (Kreft and de Leeuw, 1998), MLM analyses
have assumptions similar to analyses that do not model multilevel
data. When violated, distortions in Type I and Type II error rates
are imminent (Onwuegbuzie and Daniel, 2003).

MEASUREMENT
RELIABILITY
Another basic assumption across the GLM is that population data
are measured without error. However, in psychological and educa-
tional research, many variables are difficult to measure and yield
observed data with imperfect reliabilities (Osborne and Waters,
2002). Unreliable data stems from systematic and random errors of
measurement where systematic errors of measurement are “those
which consistently affect an individual’s score because of some
particular characteristic of the person or the test that has noth-
ing to do with the construct being measured (Crocker and Algina,
1986, p. 105) and random errors of measurement are those which
“affect an individual’s score because of purely chance happenings”
(Crocker and Algina, 1986, p. 106).

Statistical analyses on unreliable data may cause effects to be
underestimated which increase the risk of Type II errors (Onwueg-
buzie and Daniel, 2003). Alternatively in the presence of correlated

error, unreliable data may cause effects to be overestimated which
increase the risk of Type I errors (Nimon et al., 2012).

To satisfy the assumption of error-free data, researchers may
conduct and report analyses based on latent variables in lieu of
observed variables. Such analyses are based on a technique called
structural equation modeling (SEM). In SEM, latent variables are
formed from item scores, the former of which become the unit
of analyses (see Schumacker and Lomax, 2004 for an accessible
introduction). Analyses based on latent-scale scores yield statis-
tics as if multiple-item scale scores had been measured without
error. All of the analyses in Table 1 as well as MLM analyses can be
conducted with SEM. The remaining statistical assumptions apply
when latent-scale scores are analyzed through SEM.

Since SEM is a large sample technique (see Kline, 2005),
researchers may alternatively choose to delete one or two items in
order to raise the reliability of an observed score. Although “exten-
sive revisions to prior scale dimensionality are questionable. . . one
or a few items may well be deleted” in order to increase reliability
(Dillon and Bearden, 2001, p. 69). The process of item deletion
should be reported, accompanied by estimates of the reliability of
the data with and without the deleted items (Nimon et al., 2012).

MEASUREMENT LEVEL
Table 1 denotes measurement level as a statistical assumption.
Whether level of measurement is considered a statistical assump-
tion is a point of debate in statistical literature. For example,
proponents of Stevens (1946, 1951) argue that the dependent vari-
able in parametric tests such as t tests and analysis-of-variance
related tests should be scaled at the interval or ratio level (Maxwell
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and Delaney, 2004). Others (e.g., Howell, 1992; Harris, 2001) indi-
cate that the validity of statistical conclusions depends only on
whether data meet distributional assumptions not on the scaling
procedures used to obtain data (Warner, 2008). Because mea-
surement level plays a pivotal role in statistical analyses decision
trees (e.g., Tabachnick and Fidell, 2001, pp. 27–29), Table 1 relates
measurement level to statistical analyses from a pragmatic perspec-
tive. It is important to note that lowering the measurement level
of data (e.g., dichotomizing intervally scaled data) is ill-advised
unless data meet certain characteristics (e.g., multiple modes, seri-
ous skewness; Kerlinger, 1986). Although such a transformation
makes data congruent with statistics that assume only the nominal
measurement level, it discards important information and may
produce misleading or erroneous information (see Thompson,
1988).

NORMALITY
For many inferential statistics reported in educational and psycho-
logical research (cf. Kieffer et al., 2001; Zientek et al., 2008), there
is an assumption that population data are normally distributed.
The requirement for, type of, and loci of normality assumption
depend on the analysis conducted. Univariate group comparison
tests (t tests, ANOVA, ANCOVA) assume univariate normality
(Warner, 2008). Simple linear regression assumes bivariate nor-
mality (Warner, 2008). Multivariate analyses (repeated measures
ANOVA, MANOVA, MANCOVA, multiple linear regression, and
canonical correlation) assume multivariate normality (cf. Tabach-
nick and Fidell, 2001; Stevens, 2002). For analysis-of-variance type
tests (OVA-type tests) involving multiple samples, the normality
assumption applies to each level of the IV.

UNIVARIATE
The assumption of univariate normality is met when a distrib-
ution of scores is symmetrical and when there is an appropriate
proportion of distributional height to width (Thompson, 2006).
To assess univariate normality, researchers may conduct graphical
or non-graphical tests (Stevens, 2002): Non-graphical tests include
the chi-square goodness of fit test, the Kolmogorov–Smirnov test,
the Shapiro–Wilks test, and the evaluation of kurtosis and skew-
ness values. Graphical tests include the normality probability plot
and the histogram (or stem-and-leave plot).

Non-graphical tests are preferred for small to moderate sample
sizes, with the Shapiro–Wilks test and the evaluation of kurto-
sis and skewness values being preferred methods for sample sizes
of less than 20 (Stevens, 2002). The normal probability plot in
which observations are ordered in increasing degrees of magni-
tude and then plotted against expected normal distribution values
is preferred over histograms (or stem-and leave plots). Evalu-
ating normality by examining the shape of histogram scan be
problematic (Thompson, 2006), because there are infinitely dif-
ferent distribution shapes that may be normal (Bump, 1991). The
bell-shaped distribution that many educational professionals are
familiar with is not the only normal distribution (Henson, 1999).

BIVARIATE
The assumption of bivariate normality is met when the linear rela-
tionship between two variables follows a normal distribution (Bur-
denski, 2000). A necessary but insufficient condition for bivariate

normality is univariate normality for each variable. Bivariate nor-
mality can be evaluated graphically (e.g., scatterplots). However, in
practice, even large datasets (n > 200) have insufficient data points
to evaluate bivariate normality (Warner, 2008) which may explain
why this assumption often goes unchecked and unreported.

MULTIVARIATE
The assumption of multivariate normality is met when each vari-
able in a set is normally distributed around fixed values on all other
variables in the set (Henson, 1999). Necessary but insufficient con-
ditions for multivariate normality include univariate normality
for each variable along with bivariate normality for each variable
pair. Multivariate normality can be assessed graphically or with
statistical tests.

To assess multivariate normality graphically, a scatterplot of
Mahalanobis distances and paired χ2-values may be examined,
where Mahalanobis distance indicates how far each “set of scores
is from the group means adjusting for correlation of the variables”
(Burdenski, 2000, p. 20). If the plot approximates a straight-line,
data are considered multivariate normal. Software to produce the
Mahalanobis distance by χ2 scatterplot can be found in Thompson
(1990); Henson (1999), and Fan (1996).

Researchers may also assess multivariate normality by testing
Mardia’s (1985) coefficient of multivariate kurtosis and examin-
ing its critical ratio. If the critical ratio of Mardia’s coefficient of
multivariate kurtosis is less than 1.96, a sample can be considered
multivariate normal at the 0.05 significance level, indicating that
the multivariate kurtosis is not statistically significantly different
than zero. Mardia’s coefficient of multivariate kurtosis is available
in statistical software packages including AMOS, EQS, LISREL,
and PASW (see DeCarlo, 1997).

VIOLATIONS
The effect of violating the assumption of normality depends on
the level of non-normality and the statistical test examined. As
long the assumption of normality is not severely violated, the
actual Type I error rates approximate nominal rates for t tests
and OVA-tests (cf. Boneau, 1960; Glass et al., 1972; Stevens, 2002).
However, in the case of data that are severely platykurtic, power
is reduced in t tests and OVA-type tests (cf. Boneau, 1960; Glass
et al., 1972; Stevens, 2002). Non-normal variables that are highly
skewed or kurtotic distort relationships and significance tests in
linear regression (Osborne and Waters, 2002). Similarly, proper
inferences regarding statistical significance tests in canonical cor-
relation depend on multivariate normality (Tabachnick and Fidell,
2001). If the normality assumption is violated, researchers may
delete outlying cases, transform data, or conduct non-parametric
tests (see Conover, 1999; Osborne, 2012), as long as the process is
clearly reported.

LINEARITY
For parametric statistics involving two or more continuous vari-
ables (ANCOVA, repeated measures ANOVA, MANOVA, MAN-
COVA, linear regression, and canonical correlation) linearity
between pairs of continuous variables is assumed (cf. Tabachnick
and Fidell, 2001; Warner, 2008). The assumption of linearity is
that there is a straight-line relationship between two variables.
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Linearity is important in a practical sense because Pearson’s r,
which is fundamental to the vast majority of parametric statistical
procedures (Graham, 2008), captures only the linear relation-
ship among variables (Tabachnick and Fidell, 2001). Pearson’s r
underestimates the true relationship between two variables that is
non-linear (i.e., curvilinear; Warner, 2008).

Unless there is strong theory specifying non-linear relation-
ships, researchers may assume linear relationships in their data
(Cohen et al., 2003). However, linearity is not guaranteed and
should be validated with graphical methods (see Tabachnick
and Fidell, 2001). Non-linearity reduces the power of statistical
tests such as ANCOVA, MANOVA, MANCOVA, linear regres-
sion, and canonical correlation (Tabachnick and Fidell, 2001).
In the case of ANCOVA and MANCOVA, non-linearity results
in improper adjusted means (Stevens, 2002). If non-linearity is
detected, researchers may transform data, incorporate curvilin-
ear components, eliminate the variable producing non-linearity,
or conduct a non-linear analysis (cf. Tabachnick and Fidell, 2001;
Osborne and Waters, 2002; Stevens, 2002; Osborne, 2012), as long
as the process is clearly reported.

VARIANCE
Across parametric statistical procedures commonly used in quan-
titative research, at least five assumptions relate to variance. These
are: homogeneity of variance, homogeneity of regression, spheric-
ity, homoscedasticity, and homogeneity of variance-covariance
matrix.

Homogeneity of variance applies to univariate group analyses
(independent samples t test,ANOVA,ANCOVA) and assumes that
the variance of the DV is roughly the same at all levels of the IV
(Warner, 2008). The Levene’s test validates this assumption, where
smaller statistics indicate greater homogeneity. Research (Boneau,
1960; Glass et al., 1972) indicates that univariate group analyses
are generally robust to moderate violations of homogeneity of
variance as long as the sample sizes in each group are approxi-
mately equal. However, with unequal sample sizes, heterogeneity
may compromise the validity of null hypothesis decisions. Large
sample variances from small-group sizes increase the risk of Type
I error. Large sample variances from large-group sizes increase
the risk of Type II error. When the assumption of homogeneity
of variance is violated, researchers may conduct and report non-
parametric tests such as the Kruskal–Wallis. However, Maxwell and
Delaney (2004) noted that the Kruskal–Wallis test also assumes
equal variances and suggested that data be either transformed to
meet the assumption of homogeneity of variance or analyzed with
tests such as Brown–Forsythe F∗ or Welch’s W.

Homogeneity of regression applies to group analyses with
covariates, including ANCOVA and MANCOVA, and assumes that
the regression between covariate(s) and DV(s) in one group is the
same as the regression in other groups (Tabachnick and Fidell,
2001). This assumption can be examined graphically or by con-
ducting a statistical test on the interaction between the COV(s)
and the IV(s). Violation of this assumption can lead to very mis-
leading results if covariance is used (Stevens, 2002). For example,
in the case of heterogeneous slopes, group means that have been
adjusted by a covariate could indicate no difference when, in fact,
group differences might exist at different values of the covariate. If

heterogeneity of regression exists, ANCOVA and MANCOVA are
inappropriate analytic strategies (Tabachnick and Fidell, 2001).

Sphericity applies to repeated measures analyses that involve
three or more measurement occasions (repeated measures
ANOVA) and assumes that the variances of the differences for all
pairs of repeated measures are equal (Stevens, 2002). Presuming
that data are multivariate normal, the Mauchly test can be used
to test this assumption, where smaller statistics indicate greater
levels of sphericity (Tabachnick and Fidell, 2001). Violating the
sphericity assumption increases the risk of Type I error (Box,
1954). To adjust for this risk and provide better control for Type I
error rate, the degrees of freedom for the repeated measures F test
may be corrected using and reporting one of three adjustments:
(a) Greenhouse–Geisser, (b) Huynh–Feldt, and (c) Lower-bound
(see Nimon and Williams, 2009). Alternatively, researchers may
conduct and report analyses that do not assume sphericity (e.g.,
MANOVA).

Homoscedasticity applies to multiple linear regression and
canonical correlation and assumes that the variability in scores for
one continuous variable is roughly the same at all values of another
continuous variable (Tabachnick and Fidell, 2001). Scatterplots
are typically used to test homoscedasticity. Linear regression is
generally robust to slight violations of homoscedasticity; how-
ever, marked heteroscedasticity increases the risk of Type I error
(Osborne and Waters, 2002). Canonical correlation performs best
when relationships among pairs of variables are homoscedastic
(Tabachnick and Fidell, 2001). If the homoscedasticity assumption
is violated, researchers may delete outlying cases, transform data,
or conduct non-parametric tests (see Conover, 1999; Osborne,
2012), as long as the process is clearly reported.

Homogeneity of variance-covariance matrix is a multivariate
generalization of homogeneity of variance. It applies to multivari-
ate group analyses (MANOVA and MANCOVA) and assumes that
the variance-covariance matrix is roughly the same at all levels
of the IV (Stevens, 2002). The Box M test tests this assumption,
where smaller statistics indicate greater homogeneity. Tabachnick
and Fidell (2001) provided the following guidelines for inter-
preting violations of this assumption: if sample sizes are equal,
heterogeneity is not an issue. However, with unequal sample sizes,
heterogeneity may compromise the validity of null hypothesis
decisions. Large sample variances from small-group sizes increase
the risk of Type I error whereas large sample variances from large-
group sizes increase the risk of Type II error. If sample sizes are
unequal and the Box M test is significant at p < 0.001, researchers
should conduct the Pillai’s test or equalize sample sizes by random
deletion of cases if power can be retained.

DISCUSSION
With the advances in statistical software, it is easy for researchers to
use point and click methods to conduct a wide variety of statisti-
cal analyses on their datasets. However, the output from statistical
software packages typically does not fully indicate if necessary sta-
tistical assumptions have been met. I invite editors and reviewers to
use the information presented in this article as a basic checklist of
the statistical assumptions to be reported in scholarly reports. The
references cited in this article should also be helpful to researchers
who are unfamiliar with a particular assumption or how to test it.
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For example, Osborne’s (2012) book provides an accessible treat-
ment of a wide variety of data transformation techniques while
Burdenski’s (2000) article review graphics procedures to evalu-
ate univariate, bivariate, and multivariate normality. Finally, the
information presented in this article should be helpful to readers
of scholarly reports. Readers cannot presume that just because an
article has survived peer review, the interpretation of the findings

is methodologically sound (cf. Henson et al., 2010). Readers must
make their own judgment as to the quality of the study if infor-
mation that could affect the validity of the data presented is not
reported. With the information presented in this article and oth-
ers, I invite readers to take an active role in evaluating the findings
of quantitative research reports and become informed consumers
of the data presented.
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While multicollinearity may increase the difficulty of interpreting multiple regression (MR)
results, it should not cause undue problems for the knowledgeable researcher. In the
current paper, we argue that rather than using one technique to investigate regression
results, researchers should consider multiple indices to understand the contributions that
predictors make not only to a regression model, but to each other as well. Some of the
techniques to interpret MR effects include, but are not limited to, correlation coefficients,
beta weights, structure coefficients, all possible subsets regression, commonality coef-
ficients, dominance weights, and relative importance weights. This article will review a
set of techniques to interpret MR effects, identify the elements of the data on which the
methods focus, and identify statistical software to support such analyses.
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Multiple regression (MR) is used to analyze the variability of a
dependent or criterion variable using information provided by
independent or predictor variables (Pedhazur, 1997). It is an
important component of the general linear model (Zientek and
Thompson, 2009). In fact, MR subsumes many of the quantita-
tive methods that are commonly taught in education (Henson
et al., 2010) and psychology doctoral programs (Aiken et al., 2008)
and published in teacher education research (Zientek et al., 2008).
One often cited assumption for conducting MR is minimal corre-
lation among predictor variables (cf. Stevens, 2009). As Thompson
(2006) explained, “Collinearity (or multicollinearity) refers to the
extent to which the predictor variables have non-zero correlations
with each other” (p. 234). In practice, however, predictor variables
are often correlated with one another (i.e., multicollinear), which
may result in combined prediction of the dependent variable.

Multicollinearity can lead to increasing complexity in the
research results, thereby posing difficulty for researcher inter-
pretation. This complexity, and thus the common admonition
to avoid multicollinearity, results because the combined predic-
tion of the dependent variable can yield regression weights that
are poor reflections of variable relationships. Nimon et al. (2010)
noted that correlated predictor variables can “complicate result
interpretation. . . a fact that has led many to bemoan the presence
of multicollinearity among observed variables” (p. 707). Indeed,
Stevens (2009) suggested “Multicollinearity poses a real problem
for the researcher using multiple regression” (p. 74).

Nevertheless, Henson (2002) observed that multicollinearity
should not be seen as a problem if additional analytic information
is considered:

The bottom line is that multicollinearity is not a problem in
multiple regression, and therefore not in any other [general
linear model] analysis, if the researcher invokes structure

coefficients in addition to standardized weights. In fact,
in some multivariate analyses, multicollinearity is actually
encouraged, say, for example, when multi-operationalizing a
dependent variable with several similar measures. (p. 13)

Although multicollinearity is not a direct statistical assumption
of MR (cf. Osborne and Waters, 2002), it complicates interpreta-
tion as a function of its influence on the magnitude of regression
weights and the potential inflation of their standard error (SE),
thereby negatively influencing the statistical significance tests of
these coefficients. Unfortunately, many researchers rely heavily
on standardized (beta, β) or unstandardized (slope) regression
weights when interpreting MR results (Courville and Thompson,
2001; Zientek and Thompson, 2009). In the presence of mul-
ticollinear data, focusing solely on regression weights yields at
best limited information and, in some cases, erroneous interpre-
tation. However, it is not uncommon to see authors argue for the
importance of predictor variables to a regression model based on
the results of null hypothesis statistical significance tests of these
regression weights without consideration of the multiple com-
plex relationships between predictors and predictors with their
outcome.

PURPOSE
The purpose of the present article is to discuss and demonstrate
several methods that allow researchers to fully interpret and under-
stand the contributions that predictors play in forming regression
effects, even when confronted with collinear relationships among
the predictors. When faced with multicollinearity in MR (or other
general linear model analyses), researchers should be aware of and
judiciously employ various techniques available for interpretation.
These methods, when used correctly, allow researchers to reach
better and more comprehensive understandings of their data than
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would be attained if only regression weights were considered. The
methods examined here include inspection of zero-order corre-
lation coefficients, β weights, structure coefficients, commonality
coefficients, all possible subsets regression, dominance weights,
and relative importance weights (RIW). Taken together, the var-
ious methods will highlight the complex relationships between
predictors themselves, as well as between predictors and the depen-
dent variables. Analysis from these different standpoints allows
the researcher to fully investigate regression results and lessen the
impact of multicollinearity. We also concretely demonstrate each
method using data from a heuristic example and provide reference
information or direct syntax commands from a variety of statistical
software packages to help make the methods accessible to readers.

In some cases multicollinearity may be desirable and part of
a well-specified model, such as when multi-operationalizing a
construct with several similar instruments. In other cases, par-
ticularly with poorly specified models, multicollinearity may be
so high that there is unnecessary redundancy among predictors,
such as when including both subscale and total scale variables as
predictors in the same regression. When unnecessary redundancy
is present, researchers may reasonably consider deletion of one or
more predictors to reduce collinearity. When predictors are related
and theoretically meaningful as part of the analysis, the current
methods can help researchers parse the roles related predictors
play in predicting the dependent variable. Ultimately, however,
the degree of collinearity is a judgement call by the researcher, but
these methods allow researchers a broader picture of its impact.

PREDICTOR INTERPRETATION TOOLS
CORRELATION COEFFICIENTS
One method to evaluate a predictor’s contribution to the regres-
sion model is the use of correlation coefficients such as Pearson
r, which is the zero-order bivariate linear relationship between an
independent and dependent variable. Correlation coefficients are
sometimes used as validity coefficients in the context of construct
measurement relationships (Nunnally and Bernstein, 1994). One
advantage of r is that it is the fundamental metric common to all
types of correlational analyses in the general linear model (Hen-
son, 2002; Thompson, 2006; Zientek and Thompson, 2009). For
interpretation purposes,Pearson r is often squared (r2) to calculate
a variance-accounted-for effect size.

Although widely used and reported, r is somewhat limited in
its utility for explaining MR relationships in the presence of multi-
collinearity. Because r is a zero-order bivariate correlation, it does
not take into account any of the MR variable relationships except
that between a single predictor and the criterion variable. As such,
r is an inappropriate statistic for describing regression results as
it does not consider the complicated relationships between pre-
dictors themselves and predictors and criterion (Pedhazur, 1997;
Thompson, 2006). In addition, Pearson r is highly sample spe-
cific, meaning that r might change across individual studies even
when the population-based relationship between the predictor and
criterion variables remains constant (Pedhazur, 1997).

Only in the hypothetical (and unrealistic) situation when the
predictors are perfectly uncorrelated is r a reasonable represen-
tation of predictor contribution to the regression effect. This is
because the overall R2 is simply the sum of the squared correlations

between each predictor (X) and the outcome (Y ):

R2 = rY −X12 + rY −X22 + . . . + rY −Xk 2, or

R2 = (rY −X1) (rY −X1) + (rY −X2) (rY −X2) + . . .

+ (
rY −Xk

) (
rY −Xk

)
. (1)

This equation works only because the predictors explain differ-
ent and unique portions of the criterion variable variance. When
predictors are correlated and explain some of the same variance of
the criterion, the sum of the squared correlations would be greater
than 1.00, because r does not consider this multicollinearity.

BETA WEIGHTS
One answer to the issue of predictors explaining some of the same
variance of the criterion is standardized regression (β) weights.
Betas are regression weights that are applied to standardized (z)
predictor variable scores in the linear regression equation, and
they are commonly used for interpreting predictor contribution
to the regression effect (Courville and Thompson, 2001). Their
utility lies squarely with their function in the standardized regres-
sion equation, which speaks to how much credit each predictor
variable is receiving in the equation for predicting the dependent
variable, while holding all other independent variables constant.
As such, a β weight coefficient informs us as to how much change
(in standardized metric) in the criterion variable we might expect
with a one-unit change (in standardized metric) in the predictor
variable, again holding all other predictor variables constant (Ped-
hazur, 1997). This interpretation of a β weight suggests that its
computation must simultaneously take into account the predictor
variable’s relationship with the criterion as well as the predictor
variable’s relationships with all other predictors.

When predictors are correlated, the sum of the squared bivari-
ate correlations no longer yields the R2 effect size. Instead, βs can
be used to adjust the level of correlation credit a predictor gets in
creating the effect:

R2 = (β1) (rY −X1) + (β2) (rY −X2) + . . . + (βk)
(
rY −Xk

)
. (2)

This equation highlights the fact that β weights are not
direct measures of relationship between predictors and outcomes.
Instead, they simply reflect how much credit is being given to pre-
dictors in the regression equation in a particular context (Courville
and Thompson, 2001). The accuracy of β weights are theoreti-
cally dependent upon having a perfectly specified model, since
adding or removing predictor variables will inevitably change β

values. The problem is that the true model is rarely, if ever, known
(Pedhazur, 1997).

Sole interpretation of β weights is troublesome for several rea-
sons. To begin, because they must account for all relationships
among all of the variables, β weights are heavily affected by the
variances and covariances of the variables in question (Thompson,
2006). This sensitivity to covariance (i.e., multicollinear) rela-
tionships can result in very sample-specific weights which can
dramatically change with slight changes in covariance relation-
ships in future samples, thereby decreasing generalizability. For
example, β weights can even change in sign as new variables are
added or as old variables are deleted (Darlington, 1968).
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When predictors are multicollinear, variance in the criterion
that can be explained by multiple predictors is often not equally
divided among the predictors. A predictor might have a large cor-
relation with the outcome variable, but might have a near-zero
β weight because another predictor is receiving the credit for the
variance explained (Courville and Thompson, 2001). As such, β

weights are context-specific to a given specified model. Due to the
limitation of these standardized coefficients, some researchers have
argued for the interpretation of structure coefficients in addition
to β weights (e.g., Thompson and Borrello, 1985; Henson, 2002;
Thompson, 2006).

STRUCTURE COEFFICIENTS
Like correlation coefficients, structure coefficients are also sim-
ply bivariate Pearson rs, but they are not zero-order correlations
between two observed variables. Instead, a structure coefficient
is a correlation between an observed predictor variable and the
predicted criterion scores, often called “Yhat” (Ŷ ) scores (Hen-
son, 2002; Thompson, 2006). These Ŷ scores are the predicted
estimate of the outcome variable based on the synthesis of all
the predictors in regression equation; they are also the primary
focus of the analysis. The variance of these predicted scores repre-
sents the portion of the total variance of the criterion scores that
can be explained by the predictors. Because a structure coefficient
represents a correlation between a predictor and the Ŷ scores, a
squared structure coefficient informs us as to how much variance
the predictor can explain of the R2 effect observed (not of the total
dependent variable), and therefore provide a sense of how much
each predictor could contribute to the explanation of the entire
model (Thompson, 2006).

Structure coefficients add to the information provided by β

weights. Betas inform us as to the credit given to a predictor in the
regression equation, while structure coefficients inform us as to the
bivariate relationship between a predictor and the effect observed
without the influence of the other predictors in the model. As
such, structure coefficients are useful in the presence of multi-
collinearity. If the predictors are perfectly uncorrelated, the sum
of all squared structure coefficients will equal 1.00 because each
predictor will explain its own portion of the total effect (R2). When
there is shared explained variance of the outcome, this sum will
necessarily be larger than 1.00. Structure coefficients also allow us
to recognize the presence of suppressor predictor variables, such
as when a predictor has a large β weight but a disproportion-
ately small structure coefficient that is close to zero (Courville and
Thompson, 2001; Thompson, 2006; Nimon et al., 2010).

ALL POSSIBLE SUBSETS REGRESSION
All possible subsets regression helps researchers interpret regres-
sion effects by seeking a smaller or simpler solution that still has
a comparable R2 effect size. All possible subsets regression might
be referred to by an array of synonymous names in the literature,
including regression weights for submodels (Braun and Oswald,
2011), all possible regressions (Pedhazur, 1997), regression by
leaps and bounds (Pedhazur, 1997), and all possible combination
solution in regression (Madden and Bottenberg, 1963).

The concept of all possible subsets regression is a relatively
straightforward approach to explore for a regression equation

until the best combination of predictors is used in a single equa-
tion (Pedhazur, 1997). The exploration consists of examining the
variance explained by each predictor individually and then in all
possible combinations up to the complete set of predictors. The
best subset, or model, is selected based on judgments about the
largest R2 with the fewest number of variables relative to the full
model R2 with all predictors. All possible subsets regression is
the skeleton for commonality and dominance analysis (DA) to be
discussed later.

In many ways, the focus of this approach is on the total effect
rather than the particular contribution of variables that make up
that effect, and therefore the concept of multicollinearity is less
directly relevant here. Of course, if variables are redundant in the
variance they can explain, it may be possible to yield a similar effect
size with a smaller set of variables. A key strength of all possible
subsets regression is that no combination or subset of predictors
is left unexplored.

This strength, however, might also be considered the biggest
weakness, as the number of subsets requiring exploration is expo-
nential and can be found with 2k − 1, where k represents the
number of predictors. Interpretation might become untenable as
the number of predictor variables increases. Further, results from
an all possible subset model should be interpreted cautiously, and
only in an exploratory sense. Most importantly, researchers must
be aware that the model with the highest R2 might have achieved
such by chance (Nunnally and Bernstein, 1994).

COMMONALITY ANALYSIS
Multicollinearity is explicitly addressed with regression common-
ality analysis (CA). CA provides separate measures of unique
variance explained for each predictor in addition to measures
of shared variance for all combinations of predictors (Pedhazur,
1997). This method allows a predictor’s contribution to be related
to other predictor variables in the model, providing a clear picture
of the predictor’s role in the explanation by itself, as well as with
the other predictors (Rowell, 1991, 1996; Thompson, 2006; Zien-
tek and Thompson, 2006). The method yields all of the uniquely
and commonly explained parts of the criterion variable which
always sum to R2. Because CA identifies the unique contribution
that each predictor and all possible combinations of predictors
make to the regression effect, it is particularly helpful when sup-
pression or multicollinearity is present (Nimon, 2010; Zientek and
Thompson, 2010; Nimon and Reio, 2011). It is important to note,
however, that commonality coefficients (like other MR indices)
can change as variables are added or deleted from the model
because of fluctuations in multicollinear relationships. Further,
they cannot overcome model misspecification (Pedhazur, 1997;
Schneider, 2008).

DOMINANCE ANALYSIS
Dominance analysis was first introduced by Budescu (1993) and
yields weights that can be used to determine dominance, which
is a qualitative relationship defined by one predictor variable
dominating another in terms of variance explained based upon
pairwise variable sets (Budescu, 1993; Azen and Budescu, 2003).
Because dominance is roughly determined based on which pre-
dictors explain the most variance, even when other predictors
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explain some of the same variance, it tends to de-emphasize
redundant predictors when multicollinearity is present. DA cal-
culates weights on three levels (complete, conditional, and gen-
eral), within a given number of predictors (Azen and Budescu,
2003).

Dominance levels are hierarchical, with complete dominance
as the highest level. Complete dominance is inherently both con-
ditional and generally dominant. The reverse, however, is not
necessarily true; a generally dominant variable is not necessar-
ily conditionally or completely dominant. Complete dominance
occurs when a predictor has a greater dominance weight,or average
additional R2, in all possible pairwise (and combination) com-
parisons. However, complete dominance does not typically occur
in real data. Because predictor dominance can present itself in
more practical intensities, two lower levels of dominance were
introduced (Azen and Budescu, 2003).

The middle level of dominance, referred as conditional dom-
inance, is determined by examining the additional contribution
to R2 within specific number of predictors (k). A predictor might
conditionally dominate for k = 2 predictors, but not necessarily
k = 0 or 1. The conditional dominance weight is calculated by
taking the average R2 contribution by a variable for a specific
k. Once the conditional dominance weights are calculated, the
researcher can interpret the averages in pairwise fashion across all
k predictors.

The last and lowest level of dominance is general. General
dominance averages the overall additional contributions of R2.
In simple terms, the average weights from each k group (k = 0,
1, 2) for each predictor (X1, X2, and X3) are averaged for the
entire model. General dominance is relaxed compared to the com-
plete and conditional dominance weights to alleviate the number
of undetermined dominance in data analysis (Azen and Bude-
scu, 2003). General dominance weights provide similar results as
RIWs, proposed by Lindeman et al. (1980) and Johnson (2000,
2004). RIWs and DA are deemed the superior MR interpretation
techniques by some (Budescu and Azen, 2004), almost always pro-
ducing consistent results between methods (Lorenzo-Seva et al.,
2010). Finally, an important point to emphasize is that the sum of
the general dominance weights will equal the multiple R2 of the
model.

Several strengths are noteworthy with a full DA. First, dom-
inance weights provide information about the contribution of
predictor variables across all possible subsets of the model. In
addition, because comparisons can be made across all pairwise
comparisons in the model, DA is sensitive to patterns that might
be present in the data. Finally, complete DA can be a useful tool
for detection and interpretation of suppression cases (Azen and
Budescu, 2003).

Some weaknesses and limitations of DA exist, although some
of these weaknesses are not specific to DA. DA is not appropri-
ate in path analyses or to test a specific hierarchical model (Azen
and Budescu, 2003). DA is also not appropriate for mediation
and indirect effect models. Finally, as is true with all other meth-
ods of variable interpretation, model misspecification will lead
to erroneous interpretation of predictor dominance (Budescu,
1993). Calculations are also thought by some to be laborious as
the number of predictors increases (Johnson, 2000).

RELATIVE IMPORTANCE WEIGHTS
Relative importance weights can also be useful in the presence of
multicollinearity, although like DA, these weights tend to focus on
attributing general credit to primary predictors rather than detail-
ing the various parts of the dependent variable that are explained.
More specifically, RIWs are the proportionate contribution from
each predictor to R2, after correcting for the effects of the inter-
correlations among predictors (Lorenzo-Seva et al., 2010). This
method is recommended when the researcher is examining the
relative contribution each predictor variable makes to the depen-
dent variable rather than examining predictor ranking (Johnson,
2000, 2004) or having concern with specific unique and com-
monly explained portions of the outcome, as with CA. RIWs range
between 0 and 1, and their sum equals R2 (Lorenzo-Seva et al.,
2010). The weights most always match the values given by general
dominance weights, despite being derived in a different fashion.

Relative importance weights are computed in four major steps
(see full detail in Johnson, 2000; Lorenzo-Seva et al., 2010). Step
one transforms the original predictors (X) into orthogonal vari-
ables (Z ) to achieve the highest similarity of prediction compared
to the original predictors but with the condition that the trans-
formed predictors must be uncorrelated. This initial step is an
attempt to simplify prediction of the criterion by removing mul-
ticollinearity. Step two involves regressing the dependent variable
(Y ) onto the orthogonalized predictors (Z ), which yields the stan-
dardized weights for each Z. Because the Zs are uncorrelated, these
β weights will equal the bivariate correlations between Y and Z,
thus making equations (1) and (2) above the same. In a three
predictor model, for example, the result would be a 3 × 1 weight
matrix (β) which is equal to the correlation matrix between Y
and the Z s. Step three correlates the orthogonal predictors (Z )
with the original predictors (X) yielding a 3 × 3 matrix (R) in a
three predictor model. Finally, step four calculates the RIWs (ε) by
multiplying the squared ZX correlations (R) with the squared YZ
weights (β).

Relative importance weights are perhaps more efficiently com-
puted as compared to computation of DA weights which requires
all possible subsets regressions as building blocks (Johnson, 2004;
Lorenzo-Seva et al., 2010). RIWs and DA also yield almost identical
solutions, despite different definitions (Johnson, 2000; Lorenzo-
Seva et al., 2010). However, these weights do not allow for easy
identification of suppression in predictor variables.

HEURISTIC DEMONSTRATION
When multicollinearity is present among predictors, the above
methods can help illuminate variable relationships and inform
researcher interpretation. To make their use more accessible to
applied researchers, the following section demonstrates these
methods using a heuristic example based on the classic suppres-
sion correlation matrix from Azen and Budescu (2003), presented
in Table 1. Table 2 lists statistical software or secondary syntax
programs available to run the analyses across several commonly
used of software programs – blank spaces in the table reflect an
absence of a solution for that particular analysis and solution, and
should be seen as an opportunity for future development. Sections
“Excel For All Available Analyses, R Code For All Available Analy-
ses, SAS Code For All Available Analyses, and SPSS Code For All
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Analyses” provide instructions and syntax commands to run var-
ious analyses in Excel, R, SAS, and SPSS, respectively. In most
cases, the analyses can be run after simply inputting the correla-
tion matrix from Table 1 (n = 200 cases was used here). For SPSS
(see SPSS Code For All Analyses), some analyses require the gener-
ation of data (n = 200) using the syntax provided in the first part
of the appendix (International Business Machines Corp, 2010).
Once the data file is created, the generic variable labels (e.g., var1)
can be changed to match the labels for the correlation matrix (i.e.,
Y, X1, X2, and X3).

All of the results are a function of regressing Y on X1, X2, and
X3 via MR. Table 3 presents the summary results of this analysis,

Table 1 | Correlation matrix for classical suppression example (Azen

and Budescu, 2003).

Y X 1 X 2 X 3

Y 1.000

X 1 0.500 1.000

X 2 0.000 0.300 1.000

X 3 0.250 0.250 0.250 1.000

Reprinted with permission from Azen and Budescu (2003). Copyright 2003 by

Psychological Methods.

along with the various coefficients and weights examined here to
facilitate interpretation.

CORRELATION COEFFICIENTS
Examination of the correlations in Table 1 indicate that the cur-
rent data indeed have collinear predictors (X1, X2, and X3), and
therefore some of the explained variance of Y (R2 = 0.301) may
be attributable to more than one predictor. Of course, the bivari-
ate correlations tell us nothing directly about the nature of shared
explained variance. Here, the correlations between Y and X1, X2,
and X3 are 0.50, 0, and 0.25, respectively. The squared correlations
(r2) suggest that X1 is the strongest predictor of the outcome vari-
able, explaining 25% (r2 = 0.25) of the criterion variable variance
by itself. The zero correlation between Y and X2 suggests that there
is no relationship between these variables. However, as we will see
through other MR indices, interpreting the regression effect based
only on the examination of correlation coefficients would pro-
vide, at best, limited information about the regression model as it
ignores the relationships between predictors themselves.

BETA WEIGHTS
The β weights can be found in Table 3. They form the standard-
ized regression equation which yields predicted Y scores: Ŷ =
(0.517 ∗ X1)+ (−0.198 ∗ X2)+ (0.170 ∗ X3), where all predictors
are in standardized (Z ) form. The squared correlation between Y

Table 2 |Tools to support interpreting multiple regression.

Program Beta weights Structure

coefficients

All possible

subsets

Commonality

analysisc

Relative weights Dominance

analysis

Excel Base rs = ry.x1/R Braun and

Oswald (2011)a
Braun and Oswald (2011)a Braun and Oswald (2011)a

R Nimon and

Roberts (2009)

Nimon and

Roberts (2009)

Lumley (2009) Nimon et al.

(2008)

SAS Base base baseb Tonidandel et al. (2009)d Azen and Budescu (2003)b

SPSS Base Lorenzo-Seva

et al. (2010)

Nimon (2010) Nimon (2010) Lorenzo-Seva et al. (2010),

Lorenzo-Seva and Ferrando (2011),

LeBreton and Tonidandel (2008)

aUp to 9 predictors, bup to 10 predictors, cA FORTRAN IV computer program to accomplish commonality analysis was developed by Morris (1976). However, the

program was written for a mainframe computer and is now obsolete, dTheTonidandel et al. (2009) SAS solution computes relative weights with a bias correction, and

thus results do not mirror those in the current paper. As such, we have decided not to demonstrate the solution here. However, the macro can be downloaded online

(http://www1.davidson.edu/academic/psychology/Tonidandel/TonidandelProgramsMain.htm) and provides user-friendly instructions.

Table 3 | Multiple regression results.

Predictor β rs r2
s r R2 Uniquea Commona General dominance weightsb Relative importance weights

X 1 0.517 0.911 0.830 0.500 0.250 0.234 0.016 0.241 0.241

X 2 −0.198 0.000 0.000 0.000 0.000 0.034 −0.034 0.016 0.015

X 3 0.170 0.455 0.207 0.250 0.063 0.026 0.037 0.044 0.045

R2 = 0.301. The primary predictor suggested by a method is underlined. r is correlation between predictor and outcome variable.

rs = structure coefficient = r/R. r 2
s = r 2

/
R2. Unique = proportion of criterion variance explained uniquely by the predictor. Common = proportion of criterion variance

explained by the predictor that is also explained by one or more other predictors. Unique + Common = r2. Σ General dominance weights = Σ relative importance

weights = R2. aSeeTable 5 for full CA. bSeeTable 6 for full DA.
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and Ŷ equals the overall R2 and represents the amount of variance
of Y that can be explained by Ŷ , and therefore by the predictors
collectively. The β weights in this equation speak to the amount of
credit each predictor is receiving in the creation of Ŷ , and therefore
are interpreted by many as indicators of variable importance (cf.
Courville and Thompson, 2001; Zientek and Thompson, 2009).

In the current example, r2
Y ·Ŷ t

= R2 = 0.301, indicating that
about 30% of the criterion variance can be explained by the predic-
tors. The β weights reveal that X1 (β = 0.517) received more credit
in the regression equation, compared to both X2 (β = −0.198) and
X3 (β = 0.170). The careful reader might note that X2 received
considerable credit in the regression equation predicting Y even
though its correlation with Y was 0. This oxymoronic result will
be explained later as we examine additional MR indices. Further-
more, these results make clear that the βs are not direct measures
of relationship in this case since the β for X2 is negative even
though the zero-order correlation between the X2 and Y is posi-
tive. This difference in sign is a good first indicator of the presence
of multicollinear data.

STRUCTURE COEFFICIENTS
The structure coefficients are given in Table 3 as r s. These are sim-
ply the Pearson correlations between Ŷ and each predictor. When
squared, they yield the proportion of variance in the effect (or, of
the Ŷ scores) that can be accounted for by the predictor alone,
irrespective of collinearity with other predictors. For example, the
squared structure coefficient for X1 was 0.830 which means that
of the 30.1% (R2) effect, X1 can account for 83% of the explained
variance by itself. A little math would show that 83% of 30.1%
is 0.250, which matches the r2 in Table 3 as well. Therefore, the
interpretation of a (squared) structure coefficient is in relation
to the explained effect rather than to the dependent variable as a
whole.

Examination of the β weights and structure coefficients in the
current example suggests that X1 contributed most to the variance
explained with the largest absolute value for both the β weight and
structure coefficient (β = 0.517, rs = 0.911 or r2

s = 83.0%). The
other two predictors have somewhat comparable βs but quite dis-
similar structure coefficients. Predictor X3 can explain about 21%
of the obtained effect by itself (β = 0.170, rs = 0.455, r2

s = 20.7%),
but X2 shares no relationship with the Ŷ scores (β = −0.198, rs

and r2
s = 0).

On the surface it might seem a contradiction for X2 to explain
none of the effect but still be receiving credit in the regression
equation for creating the predicted scores. However, in this case
X2 is serving as a suppressor variable and helping the other pre-
dictor variables do a better job of predicting the criterion even
though X2 itself is unrelated to the outcome. A full discussion
of suppression is beyond the scope of this article1. However, the
current discussion makes apparent that the identification of sup-
pression would be unlikely if the researcher were to only examine
β weights when interpreting predictor contributions.

1Suppression is apparent when a predictor has a beta weight that is disproportion-
ately large (thus receiving predictive credit) relative to a low or near-zero structure
coefficient (thus indicating no relationship with the predicted scores). For a broader
discussion of suppression, see Pedhazur (1997) and Thompson (2006).

Because a structure coefficient speaks to the bivariate relation-
ship between a predictor and an observed effect, it is not directly
affected by multicollinearity among predictors. If two predic-
tors explain some of the same part of the Ŷ score variance, the
squared structure coefficients do not arbitrarily divide this vari-
ance explained among the predictors. Therefore, if two or more
predictors explain some of the same part of the criterion, the sum
the squared structure coefficients for all predictors will be greater
than 1.00 (Henson, 2002). In the current example, this sum is 1.037
(0.830 + 0 + 0.207), suggesting a small amount of multicollinear-
ity. Because X2 is unrelated to Y, the multicollinearity is entirely a
function of shared variance between X1 and X3.

ALL POSSIBLE SUBSETS REGRESSION
We can also examine how each of the predictors explain Y both
uniquely and in all possible combinations of predictors. With three
variables, seven subsets are possible (2k − 1 or 23 − 1). The R2

effects from each of these subsets are given in Table 4, which
includes the full model effect of 30.1% for all three predictors.
Predictors X1 and X2 explain roughly 27.5% of the variance in
the outcome. The difference between a three predictor versus this
two predictor model is a mere 2.6% (30.1−27.5), a relatively small
amount of variance explained. The researcher might choose to
drop X3, striving for parsimony in the regression model. A deci-
sion might also be made to drop X2 given its lack of prediction
of Y independently. However, careful examination of the results
speaks again to the suppression role of X2, which explains none
of Y directly but helps X1 and X3 explain more than they could
by themselves when X2 is added to the model. In the end, deci-
sions about variable contributions continue to be a function of
thoughtful researcher judgment and careful examination of exist-
ing theory. While all possible subsets regression is informative, this
method generally lacks the level of detail provided by both βs and
structure coefficients.

COMMONALITY ANALYSIS
Commonality analysis takes all possible subsets further and divides
all of the explained variance in the criterion into unique and
common (or shared) parts. Table 5 presents the commonality
coefficients, which represent the proportions of variance explained
in the dependent variable. The unique coefficient for X1 (0.234)
indicates that X1 uniquely explains 23.4% of the variance in the

Table 4 | All possible subsets regression.

Predictor set R2

X 1 0.250

X 2 0.000

X 3 0.063

X 1, X 2 0.275

X 1, X 3 0.267

X 2, X 3 0.067

X 1, X 2, X 3 0.301

Predictor contribution is determined by researcher judgment.The model with the

highest R2 value, but with the most ease of interpretation, is typically chosen.
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dependent variable. This amount of variance is more than any
other partition, representing 77.85% of the R2 effect (0.301). The
unique coefficient for X3 (0.026) is the smallest of the unique
effects and indicates that the regression model only improves
slightly with the addition of variable X3, which is the same inter-
pretation provided by the all possible subsets analysis. Note that
X2 uniquely accounts for 11.38% of the variance in the regression
effect. Again, this outcome is counterintuitive given that the corre-
lation between X2 and Y is zero. However, as the common effects
will show, X2 serves as a suppressor variable, yielding a unique
effect greater than its total contribution to the regression effect
and negative commonality coefficients.

The common effects represent the proportion of criterion
variable variance that can be jointly explained by two or more
predictors together. At this point the issue of multicollinearity is
explicitly addressed with an estimate of each part of the depen-
dent variable that can be explained by more than one predictor.
For example, X1 and X3 together explain 4.1% of the outcome,
which represents 13.45% of the total effect size.

It is also important to note the presence of negative com-
monality coefficients, which seem anomalous given that these
coefficients are supposed to represent variance explained. Negative
commonality coefficients are generally indicative of suppression
(cf. Capraro and Capraro, 2001). In this case, they indicate that X2
suppresses variance in X1 and X3 that is irrelevant to explaining
variance in the dependent variable, making the predictive power
of their unique contributions to the regression effect larger than
they would be if X2 was not in the model. In fact, if X2 were
not in the model, X1 and X3 would respectively only account
for 20.4% (0.234−0.030) and 1.6% (0.026−0.010) of unique vari-
ance in the dependent variable. The remaining common effects
indicate that, as noted above, multicollinearity between X1 and
X3 accounts for 13.45% of the regression effect and that there is
little variance in the dependent variable that is common across
all three predictor variables. Overall, CA can help to not only
identify the most parsimonious model, but also quantify the
location and amount of variance explained by suppression and
multicollinearity.

Table 5 | Commonality coefficients.

Predictor(s) X 1 X 2 X 3 Coefficient Percent

X 1 0.234 0.234 77.845

X 2 0.034 0.034 11.381

X 3 0.026 0.026 8.702

X 1, X 2 −0.030 −0.030 −0.030 −10.000

X 1, X 3 0.041 0.041 0.041 13.453

X 2, X 3 −0.010 −0.010 −0.010 −3.167

X 1, X 2, X 3 0.005 0.005 0.005 0.005 1.779

Total 0.250 0.000 0.063 0.301 100.000

Commonality coefficients identifying suppression underlined.

ΣXk Commonality coefficients equals r2 between predictor (k) and dependent

variable.

Σ Commonality coefficients equals Multiple R2 = 30.1%. Percent = coefficient/

multiple R2.

DOMINANCE WEIGHTS
Referring to Table 6, the conditional dominance weights for the
null or k = 0 subset reflects the r2 between the predictor and the
dependent variable. For the subset model where k = 2, note that
the additional contribution each variable makes to R2 is equal
to the unique effects identified from CA. In the case when k = 1,
DA provides new information to interpreting the regression effect.
For example, when X2 is added to a regression model with X1, DA
shows that the change (Δ) in R2 is 0.025.

The DA weights are typically used to determine if variables
have complete, conditional, or general dominance. When evalu-
ating for complete dominance, all pairwise comparisons must be
considered. Looking across all rows to compare the size of domi-
nance weights, we see that X1 consistently has a larger conditional
dominance weight. Because of this, it can be said that predictor
X1 completely dominates the other predictors. When considering
conditional dominance, however, only three rows must be consid-
ered: these are labeled null and k = 0, k = 1, and k = 2 rows. These
rows provide information about which predictor dominates when
there are 0, 1, and 2 additional predictors present. From this, we
see that X1 conditionally dominates in all model sizes with weights
of 0.250 (k = 0), 0.240 (k = 1), and 0.234 (k = 2). Finally, to eval-
uate for general dominance, only one row must be attended to.
This is the overall average row. General dominance weights are the
average conditional dominance weight (additional contribution of
R2) for each variable across situations. For example, X1 generally
dominates with a weight of 0.241 [i.e., (0.250 + 0.240 + 0.234)/3].
An important observation is the sum of the general dominance
weights (0.241 + 0.016 + 0.044) is also equal to 0.301, which is the
total model R2 for the MR analysis.

RELATIVE IMPORTANCE WEIGHTS
Relative importance weights were computed using the Lorenzo-
Seva et al. (2010) SPSS code using the correlation matrix pro-
vided in Table 1. Based on RIW (Johnson, 2001), X1 would

Table 6 | Full dominance analysis (Azen and Budescu, 2003).

Subset model R2
Y ·Xi

Additional contribution of:

X 1 X 2 X 3

Null and k = 0 average 0 0.250 0.000 0.063

X 1 0.250 0.025 0.017

X 2 0.000 0.275 0.067

X 3 0.063 0.204 0.004

k = 1 average 0.240 0.015 0.044a

X 1, X 2 0.275 0.026

X 1, X 3 0.267 0.034

X 2, X 3 0.067 0.234

k = 2 average 0.234 0.034 0.026

X 1, X 2, X 3 0.301

Overall average 0.241 0.016 0.044

X1 is completely dominant (underlined). Blank cells are not applicable. aSmall dif-

ferences are noted in the hundredths decimal place for X3 between Braun and

Oswald (2011) and Azen and Budescu (2003).
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be considered the most important variable (RIW = 0.241), fol-
lowed by X3 (RIW = 0.045) and X2 (RIW = 0.015). The RIWs
offer an additional representation of the individual effect of
each predictor while simultaneously considering the combina-
tion of predictors as well (Johnson, 2000). The sum of the
weights (0.241 + 0.045 + 0.015 = 0.301) is equal to R2. Predic-
tor X1 can be interpreted as the most important variable
relative to other predictors (Johnson, 2001). The interpreta-
tion is consistent with a full DA, because both the individ-
ual predictor contribution with the outcome variable (rX1·Y ),
and the potential multicollinearity (rX1·X2 and rX1·X3) with
other predictors are accounted for. While the RIWs may dif-
fer slightly compared to general dominance weights (e.g., 0.015
and 0.016, respectively, for X2), the conclusions are the con-
sistent with those from a full DA. This method rank orders
the variables with X1 as the most important, followed by X3
and X2. The suppression role of X2, however, is not identified
by this method, which helps explain its rank as third in this
process.

DISCUSSION
Predictor variables are more commonly correlated than not in
most practical situations, leaving researchers with the necessity to
addressing such multicollinearity when they interpret MR results.
Historically, views about the impact of multicollinearity on regres-
sion results have ranged from challenging to highly problematic.
At the extreme, avoidance of multicollinearity is sometimes even
considered a prerequisite assumption for conducting the analy-
sis. These perspectives notwithstanding, the current article has
presented a set of tools that can be employed to effectively inter-
pret the roles various predictors have in explaining variance in a
criterion variable.

To be sure, traditional reliance on standardized or unstandard-
ized weights will often lead to poor or inaccurate interpretations
when multicollinearity or suppression is present in the data. If
researchers choose to rely solely on the null hypothesis statistical
significance test of these weights, then the risk of interpretive error
is noteworthy. This is primarily because the weights are heavily
affected by multicollinearity, as are their SE which directly impact
the magnitude of the corresponding p values. It is this reality
that has led many to suggest great caution when predictors are
correlated.

Advances in the literature and supporting software technology
for their application have made the issue of multicollinearity much
less critical. Although predictor correlation can certainly com-
plicate interpretation, use of the methods discussed here allow
for a much broader and more accurate understanding of the
MR results regarding which predictors explain how much vari-
ance in the criterion, both uniquely and in unison with other
predictors.

In data situations with a small number of predictors or very low
levels of multicollinearity, the interpretation method used might
not be as important as results will most often be very similar.
However, when the data situation becomes more complicated (as
is often the case in real-world data, or when suppression exists as
exampled here), more care is needed to fully understand the nature
and role of predictors.

CAUSE AND EFFECT, THEORY, AND GENERALIZATION
Although current methods are helpful, it is very important that
researchers remain aware that MR is ultimately a correlational-
based analysis, as are all analyses in the general linear model.
Therefore, variable correlations should not be construed as evi-
dence for cause and effect relationships. The ability to claim cause
and effect are predominately issues of research design rather than
statistical analysis.

Researchers must also consider the critical role of theory when
trying to make sense of their data. Statistics are mere tools to
help understand data, and the issue of predictor importance in
any given model must invoke the consideration of the theoreti-
cal expectations about variable relationships. In different contexts
and theories, some relationships may be deemed more or less
relevant.

Finally, the pervasive impact of sampling error cannot be
ignored in any analytical approach. Sampling error limits the gen-
eralizability of our findings and can cause any of the methods
described here to be more unique to our particular sample than
to future samples or the population of interest. We should not
assume too easily that the predicted relationships we observe will
necessarily appear in future studies. Replication continues to be a
key hallmark of good science.

INTERPRETATION METHODS
The seven approaches discussed here can help researchers better
understand their MR models, but each has its own strengths and
limitations. In practice, these methods should be used to inform
each other to yield a better representation of the data. Below we
summarize the key utility provided by each approach.

Pearson r correlation coefficient
Pearson r is commonly employed in research. However, as illus-
trated in the heuristic example, r does not take into account
the multicollinearity between variables and they do not allow
detection of suppressor effects.

Beta weights and structure coefficients
Interpretations of both β weights and structure coefficients pro-
vide a complementary comparison of predictor contribution to the
regression equation and the variance explained in the effect. Beta
weights alone should not be utilized to determine the contribu-
tion predictor variables make to a model because a variable might
be denied predictive credit in the presence of multicollinearity.
Courville and Thompson, 2001; see also Henson, 2002) advo-
cated for the interpretation of (a) both β weights and structure
coefficients or (b) both β weights and correlation coefficients.
When taken together, β and structure coefficients can illuminate
the impact of multicollinearity, reflect more clearly the ability of
predictors to explain variance in the criterion, and identify sup-
pressor effects. However, they do not necessarily provide detailed
information about the nature of unique and commonly explained
variance, nor about the magnitude of the suppression.

All possible subsets regression
All possible subsets regression is exploratory and comes with
increasing interpretive difficulty as predictors are added to
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the model. Nevertheless, these variance portions serve as the
foundation for unique and common variance partitioning and
full DA.

Commonality analysis, dominance analysis, and relative importance
weights
Commonality analysis decomposes the regression effect into
unique and common components and is very useful for identify-
ing the magnitude and loci of multicollinearity and suppression.
DA explores predictor contribution in a variety of situations and
provides consistent conclusions with RIWs. Both general domi-
nance and RIWs provide alternative techniques to decomposing
the variance in the regression effect and have the desirable fea-
ture that there is only one coefficient per independent variable
to interpret. However, the existence of suppression is not read-
ily understood by examining general dominance weights or RIWs.

Nor do the indices yield information regarding the magnitude and
loci of multicollinearity.

CONCLUSION
The real world can be complex – and correlated. We hope the meth-
ods summarized here are useful for researchers using regression to
confront this multicollinear reality. For both multicollinearity and
suppression, multiple pieces of information should be consulted
to understand the results. As such, these data situations should
not be shunned, but simply handled with appropriate interpre-
tive frameworks. Nevertheless, the methods are not a panacea, and
require appropriate use and diligent interpretation. As correctly
stated by Wilkinson and the APA Task Force on Statistical Infer-
ence (1999),“Good theories and intelligent interpretation advance
a discipline more than rigid methodological orthodoxy. . . Statis-
tical methods should guide and discipline our thinking but should
not determine it” (p. 604).
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APPENDIX
EXCEL FOR ALL AVAILABLE ANALYSES
Note. Microsoft Excel version 2010 is demonstrated. The following will yield all possible subsets, relative importance weights, and
dominance analysis results.

Download the Braun and Oswald (2011) Excel file (ERA.xlsm) from
http://dl.dropbox.com/u/2480715/ERA.xlsm?dl = 1
Save the file to your desktop
Click Enable Editing, if prompted
Click Enable Macros, if prompted
Step 1: Click on New Analysis

Step 2: Enter the number of predictors and click OK

Step 3: Enter the correlation matrix as shown

Step 4: Click Prepare for Analyses to complete the matrix

Step 5: Click Run Analyses

Step 6: Review output in the Results worksheet
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R CODE FOR ALL AVAILABLE ANALYSES
Note. R Code for Versions 2.12.1 and 2.12.2 are demonstrated.

Open R
Click on Packages → Install package(s)
Select the one package from a user-selected CRAN mirror site (e.g., USA CA 1)

Repeat installation for all four packages
Click on Packages → Load for each package (for a total of four times)
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Step 1: Copy and paste the following code to Generate Data from Correlation Matrix
library(MASS)
library(corpcor)
covm<-c(1.00,0.5,0.00,0.25,

0.5, 1,0.3,0.25,
0.0,0.30, 1,0.25,
0.25,0.25,0.25, 1)

covm<-matrix(covm,4,4)
covm<-make.positive.definite(covm)
varlist<-c("DV", "IV1", "IV2", "IV3")
dimnames(covm)<-list(varlist,varlist)
data1<-mvrnorm(n=200,rep(0,4),covm,empirical=TRUE)
data1<-data.frame(data1)

Step 2: Copy and paste the following code to Produce Beta Weights, Structure Coefficients, and Commonality Coefficients
library(yhat)
lmOut<-lm(DV∼IV1+IV2+IV3,data1)
regrOut<-regr(lmOut)
regrOut$Beta_Weights
regrOut$Structure_Coefficients
regrOut$Commonality_Data

Step 3: All Possible Subset Analysis
library(leaps)
a<-regsubsets(data1[,(2:4)],data1[,1],method='exhaustive',nbest=7)
cbind(summary(a)$which,rsq = summary(a)$rsq)

SAS CODE FOR ALL AVAILABLE ANALYSES
Note. SAS Code is demonstrated in SAS Version 9.2.

Open SAS
Click on File → New Program

Step 1: Copy and paste the following code to Generate Data from Correlation Matrix
options pageno = min nodate formdlim = '-';
DATA corr (TYPE=CORR);
LENGTH _NAME_ $ 2;
INPUT _TYPE_$_NAME_$Y X1 X2 X3;
CARDS;
corr Y 1.00 .500 .000 .250
corr X1 .500 1.00 .300 .250
corr X2 .000 .300 1.00 .250
corr X3 .250 .250 .250 1.00
;

Step 2: Download a SAS macro from UCLA (n.d.) Statistics http://www.ats.ucla.edu/stat/sas/macros/corr2data.sas and save the file
as “Corr2Data.sas” to a working directory such as “My Documents”

Step 3: Copy and paste the code below.
%include 'C:\My Documents\corr2data.sas';
%corr2data(mycorr, corr, 200, FULL = 'T', corr = 'T') ;

Step 4: Copy and paste the code below to rename variables with the macro (referenced from http://www.ats.ucla.edu/stat/sas/code/
renaming_variables_dynamically.htm)

%macro rename1(oldvarlist, newvarlist);
%let k=1;
%let old = %scan(&oldvarlist, &k);
%let new = %scan(&newvarlist, &k);
%do %while(("&old" NE "") & ("&new" NE ""));
rename &old = &new;
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%let k=%eval(&k+1);
%let old=%scan(&oldvarlist, &k);
%let new=%scan(&newvarlist, &k);
%end;
%mend;

COMMENT set dataset;
data Azen;
set mycorr;
COMMENT set (old, new) variable names;
%rename1(col1 col2 col3 col4, Y X1 X2 X3);
run;

Step 5: Copy and paste the code below to Conduct Regression Analyses and Produce Beta Weights and Structure Coefficients.
proc reg data=azen;model Y =X1 X2 X3;
output r=resid p=pred;
run;

COMMENT structure coefficients;
proc corr; VAR pred X1 X2 X3;
run;

Step 6: Copy and paste the code below to conduct an All Possible Subset Analysis
proc rsquare; MODEL Y =X1 X2 X3;
run;

Step 7: Link to https://pantherfile.uwm.edu/azen/www/DAonly.txt (Azen and Budescu, 1993)

Step 8: Copy and paste the text below the line of asterisks (i.e., the code beginning at run; option nosource;).

Step 9: Save the SAS file as “dom.sas” to a working directory such as “My Documents.”

Step 8: Copy and paste the code below to conduct a full Dominance Analysis
%include 'C:\My Documents\dom.sas'; ∗∗∗ CHANGE TO PATH WHERE MACRO IS SAVED ∗∗∗;
%dom(p= 3);

SPSS CODE FOR ALL ANALYSES
Notes. SPSS Code demonstrated in Version 19.0. SPSS must be at least a graduate pack with syntax capabilities.

Reprint Courtesy of International Business Machines Corporation, ©(2010) International Business Machines Corporation. The
syntax was retrieved from https://www-304.ibm.com/support/docview.wss?uid = swg21480900.

Open SPSS
If a dialog box appears, click Cancel and open SPSS data window.
Click on File → New → Syntax

Step 1: Generate Data from Correlation Matrix. Be sure to specify a valid place to save the correlation matrix. Copy and paste
syntax below into the SPSS syntax editor.

matrix data variables=v1 to v4
/contents=corr.
begin data.
1.000
0.500 1.000
0.000 .300 1.000
0.250 .250 .250 1.000
end data.
save outfile="C:\My Documents\corrmat.sav"
/keep=v1 to v4.

Step 2: Generate raw data. Change #i from 200 to your desired N. Change x(4) and #j from 4 to the size of your correlation matrix,
if different. Double Check the filenames and locations.

new file.
input program.
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loop #i=1 to 200.
vector x(4).
loop #j=1 to 4.
compute x(#j)=rv.normal(0,1).
end loop.
end case.
end loop.
end file.
end input program.
execute.
factor var=x1 to x4
/criteria=factors(4)
/save=reg(all z).
matrix.
get z/var=z1 to z4.
get r/file='C:\My Documents\corrmat.sav'.
compute out=z*chol(r).
save out/outfile='C:\My Documents\AzenData.sav'.
end matrix.

Step 3: Retrieve file generated from the syntax above. Copy and paste the syntax below Highlight the syntax and run the selection

by clicking on the button.
get file='C:\My Documents\AzenData.sav'.

Step 4: Rename variables if desired. Replace “var1 to var10” with appropriate variable names. Copy and paste the syntax below and
run the selection by highlighting one line. Be sure to save changes.

rename variables(col1 col2 col3 col4=Y X1 X2 X3).

Step 5: Copy and paste the syntax into the syntax editor to confirm correlations are correct.
CORRELATIONS
/VARIABLES = Y X1 X2 X3
/PRINT = TWOTAIL NOSIG
/MISSING = PAIRWISE.

Step 6: Copy and paste the syntax into the syntax editor to Conduct Regression and Produce Beta Weights.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA = PIN(0.05) POUT(0.10)
/NOORIGIN
/DEPENDENT Y
/METHOD = ENTER X1 X2 X3
/SAVE PRED.

Step 7: Copy and paste the syntax into the syntax editor to *Compute Structure Coefficients.
CORRELATIONS
/VARIABLES=X1 X2 X3 WITH PRE_1
/PRINT = TWOTAIL NOSIG
/MISSING = PAIRWISE.

Step 8: All Subset Analysis and Commonality analysis (step 8 to step 11). Before executing, download cc.sps (commonality
coefficients macro) from http://profnimon.com/CommonalityCoefficients.sps to working directory such as My Documents.

Step 9: Copy data file to working directory (e.g., C:\My Documents)

Step 10: Copy and paste syntax below in the SPSS syntax editor
CD "C:\My Documents".
INCLUDE FILE="CommonalityCoefficients.sps".
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!cc dep=Y
Db=AzenData.sav
Set=Azen
Ind=X1 X2 X3.

Step 11: Retrieve commonality results. Commonality files are written to AzenCommonalityMatrix.sav and AzenCCByVariable.sav.
APS files are written toAzenaps.sav.

Step 12: Relative Weights (Step 13 to Step 16).

Step 13: Before executing, download mimr_raw.sps and save to working directory from http://www.springerlink.com/content/
06112u8804155th6/supplementals/

Step 14: Open or activate the AzenData.sav dataset file, by clicking on it.

Step 15: If applicable, change the reliabilities of the predictor variables as indicated (4 in the given example).

Step 16: Highlight all the syntax and run; these steps will yield relative importance weights.
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Given a linear relationship between two continuous random variables X and Y that may
be moderated by a third, Z, the extent to which the correlation ρ is (un)moderated by Z is
equivalent to the extent to which the regression coefficients βy and βx are (un)moderated
by Z iff the variance ratio 2 2σy /σx is constant over the range or states of Z. Otherwise,
moderation of slopes and of correlations must diverge. Most of the literature on this issue
focuses on tests for heterogeneity of variance in Y, and a test for this ratio has not been
investigated. Given that regression coefficients are proportional to ρ via this ratio, accurate
tests, and estimations of it would have several uses.This paper presents such a test for both
a discrete and continuous moderator and evaluates its Type I error rate and power under
unequal sample sizes and departures from normality. It also provides a unified approach
to modeling moderated slopes and correlations with categorical moderators via structural
equations models.

Keywords: moderator effects, interaction effects, heteroscedasticity, regression, correlation

INTRODUCTION
Let X and Y have a bivariate normal distribution, X ∼ N (µx , σ 2

x ),
and Y ∼ N (µy , σ 2

y ). Suppose also that the correlation between X
and Y is a function of a moderator variable Z. Under homogeneity
of variance (HoV),moderation of correlations implies moderation
of regression coefficients (or means, in ANOVA), and vice versa.
For example, establishing the existence of a moderator effect from
Z in a linear regression model with X and Z predicting Y by
finding a significant regression coefficient for the product term
X ×Z suffices to infer a corresponding moderator effect of Z on
the correlation between X and Y.

Heterogeneity of variance (HeV) due to Z, however, can alter
moderator effects so that correlation and regression coefficients are
not equivalently moderated. We may have moderation of slopes,
for instance, without moderation of correlations, moderation of
correlations with no moderation of slopes, moderation of slopes
and correlations in opposite directions, or even moderation of
regression coefficients in opposite directions (e.g., what appears
to be a positive moderator effect when X predicts Y becomes a
negative effect when Y predicts X).

Although some scholars have warned about the impacts of het-
eroscedasticity on the analysis of variance (e.g., Grissom, 2000)
and linear regression, most contemporary textbook advice and
published evidence on this matter comforts researchers with the
notion that ANOVA and regression are fairly robust against it.
Howell (2007, p. 316), for instance, states that despite Grissom’s
pessimistic outlook “the homogeneity of variance assumption
can be violated without terrible consequences” and advises that
for symmetrically distributed populations and equal numbers of
participants in each cell, the validity of ANOVA is likely if the
ratio of the largest to the smallest variance is no greater than
4. Tabachnick and Fidell (2007, pp. 121–123) are even more

relaxed, recommending an upper limit on this ratio of 10 before
raising an alarm. A recent investigation into the robustness of
one-way ANOVA against violations of normality (Schmider et al.,
2010) also is relatively reassuring on that count. A fairly recent
comparison of several tests of homogeneity of variance (Cor-
rea et al., 2006) generally finds in favor of the Levene test but
leaves the issue of the impact of HoV on moderator effects
unexamined.

Nevertheless, this problem is well-known. Arnold (1982) drew
a distinction between the“form”and“degree”of moderator effects,
whereby the “form” is indexed by moderation of slopes (or means,
in ANOVA) whereas the “degree” is indexed by moderation of
correlations. He argued from first principles and demonstrated
empirically that it is possible to find a significant difference
between correlations from two independent-samples but fail to
find a corresponding significant regression interaction term, and
vice versa. A related treatment was presented independently by
Sharma et al. (1981), who referred to “degree” moderators as
“homologizers” (a term taken from Zedeck, 1971). They pointed
out that homologizers that act through the error-term in a
regression instead of through the predictor itself.

Stone and Hollenbeck (1984) dissented from Arnold (1982),
arguing that only moderated regression is needed to assess mod-
erating effects, regardless of whether they are of form or degree.
Their primary claims were that moderated slopes also can be
interpreted as differing strengths of relationship, and that the
subgrouping method advocated by Arnold raises concerns about
how subgroups are created if the moderator is not categorical.
Arnold (1984) rebutted their claim regarding the slope as a mea-
sure of relationship strength, reiterating the position that slopes,
and correlations convey different types of information about such
relationships. He also declared that both moderated regression
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and tests of differences between correlation coefficients are essen-
tially “subgroup” methods. At the time there was no way to unify
the examination of moderation of correlations and slopes. The
present paper describes and demonstrates such an approach for
categorical moderators, via structural equations models.

In a later paper, Stone and Hollenbeck (1989) reprised this
debate and recommended variance-stabilizing and homogenizing
transformations as a way to eliminate the apparent disagreement
between moderation of correlations and moderation of slopes.
These include not only transformations of the dependent vari-
able, but also within-groups standardization and/or normaliza-
tion. They also, again, recommended abandoning the distinction
between degree and form moderation and focusing solely on form
(i.e., moderated regression). The usual cautions against routinely
transforming variables and objections to applying different trans-
formations to subsamples aside, we shall see that transforming the
dependent variable is unlikely to eliminate the non-equivalence
between moderation of slopes and correlations. Moreover, other
investigators of this issue do not arrive at the same recom-
mendation as Stone and Hollenbeck when it comes to a “best”
test.

Apparently independently of the aforementioned work, and
extending the earlier work of Dretzke et al. (1982), Alexander and
DeShon (1994) demonstrated severe effects from heterogeneity of
error-variance (HeEV) on power and Type I error rates for the
F-test of equality of regression slopes. In contrast to Stone and
Hollenbeck (1989), they concluded that for a categorical modera-
tor, the “test of choice” is the test for equality of correlations across
the moderator categories, provided that the hypotheses of equal
correlations and equal slopes are approximately identical.

These hypotheses are equivalent if and only if the ratio of the
variance in X to the variance in Y is equal across moderator cat-
egories (Arnold, 1982; Alexander and DeShon, 1994). The reason
for this is clear from the textbook equation between correlations
and unstandardized regression coefficients. For the ith category of
the moderator,

βyi = ρi
σyi

σxi
(1)

For example, a simple algebraic argument shows that if the
σ yi/σ xi ratio is not constant for, say, i= 1 and i= 2 then
β1=β2⇒ ρ1 6= ρ2, and likewise ρ1= ρ2⇒β1 6=β2. More gen-
erally,

σy1σx2

σx1σy2
> (<) 1⇔

∣∣∣∣β1

β2

∣∣∣∣ > (<)

∣∣∣∣ρ1

ρ2

∣∣∣∣ . (2)

The condition for correlations and slopes to be moderated in
opposite directions follows immediately: β1>β2 but ρ2>ρ1 if
when ρ2>ρ1, it is also true that

σy1σx2

σx1σy2
>
ρ2

ρ1
.

The same implication holds if the inequalities are changed from
> to<.

The position taken in this paper is that in multiple linear regres-
sion there are three distinct and valid types of moderator effects.
First, in multiple regression equation (1) generalizes to a ver-
sion where standardized regression coefficients replace correlation
coefficients:

βyi = Byi
σyi

σxi
(3)

where Byi is a standardized regression coefficient. Thus, we have
moderation of unstandardized versus standardized regression
coefficients (or correlations when there is only one predictor),
which are equivalent if and only if the aforementioned variance
ratio is equal across moderator categories. Otherwise, the assump-
tion that moderation of one implies equivalent moderation of the
other is mistaken. This is a simple generalization of Arnold’s (1982)
and Sharma et al.’s (1981) distinction.

Second, the semi-partial correlation coefficient, νxi, is a sim-
ple function of Byi and tolerance. In the ith moderator category,
the tolerance of a predictor, X, is Txi = 1 − R2

xi , where R2
xi is the

squared multiple correlation for X regressed on the other predic-
tors included in the multiple regression model. The standardized
regression coefficient, semi-partial correlation, and tolerance are
related by

νxi = Byi

√
Txi .

Equation (3) therefore may be rewritten as

βyi = νxi
σyi

σxi
√

Txi
. (4)

Thus, we have a distinction between the moderation of the unique
contribution of a predictor to the explained variance of a depen-
dent variable and moderation of regression coefficients (whether
standardized or not). Equivalence with moderation of standard-
ized coefficients (or simple correlations) hinges on whether tol-
erance is constant across moderator categories (an issue not dealt
with in this paper), while equivalence with moderation of unstan-
dardized coefficients depends on both constant tolerance and
constant variance ratios.

In a later paper, DeShon and Alexander (1996) proposed alter-
native procedures for testing equality of regression slopes under
HeEV, but they and both earlier and subsequent researchers appear
to have neglected the idea of testing for equal variance ratios (EVR)
across moderator categories. This is understandable, given that
HeEV is a more general concern in some respects and the primary
object of most regression (and ANOVA) models is prediction.

Nevertheless, it is possible for HeEV to be satisfied when EVR is
not. An obvious example is when there is HoV for Y and equality
of correlations across moderator categories but HeV for X. These
conditions entail HeEV but also imply that slopes cannot be equal
across categories. This case seems to have been largely overlooked
in the literature on moderators. More generally, HeEV is ensured
when, for all i and j,

σ 2
yi

σ 2
yj

=

1− ρ2
j

1− ρ2
i

, (5)
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which clearly has no bearing on whether EVR holds or not.
Thus, a test of EVR would provide a guide for determining

when equality of slopes and equality of correlations are equivalent
null hypotheses and when not. Given that it is not uncommon
for researchers to be interested in both moderation of slopes (or
means) and moderation of correlations, this test could be a useful
addition to data screening procedures.

It might seem that if researchers are going to test for both mod-
eration of slopes and correlations, a test of EVR is superfluous.
However, the joint outcome of the tests of equal correlations and
equal slopes does not render the question of EVR moot or irrele-
vant. The reason this should interest applied researchers is that the
tests of equal correlations and equal slopes will not inform them
of whether the moderation of slopes is equivalent to the modera-
tion of correlations, whereas a test of EVR would do exactly that.
Suppose, for example, the test for equality of slopes yields p= 0.04
(so we reject the null hypothesis) whereas the corresponding test
for correlations yields p= 0.06 (so we fail to reject). An EVR test
would tell us whether these two outcomes are genuinely unequal
or whether their apparent difference may be illusory. Thus, an EVR
test logically should take place before tests of equality of slopes or
correlations, because it will indicate whether both of the latter tests
need to be conducted or just one will suffice.

Furthermore, an estimate of the ratio of the variance ratios
along with its standard error provides an estimate of (and poten-
tially a confidence interval for) a ratio comparison between moder-
ation of slopes and moderation of correlations. From equations (1)
and (2), for the ith and jth moderator categories, we immediately
have

σyi/σxi

σyj/σxj
=
βyi/βyj

ρi/ρj
. (6)

Finally, equation (3) tells us that an EVR test can be used to
assess the equivalence between the moderation of standardized
and unstandardized regression coefficients, thereby expanding its
domain of application into multiple regression.

All said and done, it is concerning that numerous articles in the
foremost journals in psychology routinely report tests of interac-
tions in ANOVAs, ANCOVAs, and regressions with no mention
of prior testing for either HeV or HeEV. Moreover, reviews of the
literature on metric invariance by Vandenberg and Lance (2000)
and DeShon (2004) indicated considerable disagreement on the
importance of HeEV for assessments of measurement invariance
across samples in structural equations models. Researchers are
unlikely to be strongly motivated to use a test for EVR unless it
is simple, readily available in familiar computing environments,
robust, and powerful. We investigate such a test with these criteria
in mind.

A TEST OF EVR FOR CATEGORICAL MODERATORS
An obvious candidate for a test of EVR is a parametric test based
on the log-likelihood of a bivariate normal distribution for X and
Y conditional on a categorical moderator Z. We employ submod-
els for the standard deviations using the log link. Using the first
category of the moderator as the “base” category, the submodels

may be written as

σxi = exp

(∑
i

ziδxi

)
, (7)

σyi = exp

(∑
i

ziδyi

)
,

where z1= 1 and for i> 1 zi is an indicator variable for the ith cat-
egory of Z, and the δ parameters are regression coefficients. Under
the hypothesis that EVR holds between the ith and first categories,
the relevant test statistic is

θi = δyi − δxi , (8)

for i> 1, with

var(θi) = var(δyi)+ var(δxi)− 2cov(δyi , δxi), (9)

and the assumption that δyi and δyi are asymptotically bivariate
normally distributed. Immediately we have a confidence interval

for θ i, namely θ̂i ± tα/2

√
vâr(θi), where tα/2 is the 1−α/2 quantile

of the t distribution with the appropriate degrees of freedom for
an independent-samples test. We also have

exp (θi) =
βyi
/
βy1

ρi
/
ρ1

, (10)

and we may exponentiate the limits of this confidence interval
to obtain a confidence interval for the right-hand expression in
this equation, i.e., for the ratio comparison between the ratio
of moderated regression coefficients and the ratio of moderated
correlations.

The hypothesis that θ i= 0 is equivalent to a restricted model
in which, for i> 1, δxi= δyi. The modeling approaches outlined
later in this paper make use of this equivalence. More complex
EVR hypotheses may require different design matrices from the
setup proposed in this introductory treatment. First, however, we
shall examine the properties of θ , including Type I error rates and
power under unequal sample sizes, and the effects of departures
from normality for X and Y.

ASSESSING TYPE I ERROR ACCURACY AND POWER
We begin with simulations testing null hypothesis rejection rates
for EVR when the null hypotheses of EVR and unmoderated cor-
relations and slopes are true. Simulations using a two-category
moderator (20,000 runs for each condition) were based on DeShon
and Alexander, 1996; Table 1), with constant variance ratio of 2,
ρxy = 1/

√
2, and βy= 1 for both categories. Three pairs of sample

sizes were used (again based on DeShon and Alexander, 1996): 70
for both samples, 45 for one and 155 for the second, and 90 for one
and 180 for the second. Three pairs of variances also were used, to
ascertain any impact from the sizes of the variances. All runs used
a Type I error criterion of α= 0.05.

The top half of Table 1 shows the EVR rejection rates for ran-
dom samples from normally distributed X and Y. Unequal sample
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Table 1 |Type I error: two-groups simulations.

Skew N1 N2 σ xi = 1,1 σ xi = 1,2 σ xi = 1,4

σ yi = 2,2 σ yi = 2,4 σ yi = 2,8

NORMAL

0 70 70 0.0518 0.0532 0.0511

0 45 155 0.0578 0.0553 0.0547

0 90 180 0.0513 0.0531 0.0503

SKEWED

2 70 70 0.0710 0.0704 0.0680

4 70 70 0.0768 0.0767 0.0713

2 45 155 0.0681 0.0686 0.0687

4 45 155 0.0778 0.0776 0.0774

2 90 180 0.0679 0.0708 0.0714

4 90 180 0.0755 0.0728 0.0723

sizes have little impact on rejection rates, with the effect appearing
to diminish in the larger-sample (90–180) condition. The rates
are slightly higher than 0.05, but are unaffected by the sizes of the
variances.

The lower half of Table 1 shows simulations under the same
conditions, but this time with X and Y sampled from the Azza-
lini skew-normal distribution (Azzalini, 1985). The standard
skew-normal pdf is

f (x , λ) =
e−x2

/
2

√
2π

(
1+ Erf

[
λx
√

2

])
.

The simulations had the skew parameter λ set to 2 and 4, the pdfs
for which are shown in Figure 1. Skew increased the rejection rates
to 0.068–0.078, rendering the test liberal but not dramatically so.

We now turn to investigating the power of the EVR test. Sim-
ulations testing its power were conducted for two situations:
moderated slopes but unmoderated correlations, and moderated
correlations but unmoderated slopes. Both batches of simulations
were run with four combinations of sample sizes (70–70, 40–140,
140–140, and 80–280) and three variance ratio combinations (1–
1.5, 1–2, 1–4). In the unmoderated correlations setup ρ= 0.5 for
all conditions, and in the unmoderated slopes setup βy= 0.5 for
all conditions. These tests also require modeling the moderation
of correlations. The correlation submodel uses the Fisher link, i.e.

log

(
1+ ρi

1− ρi

)
=

∑
i

wiδri . (11)

Note that we allow a different set of predictors for the correlation
from those in equation (7). However, in this paper we will impose
the restriction wi= zi.

Table 2 shows the simulation results for unequal variance ratios
with unmoderated correlations. The table contains rejection rates
of the EVR and moderation of correlation null hypotheses. The
resultant moderated slopes and error-variances are displayed for
each condition. Note that HeV and HeEV do not have discernible
effects on either of the rejection rates. As in the preceding sim-
ulations, the rejection rates for the unmoderated correlations are

only slightly above the 0.05 criterion. The rejection rates for the
EVR test l and in the 0.85–1.0 range in the conditions where the
combined sample sizes are 280 and the ratio of the variance ratios
is 2:1 or for both combined sizes when the ratio is 4:1.

Table 3 shows the rejection rates of the EVR and moderation of
correlation null hypotheses when there are unequal variance ratios
and moderated correlations. The resultant moderated correlations
and error-variances are displayed for each condition. As before,
HeV and HeEv do not affect either of the rejection rates. Likewise,
as expected, the EVR rejection rates are very similar to those in
Table 2. It is noteworthy that rejection rates for the unmoderated
correlations hypothesis are considerably smaller than those for
the EVR hypothesis, even though the correlations differ fairly sub-
stantially. It is well-known that tests for moderation of slopes and
correlations have rather low power. These results, and the fact that
the ratios of the variance ratios do not exceed Howell’s benchmark
of 4:1, suggest that the EVR test has relatively high power.

STRUCTURAL EQUATIONS MODEL APPROACH
When the moderator variable is categorical, the EVR test can be
incorporated in a structural equations model (SEM) approach that
permits researchers not only to compare an EVR model against
one that relaxes this assumption, but also to test simultaneously
for HeV, HeEV, moderation of correlations and moderation of
slopes. Figure 2 shows the regression (left-hand side) and corre-
lation (right-hand side) versions of this model. The latter follows
Preacher’s (2006) strategy for a multi-group SEM for correlations.
The regression version models the error-variances σ 2

ei rather than
the variances σ 2

yi . Instead,σ 2
yi is modeled in the correlation version.

The only addition to the correlation SEM required for incorpo-
rating EVR tests is to explicitly model variance ratios for each
of the moderator variable categories. Two SEM package that can
do so are lavaan (Rosseel, 2012) in R and MPlus (Muthén and
Muthén, 2010). Examples in lavaan and MPlus are available at
http://dl.dropbox.com/u/1857674/EVR_moderator/EVR.html, as
are EVR test scripts in SPSS and SAS.

Simulations were run using lavaan in model comparisons for
samples with moderated slopes but unmoderated correlations, and
samples with moderated correlations but unmoderated slopes. As
before, each simulation had 20,000 runs.

Frontiers in Psychology | Quantitative Psychology and Measurement July 2012 | Volume 3 | Article 231 | 95

http://dl.dropbox.com/u/1857674/EVR_moderator/EVR.html
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Smithson Comparing moderation of slopes and correlations

0

2

4

2 1 0 1 2 3

x

0.1

0.2

0.3

0.4

0.5

0.6

f

FIGURE 1 | Azzalini Skew-normal distributions with λ= 0,2,4.

Table 2 | Power: moderated slopes and unmoderated correlations.

N1 N2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2

σ 2
y = 2 σ 2

y = 3 σ 2
y = 2 σ 2

y = 4 σ 2
y = 2 σ 2

y = 8

σ xy = 1 σxy =
√

3/2 σ xy = 1 σxy =
√

2 σ xy = 1 σ xy = 2

σ 2
e = 1.5 σ 2

e = 2.25 σ 2
e = 1.5 σ 2

e = 3 σ 2
e = 1.5 σ 2

e =
√

8/2

βy = 0.5 βy =
√

3/8 βy = 0.5 βy =
√

2/2 βy = 0.5 βy = 1

δr θ δr θ δr θ

70 70 0.0556 0.2810 0.0603 0.6321 0.0576 0.9939

40 100 0.0566 0.2478 0.0569 0.5706 0.0566 0.9875

140 140 0.0549 0.4841 0.0532 0.9032 0.0537 1.000

80 200 0.0529 0.4311 0.0497 0.8524 0.0522 0.9999

Table 3 | Power: unmoderated slopes and moderated correlations.

N1 N2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2 σ 2
x = 2 σ 2

x = 2

σ 2
y = 2 σ 2

y = 3 σ 2
y = 2 σ 2

y = 4 σ 2
y = 2 σ 2

y = 8

σ xy = 1 σ xy = 1 σ xy = 1 σ xy = 1 σ xy = 1 σ xy = 1

σ 2
e = 1.5 σ 2

e = 2.5 σ 2
e = 1.5 σ 2

e = 3.5 σ 2
e = 1.5 σ 2

e = 6

ρxy = 0.5 ρxy = 1
/√

6 ρxy = 0.5 ρxy = 1
/√

8 ρxy = 0.5 ρxy = 0.25

δr θ δr θ δr θ

70 70 0.0944 0.2635 0.1525 0.5925 0.3426 0.9864

40 100 0.0992 0.2394 0.1700 0.5476 0.3558 0.9826

140 140 0.1296 0.4575 0.2483 0.8771 0.5844 1.000

80 200 0.1444 0.4201 0.2878 0.8326 0.6036 0.9999

Simulations from bivariate normal distributions with
ρxy= 0.05 for both groups (Table 4) indicated that moderately
large samples and slope differences are needed for reasonable

power. However, there was little impact on power from unequal
group sizes. Rejection rates for the unmoderated correlations
hypothesis were at appropriate levels, 0.0493–0.0559.
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Likewise, simulations from bivariate normal distributions with
βy= 0.5 for both groups (Table 5) indicated that moderately large
samples and correlation differences are needed for reasonable
power. There was a slight to moderate impact from unequal group
sizes, somewhat greater than the impact in Table 4. Rejection
rates for the unmoderated slopes hypothesis were appropriately
0.0484–0.0538.

SEM EXAMPLE
Consider a population with two normally distributed variables
X, political liberalism, and Y, degree of belief in global warming.
Suppose that they are measured on scales with means of 0 and
standard deviations of 1, and the correlation between these two
scales is ρ= 0.45. Suppose also that if members of this population
are exposed to a video debate highlighting the arguments for and
against the reality of global warming, it polarizes belief in global

FIGURE 2 | Moderated regression and correlation structural equations
models.

warming by increasing the degree of belief of those who already
tend to believe it and decreasing the degree of belief of those who
already are skeptical. Thus, the standard deviation doubles from 1
to 2. However, the mean remains at 0 and the correlation between
belief in global warming and political liberalism also is unchanged,
remaining at 0.45.

In a two-condition experiment with half the participants from
this population assigned to a condition where they watch the video
and half to a “no-video” condition, the experimental conditions
may be regarded as a two-category moderator variable Z. We have
ρ= 0.45 and σ x= 1 regardless of Z, and σ y1= 2 whereas σ y2= 1.
It is also noteworthy that when X predicts Y HeEV is violated
whereas when Y predicts X it is not.

We randomly sample 600 people from this population and
randomly assign 300 to each condition, representing the video
condition with Z = 1 and the no-video condition with Z =−1.
As expected, the sample correlations in each subsample do not
differ significantly: r1= 0.458, r2= 0.463, and Fisher’s test yields
z = 0.168 (p= 0.433). However, a linear regression with Y pre-
dicted by X and Z that includes an interaction term (Z ×X)
finds a significant positive interaction coefficient (z = 3.987,
p< 0.0001). Taking the regression on face value could mislead us
into believing that because the slope between X and Y differs sig-
nificantly between the two categories of Z, Z also moderates the
association between X and Y. Of course, it does not. Seemingly
more puzzling is the fact that linear regression with Y predict-
ing X yields a significant negative interaction term (Z ×Y ) with
z =−3.859 (p= 0.0001). So the regression coefficient is moder-
ated in opposite directions, depending on whether we predict Y or
X.

The scatter plots in Figure 3 provide an intuitive idea of what
is going on. Clearly the slope for Y (belief in global warming) pre-
dicted by X (liberalism) appears steeper when Z = 1 than when
Z =−1. Just as clearly, the slope for X predicted by Y appears
less steep when Z = 1 than when Z =−1. The oval shapes of the

Table 4 | Moderated regression coefficients.

N1 N2 βy = 0.50 βy = 0.50 βy = 0.50

βy = 0.61 βy = 0.71 βy = 1.00

70 70 0.1086 0.2030 0.5659

40 100 0.1012 0.2026 0.6031

140 140 0.1633 0.3668 0.8566

80 200 0.1499 0.3549 0.8875

Table 5 | Moderated correlations.

N1 N2 ρxy = 0.50 ρxy = 0.50 ρxy = 0.50 ρxy = 0.50

ρxy = 0.41 ρxy = 0.35 ρxy = 0.25 ρxy = 0.17

70 70 0.1159 0.1984 0.4406 0.6390

40 100 0.1031 0.1728 0.3610 0.5487

140 140 0.1760 0.3521 0.7215 0.9008

80 200 0.1541 0.2960 0.6312 0.8395
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FIGURE 3 | Scatter plots for the two-condition experiment.

data distribution in both conditions appear similar to one another,
giving the impression that the correlations are similar.

We now demonstrate that the SEM approach can clarify
and validate these impressions, using Mplus 6.12. We begin
with the moderation of slopes models. Because σ x1= σ x2 (i.e.,
X has HoV) we may move from the saturated model to one
that restricts those parameters to be equal. The model fit is
χ2(1)= 0.370 (p= 0.543). This baseline model also reproduces
the slopes estimates in OLS regression. Now, a model removing
HoV for X and imposing the EVR restriction yieldsχ2(1)= 82.246
(p< 0.0001), so clearly we can reject the EVR hypothesis. Fitting
another model with HoV in X and HeV in Y but where we set
βy1=βy2, the fit is χ2(2)= 15.779 (p= 0.0004), and the model
comparison test is χ2(1)= 15.779− 0.370= 15.409 (p< 0.0001).
We conclude there is moderation of slopes but EVR does not
hold, so we expect that the moderation of correlations will dif-
fer from that of the slopes, and the moderation of slopes will
differ when X predicts Y versus when Y predicts X. Indeed,
if we fit models with Y predicting X we also can reject the
equal slopes model, and the slopes differ in opposite direc-
tions across the categories of Z. When X predicts Y βy1= 0.496
and βy2= 0.978, whereas when Y predicts X βx1= 0.219 and
βx2= 0.423.

Turning to correlations, we start with a model that sets
σ x1= σ x2 (i.e., assuming that X has HoV) and leaves all other
parameters free. The fit is χ2(1)= 0.370 (p= 0.543), identical
to the equivalent baseline model described above. This model
closely reproduces the sample correlations (the parameter esti-
mates are 0.452 and 0.469, versus the sample correlations 0.458
and 0.463). Moreover, a model adding the EVR restriction yields
χ2(1)= 82.246, again identical to the equivalent regression model.
Now if we set ρ1= ρ2, the fit is χ2(2)= 0.453 (p= 0.797) and the
model comparison test is χ2(1)= 0.083 (p= 0.773). Thus, there
is moderation of slopes but not of correlations.

CONTINUOUS MODERATORS
Continuous moderators pose considerably greater challenges than
categorical ones, because of the many forms that HeV and HeEV
can take. Arnold (1982) sketched out a treatment of this problem

that is not satisfactory, namely correlating correlations between X
and Y with values of the continuous moderator Z. In an inno-
vative paper, Allison et al. (1992) extended a standard approach
to assessing heteroscedasticity to test for homologizers when the
moderator variable, Z, is continuous. Their technique is simply to
compute the correlation between Z and the absolute value of the
residuals from the regression equation that already includes both
the main effect for Z and the interaction term. This is a model of
moderated error, akin to modeling error-variance, which is useful
in itself but not equivalent to testing for EVR. In their approach
and the simulations that tested it, Allison et al. assumed HeV for
their predictor, thereby ignoring the fact that EVR can be violated
even when HeEV is satisfied.

The approach proposed here generalizes the model defined by
equations (7) and (11),with the zi now permitted to be continuous.
This model is

log (σx ) =
∑

i

ziδxi ,

log
(
σy
)
=

∑
i

ziδyi ,

log

(
1+ ρxy

1− ρxy

)
=

∑
i

ziδri

(12)

where z1= 1 and for i> 1 the zi are continuous random variables.
The δxi,δyi, and δri coefficients can be simultaneously estimated via
maximum likelihood, using the likelihood function of a bivariate
normal distribution conditioned by the zi. Scripts for maximum
likelihood estimation in R, SPSS, and SAS are available via the link
cited earlier. This model can be made more flexible by introducing
polynomial terms in the zi, but we do not undertake that extension
here.

To begin, simulations (20,000 runs each) for a single-moderator
model took samples for Z from a N (0, 1) population. X and Y
were sampled from bivariate normal distributions with δr1= 0,
δx1= δy1= {0, 0.5, 1.0}, and δr0= {0, 0.5, 1.0}. Table 6 displays
their results. Rejection rates are somewhat too high for δr1 but
only slightly too high for θ1 unless sample sizes are over 200 or so.
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Simulations also were run under the same conditions as Table 6
but with samples from a skew-normal distribution with skew para-
meter λ= 2. These results are shown in Table 7. There, it can be
seen that Type I error rates are inflated by skew almost indepen-
dently of sample size, much more so for δr1 than θ1. Both are
affected by size of the correlation’s moderation effect.

To investigate power, simulations were run with δr1= {0,
0.2007, 0.6190, 1.0986, 1.7346} (correlation differences of
{0,0.1,0.3,0.5,0.7} when z = 1) and θ1= {0.1116, 0.2027, 0.3466,
0.5493, 0.6931, 0.8047} (variance ratios of {1.25, 1.5, 2, 3, 4,
5} when z = 1). Thus, there were 30 simulations for each of
three sample sizes (70,140, and 280). The results are displayed

Table 6 | Unmoderated continuous moderator simulations.

N δr0 = 0.0 δr0 = 0.5 δr0 = 1.0

δr1

70 0.0715 0.0712 0.0685

140 0.0619 0.0589 0.0571

280 0.0543 0.0554 0.0545

θ1

70 0.0610 0.0627 0.0616

140 0.0548 0.0564 0.0556

280 0.0533 0.0536 0.0528

Table 7 | Simulations from Azzalini distribution with λ=2.

N δr0 = 0.0 δr0 = 0.5 δr0 = 1.0

δr1

70 0.0724 0.0874 0.1001

140 0.0682 0.0801 0.0925

280 0.0665 0.0767 0.0930

θ1

70 0.0554 0.0673 0.0679

140 0.0519 0.0689 0.0645

280 0.0514 0.0676 0.0636

in Figure 4. Power for θ1 attains high levels even for moder-
ate sample sizes when the variance ratio is 2 or more. However,
power also is higher the more strongly correlations are moder-
ated, whereas power for δr1 is unaffected by moderation of the
variance ratio. Power for δr1 does not become high unless cor-
relations differ by at least 0.3, and the results for a correlation
difference of 0.1 are in line with those for categorical moderators
(see Table 3).

The simulation results were examined for evidence of estima-
tion bias. Both δ̂r1 and θ1 were slightly biased upward, and most
strongly for smaller samples and larger effect-sizes. The maximum
average bias for δ̂r1 and θ̂1 was 0.04 and 0.03 respectively. For both
estimators,doubling the sample size approximately halved the bias.

DISCUSSION
This paper has introduced a simple test of equal variance ratios
(EVR), whose purpose is to determine when moderation of cor-
relations and slopes are not equivalent. The test can be inverted
to produce an approximate confidence interval for the ratio com-
parison of these two kinds of moderator effects. This test also
may be extended easily to assessing whether the moderation
of standardized and unstandardized regression coefficients are
unequal.

Simulation results indicated that when EVR holds, Type I error
rates are reasonably accurate but slightly high. Skew inflates Type
I error rates somewhat, but not dramatically. When EVR does not
hold, moderately large samples and effect-sizes are needed for high
power, but HeV, HeEV, and unequal group sizes are not problem-
atic for testing EVR or modeling the moderation of variance ratios.
There is evidence that the EVR test has fairly high power, relative
to the power to detect moderator effects.

Variance ratios for continuous moderators can be modeled via
maximum likelihood methods, although no single model can deal
with all forms of variance ratio moderation or HeV. The model
presented here uses the log link for the standard deviation sub-
model and the Fisher link for the correlation submodel, with
possibly different predictors in each submodel and, potentially,
polynomial terms for the predictors. Bayesian estimation methods
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FIGURE 4 | Power for δr1 and θ r1.
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also may be used, but that extension is beyond the scope of this
paper. When EVR holds and correlations are unmoderated, Type I
error rates are somewhat too high for δr1 and slightly too high for
θ1 unless sample sizes are over 200 or so. Skew inflates Type I error
rates for δr1 but only slightly for θ1. For moderated variance ratios
and correlations, maximum likelihood estimates are only slightly
upward-biased for both δr1 and θ1, and in the usual fashion this
bias decreases with increasing sample size. Moderately large sam-
ples and effect-sizes are needed for high power, but apparently no
more so than for categorical moderators.

Tests of EVR for categorical moderators can be entirely dealt
with using multi-groups SEM, and Mplus and the lavaan pack-
age in R are able to incorporate these tests via appropriate model
comparisons. It also is possible to fit such models via scripts
in computing environments such as SAS and SPSS possessing
appropriate inbuilt optimizers. The SEM approach makes it pos-
sible to test complex hypotheses regarding the (non)equivalence
of moderation of slopes and correlations, and to obtain a clear
picture of both kinds of moderator effects. The online supplemen-
tary material for this paper includes a four-category moderator

example where EVR holds for two pairs of categories but not for
all four. In fact, the SEM approach elaborates conventional mod-
erated regression into a combination of models for moderated
slopes and moderated correlations. In principle it may be extended
to incorporate tests for equality of tolerance across groups,
which would enable modeling the moderation of semi-partial
correlations.

All told, for categorical moderators the EVR test comes rea-
sonably close to fulfilling the criteria of simplicity, availability,
robustness and power. Considerable work remains to be done
before the same can be said for continuous moderators. Never-
theless, the EVR test proposed here is highly relevant for both
experimental and non-experimental research in mainstream psy-
chology, and would seem to be a worthy addition to the researcher’s
toolkit.
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We provide a basic review of the data screening and assumption testing issues relevant
to exploratory and confirmatory factor analysis along with practical advice for conducting
analyses that are sensitive to these concerns. Historically, factor analysis was developed
for explaining the relationships among many continuous test scores, which led to the
expression of the common factor model as a multivariate linear regression model with
observed, continuous variables serving as dependent variables, and unobserved factors
as the independent, explanatory variables. Thus, we begin our paper with a review of the
assumptions for the common factor model and data screening issues as they pertain to
the factor analysis of continuous observed variables. In particular, we describe how prin-
ciples from regression diagnostics also apply to factor analysis. Next, because modern
applications of factor analysis frequently involve the analysis of the individual items from
a single test or questionnaire, an important focus of this paper is the factor analysis of
items. Although the traditional linear factor model is well-suited to the analysis of con-
tinuously distributed variables, commonly used item types, including Likert-type items,
almost always produce dichotomous or ordered categorical variables. We describe how
relationships among such items are often not well described by product-moment correla-
tions, which has clear ramifications for the traditional linear factor analysis. An alternative,
non-linear factor analysis using polychoric correlations has become more readily available to
applied researchers and thus more popular. Consequently, we also review the assumptions
and data-screening issues involved in this method.Throughout the paper, we demonstrate
these procedures using an historic data set of nine cognitive ability variables.

Keywords: exploratory factor analysis, confirmatory factor analysis, item factor analysis, structural equation

modeling, regression diagnostics, data screening, assumption testing

Like any statistical modeling procedure, factor analysis carries a set
of assumptions and the accuracy of results is vulnerable not only to
violation of these assumptions but also to disproportionate influ-
ence from unusual observations. Nonetheless, the importance of
data screening and assumption testing is often ignored or mis-
construed in empirical research articles utilizing factor analysis.
Perhaps some researchers have an overly indiscriminate impres-
sion that, as a large sample procedure, factor analysis is “robust” to
assumption violation and the influence of unusual observations.
Or, researchers may simply be unaware of these issues. Thus, with
the applied psychology researcher in mind, our primary goal for
this paper is to provide a general review of the data screening and
assumption testing issues relevant to factor analysis along with
practical advice for conducting analyses that are sensitive to these
concerns. Although presentation of some matrix-based formulas
is necessary, we aim to keep the paper relatively non-technical and
didactic. To make the statistical concepts concrete, we provide data
analytic demonstrations using different factor analyses based on
an historic data set of nine cognitive ability variables.

First, focusing on factor analyses of continuous observed vari-
ables,we review the common factor model and its assumptions and
show how principles from regression diagnostics can be applied to
determine the presence of influential observations. Next, we move

to the analysis of categorical observed variables, because treat-
ing ordered, categorical variables as continuous variables is an
extremely common form of assumption violation involving factor
analysis in the substantive research literature. Thus, a key aspect
of the paper focuses on how the linear common factor model
is not well-suited to the analysis of categorical, ordinally scaled
item-level variables, such as Likert-type items. We then describe
an alternative approach to item factor analysis based on polychoric
correlations along with its assumptions and limitations. We begin
with a review the linear common factor model which forms the
basis for both exploratory factor analysis (EFA) and confirmatory
factor analysis (CFA).

THE COMMON FACTOR MODEL
The major goal of both EFA and CFA is to model the relation-
ships among a potentially large number of observed variables
using a smaller number of unobserved, or latent, variables. The
latent variables are the factors. In EFA, a researcher does not have
a strong prior theory about the number of factors or how each
observed variable relates to the factors. In CFA, the number of
factors is hypothesized a priori along with hypothesized relation-
ships between factors and observed variables. With both EFA and
CFA, the factors influence the observed variables to account for
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their variation and covariation; that is, covariation between any
two observed variables is due to them being influenced by the
same factor. This idea was introduced by Spearman (1904) and,
largely due to Thurstone (1947), evolved into the common factor
model, which remains the dominant paradigm for factor analysis
today. Factor analysis is traditionally a method for fitting models
to the bivariate associations among a set of variables, with EFA
most commonly using Pearson product-moment correlations and
CFA most commonly using covariances. Use of product-moment
correlations or covariances follows from the fact that the common
factor model specifies a linear relationship between the factors and
the observed variables.

Lawley and Maxwell (1963) showed that the common factor
model can be formally expressed as a linear model with observed
variables as dependent variables and factors as explanatory or
independent variables:

yj = λ1η1 + λ2η2 + λkηk + εj

where yj is the jth observed variable from a battery of p observed
variables, ηk is the kth of m common factors, λk is the regression
coefficient, or factor loading, relating each factor to yj, and εj is the
residual, or unique factor, for yj. (Often there are only one or two
factors, in which case the right hand side of the equation includes
only λ1η1 + εj or only λ1η1 + λ2η2 + εj.) It is convenient to work
with the model in matrix form:

y = Λη + ε, (1)

where y is a vector of the p observed variables, Λ is a p × m matrix
of factor loadings, η is a vector of m common factors, and ε is
a vector of p unique factors1. Thus, each common factor may
influence more than one observed variable while each unique fac-
tor (i.e., residual) influences only one observed variable. As with
the standard regression model, the residuals are assumed to be
independent of the explanatory variables; that is, all unique fac-
tors are uncorrelated with the common factors. Additionally, the
unique factors are usually assumed uncorrelated with each other
(although this assumption may be tested and relaxed in CFA).

Given Eq. 1, it is straightforward to show that the covariances
among the observed variables can be written as a function of model
parameters (factor loadings, common factor variances and covari-
ances, and unique factor variances). Thus, in CFA, the parameters
are typically estimated from their covariance structure:

Σ = ΛΨΛ′ + Θ, (2)

where Σ is the p × p population covariance matrix for the observed
variables, Ψ is the m × m interfactor covariance matrix, and Θ is
the p × p matrix unique factor covariance matrix that often con-
tains only diagonal elements, i.e., the unique factor variances. The
covariance structure model shows that the observed covariances

1For traditional factor analysis models, the means of the observed variables are
arbitrary and unstructured by the model, which allows omission of an intercept
term in Eq. 1 by assuming the observed variables are mean-deviated, or centered
(MacCallum, 2009).

are a function of the parameters but not the unobservable scores
on the common or unique factors; hence, it is not necessary to
observe scores on the latent variables to estimate the model para-
meters. In EFA, the parameters are most commonly estimated
from the correlation structure

P = Λ∗Ψ∗Λ∗′ + Θ∗ (3)

where P is the population correlation matrix and, in that P is
simply a re-scaled version of Σ, we can view Λ∗, Ψ∗, and Θ∗
as re-scaled versions of Λ, Ψ, and Θ, respectively. This tendency
to conduct EFA using correlations is mainly a result of historical
tradition, and it is possible to conduct EFA using covariances or
CFA using correlations. For simplicity, we focus on the analysis
of correlations from this point forward, noting that the principles
we discuss apply equivalently to the analysis of both correlation
and covariance matrices (MacCallum, 2009; but see Cudeck, 1989;
Bentler, 2007; Bentler and Savalei, 2010 for discussions of the
analysis of correlations vs. covariances). We also drop the asterisks
when referring to the parameter matrices in Eq. 3.

Jöreskog (1969) showed how the traditional EFA model, or
an “unrestricted solution” for the general factor model described
above, can be constrained to produce the “restricted solution”
that is commonly understood as today’s CFA model and is well-
integrated in the structural equation modeling (SEM) literature.
Specifically, in the EFA model, the elements of Λ are all freely esti-
mated; that is, each of the m factors has an estimated relationship
(i.e., factor loading) with every observed variable; factor rotation
is then used to aid interpretation by making some values in Λ

large and others small. But in the CFA model, depending on the
researcher’s hypothesized model, many of the elements of Λ are
restricted, or constrained, to equal zero, often so that each observed
variable is determined by one and only one factor (i.e., so that there
are no “cross-loadings”). Because the common factors are unob-
served variables and thus have an arbitrary scale, it is conventional
to define them as standardized (i.e., with variance equal to one);
thus Ψ is the interfactor correlation matrix2. This convention is not
a testable assumption of the model, but rather imposes necessary
identification restrictions that allow the model parameters to be
estimated (although alternative identification constraints are pos-
sible, such as the marker variable approach often used with CFA).
In addition to constraining the factor variances, EFA requires a
diagonal matrix for Θ, with the unique factor variances along the
diagonal.

Exploratory factor analysis and CFA therefore share the goal
of using the common factor model to represent the relationships
among a set of observed variables using a small number of factors.
Hence, EFA and CFA should not be viewed as disparate meth-
ods, despite that their implementation with conventional software
might seem quite different. Instead, they are two approaches to

2In EFA, the model is typically estimated by first setting Ψ to be an identity matrix,
which implies that the factors are uncorrelated, or orthogonal, leading to the initial
unrotated factor loadings in Λ. Applying an oblique factor rotation obtains a new set
of factor loadings along with non-zero interfactor correlations. Although rotation
is not a focus of the current paper, we recommend that researchers always use an
oblique rotation.
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investigating variants of the same general model which differ
according to the number of constraints placed on the model, where
the constraints are determined by the strength of theoretical expec-
tations (see MacCallum, 2009). Indeed, it is possible to conduct
EFA in a confirmatory fashion (e.g., by using “target rotation”) or
to conduct CFA in an exploratory fashion (e.g., by comparing a
series of models that differ in the number or nature of the fac-
tors)3. Given that EFA and CFA are based on the same common
factor model, the principles and methods we discuss in this paper
largely generalize to both procedures. The example analyses we
present below follow traditional EFA procedures; where necessary,
we comment on how certain issues may be different for CFA.

In practice, a sample correlation matrix R (or sample covari-
ance matrix S) is analyzed to obtain estimates of the unconstrained
parameters given some specified value m of the number of com-
mon factors4. The parameter estimates can be plugged into Eq. 3
to derive a model-implied population correlation matrix, P̂. The
goal of model estimation is thus to find the parameter estimates
that optimize the match of the model-implied correlation matrix
to the observed sample correlation matrix. An historically pop-
ular method for parameter estimation in EFA is the “principal
factors method with prior communality estimates,” or “principal
axis factor analysis,” which obtains factor loading estimates from
the eigenstructure of a matrix formed by R − Θ̂ (see MacCallum,
2009). But given modern computing capabilities, we agree with
MacCallum (2009) that this method should be considered obso-
lete, and instead factor analysis models should be estimated using
an iterative algorithm to minimize a model fitting function, such as
the unweighted least-squares (ULS) or maximum likelihood (ML)
functions. Although principal axis continues to be used in mod-
ern applications of EFA, iterative estimation, usually ML, is almost
always used with CFA. In short, ULS is preferable to principal axis
because it will better account for the observed correlations in R
(specifically, it will produce a smaller squared difference between a
given observed correlation and the corresponding model-implied
correlation), whereas ML obtains parameter estimates that give
the most likely account of the observed data (MacCallum, 2009;
see also Briggs and MacCallum, 2003). Below, we discuss how the
assumption of normally distributed observed variables comes into
play for ULS and ML.

As shown above, given that the parameters (namely, the factor
loadings in Λ and interfactor correlations in Ψ) are estimated
directly from the observed correlations, R, using an estimator
such as ML or ULS, factor analysis as traditionally implemented is
essentially an analysis of the correlations among a set of observed
variables. In this sense, the correlations are the data. Indeed,
any factor analysis software program can proceed if a sample
correlation matrix is the only data given; it does not need the
complete raw, person by variable (N × p) data set from which

3Asparouhov and Muthén (2009) further show how an unrestricted EFA solution
can be used in place of a restricted CFA-type measurement model within a larger
SEM.
4We will not extensively discuss EFA methods for determining the number of fac-
tors except to note where assumption violation or inaccurate correlations may affect
decisions about the optimal number of common factors. See MacCallum (2009) for
a brief review of methods for determining the number of common factors in EFA.

the correlations were calculated5. Conversely, when the software
is given the complete (N × p) data set, it will first calculate the
correlations among the p variables to be analyzed and then fit the
model to those correlations using the specified estimation method.
Thus, it is imperative that the“data” for factor analysis, the correla-
tions, be appropriate and adequate summaries of the relationships
among the observed variables, despite that the common factor
model makes no explicit assumptions about the correlations them-
selves. Thus, if the sample correlations are misrepresentative of the
complete raw data, then the parameter estimates (factor loadings
and interfactor correlations) will be inaccurate, as will model fit
statistics and estimated SEs for the parameter estimates. Of course,
more explicit assumption violation also can cause these problems.
In these situations, information from the complete data set beyond
just the correlations becomes necessary to obtain “robust” results.

Before we discuss these issues further, we first present a data
example to illustrate the common factor model and to provide a
context for demonstrating the main concepts of this article involv-
ing data screening and assumption testing for factor analysis. The
purpose of this data example is not to provide a comprehensive
simulation study for evaluating the effectiveness of different factor
analytic methods; such studies have already been conducted in the
literature cited throughout this paper. Rather, we use analyses of
this data set to illustrate the statistical concepts discussed below so
that they may be more concrete for the applied researcher.

DATA EXAMPLE
Our example is based on unpublished data reported in Har-
man (1960); these data and an accompanying factor analysis are
described in the user’s guide for the free software package CEFA
(Browne et al., 2010). The variables are scores from nine cognitive
ability tests. Although the data come from a sample of N = 696
individuals, for our purposes we consider the correlation matrix
among the nine variables to be a population correlation matrix (see
Table 1) and thus an example of P in Eq. 3. An obliquely rotated
(quartimin rotation) factor pattern for a three-factor model is
considered the population factor loading matrix (see Table 2) and
thus an example of Λ in Eq. 3. Interpretation of the factor loadings
indicates that the first factor (η1) has relatively strong effects on the
variables Word Meaning, Sentence Completion, and Odd words;
thus, η1 is considered a “verbal ability” factor. The second factor
(η2) has relatively strong effects on Mixed Arithmetic, Remainders,
and Missing numbers; thus, η2 is “math ability.” Finally, the third
factor (η3) is “spatial ability” given its strong influences on Gloves,
Boots, and Hatchets. The interfactor correlation between η1 and
η2 is ψ12 = 0.59, the correlation between η1 and η3 is ψ13 = 0.43,
and η2 and η3 are also moderately correlated with ψ23 = 0.48.

These population parameters give a standard against which
to judge sample-based results for the same factor model that we
present throughout this paper. To begin, we created a random
sample of N = 100 with nine variables from a multivariate stan-
dard normal population distribution with a correlation matrix
matching that in Table 1. We then estimated a three-factor EFA

5Certain models, such as multiple-group measurement models, may also include a
mean structure, in which case the means of the observed variables also serve as data
for the complete model estimation.
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Table 1 | Population correlation matrix.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1

SntComp 0.75 1

OddWrds 0.78 0.72 1

MxdArit 0.44 0.52 0.47 1

Remndrs 0.45 0.53 0.48 0.82 1

MissNum 0.51 0.58 0.54 0.82 0.74 1

Gloves 0.21 0.23 0.28 0.33 0.37 0.35 1

Boots 0.30 0.32 0.37 0.33 0.36 0.38 0.45 1

Hatchts 0.31 0.30 0.37 0.31 0.36 0.38 0.52 0.67 1

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers,

Hatchts, hatchets.

Table 2 | Population factor loading matrix.

Variable Factor

η1 η2 η3

WrdMean 0.94 −0.05 −0.03

SntComp 0.77 0.14 −0.03

OddWrds 0.83 0.00 0.08

MxdArit −0.05 1.01 −0.05

Remndrs 0.04 0.80 0.06

MissNum 0.14 0.75 0.06

Gloves −0.06 0.13 0.56

Boots 0.05 −0.01 0.74

Hatchts 0.03 −0.09 0.91

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

model using ULS and applied a quartimin rotation. The estimated
rotated factor loading matrix, Λ̂, is in Table 3. Not surprisingly,
these factor loading estimates are similar, but not identical, to the
population factor loadings.

REGRESSION DIAGNOSTICS FOR FACTOR ANALYSIS OF
CONTINUOUS VARIABLES
Because the common factor model is just a linear regression model
(Eq. 1), many of the well-known concepts about regression diag-
nostics generalize to factor analysis. Regression diagnostics are a
set of methods that can be used to reveal aspects of the data that
are problematic for a model that has been fitted to that data (see
Belsley et al., 1980; Fox, 1991, 2008, for thorough treatments).
Many data characteristics that are problematic for ordinary mul-
tiple regression are also problematic for factor analysis; the trick
is that in the common factor model, the explanatory variables
(the factors) are unobserved variables whose values cannot be
determined precisely. In this section, we illustrate how regression
diagnostic principles can be applied to factor analysis using the
example data presented above.

Table 3 | Sample factor loading matrix (multivariate normal data, no

outlying cases).

Variable Factor

η1 η2 η3

WrdMean 0.96 −0.08 0.04

SntComp 0.81 0.15 −0.13

OddWrds 0.75 0.05 0.12

MxdArit −0.06 1.01 −0.03

Remndrs 0.09 0.75 0.09

MissNum 0.09 0.80 0.06

Gloves −0.03 0.20 0.56

Boots 0.07 0.00 0.68

Hatchts −0.01 −0.01 0.85

N = 100. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

But taking a step back, given that factor analysis is basically
an analysis of correlations, all of the principles about correla-
tion that are typically covered in introductory statistics courses
are also relevant to factor analysis. Foremost is that a product-
moment correlation measures the linear relationship between two
variables. Two variables may be strongly related to each other,
but the actual correlation between them might be close to zero if
their relationship is poorly approximated by a straight line (for
example, a U-shaped relationship). In other situations, there may
be a clear curvilinear relationship between two variables, but a
researcher decides that a straight line is still a reasonable model
for that relationship. Thus, some amount of subjective judgment
may be necessary to decide whether a product-moment correlation
is an adequate summary of a given bivariate relationship. If not,
variables involved in non-linear relationships may be transformed
prior to fitting the factor model or alternative correlations, such
as Spearman rank-order correlations, may be factor analyzed (see
Gorsuch, 1983, pp. 297–309 for a discussion of these strategies, but
see below for methods for item-level categorical variables).

Visual inspection of simple scatterplots (or a scatterplot matrix
containing many bivariate scatterplots) is an effective method for
assessing linearity, although formal tests of linearity are possible
(e.g., the RESET test of Ramsey, 1969). If there is a large number
of variables, then it may be overly tedious to inspect every bivari-
ate relationship. In this situation, one might focus on scatterplots
involving variables with odd univariate distributions (e.g., strongly
skewed or bimodal) or randomly select several scatterplots to scru-
tinize closely. Note that it is entirely possible for two variables to
be linearly related even when one or both of them is non-normal;
conversely, if two variables are normally distributed, their bivari-
ate relationship is not necessarily linear. Returning to our data
example, the scatterplot matrix in Figure 1 shows that none of the
bivariate relationships among these nine variables has any clear
departure from linearity.

Scatterplots can also be effective for identifying unusual cases,
although relying on scatterplots alone for this purpose is not
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FIGURE 1 | Scatterplot matrix for multivariate normal random sample consistent with Holzinger data (N = 100; no unusual cases).

foolproof. Cases that appear to be outliers in a scatterplot might
not actually be influential in that they produce distorted or oth-
erwise misleading factor analysis results; conversely, certain influ-
ential cases might not easily reveal themselves in a basic bivariate
scatterplot. Here, concepts from regression diagnostics come into
play. Given that regression (and hence factor analysis) is a pro-
cedure for modeling a dependent variable conditional on one or
more explanatory variables, a regression outlier is a case whose
dependent variable value is unusual relative to its predicted, or
modeled, value given its scores on the explanatory variables (Fox,
2008). In other words, regression outliers are cases with large
residuals.

A regression outlier will have an impact on the estimated regres-
sion line (i.e., its slope) to the extent that it has high leverage.
Leverage refers to the extent that a case has an unusual com-
bination of values on the set of explanatory variables. Thus, if
a regression outlier has low leverage (i.e., it is near the cen-
ter of the multivariate distribution of explanatory variables), it
should have relatively little influence on the estimated regres-
sion slope; that is, the estimated value of the regression slope
should not change substantially if such a case is deleted. Con-
versely, a case with high leverage but a small residual also has
little influence on the estimated slope value. Such a high leverage,

small residual case is often called a “good leverage” case because
its inclusion in the analysis leads to a more precise estimate of
the regression slope (i.e., the SE of the slope is smaller). Visual
inspection of a bivariate scatterplot might reveal such a case, and
a naïve researcher might be tempted to call it an “outlier” and
delete it. But doing so would be unwise because of the loss of
statistical precision. Hence, although visual inspection of raw,
observed data with univariate plots and bivariate scatterplots is
always good practice, more sophisticated procedures are needed
to gain a full understanding of whether unusual cases are likely to
have detrimental impact on modeling results. Next, we describe
how these concepts from regression diagnostics extend to factor
analysis.

FACTOR MODEL OUTLIERS
The factor analysis analog to a regression outlier is a case whose
value for a particular observed variable is extremely different from
its predicted value given its scores on the factors. In other words,
cases with large (absolute) values for one or more unique factors,
that is, scores on residual terms in ε, are factor model outliers. Eq.
1 obviously defines the residuals ε as

ε = y − Λη. (4)
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But because the factor scores (i.e., scores on latent variables in
η) are unobserved and cannot be calculated precisely, so too the
residuals cannot be calculated precisely, even with known popula-
tion factor loadings, Λ. Thus, to obtain estimates of the residuals,
ε̂, it is necessary first to estimate the factor scores, η̂, which them-
selves must be based on sample estimates of Λ̂ and Θ̂. Bollen
and Arminger (1991) show how two well-known approaches to
estimating factor scores, the least-squares regression method and
Bartlett’s method, can be applied to obtain ε̂. As implied by Eq.
4, the estimated residuals ε̂ are unstandardized in that they are
in the metric of the observed variables, y. Bollen and Arminger
thus present formulas to convert unstandardized residuals into
standardized residuals. Simulation results by Bollen and Arminger
show good performance of their standardized residuals for reveal-
ing outliers, with little difference according to whether they are
estimated from regression-based factor scores or Bartlett-based
factor scores.

Returning to our example sample data, we estimated the stan-
dardized residuals from the three-factor EFA model for each of
the N = 100 cases; Figure 2 illustrates these residuals for all nine
observed variables (recall that in this example, y consists of nine
variables and thus there are nine unique factors in ε̂). Because the
data were drawn from a standard normal distribution conforming

to a known population model, these residuals themselves should
be approximately normally distributed with no extreme outliers.
Any deviation from normality in Figure 2 is thus only due to sam-
pling error and error due to the approximation of factor scores.
Later, we introduce an extreme outlier in the data set to illustrate
its effects.

LEVERAGE
As mentioned above, in regression it is important to consider lever-
age in addition to outlying residuals. The same concept applies in
factor analysis (see Yuan and Zhong, 2008, for an extensive discus-
sion). Leverage is most commonly quantified using “hat values”
in multiple regression analysis, but a related statistic, Mahalono-
bis distance (MD), also can be used to measure leverage (e.g.,
Fox, 2008). MD helps measure the extent to which an observa-
tion is a multivariate outlier with respect to the set of explanatory
variables6. Here, our use of MD draws from Pek and MacCallum
(2011), who recommend its use for uncovering multivariate out-
liers in the context of SEM. In a factor analysis, the MD for a given

6Weisberg (1985) showed that (n − 1)h∗ is the MD for a given case from the centroid
of the explanatory variables, where h∗ is the regression hat value calculated using
mean-deviated independent variables.

FIGURE 2 | Histograms of standardized residuals for each observed variable from three-factor model fitted to random sample data (N = 100; no

unusual cases).
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observation can be measured for the set of observed variables with

MDi = (
yi − ȳ

)′
S−1 (yi − ȳ

)

where yi is the vector of observed variable scores for case i, ȳ is the
vector of means for the set of observed variables, and S is the sam-
ple covariance matrix. Conceptually, MDi is the squared distance
between the data for case i and the center of the observed multi-
variate “data cloud” (or data centroid), standardized with respect
to the observed variables’ variances and covariances. Although it is
possible to determine critical cut-offs for extreme MDs under cer-
tain conditions, we instead advocate graphical methods (shown
below) for inspecting MDs because distributional assumptions
may be dubious and values just exceeding a cut-off may still be
legitimate observations in the tail of the distribution.

A potential source of confusion is that in a regression analysis,
MD is defined with respect to the explanatory variables, but for
factor analysis MD is defined with respect to the observed vari-
ables, which are the dependent variables in the model. But for
both multiple regression and factor analysis, MD is a model-free
index in that its value is not a function of the estimated parameters
(but see Yuan and Zhong, 2008, for model-based MD-type mea-
sures). Thus, analogous to multiple regression, we can apply MD
to find cases that are far from the center of the observed data cen-
troid to measure their potential impact on results. Additionally, an
important property of both MD and model residuals is that they
are based on the full multivariate distribution of observed vari-
ables, and as such can uncover outlying observations that may not
easily appear as outliers in a univariate distribution or bivariate
scatterplot.

The MD values for our simulated sample data are summarized
in Figure 3. The histogram shows that the distribution has a mini-
mum of zero and positive skewness, with no apparent outliers, but
the boxplot does reveal potential outlying MDs. Here, these are
not extreme outliers but instead represent legitimate values in the
tail of the distribution. Because we generated the data from a mul-
tivariate normal distribution we do not expect any extreme MDs,
but in practice the data generation process is unknown and sub-
jective judgment is needed to determine whether a MD is extreme
enough to warrant concern. Assessing influence (see below) can aid

that judgment. This example shows that extreme MDs may occur
even with simple random sampling from a well-behaved distrib-
ution, but such cases are perfectly legitimate and should not be
removed from the data set used to estimate factor models.

INFLUENCE
Again, cases with large residuals are not necessarily influential and
cases with high MD are not necessarily bad leverage points (Yuan
and Zhong, 2008). A key heuristic in regression diagnostics is that
case influence is a product of both leverage and the discrepancy
of predicted values from observed values as measured by resid-
uals. Influence statistics known as deletion statistics summarize
the extent to which parameter estimates (e.g., regression slopes
or factor loadings) change when an observation is deleted from a
data set.

A common deletion statistic used in multiple regression is
Cook’s distance, which can be broadened to generalized Cook’s
distance (gCD) to measure the influence of a case on a set of para-
meter estimates from a factor analysis model (Pek and MacCallum,
2011) such that

gCDi =
(
θ̂ − θ̂(i)

)′ [
VÂR

(
θ̂(i)

)]−1 (
θ̂ − θ̂(i)

)
,

where θ̂ and θ̂(i) are vectors of parameter estimates obtained from
the original, full sample and from the sample with case i deleted

and VÂR
(
θ̂(i)

)
consists of the estimated asymptotic variances (i.e.,

squared SEs) and covariances of the parameter estimates obtained
with case i deleted. Like MD, gCD is in a squared metric with
values close to zero indicating little case influence on parameter
estimates and those far from zero indicating strong case influence
on the estimates. Figure 4 presents the distribution of gCD values
calculated across the set of factor loading estimates from the three-
factor EFA model fitted to the example data. Given the squared
metric of gCD, the strong positive skewness is expected. The box-
plot indicates some potential outlying gCDs, but again these are
not extreme outliers and instead are legitimate observations in the
long tail of the distribution.

Because gCD is calculated by deleting only a single case i from
the complete data set, it is susceptible to masking errors, which

FIGURE 3 | Distribution of Mahalanobis Distance (MD) for multivariate normal random sample data (N = 100; no unusual cases).
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FIGURE 4 | Distribution of generalized Cook’s distance (gCD) for multivariate normal random sample data (N = 100; no unusual cases).

occur when an influential case is not identified as such because
it is located in the multivariate space close to one or more sim-
ilarly influential cases. Instead, a local influence (Cadigan, 1995;
Lee and Wang, 1996) or forward search (Poon and Wong, 2004;
Mavridis and Moustaki, 2008) approach can be used to iden-
tify groups of influential cases. It is important to recognize that
when a model is poorly specified (e.g., the wrong number of fac-
tors has been extracted), it is likely that many cases in a sample
would be flagged as influential, but when there are only a few
bad cases, the model may be consistent with the major regu-
larities in the data except for these cases (Pek and MacCallum,
2011).

EXAMPLE DEMONSTRATION
To give one demonstration of the potential effects of an influen-
tial case, we replaced one of the randomly sampled cases from
the example data with a non-random case that equaled the orig-
inal case with Z = 2 added to its values for five of the observed
variables (odd-numbered items) and Z = 2 subtracted from the
other four observed variables (even-numbered items). Figure 5
indicates the clear presence of this case in the scatterplot of
Remainders by Mixed Arithmetic. When we conducted EFA with
this perturbed data set, the scree plot was ambiguous as to the
optimal number of factors, although other model fit informa-
tion, such as the root mean square residual (RMSR) statistic (see
MacCallum, 2009), more clearly suggested a three-factor solu-
tion. Importantly, the quartimin-rotated three-factor solution (see
Table 4) has some strong differences from both the known popu-
lation factor structure (Table 2) and the factor structure obtained
with the original random sample (Table 3). In particular, while
Remainders still has its strongest association with η2, its loading
on this factor has dropped to 0.49 from 0.75 with the origi-
nal sample (0.80 in the population). Additionally, Remainders
now has a noticeable cross-loading on η3 equaling 0.32, whereas
this loading had been 0.09 with the original sample (0.06 in the

population). Finally, the loading for Boots on η3 has dropped sub-
stantially to 0.44 from 0.68 with the original sample (0.74 in the
population).

Having estimated a three-factor model with the perturbed data
set, we then calculated the associated residuals ε̂, the sample MD
values, and the gCD values. Figure 6 gives histograms of the resid-
uals, where it is clear that there is an outlying case for Mixed
Arithmetic in particular. In Figure 7, the distribution of MD also
indicates the presence of a case that falls particularly far from the
centroid of the observed data; here the outlying observation has
MD = 53.39, whereas the maximum MD value in the original data
set was only 21.22. Given that the outlying case has both large
residuals and large leverage, we expect it to have a strong influence
on the set of model estimates. Hence, Figure 8 reveals that in the
perturbed data set, all observations have gCD values very close to
0, but the outlying case has a much larger gCD reflecting its strong
influence on the parameter estimates.

The demonstration above shows how the presence of even one
unusual case can have a drastic effect on a model’s parameter
estimates; one can imagine how such an effect can produce a
radically different substantive interpretation for a given variable
within a factor model or even for the entire set of observed vari-
ables, especially if the unusual case leads to a different conclusion
regarding the number of common factors. Improper solutions
(e.g., a model solution with at least one negative estimated resid-
ual variance term, or “Heywood case”) are also likely to occur in
the presence of one or more unusual cases (Bollen, 1987), which
can lead to a researcher unwittingly revising a model or removing
an observed variable from the analysis. Another potential effect of
unusual cases is that they can make an otherwise approximately
normal distribution appear non-normal by creating heavy tails
in the distribution, that is, excess kurtosis (Yuan et al., 2002). As
we discuss below, excess kurtosis can produce biased model fit
statistics and SE estimates. Even if they do not introduce excess
kurtosis, unusual cases can still impact overall model fit. The
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FIGURE 5 | Scatterplot of “Remainders” by “Mixed Arithmetic” for perturbed sample with influential case indicated.

Table 4 | Factor loading matrix obtained with perturbed sample data.

Variable Factor

η1 η2 η3

WrdMean 0.97 −0.13 0.09

SntComp 0.70 0.29 −0.23

OddWrds 0.74 −0.01 0.21

MxdArit −0.07 1.01 0.03

Remndrs 0.17 0.49 0.32

MissNum 0.08 0.81 0.06

Gloves 0.01 0.09 0.68

Boots 0.05 0.12 0.44

Hatchts 0.02 −0.08 0.89

N = 100. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

effect of an individual case on model fit with ML estimation can
be formally measured with an influence statistic known as likeli-
hood distance, which measures the difference in the likelihood of
the model when a potentially influential case is deleted (Pek and
MacCallum, 2011).

Upon discovering unusual cases, it is important to determine
their likely source. Often, outliers and influential cases arise from
either researcher error (e.g., data entry error or faulty adminis-
tration of study procedures) or participant error (e.g., misun-
derstanding of study instructions or non-compliance with ran-
dom responding) or they may be observations from a population

other than the population of interest (e.g., a participant with no
history of depression included in a study of depressed individ-
uals). In these situations, it is best to remove such cases from
the data set. Conversely, if unusual cases are simply extreme
cases with otherwise legitimate values, most methodologists rec-
ommend that they not be deleted from the data set prior to
model fitting (e.g., Bollen and Arminger, 1991; Yuan and Zhong,
2008; Pek and MacCallum, 2011). Instead, robust procedures that
minimize the excessive influence of extreme cases are recom-
mended; in particular, case-robust methods developed by Yuan
and Bentler (1998) are implemented in the EQS software package
(Bentler, 2004) or one can factor analyze a minimum covari-
ance determinant (MCD) estimated covariance matrix (Pison
et al., 2003), which can be calculated with SAS or the R package
“MASS.”

COLLINEARITY
Another potential concern for both multiple regression analy-
sis and factor analysis is collinearity, which refers to perfect or
near-perfect linear relationships among observed variables. With
multiple regression, the focus is on collinearity among explana-
tory variables, but with factor analysis, the concern is collinearity
among dependent variables, that is, the set of variables being factor
analyzed. When collinear variables are included, the product-
moment correlation matrix R will be singular, or non-positive
definite. ML estimation cannot be used with a singular R, and
although ULS is possible, collinearity is still indicative of concep-
tual issues with variable selection. Collinearity in factor analysis
is relatively simple to diagnose: if any eigenvalues of a product-
moment R equal zero or are negative, then R is non-positive
definite and collinearity is present (and software will likely produce
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FIGURE 6 | Histograms of standardized residuals for each observed variable from three-factor model fitted to perturbed sample data (N = 100).

a warning message)7. Eigenvalues extremely close to zero may also
be suggestive of near-collinearity8. A commonly used statistic for
evaluating near-collinearity in ordinary regression is the condition
index, which equals the square root of the ratio of the largest to
smallest eigenvalue, with larger values more strongly indicative
of near-collinearity. For the current example, the condition index
equals 6.34, which is well below the value of 30 suggested by Belsley
et al. (1980) as indicative of problematic near-collinearity.

In the context of factor analysis, collinearity often implies an
ill-conceived selection of variables for the analysis. For example,
if both total scores and sub-scale scores (or just one sub-scale)
from the same instrument are included in a factor analysis, the
total score is linearly dependent on, or collinear with, the sub-
scale score. A more subtle example may be the inclusion of both a
“positive mood”scale and a“negative mood”scale; although scores
from these two scales may not be perfectly related, they will likely

7Polychoric correlation matrices (defined below) are often non-positive definite.
Unlike a product-moment R, a non-positive definite polychoric correlation matrix
is not necessarily problematic.
8Most EFA software includes eigenvalues of R as default output. However, it is
important not to confuse the eigenvalues of R with the eigenvalues of the “reduced”
correlation matrix, R − Θ̂. The reduced correlation matrix often has negative
eigenvalues when R does not.

have a very strong (negative) correlation, which can be problematic
for factor analysis. In these situations, researchers should carefully
reconsider their choice of variables for the analysis and remove any
that is collinear with one or more of the other observed variables,
which in turn redefines the overall research question addressed by
the analysis (see Fox, 2008, p. 342).

NON-NORMALITY
In terms of obtaining accurate parameter estimates, the ULS esti-
mation method mentioned above makes no assumption regarding
observed variable distributions whereas ML estimation is based on
the multivariate normal distribution (MacCallum, 2009). Specifi-
cally, for both estimators, parameter estimates are trustworthy as
long as the sample size is large and the model is properly specified
(i.e., the estimator is consistent ), even when the normality assump-
tion for ML is violated (Bollen, 1989). However, SE estimates and
certain model fit statistics (i.e., the χ2 fit statistic and statistics
based on χ2 such as CFI and RMSEA) are adversely affected by
non-normality, particularly excess multivariate kurtosis. Although
they are less commonly used with EFA, SEs and model fit statistics
are equally applicable with EFA as with CFA and are easily obtained
with modern software (but see Cudeck and O’Dell, 1994, for cau-
tions and recommendations regarding SEs with EFA). With both
approaches,SEs convey information about the sampling variability

Frontiers in Psychology | Quantitative Psychology and Measurement March 2012 | Volume 3 | Article 55 | 110

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Flora et al. Factor analysis assumptions

FIGURE 7 | Distribution of Mahalanobis distance (MD) for perturbed sample data (N = 100).

FIGURE 8 | Distribution of generalized Cook’s distance (gCD) for perturbed sample data (N = 100).

of the parameter estimates (i.e., they are needed for significance
tests and forming confidence intervals) while model fit statistics
can aid decisions about the number of common factors in EFA or
more subtle model misspecification in CFA.

There is a large literature on ramifications of non-normality
for SEM (in which the common factor model is imbedded), and
procedures for handling non-normal data (for reviews see Bollen,
1989; West et al., 1995; Finney and DiStefano, 2006). In particular,
for CFA we recommend using the Satorra–Bentler scaled χ2 and
robust SEs with non-normal continuous variables (Satorra and
Bentler, 1994), which is available in most SEM software. Although
these Satorra–Bentler procedures for non-normal data have seen
little application in EFA, they can be obtained for EFA models
using Mplus software (Muthén and Muthén, 2010; i.e., using the SE
estimation procedure outlined in Asparouhov and Muthén, 2009).
Alternatively, one might factor analyze transformed observed vari-
ables that more closely approximate normal distributions (e.g.,
Gorsuch, 1983, pp. 297–309).

FACTOR ANALYSIS OF ITEM-LEVEL OBSERVED VARIABLES
Through its history in psychometrics, factor analysis developed
primarily in the sub-field of cognitive ability testing, where
researchers sought to refine theories of intelligence using factor
analysis to understand patterns of covariation among different

ability tests. Scores from these tests typically elicited continuously
distributed observed variables, and thus it was natural for factor
analysis to develop as a method for analyzing Pearson product-
moment correlations and eventually to be recognized as a linear
model for continuous observed variables (Bartholomew, 2007).
However, modern applications of factor analysis usually use indi-
vidual test items rather than sets of total test scores as observed
variables. Yet, because the most common kinds of test items, such
as Likert-type items, produce categorical (dichotomous or ordi-
nal) rather than continuous distributions, a linear factor analysis
model using product-moment R is suboptimal, as we illustrate
below.

As early as Ferguson (1941), methodologists have shown that
factor analysis of product-moment R among dichotomous vari-
ables can produce misleading results. Subsequent research has
further established that treating categorical items as continuous
variables by factor analyzing product-moment R can lead to incor-
rect decisions about the number of common factors or overall
model fit, biased parameter estimates, and biased SE estimates
(Muthén and Kaplan, 1985, 1992; Babakus et al., 1987; Bernstein
and Teng, 1989; Dolan, 1994; Green et al., 1997). Despite these
issues, item-level factor analysis using product-moment R per-
sists in the substantive literature likely because of either naiveté
about the categorical nature of items or misinformed belief that
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linear factor analysis is “robust” to the analysis of categorical
items.

EXAMPLE DEMONSTRATION
To illustrate these potential problems using our running exam-
ple, we categorized random samples of continuous variables with
N = 100 and N = 200 that conform to the three-factor population
model presented in Table 2 according to four separate cases of cat-
egorization. In Case 1, all observed variables were dichotomized
so that each univariate population distribution had a propor-
tion = 0.5 in both categories. In Case 2, five-category items were
created so that each univariate population distribution was sym-
metric with proportions of 0.10, 0.20, 0.40, 0.20, and 0.10 for the
lowest to highest categorical levels, or item-response categories.
Next, Case 3 items were dichotomous with five variables (odd-
numbered items) having univariate response proportions of 0.80
and 0.20 for the first and second categories and the other four vari-
ables (even-numbered items) having proportions of 0.20 and 0.80
for the first and second categories. Finally, five-category items were
created for Case 4 with odd-numbered items having positive skew-
ness (response proportions of 0.51, 0.30, 0.11, 0.05, and 0.03 for
the lowest to highest categories) and even-numbered items having
negative skewness (response proportions of 0.03, 0.05, 0.11, 0.30,
and 0.51). For each of the four cases at both sample sizes, we con-
ducted EFA using the product-moment R among the categorical

variables and applied quartimin rotation after determining the
optimal number of common factors suggested by the sample data.
If product-moment correlations are adequate representations of
the true relationships among these items, then three-factor mod-
els should be supported and the rotated factor pattern should
approximate the population factor loadings in Table 2. We describe
analyses for Cases 1 and 2 first, as both of these cases consisted of
items with approximately symmetric univariate distributions.

First, Figure 9 shows the simple bivariate scatterplot for the
dichotomized versions of the Word Meaning and Sentence Com-
pletion items from Case 1 (N = 100). We readily admit that this
figure is not a good display for these data; instead, its crudeness is
intended to help illustrate that it is often not appropriate to pre-
tend that categorical variables are continuous. When variables are
continuous, bivariate scatterplots (such as those in Figure 1) are
very useful, but Figure 9 shows that they are not particularly useful
for dichotomous variables, which in turn should cast doubt on the
usefulness of a product-moment correlation for such data. More
specifically, because these two items are dichotomized (i.e., 0, 1),
there are only four possible observed data patterns, or response
patterns, for their bivariate distribution (i.e., 0, 0; 0, 1; 1, 0; and
1, 1). These response patterns represent the only possible points
in the scatterplot. Yet, depending on the strength of relationship
between the two variables, there is some frequency of observa-
tions associated with each point, as each represents potentially

FIGURE 9 | Scatterplot of Case 1 items Word Meaning (WrdMean) by Sentence Completion (SntComp; N = 100).
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many observations with the same response pattern. Conversely,
the response pattern (0, 1) does not appear as a point in Figure 9
because there were zero observations with a value of 0 on the
Sentence Completion item and a value of 1 on Word Meaning.
As emphasized above, a product-moment correlation measures
the strength of linear association between two variables; given the
appearance of the scatterplot, use and interpretation of such a cor-
relation here is clearly dubious, which then has ramifications for a
factor analysis of these variables based on product-moment R (or
covariances).

Next, Figure 10 shows the bivariate scatterplot for the five-
category versions of the Word Meaning and Sentence Completion
variables from Case 2 (N = 100). Now there are 5 × 5 = 25 poten-
tial response patterns, but again, not all appear as points in the

plot because not all had a non-zero sample frequency. With more
item-response categories, a linear model for the bivariate associa-
tion between these variables may seem more reasonable but is still
less than ideal, which again has implications for factor analysis of
product-moment R among these items9.

One consequence of categorization is that product-moment
correlations are attenuated (see Table 5 for correlations among
Case 1 items). For example, the population correlation between
Word Meaning and Sentence Completion is 0.75, but the sample
product-moment correlation between these two Case 1 items is

9It is possible (and advisable) to make enhanced scatterplots in which each point has
a different size (or color or symbol) according to the frequency or relative frequency
of observations at each point.

FIGURE 10 | Scatterplot of Case 2 items Word Meaning (WrdMean) by Sentence Completion (SntComp; N = 100).

Table 5 | Product-moment and polychoric correlations among Case 1 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.81 0.78 0.42 0.35 0.35 0.12 0.17 0.11

SntComp 0.60 1 0.73 0.40 0.46 0.62 0.19 0.29 0.04

OddWrds 0.56 0.52 1 0.45 0.45 0.45 0.33 0.41 0.34

MxdArit 0.27 0.26 0.29 1 0.85 0.80 0.28 0.33 0.30

Remndrs 0.23 0.30 0.30 0.64 1 0.73 0.48 0.38 0.19

MissNum 0.23 0.42 0.29 0.58 0.51 1 0.20 0.27 0.12

Gloves 0.07 0.12 0.21 0.17 0.31 0.12 1 0.45 0.52

Boots 0.11 0.19 0.27 0.21 0.25 0.17 0.29 1 0.69

Hatchts 0.07 0.02 0.22 0.19 0.12 0.07 0.35 0.49 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.
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0.60 (with N = 100). But if all correlations among items are atten-
uated to a similar degree, then the overall pattern of correlations
in R should be very similar under categorization, and thus fac-
tor analysis results may not be strongly affected (although certain
model fit indices may be affected, adversely impacting decisions
about the number of factors). Indeed, in the EFA of the Case 1
items it was evident that a three-factor model was ideal (based
on numerous criteria) and the set of rotated factor loadings (see
Table 6) led to essentially the same interpretations of the three fac-
tors as for the population model. Nonetheless, the magnitude of
each primary factor loading was considerably smaller compared to
the population model, reflecting that attenuation of correlations
due to categorization leads to biased parameter estimates. Note
also that factor loading bias was no better with N = 200 com-
pared to N = 100, because having a larger sample size does not
make the observed bivariate relationships stronger or “more lin-
ear.” However, attenuation of correlation is less severe with a larger

Table 6 | Factor loading matrix obtained with EFA of product-moment

R among Case 1 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.82 −0.06 −0.05 0.79 −0.09 −0.02

SntComp 0.74 0.10 −0.07 0.72 0.14 −0.05

OddWrds 0.66 0.00 0.20 0.69 0.02 0.11

MxdArit −0.04 0.81 0.07 −0.03 0.82 0.11

Remndrs −0.03 0.77 −0.08 −0.02 0.70 −0.08

MissNum 0.10 0.68 −0.08 0.09 0.76 −0.08

Gloves 0.00 0.12 0.43 0.03 0.01 0.47

Boots 0.07 0.03 0.60 0.00 0.01 0.61

Hatchts −0.03 −0.10 0.81 −0.02 −0.02 0.80

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

number of response categories (see Table 7). In Case 2, the sam-
ple product-moment correlation between the Word Meaning and
Sentence Completion items is 0.68, which is still attenuated rela-
tive to the population value 0.75, but less so than in Case 1. And
when the EFA was conducted with the Case 2 variables, a similar
three-factor model was obtained, but with factor loading estimates
(see Table 8) that were less biased than those from Case 1.

Now consider Cases 3 and 4, which had a mix of positively
and negatively skewed univariate item distributions. Any simple
scatterplot of two items from Case 3 will look very similar to
Figure 9 for the dichotomized versions of Word Meaning and
Sentence Completion from Case 1 because the Case 3 items are
also dichotomized, again leading to only four possible bivariate
response patterns10. Likewise, any simple scatterplot of two items
from Case 4 will look similar to Figure 10 for the five-category
items from Case 2 because any bivariate distribution from Case 4
also has 25 possible response patterns. Yet, it is well-known that
the product-moment correlation between two dichotomous or
ordered categorical variables is strongly determined by the shape
of their univariate distributions (e.g., Nunnally and Bernstein,
1994). For example, in Case 3, because the dichotomized Word
Meaning and Sentence Completion items had opposite skewness,
the sample correlation between them is only 0.24 (with N = 100)
compared to the population correlation = 0.75 (see Table 9 for
correlations among Case 3 items). In Case 4, these two items also
had opposite skewness, but the sample correlation = 0.52 (with
N = 100) is less severely biased because Case 4 items have five cat-
egories rather than two (see Table 10 for correlations among Case
4 items). Conversely, the Word Meaning and Hatchets items were
both positively skewed; in Case 3, the correlation between these
two items is 0.37 (with N = 100), which is greater than the pop-
ulation correlation = 0.31, whereas this correlation is 0.29 (with
N = 100) for Case 4 items.

When we conducted EFA with the Case 3 and Case 4 items, scree
plots suggested the estimation of two-, rather than three-factor
models, and RMSR was sufficiently low to support the adequacy

10An enhanced scatterplot that gives information about the frequency of each cell
for Case 3 would look quite different than that for Case 1 because the categorizations
we applied lead to different frequency tables for each data set.

Table 7 | Product-moment and polychoric correlations among Case 2 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.76 0.80 0.47 0.54 0.53 0.38 0.33 0.34

SntComp 0.68 1 0.66 0.51 0.52 0.60 0.21 0.33 0.16

OddWrds 0.72 0.60 1 0.49 0.59 0.57 0.38 0.34 0.34

MxdArit 0.43 0.46 0.45 1 0.81 0.82 0.39 0.33 0.30

Remndrs 0.48 0.47 0.53 0.75 1 0.73 0.44 0.34 0.40

MissNum 0.48 0.54 0.52 0.76 0.67 1 0.50 0.35 0.35

Gloves 0.34 0.19 0.35 0.36 0.40 0.45 1 0.58 0.51

Boots 0.30 0.30 0.31 0.31 0.31 0.32 0.53 1 0.66

Hatchts 0.32 0.16 0.33 0.27 0.36 0.32 0.45 0.60 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.
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of a two-factor solution (RMSR = 0.056 for Case 3 and = 0.077
for Case 4). In practice, it is wise to compare results for models
with varying numbers of factors, and here we know that the pop-
ulation model has three factors. Thus, we estimated both two- and
three-factor models for the Case 3 and Case 4 items. In Case 3, the
estimated three-factor models obtained with both N = 100 and
N = 200 were improper in that there were variables with nega-
tive estimated residual variance (Heywood cases); thus, in practice
a researcher would typically reject the three-factor model and
interpret the two-factor model. Table 11 gives the rotated fac-
tor pattern for the two-factor models estimated with Case 3 items.
Here, the two factors are essentially defined by the skewness direc-
tion of the observed variables: odd-numbered items, which are
all positively skewed, are predominately determined by η1 while
the negatively skewed even-numbered items are determined by η2

(with the exception of the Boots variable). A similar factor pattern
emerges for the two-factor model estimated with N = 100 for the

Table 8 | Factor loading matrix obtained with EFA of product-moment

R among Case 2 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.94 −0.10 0.05 0.94 −0.07 0.02

SntComp 0.73 0.13 −0.10 0.82 0.09 −0.08

OddWrds 0.72 0.07 0.09 0.74 0.04 0.10

MxdArit 0.11 0.98 −0.03 0.04 0.96 −0.04

Remndrs 0.11 0.70 0.09 0.04 0.76 0.12

MissNum 0.13 0.73 0.06 0.14 0.78 −0.01

Gloves −0.01 0.17 0.59 −0.02 0.10 0.60

Boots 0.03 −0.05 0.81 0.04 0.07 0.67

Hatchts 0.00 −0.02 0.75 0.01 −0.13 0.86

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

Case 4 items, but not with N = 200 (see Table 12). Finally, the
factor pattern for the three-factor model estimated with Case 4
items is in Table 13. Here, the factors have the same basic interpre-
tation as with the population model, but some of the individual
factor loadings are quite different. For example, at both sample
sizes, the estimated primary factor loadings for Sentence Comple-
tion (0.43 with N = 100) and Remainders (0.40 with N = 100) are
much smaller than their population values of 0.77 and 0.80.

In general, the problems with factoring product-moment R
among item-level variables are less severe when there are more
response categories (e.g., more than five) and the observed uni-
variate item distributions are symmetric (Finney and DiStefano,
2006). Our demonstration above is consistent with this statement.
Yet, although there are situations where ordinary linear regres-
sion of a categorical dependent variable can potentially produce
useful results, the field still universally accepts non-linear mod-
eling methods such as logistic regression as standard for limited
dependent variables. Similarly, although there may be situations
where factoring product-moment R (and hence adapting a lin-
ear factor model) produces reasonably accurate results, the field
should accept alternative, non-linear factor models as standard for
categorical, item-level observed variables.

ALTERNATIVE METHODS FOR ITEM-LEVEL OBSERVED
VARIABLES
Wirth and Edwards (2007) give a comprehensive review of meth-
ods for factor analyzing categorical item-level variables. In general,
these methods can be classified as either limited-information or
full-information. The complete data for N participants on p cat-
egorical, item-level variables form a multi-way frequency table
with CP

j cells (i.e., C1 × C2 × . . . × Cp), or potential response

patterns, where Cj is the number of categories for item j. Full-
information factor models draw from multidimensional item-
response theory (IRT) to predict directly the probability that
a given individual’s response pattern falls into a particular cell
of this multi-way frequency table (Bock et al., 1988). Limited-
information methods instead fit the factor model to a set of
intermediate summary statistics which are calculated from the
observed frequency table. These summary statistics include the
univariate response proportions for each item and the bivariate

Table 9 | Product-moment and polychoric correlations among Case 3 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.57 0.71 0.35 0.42 0.54 0.30 0.17 0.61

SntComp 0.24 1 0.54 0.57 0.50 0.47 0.26 0.45 0.08

OddWrds 0.46 0.22 1 0.60 0.57 0.61 0.64 0.46 0.66

MxdArit 0.16 0.35 0.26 1 0.57 0.83 0.52 0.03 0.19

Remndrs 0.23 0.21 0.33 0.24 1 0.58 0.30 0.22 0.64

MissNum 0.23 0.28 0.26 0.61 0.25 1 0.54 0.29 0.52

Gloves 0.16 0.11 0.39 0.22 0.16 0.23 1 0.32 0.61

Boots 0.08 0.26 0.18 0.02 0.09 0.17 0.14 1 0.47

Hatchts 0.37 0.04 0.41 0.09 0.39 0.22 0.37 0.19 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.
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Table 10 | Product-moment and polychoric correlations among Case 4 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.81 0.75 0.42 0.47 0.41 0.21 0.21 0.29

SntComp 0.52 1 0.62 0.49 0.44 0.55 0.22 0.34 0.13

OddWrds 0.66 0.42 1 0.54 0.47 0.53 0.36 0.42 0.50

MxdArit 0.31 0.40 0.38 1 0.82 0.86 0.32 0.25 0.27

Remndrs 0.43 0.31 0.41 0.54 1 0.76 0.41 0.36 0.42

MissNum 0.32 0.46 0.38 0.79 0.51 1 0.35 0.30 0.33

Gloves 0.20 0.14 0.33 0.25 0.31 0.28 1 0.35 0.51

Boots 0.15 0.29 0.29 0.18 0.24 0.25 0.27 1 0.68

Hatchts 0.29 0.12 0.46 0.19 0.38 0.27 0.42 0.45 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.

Table 11 |Two-factor model loading matrix obtained with EFA of

product-moment R among Case 3 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η1 η2

WrdMean 0.53 0.02 0.60 0.00

SntComp 0.12 0.37 0.24 0.22

OddWrds 0.69 0.04 0.75 −0.06

MxdArit −0.13 0.95 −0.01 0.76

Remndrs 0.42 0.11 0.37 0.13

MissNum 0.12 0.62 −0.01 0.87

Gloves 0.44 0.06 0.35 0.07

Boots 0.25 0.03 0.32 −0.04

Hatchts 0.78 −0.19 0.43 −0.03

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

polychoric correlations among items. Hence, these methods are
referred to as “limited-information” because they collapse the
complete multi-way frequency data into univariate and bivariate
marginal information. Full-information factor analysis is an active
area of methodological research, but the limited-information
method has become quite popular in applied settings and sim-
ulation studies indicate that it performs well across a range of
situations (e.g., Flora and Curran, 2004; Forero et al., 2009; also
see Forero and Maydeu-Olivares, 2009, for a study comparing full-
and limited-information modeling). Thus, our remaining presen-
tation focuses on the limited-information, polychoric correlation
approach.

The key idea to this approach is the assumption that an
unobserved, normally distributed continuous variable, y∗, under-
lies each categorical, ordinally scaled observed variable, y with
response categories c = 0, 1,. . ., C. The latent y∗ links to the
observed y according to

y = c if τc−1 < y∗ < τc ,

Table 12 |Two-factor model loading matrix obtained with EFA of

product-moment R among Case 4 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η1 η2

WrdMean 0.49 0.21 0.46 0.27

SntComp 0.23 0.40 0.55 0.12

OddWrds 0.68 0.14 0.46 0.36

MxdArit −0.11 0.96 0.87 −0.17

Remndrs 0.34 0.42 0.58 0.14

MissNum 0.02 0.84 0.88 −0.13

Gloves 0.47 0.04 0.06 0.45

Boots 0.49 −0.01 0.00 0.56

Hatchts 0.77 −0.15 −0.06 0.79

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

where each τ is a threshold parameter (i.e., a Z -score) determined
from the univariate proportions of y with τ0 = −∞ and τC = ∞.
Adopting Eq. 1, the common factor model is then a model for the
y∗ variables themselves11,

y∗ = Λη + ε.

Like factor analysis of continuous variables, the model parame-
ters are actually estimated from the correlation structure,where the
correlations among the y∗ variables are polychoric correlations12.
Thus, the polychoric correlation between two observed, ordinal y

11The factor model can be equivalently conceptualized as a probit regression for
the categorical dependent variables. Probit regression is nearly identical to logistic
regression, but the normal cumulative distribution function is used in place of the
logistic distribution (see Fox, 2008).
12Analogous to the incorporation of mean structure among continuous variables,
advanced models such as multiple-group measurement models are fitted to the set
of both estimated thresholds and polychoric correlations.
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variables is an estimate of the correlation between two unobserved,
continuous y∗ variables (Olsson, 1979)13. Adopting Eq. 3 leads to

P∗ = ΛΨΛ′ + Θ,

where P∗ is the population correlation matrix among y∗, which
is estimated with the polychoric correlations. Next, because ML
estimation provides model estimates that most likely would have
produced observed multivariate normal data, methodologists do
not recommend simply substituting polychoric R for product-
moment R and proceed with ML estimation (e.g., Yang-Wallentin
et al., 2010). Instead, we recommend ULS estimation, where
the purpose is to minimize squared residual polychoric corre-
lations (Muthén, 1978)14. The normality assumption for each
unobserved y∗ is a mathematical convenience that allows esti-
mation of P∗; Flora and Curran (2004) showed that polychoric
correlations remain reasonably accurate under moderate viola-
tion of this assumption, which then has only a very small effect
on factor analysis results. Finally, this polychoric approach is
implemented in several popular SEM software packages (as well
as R, SAS, and Stata), each of which is capable of both EFA
and CFA.

EXAMPLE DEMONSTRATION CONTINUED
To demonstrate limited-information item factor analysis, we con-
ducted EFA of polychoric correlation matrices among the same
categorized variables for Cases 1–4 presented above, again using

13The tetrachoric correlation is a specific type of polychoric correlation that obtains
when both observed variables are dichotomous.
14Alternatively, “robust weighted least-squares,” also known as “diagonally weighted
least-squares” (DWLS or WLSMV), is also commonly recommended. Simulation
studies suggest that ULS and DWLS produce very similar results, with slightly more
accurate estimates obtained with ULS (Forero et al., 2009; Yang-Wallentin et al.,
2010).

Table 13 |Three-factor model loading matrix obtained with EFA of

product-moment R among Case 4 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 1.05 −0.10 −0.04 0.95 −0.10 −0.05

SntComp 0.43 0.30 −0.05 0.50 0.23 −0.03

OddWrds 0.54 0.05 0.32 0.68 0.04 0.14

MxdArit 0.17 0.92 −0.04 0.16 0.94 −0.03

Remndrs 0.17 0.40 0.25 0.16 0.46 0.17

MissNum −0.02 0.87 0.06 0.03 0.85 0.00

Gloves 0.00 0.10 0.47 0.00 0.06 0.46

Boots 0.01 0.05 0.48 0.02 0.00 0.54

Hatchts −0.01 −0.14 0.95 −0.03 −0.08 0.92

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

ULS estimation and quartimin rotation. We begin with analyses
of the approximately symmetric Case 1 and Case 2 items. First, the
sample polychoric correlations are closer to the known population
correlations than were the product-moment correlations among
these categorical variables (see Tables 5 and 7). For example,
the population correlation between Word Meaning and Sentence
Completion is 0.75 and the sample polychoric correlation between
these two Case 1 items is 0.81, but the product-moment correlation
was only 0.60 (both with N = 100). As with product-moment R,
the EFA of polychoric R among Case 1 variables also strongly sug-
gested retaining a three-factor model at both N = 100 and N = 200;
the rotated factor-loading matrices are in Table 14. Here, the load-
ing of each observed variable on its primary factor is consistently
larger than that obtained with the EFA of product-moment R
(compare to Table 6) and much closer to the population fac-
tor loadings in Table 2. Next, with Case 2 variables, the EFA of
polychoric R again led to a three-factor model at both N = 100
and N = 200. The primary factor loadings in Table 15 were only
slightly larger than those obtained with product-moment R (in
Table 8), which were themselves reasonably close to the popula-
tion factor loadings. Thus, in a situation where strong attenuation
of product-moment correlations led to strong underestimation
of factor loadings obtained from EFA of product-moment R (i.e.,
Case 1), an alternate EFA of polychoric R produced relatively accu-
rate factor loadings. Yet, when attenuation of product-moment
correlations is less severe (i.e., Case 2), EFA of polychoric R was
still just as accurate.

Recall that in Case 3 and 4, some items were positively skewed
and some were negatively skewed. First, the polychoric corre-
lations among Case 3 and 4 items are generally closer to the
population correlations than were the product-moment correla-
tions, although many of the polychoric correlations among Case
3 dichotomous items are quite inaccurate (see Tables 9 and 10).
For example, the population correlation between Word Meaning

Table 14 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 1 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.95 −0.07 −0.05 0.94 −0.11 −0.02

SntComp 0.85 0.14 −0.09 0.82 0.19 −0.05

OddWrds 0.80 0.02 0.24 0.81 0.03 0.14

MxdArit −0.02 0.91 0.04 −0.02 0.93 −0.02

Remndrs −0.04 0.93 0.06 −0.05 0.86 0.16

MissNum 0.12 0.82 −0.12 0.12 0.87 −0.10

Gloves −0.01 0.22 0.51 0.04 0.03 0.59

Boots 0.10 0.12 0.68 0.02 0.03 0.72

Hatchts −0.01 −0.04 0.96 0.02 −0.01 0.92

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.
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Table 15 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 2 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.99 −0.08 0.04 0.97 −0.07 0.02

SntComp 0.75 0.17 −0.12 0.84 0.10 −0.08

OddWrds 0.74 0.10 0.07 0.77 0.06 0.10

MxdArit −0.06 1.00 −0.03 −0.06 1.00 −0.04

Remndrs 0.11 0.73 0.10 0.04 0.80 0.12

MissNum 0.13 0.77 0.06 0.15 0.81 0.00

Gloves −0.01 0.20 0.61 −0.03 0.14 0.61

Boots 0.04 −0.04 0.82 0.04 0.12 0.68

Hatchts −0.02 0.00 0.80 0.01 −0.08 0.89

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

and Sentence Completion was 0.75 while the sample polychoric
correlation between these oppositely skewed Case 3 items was
0.57 with N = 100 and improved to 0.67 with N = 200; but the
product-moment correlation between these two items was only
0.24 with N = 100 and 0.25 with N = 200. With five-category
Case 4 items, the polychoric correlation between Word Meaning
and Sentence Completion is 0.81 with both sample sizes, but the
product-moment correlations were only 0.52 with N = 100 and
0.51 with N = 200.

Given that the polychoric correlations were generally more
resistant to skewness in observed items than product-moment
correlations, factor analyses of Case 3 and 4 items should also be
improved. With the dichotomous Case 3 variables and N = 100,
the scree plot suggested retaining a one-factor model, but other fit
statistics did not support a one-factor model (e.g., RMSR = 0.14).
Yet, the estimated two- and three-factor models were improper
with negative residual variance estimates. This outcome likely
occurred because many of the bivariate frequency tables for item
pairs had cells with zero frequency. This outcome highlights the
general concern of sparseness, or the tendency of highly skewed
items to produce observed bivariate distributions with cell fre-
quencies equaling zero or close to zero, especially with relatively
small overall sample size. Sparseness can cause biased polychoric
correlation estimates, which in turn leads to inaccurate factor
analysis results (Olsson, 1979; Savalei, 2011). With N = 200, a
three-factor model for Case 3 variables was strongly supported;
the rotated factor loading matrix is in Table 16. Excluding Gloves,
each item has its strongest loading on the same factor as indicated
in the population (see Table 2), but many of these primary factor
loadings are strongly biased and many items have moderate cross-
loadings. Thus, we see an example of the tendency for EFA of
polychoric R to produce inaccurate results with skewed dichoto-
mous items. Nonetheless, recall that EFA of product-moment R
for Case 3 items did not even lead to a model with the correct
number of factors.

Table 16 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 3 item-level variables.

Variable Factor

η1 η2 η3

WrdMean 0.52 0.27 0.18

SntComp 0.96 0.03 −0.03

OddWrds 0.44 0.34 0.32

MxdArit 0.05 0.92 −0.07

Remndrs 0.36 0.44 0.07

MissNum 0.06 0.95 0.01

Gloves −0.22 0.53 0.42

Boots 0.22 −0.22 0.74

Hatchts −0.09 0.11 0.82

N = 200. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

dd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

Table 17 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 4 item-level variables.

Variable Factor

η1 η2 η3

WrdMean 0.97 −0.08 −0.02

SntComp 0.85 0.09 −0.04

OddWrds 0.70 0.11 0.17

MxdArit −0.03 1.01 −0.05

Remndrs −0.02 0.83 0.12

MissNum 0.12 0.81 −0.02

Gloves 0.00 0.11 0.49

Boots 0.07 −0.02 0.69

Hatchts −0.02 −0.01 0.99

N = 200. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

With the five-category Case 4 items, retention of a three-factor
model was supported at both sample sizes. However, with N = 100,
we again obtained improper estimates. But with N = 200, the
rotated factor loading matrix (Table 17) is quite accurate rel-
ative to the population factor loadings, and certainly improved
over that obtained with EFA of product-moment R among these
items. Thus, even though there was a mix of positively and
negatively skewed items, having a larger sample size and more
item-response categories mitigated the potential for sparseness to
produce inaccurate results from the polychoric EFA.

In sum, our demonstration illustrated that factor analyses
of polychoric R among categorized variables consistently out-
performed analyses of product-moment R for the same vari-
ables. In particular, with symmetric items (Cases 1 and 2),
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product-moment correlations were attenuated which led to neg-
atively biased factor loading estimates (especially with fewer
response categories), whereas polychoric correlations remained
accurate and produced accurate factor loadings. When the
observed variable set contained a mix of positively and nega-
tively skewed items (Cases 3 and 4), product-moment correlations
were strongly affected by the direction of skewness (especially
with fewer response categories), which can lead to dramatically
misleading factor analysis results. Unfortunately, strongly skewed
items can also be problematic for factor analyses of polychoric R in
part because they produce sparse observed frequency tables, which
leads to higher rates of improper solutions and inaccurate results
(e.g., Flora and Curran, 2004; Forero et al., 2009). Yet this diffi-
culty is alleviated with larger sample size and more item-response
categories; if a proper solution is obtained, then the results of a
factor analysis of polychoric R are more trustworthy than those
obtained with product-moment R.

GENERAL DISCUSSION AND CONCLUSION
Factor analysis is traditionally and most commonly an analysis of
the correlations (or covariances) among a set of observed vari-
ables. A unifying theme of this paper is that if the correlations
being analyzed are misrepresentative or inappropriate summaries
of the relationships among the variables, then the factor analysis
is compromised. Thus, the process of data screening and assump-
tion testing for factor analysis should begin with a focus on the
adequacy of the correlation matrix among the observed variables.
In particular, analysis of product-moment correlations or covari-
ances implies that the bivariate association between two observed
variables can be adequately modeled with a straight line, which
in turn leads to the expression of the common factor model as
a linear regression model. This crucial linearity assumption takes
precedence over any concerns about having normally distributed
variables, although normality is important for certain model fit
statistics and estimating parameter SEs. Other concerns about
the appropriateness of the correlation matrix involve collinear-
ity and potential influence of unusual cases. Once one accepts
the sufficiency of a given correlation matrix as a representation
of the observed data, the actual formal assumptions of the com-
mon factor model are relatively mild. These assumptions are that
the unique factors (i.e., the residuals, ε, in Eq. 1) are uncorrelated
with each other and are uncorrelated with the common factors
(i.e., η in Eq. 1). Substantial violation of these assumptions typi-
cally manifests as poor model-data fit, and is otherwise difficult to
assess with a priori data-screening procedures based on descriptive
statistics or graphs.

After reviewing the common factor model, we gave separate
presentations of issues concerning factor analysis of continuous
observed variables and issues concerning factor analysis of cate-
gorical, item-level observed variables. For the former, we showed
how concepts from regression diagnostics apply to factor analysis,
given that the common factor model is itself a multivariate mul-
tiple regression model with unobserved explanatory variables. An
important point was that cases that appear as outliers in univariate
or bivariate plots are not necessarily influential and conversely that
influential cases may not appear as outliers in univariate or bivari-
ate plots (though they often do). If one can determine that unusual

observations are not a result of researcher or participant error, then
we recommend the use of robust estimation procedures instead of
deleting the unusual observation. Likewise, we also recommend
the use of robust procedures for calculating model fit statistics
and SEs when observed, continuous variables are non-normal.

Next, a crucial message was that the linearity assumption is
necessarily violated when the common factor model is fitted to
product-moment correlations among categorical, ordinally scaled
items, including the ubiquitous Likert-type items. At worst (e.g.,
with a mix of positively and negatively skewed dichotomous
items), this assumption violation has severe consequences for
factor analysis results. At best (e.g., with symmetric items with
five response categories), this assumption violation still produces
biased factor-loading estimates. Alternatively, factor analysis of
polychoric R among item-level variables explicitly specifies a non-
linear link between the common factors and the observed vari-
ables, and as such is theoretically well-suited to the analysis of
item-level variables. However, this method is also vulnerable to
certain data characteristics, particularly sparseness in the bivari-
ate frequency tables for item pairs, which occurs when strongly
skewed items are analyzed with a relatively small sample. Yet, factor
analysis of polychoric R among items generally produces supe-
rior results compared to those obtained with product-moment R,
especially if there are five or fewer item-response categories.

We have not yet directly addressed the role of sample size. In
short, no simple rule-of-thumb regarding sample size is reasonably
generalizable across factor analysis applications. Instead, adequate
sample size depends on many features of the research, such as the
major substantive goals of the analysis, the number of observed
variables per factor, closeness to simple structure, and the strength
of the factor loadings (MacCallum et al., 1999, 2001). Beyond these
considerations, having a larger sample size can guard against some
of the harmful consequences of unusual cases and assumption
violation. For example, unusual cases are less likely to exert strong
influence on model estimates as overall sample size increases. Con-
versely, removing unusual cases decreases the sample size, which
reduces the precision of parameter estimation and statistical power
for hypothesis tests about model fit or parameter estimates. Yet,
having a larger sample size does not protect against the negative
consequences of treating categorical item-level variables as contin-
uous by factor analyzing product-moment R. But we did illustrate
that larger sample size produces better results for factor analysis of
polychoric R among strongly skewed items, in part because larger
sample size reduces the occurrence of sparseness.

In closing, we emphasize that factor analysis, whether EFA or
CFA, is a method for modeling relationships among observed
variables. It is important for researchers to recognize that it
is impossible for a statistical model to be perfect; assumptions
will always be violated to some extent in that no model can
ever exactly capture the intricacies of nature. Instead, researchers
should strive to find models that have an approximate fit to
data such that the inevitable assumption violations are trivial,
but the models can still provide useful results that help answer
important substantive research questions (see MacCallum, 2003,
and Rodgers, 2010, for discussions of this principle). We recom-
mend extensive use of sensitivity analyses and cross-validation to
aid in this endeavor. For example, researchers should compare
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results obtained from the same data using different estimation
procedures, such as comparing traditional ULS or ML estimation
with robust procedures with continuous variables or comparing
full-information factor analysis results with limited-information
results with item-level variables. Additionally, as even CFA analy-
ses may become exploratory through model modification, it is

important to cross-validate models across independent data sets.
Because different modeling procedures place different demands on
data, comparing results obtained with different methods and sam-
ples can help researchers gain a fuller, richer understanding of the
usefulness of their statistical models given the natural complexity
of real data.
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A personal trait, for example a person’s cognitive ability, represents a theoretical concept
postulated to explain behavior. Interesting constructs are latent, that is, they cannot be
observed. Latent variable modeling constitutes a methodology to deal with hypothetical
constructs. Constructs are modeled as random variables and become components of a
statistical model. As random variables, they possess a probability distribution in the popu-
lation of reference. In applications, this distribution is typically assumed to be the normal
distribution. The normality assumption may be reasonable in many cases, but there are
situations where it cannot be justified. For example, this is true for criterion-referenced
tests or for background characteristics of students in large scale assessment studies. Nev-
ertheless, the normal procedures in combination with the classical factor analytic methods
are frequently pursued, despite the effects of violating this “implicit” assumption are not
clear in general. In a simulation study, we investigate whether classical factor analytic
approaches can be instrumental in estimating the factorial structure and properties of the
population distribution of a latent personal trait from educational test data, when viola-
tions of classical assumptions as the aforementioned are present.The results indicate that
having a latent non-normal distribution clearly affects the estimation of the distribution of
the factor scores and properties thereof. Thus, when the population distribution of a per-
sonal trait is assumed to be non-symmetric, we recommend avoiding those factor analytic
approaches for estimation of a person’s factor score, even though the number of extracted
factors and the estimated loading matrix may not be strongly affected. An application to the
Progress in International Reading Literacy Study (PIRLS) is given. Comments on possible
implications for the Programme for International Student Assessment (PISA) complete the
presentation.

Keywords: factor analysis, latent variable model, normality assumption, factorial structure, criterion-referenced test,
large scale educational assessment, Programme for International Student Assessment, Progress in International
Reading Literacy Study

1. INTRODUCTION
Educational research is concerned with the study of processes of
learning and teaching. Typically, the investigated processes are not
observable, and to unveil these, manifest human behavior in test
situations is recorded. According to Lienert and Raatz (1998, p. 1)
“a test [. . .] is a routine procedure for the investigation of one or
more empirically definable personality traits” (translated by the
authors), and to satisfy a minimum of quality criteria, a test is
required to be objective, reliable, and valid.

In this paper we deal with factor analytic methods for assessing
construct validity of a test, in the sense of its factorial validity (e.g.,
Cronbach and Meehl, 1955; Lienert and Raatz, 1998). Factorial
validity refers to the factorial structure of the test, that is, to the
number (and interpretation) of underlying factors, the correlation
structure among the factors, and the correlations of each test item
with the factors. There are a number of latent variable models that
may be used to analyze the factorial structure of a test – for gen-
eralized latent variable modeling covering a plethora of models as
special cases of a much broader framework, see Bartholomew et al.

(2011) and Skrondal and Rabe-Hesketh (2004). This paper focuses
on classical factor analytic approaches, and it examines how accu-
rately different methods of classical factor analysis can estimate
the factorial structure of test data, if assumptions associated with
the classical approaches are not satisfied. The methods of classical
factor analysis will include principal component analysis (PCA;
Pearson, 1901; Hotelling, 1933a,b; Kelley, 1935), exploratory fac-
tor analysis (EFA; Spearman, 1904; Burt, 1909; Thurstone, 1931,
1965), and principal axis analysis (PAA; Thurstone, 1931, 1965).
More recent works on factor analysis and related methods are Har-
man (1976), McDonald (1985), Cudeck and MacCallum (2007),
and Mulaik (2009). Further references, to more specific topics in
factor analysis, are given below, later in the text.1

1For the sake of simplicity and for the purpose and analysis of this paper, we want
to refer to all of these approaches (PCA, EFA, PAA) collectively as classical factor
analysis/analytic methods. Albeit it is known that PCA differs from factor analy-
sis in important aspects, and that PAA rather represents an alternative estimation
procedure for EFA. PCA and EFA are different technically and conceptually. PCA
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A second objective of this paper is to examine the scope of
these classical methods for estimating the probability distribu-
tion of latent ability values or properties thereof postulated in
a population under investigation, especially when this distribu-
tion is skewed (and not normal). In applied educational contexts,
for instance, that is not seldom the practice. Therefore a critical
evaluation of this usage of classical factor analytic methods for
estimating distributional properties of ability is important, as we
do present with our simulation study in this paper, in which metric
scale (i.e., at least interval scale; not dichotomous) items are used.

The results of the simulation study indicate that having a non-
normal distribution for latent variables does not strongly affect
the number of extracted factors and the estimation of the load-
ing matrix. However, as shown in this paper, it clearly affects the
estimation of the latent factor score distribution and properties
thereof (e.g., skewness).

More precisely, the “estimation accuracy” for factorial struc-
ture of these models is shown to be worse when the assumption of
interval-scaled data is not met or item statistics are skewed. This
corroborates related findings published in other works, which we
briefly review later in this paper. More importantly, the empirical
distribution of estimated latent ability values is biased compared
to the true distribution (i.e., estimates deviate from the true val-
ues) when population abilities are skewly distributed. It seems
therefore that classical factor analytic procedures, even though
they are performed with metric (instead of non-metric) scale
indicator variables, are not appropriate approaches to ability esti-
mation when skewly distributed population ability values are to
be estimated.

Why should that be of interest? In large scale assessment
studies such as the Programme for International Student Assess-
ment (PISA)2 latent person-related background (conditioning)

seeks to create composite scores of observed variables while EFA assumes latent
variables. There is no latent variable in PCA. PCA is not a model and instead is
simply a re-expression of variables based on the eigenstructure of their correlation
matrix. A statistical model, as is for EFA, is a simplification of observed data that
necessarily does not perfectly reproduce the data, leading to the inclusion of an error
term. This point is well-established in the methodological literature (e.g.,Velicer and
Jackson, 1990; Widaman, 2007). Correlation matrix is usually used in EFA, and the
models for EFA and PAA are the same. There are several methods to fit EFA such
as unweighted least squares (ULS), generalized least squares (GLS), or maximum
likelihood (ML). PAA is just one of the various methods to fit EFA. PAA is a method
of estimating the model of EFA that does not rely on a discrepancy function such as
for ULS, GLS, or ML. This point is made clear, for instance, in MacCallum (2009). In
fact, PAA with iterative communality estimation is asymptotically equivalent to ULS
estimation. Applied researchers often use PCA in situations where factor analysis
more closely matches the purpose of their analysis. This is why we want to include
PCA in our present study with latent variables, to examine how well PCA results
may approximate a factor analysis model. Such practice is frequently pursued, for
example in empirical educational research, as we tried to criticize for the large scale
assessment PISA study (e.g., OECD, 2005, 2012). Moreover, the comparison of EFA
(based on ML) with PAA in this paper seems to be justified and interesting, as the
(manifest) normality assumption in the observed indicator variables for the ML
procedure is violated in the simulation study and empirical large scale assessment
PIRLS application.
2PISA is an international large scale assessment study funded by the Organisation
for Economic Co-operation and Development (OECD), which aims to evaluate
education systems worldwide by assessing 15-year-old students’ competencies in
reading, mathematics, and science. For comprehensive and detailed information,
see www.pisa.oecd.org.

variables such as sex or socioeconomic status are obtained as well
by principal component analysis, and that “covariate” information
is part of the PISA procedure that assigns to students their liter-
acy or plausible values (OECD, 2012; see also Section 3.1 in the
present paper). Now, if it is assumed that the distribution of latent
background information conducted through questionnaires at the
students, schools, or parents levels (the true latent variable distri-
bution) is skewed, based on the simulation study of this paper we
can expect that the empirical distribution of estimated background
information (the “empirical” distribution of the calculated com-
ponent scores) is biased compared to the true distribution (and is
most likely skewed as well). In other words, estimated background
values do deviate from their corresponding true values they ought
to approximate, and so the inferred students’ plausible values may
be biased. Further research is necessary in order to investigate the
effects and possible implications of potentially biased estimates of
latent background information on students’ assigned literacy val-
ues and competence levels, based on which the PISA rankings of
OECD countries are reported. For an analysis of empirical large
scale assessment (Progress in International Reading Literacy Study;
PIRLS) data, see Section 6.

The paper is structured as follows. We introduce the considered
classical factor analysis models in Section 2 and discuss the rele-
vance of the assumptions associated with these models in Section
3. We describe the simulation study in Section 4 and present the
results of it in Section 5. We give an empirical data analysis exam-
ple in Section 6. In Section 7, we conclude with a summary of the
main findings and an outlook on possible implications and further
research.

2. CLASSICAL FACTOR ANALYSIS METHODS
We consider the method of principal component analysis on the
one hand, and the method of exploratory factor and principal
axis analysis on the other. At this point recall Footnote 1, where we
clarified that, strictly speaking, principal component analysis is not
factor analysis and that principal axis analysis is a specific method
for estimating the exploratory factor analysis model. Despite this,
for the sake of simplicity and for our purposes and analyses, we
call these approaches collectively factor analysis/analytic methods
or even models. For a more detailed discussion of these methods,
see Bartholomew et al. (2011).

Our study shows, amongst others, that the purely computa-
tional dimensionality reduction method PCA performs surpris-
ingly well, as compared to the results obtained based on the
latent variable models EFA and PAA. This is important, because
applied researchers often use PCA in situations where factor analy-
sis more closely matches their purpose of analysis. In general, such
computational procedures as PCA are easy to use. Moreover, the
comparison of EFA (based on ML) with PAA (eigenstructure of
the reduced correlation matrix based on communality estimates)
in this paper represents an evaluation of different estimation pro-
cedures for the classical factor analysis model. This comparison
of the two estimation procedures seems to be justified and inter-
esting, as the (manifest) normality assumption in the observed
indicators for the ML procedure is violated, both in the simulation
study and empirical large scale assessment PIRLS application. At
this point, see also Footnote 1.
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2.1. PRINCIPAL COMPONENT ANALYSIS
The model of principal component analysis (PCA) is

Z = FL′,

where Z is a n× p matrix of standardized test results of n per-
sons on p items, F is a n× p matrix of p principal components
(“factors”), and L is a p× p loading matrix.3 In the estimation
(computation) procedure F and L are determined as F=ZC3−1/2

and L=C31/2 with a p× p matrix 3= diag{λ1, . . ., λp}, where
λl are the eigenvalues of the empirical correlation matrix R =
Z ′Z , and with a p× p matrix C= (c1, . . ., cp) of corresponding
eigenvectors cl.

In principal component analysis we assume that Z∈Rn×p,
F∈Rn×p, and L∈Rn×p and that empirical moments of the man-
ifest variables exist such that, for any manifest variable j = 1, . . .,
p, its empirical variance is not zero (s2

j 6= 0). Moreover we assume

that rk(Z)= rk(R)= p (rk, the matrix rank) and that Z, F, and L
are interval-scaled (at the least).

The relevance of the assumption of interval-scaled variables for
classical factor analytic approaches is the subject matter of various
research works, which we briefly discuss later in this paper.

2.2. EXPLORATORY FACTOR ANALYSIS
The model of exploratory factor analysis (EFA) is

y = µ+ Lf + e ,

where y is a p× 1 vector of responses on p items,µ is the p× 1 vec-
tor of means of the p items, L is a p× k matrix of factor loadings,
f is a k× 1 vector of ability values (of factor scores) on k latent
continua (on factors), and e is a p× 1 vector subsuming remaining
item specific effects or measurement errors.

In exploratory factor analysis, we assume that

y ∈ Rp×1, µ ∈ Rp×1, L ∈ Rp×k , f ∈ Rk×1, and e ∈ Rp×1,

y,µ, L, f, and e are interval-scaled (at the least),

E(f ) = 0,

E(e) = 0,

cov(e,e) = E(ee ′) = D = diag{v1, . . . , vp},

cov(f,e) = E(fe ′) = 0,

where νi are the variances of ei (i= 1, . . ., p). If the factors are
not correlated, we call this the orthogonal factor model; oth-
erwise it is called the oblique factor model. In this paper, we
investigate the sensitivity of the classical factor analysis model
against violated assumptions only for the orthogonal case (with
cov(f, f )= E(f f ′)= I= diag{1, . . ., 1}).

Under this orthogonal factor model, 6 can be decomposed as
follows:

6 = E
[
(y − µ)(y − µ)′

]
= E

[
(Lf + e)(Lf + e)′

]
= LL′ + D.

3For the sake of simplicity and without ambiguity, in this paper we want to refer to
component scores from PCA as “factor scores” or “ability values,” albeit components
conceptually may not be viewed as latent variables or factors. See also Footnote 1.

This decomposition is utilized by the methods of unweighted
least squares (ULS), generalized least squares (GLS), or maxi-
mum likelihood (ML) for the estimation of L and D. For ULS
and GLS, the corresponding discrepancy function is minimized
with respect to L and D (Browne, 1974). ML estimation is per-
formed based on the partial derivatives of the logarithm of the
Wishart (W ) density function of the empirical covariance matrix
S, with (n− 1) S∼W (6, n− 1) (Jöreskog, 1967). After estimates
for µ, k, L, and D are obtained, the vector f can be estimated by

f̂ = (L′D−1L)−1L′D−1(y − µ).
When applying this exploratory factor analysis, y is typically

assumed to be normally distributed, and hence rk(6)= p, where6
is the covariance matrix of y. For instance, one condition required
for ULS or GLS estimation is that the fourth cumulants of y must
be zero, which is the case, for example, if y follows a multivariate
normal distribution (for this and other conditions, see Browne,
1974). For ML estimation note that (n− 1)S∼W(6,n− 1) if
y ∼N(µ,6).

Another possibility of estimation for the EFA model is principal
axis analysis (PAA). The model of PAA is

Z = FL′ + E ,

where Z is a n× p matrix of standardized test results, F is a n× p
matrix of factor scores, L is a p× p matrix of factor loadings,
and E is a n× p matrix of error terms. For estimation of F and
L based on the representation Z′Z=R= LL′+D the principal
components transformation is applied. However, the eigenvalue
decomposition is not based on R, but is based on the reduced
correlation matrix Rh = R − D̂, where D̂ is an estimate for D.
An estimate D̂ is derived using h2

j = 1 − vj and estimating the

communalities hj (for methods for estimating the communalities,
see Harman, 1976).

The assumptions of principal axis analysis are

Z ∈ Rn×p , L ∈ Rp×p , F ∈ Rn×p , and E ∈ Rn×p ,

E(f ) = 0,

E(e) = 0,

cov(e,e) = E(ee ′) = D = diag{v1, . . . , vp},

cov(f,e) = E(fe ′) = 0,

cov(f,f ) = E(ff ′) = I ,

and empirical moments of the manifest variables are assumed
to exist such that, for any manifest variable j = 1, . . ., p, its
empirical variance is not zero (s2

j 6= 0). Moreover, we assume

that rk(Z)= rk(R)= p and that the matrices Z, F, L, and E are
interval-scaled (at the least).

2.3. GENERAL REMARKS
Two remarks are important before we discuss the assumptions
associated with the classical factor models in the next section.

First, it can be shown that L is unique up to an orthogonal trans-
formation. As different orthogonal transformations may yield
different correlation patterns, a specific orthogonal transforma-
tion must be taken into account (and fixed) before the estimation
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accuracies of the factor models can be compared. This is known as
“rotational indeterminacy”in the factor analysis approach (e.g., see
Maraun, 1996). For more information, the reader is also referred
to Footnote 8 and Section 7.

Second, the criterion used to determine the number of factors
extracted from the data must be distinguished as well. In practice,

not all k or p but instead k̂ < k or p factors with the k̂ largest eigen-
values are extracted. Various procedures are available to determine

k̂. Commonly used criteria in educational research are the Kaiser-
Guttman criterion (Guttman, 1954; Kaiser and Dickman, 1959),
the scree test (Cattell, 1966), and the method of parallel analysis
(Horn, 1965).

3. ASSUMPTIONS ASSOCIATED WITH THE CLASSICAL
FACTOR MODELS

The three models described in the previous section in particular
assume interval-scaled data and full rank covariance or correlation
matrices for the manifest variables. Typically in the exploratory
factor analysis model, the manifest variables y or the standardized
variables z are assumed to be normally distributed. For the PCA
and PAA models, we additionally want to presuppose – for compu-
tational reasons – that the variances of the manifest variables are
substantially large. The EFA and PAA models assume uncorrelated
factor terms and uncorrelated error terms (which can be relaxed
in the framework of structural equation models; e.g., Jöreskog,
1966), uncorrelatedness between the error and latent ability vari-
ables, and expected values of zero for the errors as well as latent
ability variables.

The question now arises whether the assumptions are critical
when it comes to educational tests or survey data?4

3.1. CRITERION-REFERENCED TESTS AND PISA QUESTIONNAIRE
DATA

From the perspective of applying these models to data of criterion-
referenced tests, the last three of the above mentioned assumptions
are less problematic. For a criterion-referenced test, it is important
that all items of the test are valid for the investigated content. As
such, the usual way of excluding items from the analysis when
the covariance or correlation matrices are not of full rank does not
work for criterion-referenced tests, because this can reduce content
validity of a test. A similar argument applies to the assumption of

4Note that, at the latent level, there is no formal assumption that the latent factors
(what we synonymously also want to call “person abilities”) are normally distrib-
uted. At the manifest level, maximum likelihood estimation (EFA) assumes that the
observed variables are normal; ULS and GLS (EFA), PAA (EFA), and PCA do not.
The latter two methods only require a non-singular correlation matrix (e.g., see
MacCallum, 2009). However, in applications, for example in empirical educational
research, one often assumes that the latent ability values follow a normal distribu-
tion in the population of reference. Moreover, Mattson (1997)’s method described
in Section 4.1 states that there is a connection between the manifest and latent distri-
butions in factor analysis. Hence the question is what implications one can expect if
this “implicit assumption” may not be justified. Related to the study and evaluation
of the underlying assumptions associated with these classical factor models, this
paper, amongst others, shows that the data re-expression method PCA performs
surprisingly well if compared to the results obtained based on the latent variable
approaches EFA and PAA. Moreover, ML and PAA estimation procedures for EFA
are compared with one another, for different degrees of violating the normality
assumption at the manifest or latent levels.

substantially large variances of the manifest variables. As Klauer
(1987) suggested and Sturzbecher et al. (2008) have shown for
the driving license test in Germany, the variances of the manifest
variables of criterion-referenced tests are seldom high, and in gen-
eral the data obtained from those tests may lead to extracting too
few dimensions. However, for the analysis of criterion-referenced
tests, the assumption of interval-scaled data and the assumption
of normality of the manifest test and latent ability scores are even
more problematic. Data from criterion-referenced tests are rarely
interval-scaled – instead the items of criterion-referenced tests are
often dichotomous (Klauer,1987). For criterion-referenced tests, it
is plausible to have skewed (non-symmetric) test and ability score
distributions, because criterion-referenced tests are constructed
to assess whether a desired and excessive teaching goal has been
achieved or not. In other words, the tested population is explicitly
and intensively trained regarding the evaluated ability, and so it is
rather likely that most people will have high values on the mani-
fest test score as well as latent ability (e.g., see the German driving
license test; Sturzbecher et al., 2008).

The assumption of interval-scaled data and the normality
assumption for the manifest test and latent ability scores may
also be crucial for the scaling of cognitive data in PISA (OECD,
2012; Chap. 9 therein). In PISA, the generated students’ scores are
plausible values. These are randomly drawn realizations basically
from a multivariate normal distribution (as the prior) of latent
ability values (person ability is modeled as a random effect, a
latent variable), in correspondence to a fitted item response theory
model (Adams et al., 1997) giving the estimated parameters of the
normal distribution. The mean of the multivariate normal distri-
bution is expressed as linear regression of various direct manifest
regressors (e.g., administered test booklet, gender) and indirect
“latent” or complex regressors obtained by aggregating over man-
ifest and latent context or background variables (e.g., indicators
for economic, social, and cultural status) in a principal component
analysis. The component scores used in the scaling model as the
indirect “latent” regressors are extracted, in the purely computa-
tional sense, to account for approximately 95% of the total variance
in all the original variables. The background variables may be cat-
egorical or dummy-coded and may not be measured at an interval
scale (nor be normally distributed). So as we said before, if one
can assume that the distribution of latent background informa-
tion revealed through questionnaires is skewed, we can expect that
the empirical distribution of background information computed
by principal component analysis is likely to be biased compared to
the true distribution. This is suggested by the results of our sim-
ulation study. The bias of the empirical distribution in turn may
result in biasing the regression expression for the mean. There-
fore, special caution has to be taken regarding possible violations
of those assumptions, and a minimum of related sensitivity analy-
ses are required and necessary in order to control for their potential
effects.

3.2. HISTORICAL REMARKS
The primary aim is to review results of previous studies focus-
ing on the impact of violations of model assumptions. As to our
knowledge, such studies did not systematically vary the distribu-
tions of the factors (in the case of continuous data as well) and

Frontiers in Psychology | Quantitative Psychology and Measurement March 2013 | Volume 4 | Article 109 | 125

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Kasper and Ünlü Assumptions of factor analytic approaches

primarily investigated the impact of categorical data (however,
not varying the latent distributions for the factors). Reviewing
results of previous simulation studies based on continuous indi-
cator variables that have compared different estimation methods
(including PCA) and have compared different methods for deter-
mining the number of factors, as to our knowledge, would have
not constituted reviewing relevant literature focusing primar-
ily on the violations of the assumptions associated with those
models.

Literature on classical factor models has in particular inves-
tigated violations of the assumption of interval-scaled data. In
classical factor analysis, Green (1983) simulated dichotomous data
based on the 3PL (three parameter logistic) model (Birnbaum,
1968) and applied PCA and PAA to the data, whereat Cattell’s
scree test and Horn’s parallel analysis were used as extraction cri-
teria. Although both methods were applied to the same data, the
results regarding the extracted factors obtained from the analyses
differed, and the true dimensionality was not detected. In gen-
eral, the models extracted too many factors. These findings are
in line with expectations. Green (1983) used the phi-coefficient φ
as the input data, and according to Ferguson (1941), the max-
imum value of φ depends on the difficulty parameters of the
items. Dependence of φ on item difficulty can in extreme cases
lead to factors being extracted solely due to the difficulties of the
items. Roznowski et al. (1991) referred to such factors as difficulty
factors.

Carroll (1945) recommended to use the tetrachoric correlation
ρtet for factor analysis of dichotomous data. The coefficient ρtet

is an estimate of the dependency between two dichotomous items
based on the assumption that the items measure a latent continu-
ous ability – an assumption that corresponds to the factor analysis
approach. Although one would expect that ρtet leads to less biased
results as compared to φ, Collins et al. (1986) were able to show
that φ was much better suited to capture the true dimensional-
ity than ρtet. In simulations, they compared the two correlation
coefficients within the principal component analysis, using a ver-
sion of the scree test as extraction criterion. The simulated data
followed the 2PL model with three latent dimensions, and in addi-
tion to item discrimination (moderate, high, very high), the item
difficulty and its distribution were varied (easy, moderate, diffi-
cult, and extreme difficult item parameters; distributed normal,
low frequency, rectangular, and bimodal). The coefficient ρtet led
to better results when the distribution of item difficulty was rec-
tangular. In all other cases,φ was superior to ρtet. But with neither
of the two methods it was possible to detect the true number of
factors in more than 45% of the simulated data sets. See Roznowski
et al. (1991) for another study illustrating the superiority of the
coefficient φ to the coefficient ρtet.

Clarification for findings in Green (1983), Collins et al. (1986),
and Roznowski et al. (1991) was provided by Weng and Cheng
(2005). Weng and Cheng varied the number of items, the fac-
tor loadings and difficulties of the items, and sample size. The
authors used the parallel analysis extraction method to determine
the number of factors. However, the eigenvalues of the correlation
matrices were computed using a different algorithm, which in a
comparative study proved to be more reliable (Wang, 2001). With
this algorithm, φ and ρtet performed equally well and misjudged

true unidimensionality only when the factor loadings or sample
sizes were small, or when the items were easy. This means that it
was not the correlation coefficient per se that led to inadequate
estimation of the number of factors but the extraction method
that was used.

Muthén (1978, 1983, 1984), Muthén and Christoffersson
(1981), Dolan (1994), Gorsuch (1997), Bolt (2005), Maydeu-
Olivares (2005), and Wirth and Edwards (2007) present alternative
or more sophisticated ways for dealing with categorical variables
in factor analysis or structural equation modeling. Muthén (1989),
Muthén and Kaplan (1992), and Ferguson and Cox (1993) com-
pared the performances of factor analytic methods under con-
ditions of (manifest) non-normality for the observed indicator
variables.

We will add to and extend this literature and investigate in
this paper whether the classical factor analysis models can reason-
ably unveil the factorial structure or properties of the population
latent ability distribution in educational test data (e.g., obtained
from criterion-referenced tests) when the assumption of normality
in the latency may not be justified. None of the studies men-
tioned above has investigated the “true distribution impact” in
these problems.

4. SIMULATION STUDY
A simulation study is used to evaluate the performances of the
classical factor analytic approaches when the latent variables are
not normally distributed.

True factorial structures under the exploratory factor analysis
model are simulated, that is, the values of n, k, L, f , and e are
varied.5 On the basis of the constructed factorial structures, the
matrices of the manifest variables are computed. These matrices
are used as input data and analyzed with classical factor analytic

methods. The estimates (or computed values) k̂, L̂, and f̂ (or F̂ ) are
then compared to the underlying population values. As criteria for
“estimation accuracy” we use the number of extracted factors (as
compared to true dimensionality), the skewness of the estimated
latent ability distribution, and the discrepancy between estimated
and true loading matrix. Shapiro-Wilk tests for normality of the
ability estimates are presented and distributions of the estimated
and true factor scores are compared as well.

Note that in the simulation study metric scale, not dichoto-
mous, items are analyzed. This can be viewed as a baseline infor-
mative for the dichotomous indicator case as well (cf. Section
6). The results of the simulation study can serve as a reference
also for situations where violations of normality for latent and
manifest variables and metric scale data are present. One may
expect the reported results to become worse when, in addition to
(latent) non-normality of person ability, data are discretized or
item statistics are skewed (manifest non-normality).

4.1. MOTIVATION AND PRELIMINARIES
The present simulation study particularly aims at analyzing and
answering such questions as:

5Obviously, PCA as introduced in this paper cannot be used as a data generating
probability model underlying the population. However, the simulation study shows
that PCA results can approximate a factor analysis (cf. also Footnote 1).
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• To what extent does the estimation accuracy for factorial struc-
ture of the classical factor analysis models depend on the
skewness of the population latent ability distribution?
• Are there specific aspects of the factorial structure or latent abil-

ity distribution with respect to which the classical factor analysis
models are more or less robust in estimation when true ability
values are skewed?
• Given a skewed population ability distribution does the esti-

mation accuracy for factorial structure of the classical factor
analysis models depend on the extraction criterion applied for
determining the number of factors from the data?
• Can person ability scores estimated under classical factor ana-

lytic approaches be representative of the true ability distribution
or properties thereof when this distribution is skewed?

Mattson (1997)’s method can be used for specifying the parame-
ter settings for the simulation study (cf. Section 4.2). We briefly
describe this method (for details, see Mattson, 1997). Assume the
standardized manifest variables are expressed as z=Aν, where ν is
the vector of latent variables and A is the matrix of model parame-
ters. Moreover, assume that ν=Tω, where T is a lower triangular
square matrix such that each component of ν is a linear combina-
tion of at most two components of ω, E(vv′)=6ν =TT′, andω is
a vector of mutually independent standardized random variables
ωi with finite central moments µ1i , µ2i , µ3i , and µ4i , of order up
to four. Then

E(z) = AT E(ω) = 0

and

E(zz ′)(= A6νA′) = AT E(ωω′)T ′A′ = ATT ′A′.

Or equivalently, E(zizj) = γ ′iγ j , where γ i = (a′iT )′ and a′i
is the i-th row of A. Under these conditions the third and fourth
order central moments of zi are given by

E(z3
i ) =

∑
m

γ 3
imµ3m and

E(z4
i ) =

∑
m

γ 4
imµ4m + 6

∑
m>2

m−1∑
o=1

γ 2
imγ

2
io .

Hence the univariate skewness
√
β1i and kurtosis β2i of any zi

can be calculated by

√
β1i =

E
(
z3

i

)[
E
(
z2

i

)]3/2
and β2i =

E
(
z4

i

)[
E
(
z2

i

)]2 .

In the simulation study, the exploratory factor analysis model
with orthogonal factors (cov( f , f )= I ) and error variables
assumed to be uncorrelated and unit normal (with standard-
ized manifest variables) is used as the data generating model. Let
A:= (L, Ip) be the concatenated matrix of dimension p× (k + p),
where Ip is the unit matrix of order p× p, and let v := ( f ′, e ′)′

be the concatenated vector of length k + p. Then we have z=Av
for the simulation factor model. Let T:= I(k+p)×(k+p) and ω:= ν,

then T and ω satisfy the required assumptions afore mentioned.
Hence the skewness and kurtosis of any zi are given by, respectively,

√
β1i =

∑k+p
m=1 a3

imµ3m

[a′iai]
3/2

and

β2i =

∑k+p
m=1 a4

imµ4m + 6
∑k+p

m=2

∑m−1
o=1 a2

ima2
io

[a′iai]
2 .

Mattson’s method is used to specify such settings for the sim-
ulation study as they may be observed in large scale assessment
data. The next section describes this in detail.

4.2. DESIGN OF THE SIMULATION STUDY
The number of manifest variables was fixed to p= 24 through-
out the simulation study. For the number of factors, we used
numbers typically found in large scale assessment studies such as
the Progress in International Reading Literacy Study (PIRLS, e.g.,
Mullis et al., 2006) or PISA (e.g., OECD, 2005). According to the
assessment framework of PIRLS 2006 the number of dimensions
for reading literacy was four, in PISA 2003 the scaling model had
seven dimensions. We decided to use a simple loading structure
for L, in the sense that every manifest variable was assumed to load
on only one factor (within-item unidimensionality) and that each
factor was measured by the same number of manifest variables. In
reliance on PIRLS and PISA in our simulation study, the numbers
of factors were assumed to be four or eight. We assumed that some
of the factors were well explained by their indicators while others
were not, with upper rows (variables) of the loading matrix gen-
erally having higher factor loadings than lower rows (variables).
Thus, the loading matrices employed in our study for the four and
eight dimensional simulation models were, respectively,

L =



0.9 0 0 0

0.8 0 0 0

0.7 0 0 0

0.6 0 0 0

0.5 0 0 0

0.4 0 0 0

0 0.8 0 0

0 0.7 0 0

0 0.6 0 0

0 0.5 0 0

0 0.4 0 0

0 0.3 0 0

0 0 0.6 0

0 0 0.6 0

0 0 0.5 0

0 0 0.4 0

0 0 0.4 0

0 0 0.3 0

0 0 0 0.6

0 0 0 0.5

0 0 0 0.5

0 0 0 0.4

0 0 0 0.3

0 0 0 0.3



and L =



0.9 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0

0.7 0 0 0 0 0 0 0

0 0.8 0 0 0 0 0 0

0 0.8 0 0 0 0 0 0

0 0.7 0 0 0 0 0 0

0 0 0.8 0 0 0 0 0

0 0 0.7 0 0 0 0 0

0 0 0.6 0 0 0 0 0

0 0 0 0.7 0 0 0 0

0 0 0 0.7 0 0 0 0

0 0 0 0.7 0 0 0 0

0 0 0 0 0.7 0 0 0

0 0 0 0 0.6 0 0 0

0 0 0 0 0.6 0 0 0

0 0 0 0 0 0.6 0 0

0 0 0 0 0 0.6 0 0

0 0 0 0 0 0.5 0 0

0 0 0 0 0 0 0.5 0

0 0 0 0 0 0 0.4 0

0 0 0 0 0 0 0.4 0

0 0 0 0 0 0 0 0.4

0 0 0 0 0 0 0 0.4

0 0 0 0 0 0 0 0.3



.
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We decided to analyze released items of the PIRLS 2006 study
(IEA, 2007) to have an empirical basis for the selection of skewness
values for ω(= ν). We used a data set of dichotomously scored
responses of 7,899 German students to 125 test items. Figure 1
displays the distribution of the PIRLS items’ (empirical) skewness
values.6

We decided to simulate under three conditions for the distri-
butions of ω. Under the first condition, ωm (m= 1, . . ., k) are
normal with µ1m = 0,µ2m = 1,µ3m = 0, and µ4m = 3. Under the
second condition, ωm (m= 1, . . ., k) are slightly skewed with
µ1m = 0, µ2m = 1, µ3m =−0.20, and µ4m = 3. Under the third
condition, ωm (m= 1, . . ., k) are strongly skewed with µ1m = 0,
µ2m = 1, µ3m =−2, and µ4m = 9. The error terms were assumed
to be unit normal, that is, we specified µ1h = 0, µ2h = 1, µ3h = 0,
and µ4m = 3 for ωh (h= k + 1, . . ., k + p). Skewness and kurto-
sis of any zi under each of the three conditions were computed
using Mattson’s method (Section 4.1). The values are reported in
Tables 1 and 2 for the four and eight dimensional factor spaces,
respectively.

Under the slightly skewed distribution condition, the theoret-
ical values of skewness for the manifest variables range between
−0.060 and−0.005, a condition that captured approximately 20%
of the considered PIRLS test items. Under the strongly skewed dis-
tribution condition, the theoretical values of skewness lie between
−0.599 and −0.047, a condition that covered circa 30% of the
PIRLS items (cf. Figure 1). Based on these theoretical skewness
and kurtosis statistics, we can see to what extent under these model
specifications the distributions of the manifest variables deviate
from the normal distribution.

How to generate variates ωi (i= 1, . . ., k + p) such that they
possess predetermined moments µ1i , µ2i , µ3i , and µ4i? To sim-
ulate values for ωi with predetermined moments, we used the
generalized lambda distribution (Ramberg et al., 1979)

ωi = λ1 +
uλ3 − (1− u)λ4

λ2
,

6All figures of this paper were produced using the R statistical computing environ-
ment (R Development Core Team, 2011; www.r-project.org). The source files are
freely available from the authors.

where u is uniform (0, 1), λ1 is a location parameter, λ2 a scale
parameter, and λ3 and λ4 are shape parameters. To realize the
desired distribution conditions for the simulation study (normal,
slightly skewed, strongly skewed) using this general distribution
its parameters λ1, λ2, λ3, and λ4 had to be specified accordingly.
Ramberg et al. (1979) tabulate the required values for the λ para-
meters for different values of µ. In particular, for a (more or
less) normal distribution with µ1= 0,µ2= 1,µ3= 0, and µ4= 3
the corresponding values are λ1= 0, λ2= 0.197, λ3= 0.135, and
λ4= 0.135. For a slightly skewed distribution withµ1= 0,µ2= 1,
µ3=−0.20, and µ4= 3, the values are λ1= 0.237, λ2= 0.193,
λ3= 0.167, and λ4= 0.107. For a strongly skewed distribution
with µ1= 0, µ2= 1, µ3=−2, and µ4= 9, the parameter values
are given byλ1= 0.993,λ2=−0.108·10−2,λ3=−0.108·10−2, and
λ4=−0.041·10−3.

Remark. Indeed, various distributions are possible (see Matt-
son, 1997); however, the generalized lambda distribution proves
to be special. It performs very well in comparison to other dis-
tributions, when theoretical moments calculated according to the
Mattson formulae are compared to their corresponding empir-
ical moments computed from data simulated under a factor
model (based on that distribution). For details, see Reinartz et al.
(2002). These authors have also studied the effects of the use
of different (pseudo) random number generators for realizing
the uniform distribution in such a comparison study. Out of
three compared random number generators – RANUNI from
SAS, URAND from PRELIS, and RANDOM from Mathemat-
ica – the generator RANUNI performed relatively well or bet-
ter. In this paper, we used the SAS program for our simulation
study.7

Besides the number of factors and the distributions of the
latent variables, sample size was varied. In the small sample
case, every zi consisted of n= 200 observations, and in the
large sample case zi contained n= 600 observations. Table 3
summarizes the design of the simulation study. Overall there

7For the factor analyses in this paper, we used the SAS program and its PROC FAC-
TOR implementation of the methods PCA, EFA, and PAA. More precisely, variation
of the PROC FACTOR statements, run in their default settings, yields the performed
procedures PCA, EFA, and PAA (e.g., EFA if METHOD=ML).
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FIGURE 1 | Distribution of the skewness values for the 125 PIRLS test items.
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Table 1 |Theoretical values of skewness and kurtosis for z i (four

factors).

zi Latent variable

Normala Slightly

skewedb

Strongly

skewedc√
β1i β2i

√
β1i β2i

√
β1i β2i

z1 0 3 −0.060 3 −0.599 4.202

z2 0 3 −0.049 3 −0.488 3.914

z3 0 3 −0.038 3 −0.377 3.649

z4 0 3 −0.027 3 −0.272 3.420

z5 0 3 −0.018 3 −0.179 3.240

z6 0 3 −0.010 3 −0.102 3.114

z7 0 3 −0.049 3 −0.488 3.914

z8 0 3 −0.038 3 −0.377 3.649

z9 0 3 −0.027 3 −0.272 3.420

z10 0 3 −0.018 3 −0.179 3.240

z11 0 3 −0.010 3 −0.102 3.114

z12 0 3 −0.005 3 −0.047 3.041

z13 0 3 −0.027 3 −0.272 3.420

z14 0 3 −0.027 3 −0.272 3.420

z15 0 3 −0.018 3 −0.179 3.240

z16 0 3 −0.010 3 −0.102 3.114

z17 0 3 −0.010 3 −0.102 3.114

z18 0 3 −0.005 3 −0.047 3.041

z19 0 3 −0.027 3 −0.272 3.420

z20 0 3 −0.018 3 −0.179 3.240

z21 0 3 −0.018 3 −0.179 3.240

z22 0 3 −0.010 3 −0.102 3.114

z23 0 3 −0.005 3 −0.047 3.041

z24 0 3 −0.005 3 −0.047 3.041

aµ1m = 0, µ2m =1, µ3m =0, and µ4m =3.
bµ1m =0, µ2m =1, µ3m =−0.20, and µ4m =3.
cµ1m =0, µ2m =1, µ3m =−2, and µ4m = 9.

are 12 conditions and for every condition 100 data sets were
simulated.

Each of the generated 1,200 data sets were analyzed using all
of the models of principal component analysis, exploratory factor
analysis (ML estimation), and principal axis analysis altogether
with a varimax rotation (Kaiser, 1958).8 For any data set under
each model, the factors, and hence, the numbers of retained fac-
tors were determined by applying the following three extraction
criteria or approaches: the Kaiser-Guttman criterion, the scree test,
and the parallel analysis procedure.9

8Because of rotational indeterminacy in the factor analysis approach (e.g., Maraun,
1996), the results are as much an evaluation of varimax rotation as they are an
evaluation of the manipulated variables in the study. For more information, see
Section 7.
9The Kaiser-Guttman criterion is a poor way to determine the number of factors.
However, due to the fact that none of the existing studies has investigated the estima-
tion accuracy of this criterion when the latent ability distribution is skewed, we have
decided to include the Kaiser-Guttman criterion in our study. This criterion may

Table 2 |Theoretical values of skewness and kurtosis for z i (eight

factors).

zi Latent variable

Normala Slightly

skewedb

Strongly

skewedc√
β1i β2i

√
β1i β2i

√
β1i β2i

z1 0 3 −0.060 3 −0.599 4.202

z2 0 3 −0.049 3 −0.488 3.914

z3 0 3 −0.038 3 −0.377 3.649

z4 0 3 −0.049 3 −0.488 3.914

z5 0 3 −0.049 3 −0.488 3.914

z6 0 3 −0.038 3 −0.377 3.649

z7 0 3 −0.049 3 −0.488 3.914

z8 0 3 −0.038 3 −0.377 3.649

z9 0 3 −0.027 3 −0.272 3.420

z10 0 3 −0.038 3 −0.377 3.649

z11 0 3 −0.038 3 −0.377 3.649

z12 0 3 −0.038 3 −0.377 3.649

z13 0 3 −0.038 3 −0.377 3.649

z14 0 3 −0.027 3 −0.272 3.420

z15 0 3 −0.027 3 −0.272 3.420

z16 0 3 −0.027 3 −0.272 3.420

z17 0 3 −0.027 3 −0.272 3.420

z18 0 3 −0.018 3 −0.179 3.240

z19 0 3 −0.018 3 −0.179 3.240

z20 0 3 −0.010 3 −0.102 3.114

z21 0 3 −0.010 3 −0.102 3.114

z22 0 3 −0.010 3 −0.102 3.114

z23 0 3 −0.010 3 −0.102 3.114

z24 0 3 −0.005 3 −0.047 3.041

aµ1m =0, µ2m =1, µ3m =0, and µ4m =3.
bµ1m =0, µ2m =1, µ3m =−0.20, and µ4m =3.
cµ1m =0, µ2m =1, µ3m =−2, and µ4m =9.

Table 3 | Summary of the simulation design and number of generated

data sets.

Sample

size

Number of

factors

Latent variable distribution

Normal Slightly skewed Strongly skewed

200 4 100 100 100

8 100 100 100

600 4 100 100 100

8 100 100 100

4.3. EVALUATION CRITERIA
The criteria for evaluating the performance of the classical fac-
tor models are the number of extracted factors (as compared to
true dimensionality), the skewness of the estimated latent ability

also be viewed as a “worst performing” baseline criterion, which other extraction
methods need to outperform, as best as possible.
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distribution, and the discrepancy between the estimated and the
true loading matrix. The latter two criteria are computed using
the true number of factors. Furthermore, Shapiro-Wilk tests for
assessing normality of the ability estimates are presented and
distributions of the estimated and true factor scores are compared.

For the skewness criterion, under a factor model and a simula-
tion condition, for any data set the factor scores on a factor were
computed and their empirical skewness was the value for this data
set that was used and plotted. For the discrepancy criterion, under
a factor model and a simulation condition, for any data set i= 1,
. . ., 100 a discrepancy measure Di was calculated,

Di =

∑p
x=1

∑k
y=1 | l̂ i;xy −lxy |

kp
,

where l̂ i;xy and lxy represent the entries of the estimated (vari-
max rotated, for data set i= 1, . . ., 100) and true loading matrices,
respectively. It gives the averaged sum of the absolute differences
between the estimated and true factor loadings. We also report the
average and variance (or standard deviation) of these discrepancy
measures, over all simulated data sets,

D =
1

100

100∑
i=1

Di and s2
=

1

100− 1

100∑
i=1

(Di − D)2.

In addition to calculating estimated factor score skewness val-
ues, we also tested for univariate normality of the estimated factor
scores. We used the Shapiro-Wilk test statistic W (Shapiro and
Wilk, 1965). In comparison to other univariate normality tests,
the Shapiro-Wilk test seems to have relatively high power (Seier,
2002). In our study, under a factor model and a simulation condi-
tion, for any data set the Shapiro-Wilk test statistic’s p-value was
calculated for the estimated factor scores on a factor and the dis-
tribution of the p-values obtained from 100 simulated data sets
was plotted.

5. RESULTS
We present the results of our simulation study.

5.1. NUMBER OF EXTRACTED FACTORS
Figure 2 shows the relative frequencies of the numbers of extracted
factors for sample size n= 200 and k = 4 as true number of factors.
If the Kaiser-Guttman criterion is used, the number of extracted
factors is overestimated (for PCA) or tends to be underestimated
(for EFA and PAA). With the scree test, four dimensions where
extracted in the majority of cases, but variation of the numbers
of extracted factors over the different data sets is high. High vari-
ation in this case can be explained by the ambiguous and hence
difficult to interpret eigenvalue graphics that one needs to visually
inspect for the scree test. Applying the parallel analysis method,
variation of the numbers of extracted factors can be reduced and
the true number of factors is estimated very well (e.g., for PCA).
There does not seem to be a relationship between the number of
extracted factors and the underlying distribution (normal, slightly
skewed, strongly skewed) of the latent ability values.

When sample size is increased to n= 600, variation of the esti-
mated numbers of factors decreases substantially under many

conditions (see Figure 3). Compared to small sample sizes, the
scree test and the parallel analysis method perform very well. The
Kaiser-Guttman criterion still leads to a biased estimation of the
true number of factors. Once again, there seems to be no relation-
ship between the distribution of the latent ability values and the
number of extracted factors.

Figure 4, for a sample size of n= 200, shows the case when
there are k = 8 factors underlying the data. The Kaiser-Guttman
criterion again leads to overestimation or underestimation of the
true number of factors. The extraction results for the scree test
have very high variation, and estimation of the true number of
factors is least biased when the parallel analysis method is used.

Increasing sample size from n= 200 to 600 results in a signifi-
cant reduction of variation (Figure 5). However, the true number
of factors can be estimated without bias only when the parallel
analysis method is used as extraction criterion. A possible rela-
tionship between the distribution of the latent ability values and
the number of extracted factors once again does not seem to be
apparent.

To sum up, we suppose that the“number of factors extracted” is
relatively robust against the extent the latent ability values may be
skewed. Another observation is that the parallel analysis method
seems to outperform the scree test and the Kaiser-Guttman cri-
terion when it comes to detecting the number of underlying
factors.

5.2. SKEWNESS OF THE ESTIMATED LATENT ABILITY DISTRIBUTION
Figure 6A shows the distributions of the estimated factor score
skewness values, for n= 200, k = 4, and µ3m = 0. The majority of
the skewness values lies in close vicinity of 0. In other words, for a
true normal latent ability distribution with skewnessµ3= 0, under
the classical factor models the estimated latent ability scores most
likely seem to have skewness values of approximately 0. An impact
of the factor model used for the analysis of the data on the skewness
of the estimated latent ability values cannot be seen under this sim-
ulation condition. However, the standard deviations of the skew-
ness values clearly decrease from the first to the fourth factor. In
other words, the true skewness of the latent ability distribution may
be more precisely estimated for the fourth factor than for the first.

When true latent ability values are slightly negative skewed,
µ3=−0.20, in our simulation study this skewness may only
be properly estimated for the first and second extracted factors
(Figure 6B). The estimated latent ability values of the third and
fourth extracted factors more give skewness values of approxi-
mately 0. The true value of skewness for these factors hence may
likely to be overestimated.

If true latent ability values are strongly negative skewed,
µ3=−2, unbiased estimation of true skewness may not be pos-
sible (Figure 6C). Even in the case of the first and second factors,
the estimation is biased now. True skewness of the latent ability
distribution may be overestimated regardless of the used factor
model or factor position.

To sum up, under the classical factor models, the concept of
“skewness of the estimated latent ability distribution” seems to be
sensitive with respect to the extent the latent ability values may be
skewed. It seems that, the more the true latent ability values are
skewed, the greater is overestimation of true skewness. In other
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FIGURE 2 | Relative frequencies of the numbers of extracted factors, for n=200 and k =4. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

words, strongly negative skewed distributions may not be esti-
mated without bias based on the classical factor models. Increasing
sample size, for example from n= 200 to 600, or changing the
number of underlying factors, say from k = 4 to 8, did not alter
this observation considerably. For that reason, the corresponding
plots at this point of the paper are omitted and can be found in
Kasper (2012).

We performed Shapiro-Wilk tests for univariate normality of
the estimated factor scores. As can be seen from Figure 7A, under
normally distributed true latent ability scores nearly all values of W
are statistically non-significant. In these cases, the null hypothesis
cannot be rejected.

A similar conclusion can be drawn when the true latent ability
values are not normally distributed but instead follow a slightly
skewed distribution (Figure 7B). Nearly all Shapiro-Wilk test sta-
tistic values are statistically non-significant. In other words, the
null hypothesis stating normally distributed latent ability values
is seldom rejected although the true latent distribution is skewed

and not normal. No relationship between the p-values and the used
factor model or factor position may be apparent (disregarding the
observation that the p-values for the fourth factor are generally
lower than for the other factors).

The case of a strongly skewed factor score distribution is
depicted in Figure 7C. Virtually all values of W are statistically
significant and the null hypothesis of normality of factor scores
is rejected. Similar conclusions or observations may be drawn for
increased sample size or factor space dimension and we do omit
presenting plots thereof.

Finally, Figure 8 shows the distribution of the estimated factor
scores on the fourth factor (for k = 4) in comparison to the true
strongly skewed ability distribution under the exploratory factor
analysis model for a sample size of n= 1,000. The unit normal
distribution is plotted as a reference. The estimated factor scores
have a skewness value of −0.47 compared to true skewness −2.
The estimated distribution deviates from the true distribution and
does not approximate it acceptably well.
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FIGURE 3 | Relative frequencies of the numbers of extracted factors, for n=600 and k =4. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

5.3. DISCREPANCY BETWEEN THE ESTIMATED AND THE TRUE
LOADING MATRIX

In Table 4, the average and standard deviation coefficients D̄ and
s for the discrepancies are reported. The largest average discrep-
ancy values are obtained for the condition n= 200, k = 8, and the
strongly skewed latent ability distribution: 0.173, 0.157, and 0.143
for PCA, EFA, and PAA, respectively. Under this condition, the true
factor loadings are, mostly or clearly, overestimated or underesti-
mated. Minor differences between the estimated and true factor
loadings are obtained for n= 600, k = 4, and the normal latent
ability distribution: with average discrepancies 0.076, 0.063, and
0.066 for PCA, EFA, and PAA, respectively.

Deviations of the estimated loading matrix from the true load-
ing matrix can also be quantified and visualized at the level of indi-

vidual absolute differences | l̂ i;xy −lxy |. In this way not only overall
discrepancy averages can be studied but also the distribution of

absolute differences at the individual entry level. Figure 9 shows

the distributions of the absolute differences | l̂ i;xy −lxy | for the dif-
ferent sample sizes and numbers of underlying factors. In each
panel, 100pk absolute differences are plotted.

The majority of the absolute differences lies in the range from
0 to circa 0.20. Larger absolute differences between the estimated
and true factor loadings occurred rather rarely. It is also apparent
that the 36 distributions hardly differ. This observation suggests
that the effects or impacts of sample size, true number of factors,
and the latent ability distribution on the accuracy of the classical
factor models for estimating the factor loadings are rather weak.
In that sense, estimation of the loading matrix seems to be robust
overall. In our simulation study, we were not able to see a clear
relationship between the distribution of the latent ability values
and the discrepancy between the estimated and the true loading
matrix.
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FIGURE 4 | Relative frequencies of the numbers of extracted factors, for n=200 and k =8. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

6. ANALYSIS OF PIRLS 2006 DATA
In addition to the simulation study, the classical factor analytic
approaches are also compared on the part of PIRLS 2006 data that
we presented in Section 4.2. The booklet design in PIRLS implies
that only a selection of the items has been administered to each
student, depending on booklet approximately 23–26 test items per
student (Mullis et al., 2006). As a consequence, the covariance or
correlation matrices required for the factor models can only be
computed for the items of a particular test booklet. Since analy-
sis of all thirteen booklets of the PIRLS 2006 study is out of the
scope of this paper, we decided to analyze booklet number 4. This
booklet contains 23 items, and nine of these items (circa 40% of all
items) have skewness values in the range of −0.6 to 0. This skew-
ness range corresponds to the values considered in the simulation
study, and no other test booklet had a comparably high percentage
of items with skewness values in this range.

Note that in the empirical application dichotomized multi-
category items are analyzed. In practice, large scale assessment

data are discrete and not continuous. Yet, the metric scale indicator
case considered in the simulation study can serve as an informa-
tive baseline; for instance (issue of polychoric approximation) to
the extent that a product-moment correlation is a valid represen-
tation of bivariate relationships among interval-scaled variables
(e.g., Flora et al., 2012). In our paper, the simulation results
and the results obtained for the empirical large scale assessment
application are, more or less, comparable.

In PIRLS 2006, four sorts of items were constructed and used
for assigning “plausible values” to students (for details, see Martin
et al., 2007). Any item loads on exactly one of the two dimensions
“Literacy Experience” (L) and “Acquire and Use Information” (A)
and also measures either the dimension “Retrieving and Straight-
forward Inferencing”(R) or the dimension“Interpreting, Integrat-
ing, and Evaluating”(I). Moreover, all of these items are assumed to
be indicators for the postulated higher dimension “Overall Read-
ing.” In other words, PIRLS 2006 items may be assumed to be
one-dimensional if the “uncorrelated” factor “Overall Reading” is
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FIGURE 5 | Relative frequencies of the numbers of extracted factors, for n=600 and k =8. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

considered (“orthogonal” case), or two-dimensional if any of the
four combinations of correlated factors {A, L}× {I, R} is postu-
lated (oblique case). In the latter case, “Overall Reading” may be
assumed a higher order dimension common to the four factors.
Booklet number 4 covers all these four sorts of PIRLS items.

A total of n= 526 students worked on booklet number 4.
We investigated these data using principal component analy-
sis, exploratory factor analysis, and principal axis analysis. For
determining the number of underlying dimensions, the Kaiser-
Guttman criterion, the scree test, and the method of parallel analy-
sis were used. The results of the analyses can be found in Table 5.

The situation at this point is comparable to what we have
reported in simulation in Figure 3. The scree test unveils uni-
dimensionality of the test data independent of factor model.
The numbers of factors extracted by the parallel analysis method
depend on the factor model that was used. For PCA, again as for
the scree test, unidimensionality is detected, however for the error
component models EFA and PAA, four dimensions are uncovered

(see also below). It seems that these“inferential”or“distributional”
factor models, to some degree,are sensitive to dependencies among
factors. According to the Kaiser-Guttman criterion, which per-
forms worst, there are six dimensions underlying the data for any
of the three factor models.

The varimax rotated loading matrices for the exploratory fac-
tor analysis and principal axis analysis models with four factors are
reported in Tables 6 and 7. Once again, the situation is comparable
to what we have obtained in simulation in Table 4 or Figure 9. The
estimated loading matrices under EFA and PAA are very similar.

Highlighted factor loadings l̂xy > 0.30, for instance, are identi-
cally located in the matrices. As can be seen from Tables 6 and
7, substantially different items in regard to their PIRLS contents
load on the same factors, and moreover, there are items of same
PIRLS contents that show substantial loadings on different factors.
We suppose that this may be a consequence of the factors, in this
example, most likely being correlated with a postulated common
single dimension underlying the factors.
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A B

C

FIGURE 6 | Distributions of the estimated factor score skewness values as a “function” of factor model and factor position. Factor models are principal
component analysis (PCA, or PC), exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Numbers 1, 2, 3, and 4 stand for 1st, 2nd, 3rd,
and 4th factors, respectively. The normal, slightly skewed, and strongly skewed distribution conditions are depicted in the panels A, B, and C, respectively.

7. CONCLUSION
7.1. SUMMARY
Assessing construct validity of a test in the sense of its factorial
structure is important. For example, we have addressed possible

implications for the analysis of criterion-referenced tests or for
such large scale assessment studies as the PISA or PIRLS. There
are a number of latent variable models that may be used to
analyze the factorial structure of a test. This paper has focused
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A B

C

FIGURE 7 | Distributions of the p-values of the Shapiro-Wilk test statistic W as a “function” of factor model and factor position. Factor models are
principal component analysis (PCA, or PC), exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Numbers 1, 2, 3, and 4 stand for 1st,
2nd, 3rd, and 4th factors, respectively. The normal, slightly skewed, and strongly skewed distribution conditions are depicted in the panels A, B, and C,
respectively.

on the following classical factor analytic approaches: principal
component analysis, exploratory factor analysis, and principal
axis analysis. We have investigated how accurately the factorial
structure of test data can be estimated with these approaches,
when assumptions associated with the procedures are not satis-
fied. We have examined the scope of those methods for estimating
properties of the population latent ability distribution, especially
when that distribution is slightly or strongly skewed (and not
normal).

The estimation accuracy of the classical factor analytic
approaches has been investigated in a simulation study. The study
has in particular shown that the estimation of the true number
of factors and of the underlying factor loadings seems to be rel-
atively robust against a skewed population ability or factor score
distribution (see Sections 5.1 and 5.3, respectively). Skewness and
distribution of the estimated factor scores, on the other hand,
have been seen to be sensitive concerning the properties of the
true ability distribution (see Section 5.2). Therefore, the classical

www.frontiersin.org March 2013 | Volume 4 | Article 109 | 136

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Kasper and Ünlü Assumptions of factor analytic approaches

−4 −2 0             2           4

0
.0

0
.2

0
.4

0
.6

0
.8

factor score

d
e

n
s
it
y

true distribution
estimated distribution
normal distribution

FIGURE 8 | Distributions of the estimated (blue curve) and true (green curve) factor scores on the fourth factor under the exploratory factor analysis
model for sample size n=1,000, factor space dimension k =4, and true skewness µ3 =−2.The unit normal distribution is plotted as a reference (red curve).

Table 4 | Discrepancy averages and standard deviations D̄ and s, respectively.

n k Model Latent variable distribution

Normal Slightly skewed Strongly skewed

D̄ s D̄ s D̄ s

200 4 PCAa 0.143 0.156 0.143 0.156 0.158 0.173

EFAb 0.129 0.142 0.124 0.136 0.141 0.154

PAAc 0.128 0.139 0.124 0.136 0.137 0.150

600 4 PCA 0.076 0.087 0.075 0.086 0.091 0.106

EFA 0.063 0.072 0.062 0.072 0.080 0.095

PAA 0.066 0.075 0.064 0.074 0.082 0.096

200 8 PCA 0.165 0.169 0.162 0.166 0.172 0.176

EFA 0.154 0.157 0.152 0.155 0.156 0.159

PAA 0.135 0.138 0.134 0.138 0.143 0.146

600 8 PCA 0.119 0.123 0.118 0.123 0.125 0.130

EFA 0.106 0.112 0.107 0.112 0.115 0.120

PAA 0.097 0.101 0.095 0.099 0.102 0.105

aPCA, principal component analysis; bEFA, exploratory factor analysis; cPAA, principal axis analysis.

factor analytic procedures, even though they are performed with
metric scale indicator variables, seem not to be appropriate for
estimating properties of ability in the “non-normal case.” Sig-
nificance of this result on sensitivity of factor score estimation
to the nature of the latent distribution has been discussed for
the PISA study, which is an international survey with impact
on education policy making and the education system in Ger-
many (see Sections 1 and 3.1). In addition to that discussion,
the classical factor analytic approaches have been examined in
more detail on PIRLS large scale assessment data, corroborat-
ing the results that we have obtained from the simulation study
(see Section 6).

A primary aim of our work is to develop some basic under-
standing for how and to what extent the results of classical factor
analyses (in the present paper, PCA, EFA, and PAA) may be affected
by a non-normal latent factor score distribution. This has to be dis-
tinguished from non-normality in the manifest variables, which
has been largely studied in the literature on the factor analysis of
items (cf. Section 3.2). In this respect, regarding the investigation
of non-normal factors, the present paper is novel. However, this
is important, since it is not difficult to conceive of the possibil-
ity that latent variables may be skewed. Interestingly, moreover
we have seen that a purely computational dimensionality reduc-
tion method can perform surprisingly well, as compared to the
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A B

C D

FIGURE 9 | Distributions of the absolute differences
∣∣∣l̂i;xy − lxy

∣∣∣ as a

“function” of factor model and skewness of the latent ability
distribution. Factor models are principal component analysis (PCA, or
PC), exploratory factor analysis (EFA, or EA), and principal axis analysis

(PAA, or PA). Numbers 1, 2, and 3 stand for normal, slightly skewed,
and strongly skewed population latent ability values, respectively. The
panels are for the different sample sizes and numbers of underlying
factors.

results obtained based on latent variable models. This observation
may possibly be coined a general research program: whether gen-
uine statistical approaches (originally based on variables without a

measurement error) can work well, perhaps under specific restric-
tions to be explored, when latent variables are basically postulated,
seemingly more closely matching the purpose of analysis.
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Table 5 | Number of extracted dimensions for the PIRLS 2006 test

booklet number 4, German sample.

Extraction method Factor model

PCAa EFAb PAAc

Kaiser–Guttman criterion 6 6 6

Scree test 1 1 1

Parallel analysis method 1 4 4

aPCA, principal component analysis; bEFA, exploratory factor analysis; cPAA,

principal axis analysis.

Table 6 | Loading matrix for four factors exploratory factor analysis of

the PIRLS 2006 data for test booklet number 4, German sample.

Item Factor

1 2 3 4

R011A01CA,R 0.15 0.26 0.39 −0.05

R011A02MA,R 0.14 0.28 0.34 0.19

R011A03CA,R 0.16 0.24 0.09 0.03

R011A04CA,I 0.39 0.19 0.10 0.06

R011A05MA,R 0.22 0.08 0.19 0.21

R011A06MA,R 0.20 0.03 0.14 0.06

R011A07CA,R 0.50 0.20 0.22 0.15

R011A08CA,R 0.35 0.04 0.38 −0.09

R011A09CA,I 0.55 0.18 0.11 0.00

R011A10MA,I 0.28 0.27 0.22 0.11

R011A11CA,I 0.37 0.06 0.14 0.02

R021E01ML,R 0.08 0.45 0.19 −0.06

R021E02ML,R 0.02 0.49 0.09 0.24

R021E03ML,R 0.14 0.34 −0.02 0.02

R021E04ML,R 0.17 0.28 0.15 0.02

R021E05CL,R 0.22 0.23 0.32 0.12

R021E06ML,R 0.17 0.44 0.09 0.28

R021E07CL,I 0.13 0.06 0.48 0.22

R021E08ML,I 0.32 0.23 0.04 0.48

R021E09CL,I 0.45 0.24 0.02 0.20

R021E10CL,I 0.27 0.23 0.17 0.07

R021E11ML,I 0.00 0.01 0.06 0.40

R021E12CL,I 0.38 0.17 0.31 0.22

Factor loadings greater or equal 0.30 are highlighted.

A, Acquire and Use Information; L, Literary Experience; R, Retrieving and

Straightforward Inferencing; I, Interpreting, Integrating, and Evaluating.

7.2. OUTLOOK
We have discussed possible implications of the findings for
criterion-referenced tests and large scale educational assessment.
The assumptions of the classical factor models have been seen
to be crucial in these application fields. We suggest, for instance,
that the presented classical procedures should not be used, unless
with special caution if at all, to examine the factorial structure of
dichotomously scored criterion-referenced tests. Instead, if model
violations of the “sensitive” type are present, better suited or more
sophisticated latent variable models can be used (see Skrondal and

Table 7 | Loading matrix for four factors principal axis analysis of the

PIRLS 2006 data for test booklet number 4, German sample.

Item Factor

1 2 3 4

R011A01CA,R 0.15 0.26 0.40 −0.06

R011A02MA,R 0.14 0.29 0.33 0.18

R011A03CA,R 0.16 0.24 0.09 0.02

R011A04CA,I 0.38 0.20 0.10 0.06

R011A05MA,R 0.22 0.07 0.19 0.24

R011A06MA,R 0.19 0.02 0.14 0.07

R011A07CA,R 0.50 0.20 0.22 0.16

R011A08CA,R 0.36 0.03 0.38 −0.08

R011A09CA,I 0.54 0.19 0.12 0.00

R011A10MA,I 0.28 0.27 0.22 0.11

R011A11CA,I 0.38 0.07 0.13 0.02

R021E01ML,R 0.07 0.45 0.19 −0.06

R021E02ML,R 0.03 0.49 0.09 0.24

R021E03ML,R 0.14 0.33 −0.02 0.02

R021E04ML,R 0.17 0.26 0.16 0.04

R021E05CL,R 0.21 0.23 0.32 0.12

R021E06ML,R 0.17 0.44 0.08 0.27

R021E07CL,I 0.13 0.06 0.47 0.23

R021E08ML,I 0.32 0.24 0.05 0.46

R021E09CL,I 0.45 0.24 0.02 0.19

R021E10CL,I 0.27 0.24 0.17 0.06

R021E11ML,I 0.00 0.02 0.05 0.40

R021E12CL,I 0.38 0.17 0.30 0.22

Factor loadings greater or equal 0.30 are highlighted.

A, Acquire and Use Information; L, Literary Experience; R, Retrieving and

Straightforward Inferencing; I: Interpreting, Integrating, and Evaluating.

Rabe-Hesketh, 2004). Examples are item response theory paramet-
ric or non-parametric models for categorical response data (e.g.,
van der Linden and Hambleton, 1997). Furthermore, we would
like to mention item response based factor analysis approaches by
Bock and Lieberman (1970) or Christoffersson (1975, 1977). We
may also pay attention to tetrachoric or polychoric based struc-
tural equation models by Muthén (1978, 1983, 1984) and Muthén
and Christoffersson (1981).

As with factor analysis a general problem (e.g., Maraun, 1996),
we had to deal with the issue of rotational indeterminacy and
of selecting a specific rotation. We have decided to use varimax
rotation, due to the fact that this rotation is most frequently used
in empirical educational studies (for better interpretability of the
factors). Future research may cover other rotations (e.g., quarti-
max or equimax) or the evaluation of parameter estimation by
examining the communality estimates for each item (which are
not dependent on rotation, but are a function of the factor load-
ings). Moreover, the orthogonal factor model may not be realistic,
as factors are correlated in general. However, in the current study,
it may be unlikely that having non-zero population factor loadings
for correlated dimensions would substantially affect the findings.
In further research, we will have to study the case of the oblique
(non-orthogonal) factor model.
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The results of this paper provide implications for popular
research practices in the empirical educational research field. The
methods that we have utilized are traditional and often applied
in practice (e.g., by educational scientists), for instance to deter-
mine the factorial validity of criterion-referenced tests or to study
large scale assessment measurement instruments. In addition, to
consider other, more sophisticated fit statistics can be interesting
and valuable. For example, such model fit statistics as the root
mean square residual, comparative fit index, or the root mean
squared error of approximation may be investigated. Albeit these
fit statistics are well-known and applied in the confirmatory factor
analysis (CFA) context, they could be produced for exploratory
factor analysis (given that CFA and EFA are based on the same
common factor model).

We conclude with important research questions related to
the PISA study. In the context of PISA, principal component
analysis is used, in the purely computational sense. Other dis-
tributional, inferential, or confirmatory factor models, especially
those for the verification of the factorial validity of the PISA
context questionnaires, have not been considered. Interesting
questions arise: are there other approaches to dimensionality
reduction that can perform at least as well as the principal com-
ponent analysis method in PISA data (e.g., multidimensional

scaling; Borg and Groenen, 2005)? Is the 95% extraction rule in
principal component analysis of PISA data an “optimal” crite-
rion? How sensitive are PISA results if, for example, the parallel
analysis method is used as the extraction criterion? Answering
these and other related questions is out of the scope of the
present paper and can be pursued in more in-depth future analy-
ses. Nonetheless, the important role of these problems in the
PISA context is worth mentioning. The PISA procedure uses
not only manifest background information but also principal
component scores on complex constructs in order to assign lit-
eracy or plausible values to students. Future research is nec-
essary to investigate the effects and possible implications of
potentially biased estimates of latent or complex background
information on students’ assigned literacy values, and especially,
their competence levels, based on which the PISA rankings are
reported.
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In two replication studies we examined response bias and dependencies in voluntary deci-
sions. We trained a linear classifier to predict “spontaneous decisions” and in the second
study “hidden intentions” from responses in preceding trials and achieved comparable pre-
diction accuracies as reported for multivariate pattern classification based on voxel activities
in frontopolar cortex. We discuss implications of our findings and suggest ways to improve
classification analyses of fMRI BOLD signals that may help to reduce effects of response
dependencies between trials.
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The prospect of decoding brain activity to predict spontaneous
or free decisions captivates not only the neuroscientific commu-
nity (Haggard, 2008) but increasingly inspires researchers in other
disciplines (Mobbs et al., 2007; Heisenberg, 2009).

The purpose of this paper is to draw attention to possible
confounds and improved data analyses when decoding neural cor-
relates to predict behavior. We focus on a specific task and set
of results but we believe that the problem of sequential depen-
dencies is pervasive and needs to be considered carefully when
applying machine learning algorithms to predict behavior from
brain imaging data.

In two replication studies we illustrate how individual response
bias and response dependencies between trials may affect the
prediction accuracy of classification analyses. Although our behav-
ioral results are not sufficient to dismiss the original findings based
on fMRI BOLD signals they highlight potential shortcomings and
suggest alternative ways to analyze the data.

In recent studies Soon et al. (2008) and Bode et al. (2011)
used a self-paced free or voluntary decision task to study uncon-
scious determinants preceding “spontaneous” motor decisions. In
both studies subjects spontaneously pressed a left or right response
button with their corresponding index finger in a series of trials.
Brain activity was measured by fMRI BOLD signals and the pat-
tern of voxel activity before (and after) the decision was used to
predict binary motor responses. Soon et al. (2008) applied a linear
multivariate pattern classifier and searchlight technique to local-
ize patterns of predictive voxel activities (Haxby et al., 2001) and
achieved 60% prediction accuracy in a localized region of fron-
topolar cortex (FPC). Bode et al. (2011), using a high-resolution
scan of the prefrontal cortex, reported 57% prediction accuracy
for the same task. The authors conclude that patterns of voxel
activities in FPC constitute the neural correlate of unconscious
determinants preceding spontaneous decisions.

In both studies the activation patterns in FPC occurred up to
10–12 s before participants reported their conscious decisions. If
validated this finding would dramatically extend the timeline of
pre-SMA/SMA (Lau et al., 2004; Leuthold et al., 2004) as well
as results on readiness potentials for voluntary acts (Libet et al.,
1983; see however Trevena and Miller, 2010) with far-reaching
implications (Mobbs et al., 2007; Heisenberg, 2009).

Soon et al. (2008) and Bode et al. (2011) made considerable
attempts to control carry-over effects from one trial to the next and
selected a subset of trials with balanced left and right responses
to eliminate response bias. We argue that despite these precau-
tions response dependencies in combination with response bias in
the raw data may have introduced spurious correlations between
patterns of voxel activities and decisions.

Naïve participants have difficulties to generate random
sequences and sequential dependencies across trials are com-
monly observed in binary decisions (Lages and Treisman, 1998;
Lages, 1999, 2002) as well as random response tasks (Bakan,
1960; Treisman and Faulkner, 1987). In some tasks, these depen-
dencies are not just simple carry-over effects from one trial to
the next but reflect stimulus and response dependencies (Lages
and Treisman, 1998) as well as contextual information process-
ing (Lages and Treisman, 2010; Treisman and Lages, 2010), often
straddling across several trials and long inter-trial-intervals (Lages
and Paul, 2006). These dependencies may indicate involvement
of memory and possibly executive control (Luce, 1986), espe-
cially in self-ordered tasks where generation of a response requires
monitoring previously executed responses (Christoff and Gabrieli,
2000).

In order to address the issue of sequential dependencies in
connection with response bias we conducted two behavioral
replication studies and performed several analyses on individual
behavioral data, the results of which are summarized below.
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STUDY 1: SPONTANEOUS MOTOR DECISIONS
In this replication study we investigated response bias and response
dependency of binary decisions in a spontaneous motor task. We
closely replicated the study by Soon et al. (2008) in terms of stimuli,
task, and instructions (Soon et al., 2008) but without monitoring
fMRI brain activity since we are mainly interested in behavioral
characteristics.

METHODS
Subjects were instructed to relax while fixating on the center of a
screen where a stream of random letters was presented in 500 ms
intervals. At some point, when participants felt the urge to do so,
they immediately pressed one of two buttons with their left or right
index finger. Simultaneously, they were asked to remember the let-
ter that appeared on the screen at the time when they believed their
decision to press the button was made. Shortly afterward, the let-
ters from three preceding trials and an asterisk were presented on
screen randomly arranged in a two-by-two matrix. The partici-
pants were asked to select the remembered letter in order to report
the approximate time point when their decision was formed. If
the participant chose the asterisk it indicated that the remem-
bered letter was not among the three preceding intervals and the
voluntary decision occurred more than 1.5 s ago. Subjects were
asked to avoid any form of preplanning for choice of movement
or time of execution.

PARTICIPANTS
All participants (N = 20, age 17–25, 14 female) were students at
Glasgow University. They were naïve as to the aim of the study,
right-handed, and with normal or corrected-to-normal visual acu-
ity. The study was conducted according to the Declaration of
Helsinki ethics guidelines. Informed written consent was obtained
from each participant before the study.

RESULTS
Following Soon et al. (2008) we computed for each participant the
frequency of a left or right response. If we assume that the spon-
taneous decision task produces independent responses then the
process can be modeled by a binomial distribution where prob-
ability for a left and right response may vary from participant to
participant.

P[t (x) = s|θ] =
(

n
s

)

θs(1 − θ)n−s

The observed data t (x) is simply the sum of s left (right) responses,
n is the total number of responses, and θ is a parameter that reflects
the unknown probability of responding Left (Right) with θ ∈ [0,1].
The hypothesis of a balanced response corresponds to a response
rate of θ = 0.5. Rather than trying to affirm this null hypothesis
we can test whether the observed number of left (right) responses
deviates significantly from the null hypothesis by computing the
corresponding p-value (two-sided).

p(two - sided) =
n−s∑

xi=0

t (xi) +
n∑

xi=s

t (xi)

We found that response frequencies of 4 out of 20 participants (2
out of 20 if adjusted for multiple tests according to Sidak–Dunn)
significantly deviated from a binomial distribution with equal
probabilities (p < 0.05, two-sided). Soon et al. (2008) excluded
24 out of 36 participants who exceeded a response criterion that is
equivalent to a binomial test with p < 0.11 (two-sided). Bode et al.
(2011) applied a similar response criterion but did not document
selection of participants. They reported exclusion of a single par-
ticipant from their sample of N = 12 due to relatively unbalanced
decisions and long trial durations; responses from the remaining
11 subjects were included in their analyses. In the present study 8
out of 20 participants did not meet Soon et al.’s response criterion
(for details see Table A1 in Appendix).

Selection of participants is a thorny issue. While the intention
may have been to select participants who made truly spontaneous
and therefore independent decisions they selected participants
who generated approximately balanced responses. This assump-
tion is fallible since subjects’ response probabilities are unlikely to
be perfectly balanced and the null hypothesis of θ = 0.5 can be
difficult to affirm.

Excluding 2/3 of the subjects reduces generalizability of results
and imposing the assumption of no response bias on the remaining
subjects seems inappropriate because these participants can still
have true response probabilities θ that are systematically different
from 0.5.

To give an example of how a moderate response bias may
affect prediction accuracy of a trained classifier, consider a par-
ticipant who generates 12 left and 20 right responses in 32 trials.
Although this satisfies the response criterion mentioned above, a
classifier trained on this data is susceptible to response bias. If the
classifier learns to match the individual response bias prediction
accuracy may exceed the chance level of 50%. (If, for example, the
classifier trivially predicts the more frequent response then this
strategy leads to 62.5% rather than 50% correct predictions in our
example.)

To alleviate the problem of response bias Soon et al. (2008)
and Bode et al. (2011) not only selected among participants but
also designated equal numbers of left (L) and right (R) responses
from the experimental trials before entering the data into their
classification analysis. It is unclear how they sampled trials but
even if they selected trials randomly the voxel activities before
each decision are drawn from an experiment with unbalanced L
and R responses. As a consequence the problem does not dis-
sipate with trial selection. After selecting an equal number of L
and R responses from the original data set this subsample still
has an unbalanced number of L and R responses in the preced-
ing trials so that the distribution of all possible pairs of successive
responses in trial t − 1 and trial t (LL, LR, RR, RL) is not uni-
form. Since there are more Right responses in the original data
set we are more likely to sample more RR “stay” trials and less
LR “switch” trials as well as more RL “switch” trials compared to
LL “stay” trials. The exact transition probabilities for these events
depend on the individual response pattern. Switching and staying
between successive responses creates a confounding variable that
may introduce spurious correlations between voxel activities from
previous responses and the predicted responses. This confound
may be picked up when training a linear support vector machine
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(SVM) classifier to predict current responses from voxel activities
in previous trials.

Similar to Soon et al. (2008) and Bode et al. (2011) we first com-
puted the length and frequency of the same consecutive responses
(L and R runs) for each participant and fitted the pooled and aver-
aged data by an exponential function. However, here we fitted the
pooled data with the (single-parameter) exponential probability
distribution function

f (x) = λe−λx , for x � 0

(see Figure 1A). We found reasonable agreement with the expo-
nential distribution (R = 0.89) as an approximation of the geomet-
ric distribution. The estimated parameterλ = −0.805 is equivalent
to a response rate of θ = 1 − e−λ = 0.553, slightly elevated from
θ = 0.5.

Although the exponential distribution suggests an independent
and memoryless process such a goodness-of-fit does not qualify as
evidence for independence and stationarity in the individual data.
Averaging or pooling of data across blocks and participants can
hide systematic trends and patterns in individual data.

To avoid these sampling issues we applied the Wald–Wolfowitz
or Runs test (MatLab, MathWorks Inc.) to each individual
sequence of 32 responses. This basic non-parametric test is based
on the number of runs above and below the median and does not
rely on the assumption that binary responses have equal proba-
bilities (Kvam and Vidakovic, 2007). Our results indicate that 3
out of the 12 selected participants in our replication study show
statistically significant (p < 0.05) departures from stationarity (2
out of 12 adjusted for multiple tests). Similarly, approximating
the binomial by a normal distribution with unknown parameters
(Lilliefors, 1967), the Lilliefors test detected 4 out of 20 (4 out of
the selected 12) statistically significant departures from normal-
ity in our replication study (3 out of 20 and 1 out of 12 adjusted
for multiple tests). These violations of stationarity and normality

point to response dependencies between trials in at least some of
the participants (for details see Table A1 in Appendix).

CLASSIFICATION ANALYSIS
In analogy to Soon et al. (2008) and Bode et al. (2011) we also per-
formed a multivariate pattern classification. To assess how much
discriminative information is contained in the pattern of previ-
ous responses rather than voxel activities, we included up to two
preceding responses to predict the following response within an
individual data set. Thereto, we entered the largest balanced set
of left/right response trials and the unbalanced responses from
the preceding trials into the analysis and assigned every 9 out of
10 responses to a training data set. This set was used to train
a linear SVM classifier (MatLab, MathWorks Inc.). The classi-
fier estimated a decision boundary separating the two classes
(Jäkel et al., 2007). The learned decision boundary was applied
to classify the remaining sets and to establish a predictive accu-
racy. This was repeated 10 times, each time using a different
sample of learning and test sets, resulting in a 10-fold cross
validation. The whole procedure was bootstrapped a 100 times
to obtain a mean prediction accuracy and a measure of vari-
ability for each individual data set (see Figure 1B; Table A1 in
Appendix).

One participant (Subject 11) had to be excluded from the
classification analysis because responses were too unbalanced to
train the classifier. For most other participants the classifier per-
formed better when it received only one rather than two preced-
ing responses to predict the subsequent response and therefore
we report only classification results based on a single preceding
response.

If we select N = 12 participants according to the response cri-
terion employed by Soon et al. (2008) prediction accuracy for a
response based on its preceding response reaches 61.6% which
is significantly higher than 50% (t (11) = 2.6, CI = [0.52–0.72],
p = 0.013). If we include all participants except Subject 11 then

FIGURE 1 | Study 1 (N = 12): Left/Right motor decision task. (A)

Histogram for proportion of length of response runs pooled across
participants. Superimposed in Red is the best fitting exponential distribution

function. (B) Prediction accuracies of linear SVM trained on preceding and
current responses for individual data sets (black circles, error bars = ± 1 SD
bootstrapped) and group average (red circle, error bar = ± 1 SD).
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average prediction accuracy based on the preceding response was
reduced to 55.4%(t (18) = 1.3, CI = [0.47–0.64], p = 0.105).

Our classification analysis illustrates that a machine learning
algorithm (linear SVM) can perform better than chance when
predicting a response from its preceding response. The algorithm
simply learns to discriminate between switch and stay trials. In our
replication study this leads to prediction accuracies that match the
performance of a multivariate pattern classifier based on voxel
activities in FPC (Soon et al., 2008; Bode et al., 2011).

DISCUSSION
Although our behavioral results show that response bias and
response dependency in individual data give rise to the same pre-
diction accuracy as a multivariate pattern classifier based on voxel
activities derived from fMRI measurements, our behavioral results
are not sufficient to dismiss the original findings.

In particular, the temporal emergence of prediction accuracy
in voxel patterns as observed in Soon et al. (2008) and Bode et al.
(2011) seems to contradict the occurrence of sequential or carry-
over effects from one trial to the next because prediction accuracy
from voxel activity in FPC starts at zero, increases within a time
window of up to 10–12 s before the decision and returns to zero
shortly after the decision.

It should be noted however that their results are based on non-
significant changes of voxel activity in FPC averaged across trials
and participants. We do not know how reliably the predictive pat-
tern emerged in each of the participants and across trials. It is
also noteworthy that the hemodynamic response function (HRF)
in FPC, modeled by finite impulse response (FIR), peaked 3–7 s
after the decision was made. Although the voxel activity above
threshold did not discriminate between left and right responses,
this activity in FPC must serve a purpose that is different from
generating spontaneous decisions.

The FIR model for BOLD signals makes no assumption about
the shape of the HRF. Soon et al. estimated 13 parameters at 2 s
intervals and Bode et al. (2011) used 20 parameters at 1.5 s inter-
vals for each of the approximately 5 by 5 by 5 = 125 voxels in a
spherical cluster. The cluster moved around according to a mod-
ified searchlight technique to identify the most predictive region.
Although a linear SVM with a fixed regularizer does not invite
overfitting the unconstrained FIR model can assume unreason-
able HRF shapes for individual voxels. If these voxels picked up
residual activity related to the preceding trial, especially in trials
where the ITI was sufficiently short, then this procedure carries the
risk of overfitting. Activity in the left and right motor cortex, for
example, showed prediction accuracies of up to 75% 4–6 s after a
decision was reported (Soon et al., 2008).

It may be argued that at least some predictive accuracy should
be maintained throughout ITIs if carry-over effects were present
between trials. However, voxel activities were sampled at differ-
ent ITIs due to the self-paced response task. It seems reason-
able to assume that ITIs between “spontaneous” decisions are
not uniformly distributed. Indeed the individual response times
in our replication study were skewed toward shorter intervals,
approximating a Poisson distribution that is typical for behavioral
response times (Luce, 1986). When voxel activation is temporally
aligned with a decision then this effectively creates a time window

in which on average residual activation from a previous response
is more likely to occur. As a consequence, and despite relatively
long average trial durations, the FIR model parameters may pick
up residual activation from the previous trial in a critical time
window before the next decision (Rolls and Deco, 2011).

Although we would like to avoid a discussion of the difficult
philosophical issues of “free will” and “consciousness,” the present
task implies that participants monitor the timing of their own con-
scious decisions while generating “spontaneous” responses. The
instruction to perform “spontaneous” decisions may be seen as
a contradiction in terms because the executive goal that controls
behavior in this task is to generate decisions without executive
control (Jahanshahi et al., 2000; Frith, 2007). Participants may
have simplified this task by maintaining (fluctuating) intentions to
press the left or right button and by reporting a decision when
they actually decided to press the button (Brass and Haggard,
2008; Krieghoff et al., 2009). This is not quite compatible with
the instructions for the motor task but describes a very plausible
response strategy nevertheless.

STUDY 2: HIDDEN INTENTIONS
Interestingly, in an earlier study with N = 8 participants Haynes
et al. (2007) investigated neural correlates of hidden intentions
and reported an average decoding accuracy of 71% from voxel
activities in anterior medial prefrontal cortex (MPFCa) and 61%
in left lateral frontopolar cortex (LLFPC) before task execution.

We replicated this study in order to test whether response bias
and dependency also match the prediction accuracies for delayed
intentions. 12 participants (age 18–29, nine female) freely chose
between addition and subtraction of two random numbers before
performing the intended mental operation after a variable delay
(see Haynes et al., 2007 for details). Again, we closely replicated
the original study in terms of stimuli, task, and instructions but
without monitoring fMRI BOLD signals.

RESULTS
As in Study 1 we tested for response bias and 4 out of 12
participants significantly deviated from a binomial distribution
with equal probabilities (p < 0.05, two-sided). Since Haynes et al.
(2007) do not report response bias and selection of participants
we included all participants in the subsequent analyses.

The exponential probability distribution with λ = −0.562
(equivalent to a response probability θ = 0.430) fitted the pooled
data of sequence lengths well (R = 0.97; see Figure 2A) but the
Wald–Wolfowitz or Runs test on each individual sequence of 32
responses indicated that 5 out of 12 participants violated stationar-
ity in the delayed addition/subtraction task (one participant when
adjusted for multiple tests). Similarly, a Lilliefors test detected five
significant violations of normality (three adjusted for multiple
tests, see Table A2 in Appendix).

One participant (Subject 6) was excluded because responses
were too unbalanced to train the linear SVM classifier. We then
performed a classification analysis on selected trials with a bal-
anced number of addition/subtraction responses using the pre-
ceding response as the only predictor. Averaged across N = 11
participants the prediction accuracy of the SVM classifier reached
64.1% which is significantly different from 50% (t (10) = 3.39,
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FIGURE 2 | Study 2 (N = 12): addition/subtraction in delayed intention

task. (A) Histogram for proportion of length of response runs pooled across
participants. Superimposed in Red is the best fitting exponential distribution

function. (B) Prediction accuracies of linear SVM trained on preceding and
current responses for individual data sets (black circles, error bars = ± 1 SD
bootstrapped) and group average (red circle, error bar = ± 1 SD).

CI = [0.55–0.73], p = 0.0035). The classification results are sum-
marized in Figure 2B and Table A2 in the Appendix.

DISCUSSION
It has been suggested that the FPC is implicated in tasks requiring
high-level executive control, especially in tasks that involve storing
conscious intentions across a delay (Sakai and Passingham, 2003;
Haynes et al., 2007), processing of internal states (Christoff and
Gabrieli, 2000), modulation of episodic memory retrieval (LePage
et al., 2000; Herron et al., 2004), prospective memory (Burgess
et al., 2001), relational reasoning (Christoff et al., 2001; Kroger
et al., 2002), the integration of cognitive processes (Ramnani and
Owen, 2004), cognitive branching (Koechlin and Hyafil, 2007), as
well as alternative action plans (Boorman et al., 2009). How much a
participant can be consciously aware of these cognitive operations
is open to discussion but they seem to relate to strategic planning
and executive control rather than random generation of responses.

In an attempt to relate activity in the FPC to contextual changes
in a decision task, Boorman et al. (2009) reported a study where
subjects decided freely between a left and right option based
on past outcomes but random reward magnitudes. In this study
participants were informed that the reward magnitudes were ran-
domly determined on each trial, so that it was not possible to track
them across trials; however, participants were also told that reward
probabilities depended on the recent outcome history and could
therefore be tracked across trials, thus creating an effective context
for directly comparing FPC activity on self-initiated (as opposed
to externally cued) switch and stay trials. Increased effect size of
relative unchosen probability/action peaked twice in FPC: shortly
after the decision and a second time as late as 20 s after trial onset.
Boorman et al. (2009) suggest that FPC tracks the relative advan-
tage associated with the alternative course of action over trials and,
as such, may play a role in switching behavior. Interestingly, in their
analyses of BOLD signal changes the stay trials (LL, RR) differed
significantly from the switch trials (LR, RL).

Following neuroscientific evidence (Boorman et al., 2009) and
our behavioral results we recommend that multivariate pattern
classification of voxel activities should be performed not only on
trials with balanced responses but on balanced combinations of
previous and current responses (e.g., LL, LR, RL, and RR trials)
to reduce hidden effects of response dependencies. Similarly, it
should be checked whether the parameters of an unconstrained
FIR model describe a HRF that is anchored on the same baseline
and shows no systematic differences between switch and stay trials.
This will inform whether or not the FIR model parameters pick
up residual activity related to previous responses, especially after
shorter ITIs.

CONCLUSION
Applying machine learning in form of a multivariate pattern analy-
sis (MVPA) of voxel activity in order to localize neural correlates
of behavior brings about a range of issues and challenges that
are beyond the scope of this paper (see for example Hanson and
Halchenko, 2008; Kriegeskorte et al., 2009; Pereira et al., 2009;
Anderson and Oates, 2010; Hanke et al., 2010).

In general, a selective analysis of voxel activity can be a pow-
erful tool and perfectly justified when the results are statistically
independent of the selection criterion under the null hypothesis.
However, when applying machine learning in the form of MVPA
the danger of “double dipping” (Kriegeskorte et al., 2009), that
is the use of the same data for selection and selective analysis,
increases with each stage of data processing (Pereira et al., 2009)
and can result in inflated and invalid statistical inferences.

In a typical behavioral study, for example, it would be seen as
questionable if the experimenter first rejected two-thirds of the
participants according to an arbitrary response criterion, sam-
pled trials to balance the number of responses from each category
in each block, searched among a large number of multivariate
predictors and reported the results of the classification analysis
with the highest prediction accuracy.
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In conclusion, it seems possible that the multivariate pattern
classification in Soon et al. (2008) and Bode et al. (2011) was com-
promised by individual response bias in preceding responses and
picked up neural correlates of the intention to switch or stay dur-
ing a critical time window. The moderate prediction accuracies
for multivariate classification analyses of fMRI BOLD signals and
our behavioral results call for a more cautious interpretation of
findings as well as improved classification analyses.

A fundamental question that may be put forward in the
context of cognitive functioning is whether the highly intercon-
nected FPC generates voluntary decisions independently of con-
textual information, like a homunculus or ghost in the machine.

After all, the frontal cortex as part of the human cognitive sys-
tem is highly integrated and geared toward strategic planning
in a structured environment. In this sense it seems plausible
that neural correlates of “hidden intentions” and “spontaneous
decisions” merely reflect continuous processing of contextual
information.
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APPENDIX

Table A1 | Replication study 1: left/right key press in spontaneous motor decision task.

Subject Resp. bias left/right Bino. test p-value No of Runs Runs test p-value Lilliefors p-value SVM pred acc

[1] 21/11 0.1102 11 0.1194 0.0957 [0.5875]

2 16/16 1.0 17 1.0 0.1659 0.3973

3 13/19 0.3771 16 1.0 0.1116 0.2672

[4] 11/21 0.1102 15 1.0 0.0017** [0.4970]

5 14/18 0.5966 26 0.0009*** 0.4147 0.8218

6 15/17 0.8601 15 0.6009 0.0893 0.5607

[7] 22/10* 0.0501(*) 17 0.4906 >0.5 [0.4259]

8 20/12 0.2153 18 0.5647 >0.5 0.6295

[9] 10/22* 0.0501(*) 15 1.0 0.001*** [0.2845]

10 18/14 0.5966 21 0.1689 0.0936 0.6789

[11] 31/1*** 0.0001*** 3 1.0 >0.5 [NA]

12 19/13 0.3771 20 0.2516 0.4147 0.5790

13 20/12 0.2153 22 0.0280(*) 0.3476 0.7267

14 14/18 0.5966 21 0.1689 0.1659 0.6098

15 16/16 1.0 21 0.2056 0.1116 0.6330

[16] 4/28*** 0.0001*** 5 0.0739 0.0017*** [0.7513]

17 17/15 0.8601 22 0.0989 >0.5 0.7026

[18] 11/21 0.1102 16 0.9809 0.0893 [0.2985]

19 12/20 0.2153 7 0.00092*** 0.001*** 0.7891

[20] 11/21 0.1102 16 0.9809 0.0936 [0.2844]

Tot/Avg 4.25# 4 (2) 16.2 3 (2) 4 (4) 0.5539

Participant excluded according to Soon et al.’s (2008) response criterion (binomial test p < 0.11); #average deviation: Σi |xi–n/2|/N for n = 32 and N = 20.

*p < 0.05, **p < 0.01, ***p < 0.001; ( ·) number of violations adjusted for multiple tests after Sidak–Dunn.

Table A2 | Replication study 2: addition/subtraction in hidden intention task.

Subject Resp. bias add/sub Bino. test p-value No of Runs Runs test p-value Lilliefors p-value SVM pred acc

1 11/21 0.1102 9 0.0184(*) 0.0112(**) 0.7725

2 14/18 0.5966 10 0.0215(*) 0.0271(*) 0.7124

3 11/21 0.1102 8 0.0057(**) 0.1153 0.6991

4 14/18 0.5966 9 0.0071(**) 0.001*** 0.7847

5 21/11 0.1102 12 0.2405 0.001*** 0.5932

6 2/30*** 0.0001*** 5 1.0 >0.5 N/A

7 17/15 0.8601 18 0.8438 0.3267 0.6074

8 20/12 0.2153 12 0.1799 0.0016** 0.5904

9 6/26*** 0.0005*** 4 0.0006*** 0.4443 0.8351

10 18/14 0.5966 16 0.9285 0.2313 0.3972

11 9/23* 0.0201(*) 13 0.8488 0.4030 0.4434

12 9/23* 0.0201(*) 10 0.1273 >0.5 0.6131

Tot/Avg 5.33# 4 (2) 10.5 5 (1) 5 (3) 0.6408

*p < 0.05, **p < 0.01, ***p < 0.001; #average deviation: Σi |xi–n/2|/N for n = 32 and N = 12. ( ·) Number of violations adjusted for multiple tests after Sidak–Dunn.
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This paper discusses the influence that decisions about data cleaning and violations of
statistical assumptions can have on drawing valid conclusions to research studies. The
datasets provided in this paper were collected as part of a National Science Foundation
grant to design online games and associated labs for use in undergraduate and graduate
statistics courses that can effectively illustrate issues not always addressed in traditional
instruction. Students play the role of a researcher by selecting from a wide variety of inde-
pendent variables to explain why some students complete games faster than others.Typical
project data sets are “messy,” with many outliers (usually from some students taking much
longer than others) and distributions that do not appear normal. Classroom testing of the
games over several semesters has produced evidence of their efficacy in statistics edu-
cation. The projects tend to be engaging for students and they make the impact of data
cleaning and violations of model assumptions more relevant. We discuss the use of one
of the games and associated guided lab in introducing students to issues prevalent in real
data and the challenges involved in data cleaning and dangers when model assumptions
are violated.

Keywords: Guided Interdisciplinary Statistics Games and Labs, messy data, model assumptions

INTRODUCTION
The decisions that researchers make when analyzing their data can
have significant impacts on the conclusions of a scientific study.
In most cases, methods exist for checking model assumptions,
but there are few absolute rules for determining when assump-
tions are violated and what to do in those cases. For example,
when using t -tests or ANOVA, decisions about normality, equal
variances, or how to handle outliers are often left to the discre-
tion of the researcher. While many statistics courses discuss model
assumptions and data cleaning (such as removing outliers or erro-
neous data), students rarely face data analysis challenges where
they must make and defend decisions. As a result, the impacts of
these decisions are rarely discussed in detail.

The topics of data cleaning and testing of assumptions are par-
ticularly relevant in light of the fact that there have been several
high-profile retractions of articles published in peer-reviewed psy-
chology journals because of data related issues. In June 2012, Dr.
Dirk Smeesters resigned from his position at Erasmus University
and had a paper retracted from the Journal of Experimental Psy-
chology after it was determined his data was statistically highly
unlikely. He admitted to removing some data points that did not
support his hypothesis, claiming that this practice is common
in psychology and marketing research (Gever, 2012). Simmons
et al. (2011) show that even when researchers have good inten-
tions, they control so many conditions of the experiment that
they are almost certain to show statistically significant evidence
for their hypothesis in at least one set of conditions. These condi-
tions include the size of the sample, which outliers are removed,
and how the data is transformed. They argue that the ambiguity

of how to make these decisions and the researcher’s desire to
obtain significant results are the primary reasons for the large
number of false positives in scientific literature (Simmons et al.,
2011).

Replication studies are designed to ensure the integrity of scien-
tific results and may help detect issues associated with the data and
model assumptions. However, replication is not a panacea. Miller
(2012) shows that the probability of replicating a significant effect
is essentially unknowable to the researcher so the scientific com-
munity may not always correctly interpret replication study results.
Furthering the difficulty in assessing the quality of researchers’
decisions involving data is the fact that relatively few replication
studies are done on published research. Journals prefer to publish
original research and rarely publish replications of previous stud-
ies even if the replication shows no effect. Therefore, there is little
incentive for researchers to replicate others’ results which increases
the likelihood that studies resulting in false positives are accepted
into scientific journals. Dr. Brian Nosek and a group working on
the ambitious Reproducibility Project are attempting to replicate
every study published in three major psychology journals in 2008
(Barlett, 2012).

Through student generated datasets, we demonstrate how stu-
dents in the same class, with the same raw dataset, and using the
same statistical technique can draw different conclusions without
realizing the assumptions they made in their analysis. There is
much truth to Esar’s (1949) humorous saying “Statistics [is] the
only science that enables different experts using the same figures
to draw different conclusions.” Instead of having our students
believe that statistics is simply a set of step-by-step calculations,
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we emphasize the influence a researcher’s judgment can have on
study conclusions.

Reforms in statistics education encourage an emphasis on
understanding of concepts, interpretation, and data analysis
instead of formulas, computation, and mathematical theory
(Garfield et al., 2007; DeVeaux and Velleman, 2008). Curric-
ula based on these reforms move away from teaching statistics
as a collection of facts. Instead, they encourage the scientific
process of interdisciplinary data analysis as statistics is actu-
ally practiced. Paul Velleman states, “It seems that we have not
made [this] clear to others – and especially not to our stu-
dents – that good statistical analyses include judgments, and we
have not taught our students how to make those judgments”
(Velleman, 2008). Our classroom activities and corresponding
datasets demonstrate the importance of emphasizing these points
and offer ideas for those teaching courses involving data analy-
sis and experimental design to introduce the discussion in the
classroom.

THE TANGRAMS GAME AND LAB
Tangrams is an ancient Chinese puzzle where players arrange
geometrically shaped pieces into a particular design by flipping,
rotating, and moving them. The online Tangrams game and the
web interface, shown in Figure 1, allow students the opportunity
to play many versions of the original game.

Prior to starting the game, the class decides upon one or more
research questions they want to investigate as a group. For exam-
ple, students may decide to test whether the game completion
time depends on the type of music played in the background,
or they could test if one gender is more likely to use hints. Stu-
dents then design the experiment by determining appropriate
game settings and conditions for collecting the data. After the
student researchers design the experiment, they become subjects
in the study by playing the game. The website collects the play-
ers’ information and records their completion times. The data is
available for immediate use through the website. If one research
study is designed for the entire class, every student plays the game

under similar conditions and a large sample of data is imme-
diately available through the website for analysis. The students
return to their role of researcher using the data that they just
collected.

Next, students (as a class or in small groups) make decisions
about data cleaning, check assumptions, perform a statistical test
of significance, and state their conclusions. Classroom testing of
the Tangrams game and associated labs over the last three semes-
ters has given us a rich data set demonstrating the impacts of
data cleaning and the importance of validating the assumptions
of statistical tests.

The Tangrams game-based lab gives students exposure to the
entire research process: developing research questions, formulat-
ing hypotheses,designing experiments,gathering data,performing
statistical tests, and arriving at appropriate conclusions. This lab is
a fun and effective way for instructors to transition from textbook
problems that focus on procedures to deeper learning experiences
that emphasize the importance of proper experimental design and
understanding assumptions.

IMPACTS OF DATA CLEANING
Figure 2 shows boxplots of data collected at West Point in the
fall semester of 2011 for one research question. The dependent
variable is the time to successfully complete a specified Tangrams
puzzle. The independent variable is athlete (Yes means the student
plays on a collegiate team while No means the student does not
play on a collegiate team). Students were given an overview of the
game by their instructor and then allowed to practice the game
once on a different puzzle in order to get familiar with the game
controls. For both groups, the distributions of completion times
appear unimodal with a large positive skew. There are several out-
liers present within the dataset. Discussing the data with students
tends to provide the following reasons for at least some of the very
high times:

1. The student did not fully understand the object of the game
even after the practice game.

FIGURE 1 |Tangrams web interface.
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FIGURE 2 | Side-by-side boxplots of the completion time of theTangrams game for raw and cleaned data.

2. The student did not fully understand how to manipulate the
pieces even after the practice game (some puzzle shapes require
a piece to be flipped while others do not).

3. The full attention of the student was not on the game during
the entire time recorded.

Any one of these reasons could justify removing that obser-
vation from the analysis. Before conducting their analysis, some
students removed the positive outliers shown in the boxplots of
the raw data in Figure 21 (Carling, 2000; Ueda, 2009). For the rest
of this paper, we will refer to the data set after removing these out-
liers as the cleaned data. Through class discussion of the data after
the experiment, students recognized issues with the conduct of the
experiment and the importance of understanding the data collec-
tion mechanism. They were able to formulate recommendations
for improving the future experiments such as better control of
extraneous variables and including a method for getting feedback
from players to determine if their results were erroneous.

The decision on whether or not to keep outliers or erroneous
data in the analysis has a very clear impact on the results. For exam-
ple, Table 1 shows that removing the outliers identified within the
boxplots in Figure 2 can change the p-value from 0.478 to 0.058
for a one-way ANOVA. Most students found the difference in p-
values surprising, especially given that the sample sizes of both
groups are larger than 30. Many researchers would interpret a p-
value of 0.058 as being small enough to conclude that there is
some evidence that there is a difference between the two popula-
tion means. This conclusion is clearly different than the one we
would reach with all the data points.

IMPACTS OF INVALID MODEL ASSUMPTIONS
In addition to considering impacts of cleaning data, results of these
classroom experiments show the impact of model assumptions on
the conclusions of the study. The two sample t -test and one-way
ANOVA are both parametric hypothesis tests used to determine

1In introductory courses, graphical methods and rules of thumb are usually used to
detect outliers. Formal tests such as the Ueda method and Carling’s method could
be used in more advanced courses.

Table 1 | Summary statistics for raw and cleaned data.

Raw data Cleaned data

(outliers removed)

Athlete Non-athlete Athlete Non-athlete

Sample size 36 92 33 84

Sample mean 82.72 72.50 65.23 53.02

SD 72.00 73.50 39.35 27.11

p-value = 0.478

(one-way ANOVA on

difference in means)

p-value = 0.058

(one-way ANOVA on

difference in means)

if there is a difference between the means of two populations. In
our case, we want to see if the difference between the means of the
athletes and non-athletes is statistically significant. The null (H 0)
and alternate (Ha) hypotheses are:

H0 : µA = µN

Ha : µA 6= µN

where µA and µN are the means of the athlete and non-athlete
populations. Both tests assume that we have random samples from
their respective populations and that each population is normally
distributed. The one-way ANOVA also assumes equal variances.
However, the two-sample t -test can be conducted without the
equal variance assumption (sometimes called Welch’s t -test). In
this section, we will discuss the equal variance and normality
assumptions.

Some texts suggest that formal tests should be used to test for
equal variances. However, some tests, such as Bartlett’s test (and
the F-test), are very sensitive to non-normality. Even with the out-
liers removed, the cleaned data is still strongly skewed right (see
Figure 2). Box criticized using Bartlett’s test as a preliminary test
for equal variances, saying “To make the preliminary test on vari-
ances is rather like putting to sea in a rowing boat to find out
whether conditions are sufficiently calm for an ocean liner to leave
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port” (Box, 1953). Levene’s test of homogeneity of variance is less
sensitive to departures from normality (Levene, 1960; Brown and
Forsythe, 1974). For the cleaned data, Levene’s test gives a p-value
of 0.023, indicating there is evidence of unequal variances.

A commonly used informal test is to reject the equal variance
assumption when the ratio of SD (largest SD over the smallest
SD) is greater than 2 (Moore and McCabe, 2003). Using this rule
of thumb on our data, the ratios for the raw and cleaned data are
1.02 and 1.45, respectively. Using this informal rule, we fail to reject
the assumption of equal variances for both the raw and cleaned
data.

Whether or not the researcher decides to assume the two popu-
lations have equal variances will contribute to the choice of which
statistical test to perform and has a surprisingly large impact on
the p-value of the two sample t -test. Without assuming equal
variances, the p-value of the two sample t -test on the cleaned data
is 0.109, which is considerably larger than the p-value of 0.058
found when assuming equal variances. Note that the p-value for
the t -test assuming equal variances and the one-way ANOVA are
mathematically equivalent and result in the same p-value.

To explain the impacts of this equal variance assumption, we
need to recognize the influence of unequal sample sizes. When
the group with the smallest sample size has a larger SD, the mean
square error (or pooled SD) is likely to underestimate the true
variance. Then ANOVA is likely to incorrectly reject the null
hypothesis (conclude that there are differences when there really
are no differences between group means).

A second assumption that a researcher should validate is that
both samples are from normally distributed populations. From the
boxplots in Figure 2, a student should suspect that the population
distributions are not normal. Additional tools such as histograms
and normal probability plots clearly show that the sample data is
not normally distributed. For both athletes and non-athletes, the
Shapiro–Wilks test for normality rejects the null for both samples
with p-values less than 0.001, providing further evidence that the
assumption of normality is not valid (see Table 2 for a summary
of the results of various Shapiro–Wilks tests).

When faced with data that indicates the normality assumption
is not valid, transforming the data is one method to allow the ana-
lyst to proceed with the analysis. In this case, taking the log of the
completion times results in plots that appear much closer to the
shape of the normal distribution2. Figure 3 shows a boxplot of the
cleaned data after the log transformation. It is more appropriate

2While the log transformation is helpful, both groups still show some evidence of
lack of normality. Other, less common, transformations did better fit the normality
assumption, however, the resulting p-values were fairly similar.

Table 2 | Summary of Shapiro–Wilks normality test under various

conditions.

Athlete Non-athlete

Raw data <0.001 <0.001

Cleaned data 0.00157 <0.001

Log-transformed raw data 0.118 <0.001

Log-transformed cleaned data 0.153 0.0521

to conduct the statistical test using the transformed data since the
normality assumption is more closely met. When the two sample
t -test (unequal variances) is performed on the transformed data,
the resulting p-value is 0.307 which would lead us to conclude
that there is not a significant difference between athletes and non-
athletes. These results are somewhat different from the p-value of
0.478 obtained using the raw data, although the difference in the
p-value did not change the conclusion of the test.

Researchers using the cleaned data face similar issues. Even after
removing the outliers, the cleaned data still is strongly skewed to
the right. Once again, a log transform improves the normality
assumption. Conducting the two sample t -test on the cleaned log
transformed data results in a p-value of 0.18.

We have shown that even when students start their analysis with
the same raw dataset, decisions involving data cleaning and valida-
tion of model assumptions cause p-values to vary between 0.058
and 0.478. Table 3 summarizes the different p-values based on
the assumptions we discussed in the last two sections. This clearly
demonstrates that model assumptions need to be checked before
any statistical conclusions are drawn. It also shows that a researcher
determined to find significant results can do so by choosing a set
of assumptions resulting in the smallest p-value.

In introductory statistics courses, this dataset can be used to
focus on tests that are based on the equal variance assumption
and the normality assumption (t-tests and ANOVA) and how the
violation of these assumptions can influence p-values as shown
in Table 3. However, there are several other statistical techniques
that are typically beyond the scope of an introductory course that
can be discussed with this dataset. In addition to Levene’s test and
the Shapiro–Wilks test shown above, instructors could discuss the
following:

• More advanced methods, such as the Box-Cox power transfor-
mation, can be used to find a better transformation (Osborne,
2002; Olivier and Norberg, 2010).

FIGURE 3 | Side-by-side boxplots of the log of completion time for the
cleaned data.
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Table 3 | Summary of p-values for the difference in means between

Tangrams completion times of athletes and non-athletes under

various assumptions.

Raw data

(p-value)

Cleaned data

(p-value)

Two-sample t -test assuming equal

variances

0.478 0.058

Two-sample t -test without

assuming equal variances

0.475 0.109

Two-sample t -test assuming equal

variance using the log-transformed

data

0.307 0.139

Two-sample t -test assuming equal

variance using the log-transformed

data

0.323 0.180

• Response time is often modeled with the exponentially modified
Gaussian distribution (ex-Gaussian distribution). This game
typically provides a relevant example of data that is better mod-
eled with a distribution other than the normal distribution
(Marmolejo-Ramos and González-Burgos, 2012).

• Many students believe that if the sample size is greater than
30, the Central Limit Theorem guarantees that tests based on
the normal distribution are appropriate to use. Tim Hesterberg
has written an easy-to-understand article that is freely available
online that challenges this assumption (Hesterberg, 2008). Hav-
ing students read this article helps them understand that while
the “sample size greater than 30” is a nice guideline, it is not an
absolute rule.

• The data can be used to demonstrate better tools to enhance the
visibility of data that is not normally distributed. For example,
the shifting boxplot and the violin plot with confidence interval
around the mean provide additional information not displayed
in the basic boxplot (Marmolejo-Ramos and Matsunaga, 2009;
Marmolejo-Ramos and Tian, 2010).

• The analysis of the Tangrams data is equally suited for courses
that emphasize other concepts, such as Bayesian approaches to
data analysis (Kruschke, 2011).

• The data can be analyzed with techniques that are not based
on the normality assumption, such as randomization and
permutation tests.

RANDOM SAMPLING
In our experience, the assumptions of statistical tests such as those
discussed in the previous section are at least covered in typical sta-
tistics textbooks and classes. An assumption that is addressed far
less often but that should always be validated before any statistical
conclusions are drawn about populations is that each observation
is a sample randomly selected from the population. Homework-
style problems do not give enough information about how the data
was collected for students to consider the quality of the sample.
When students conduct their own experiment, the students are
more aware of this issue in the resulting data.

Some sources of bias are easily identifiable. For example, this
sample gathered at West Point is most certainly not generalizable

to all colleges nationwide, as only about 15% of cadets are female.
In addition, it is important to discuss the impact of a researcher
acting as a subject within their own research study. Other sources
of bias are not so easily identifiable but warrant discussion. This is
especially the case with observational studies such as ours where
the students enrolled in the course are acting as subjects in the
study. For example, it could be possible that there are other fac-
tors that the athletes in our sample share that were the true reason
for differences in their times when playing the puzzle game. One
possibility is that the athletes have early morning practice and are
therefore more tired than the non-athletes. Also, because students
decided and knew which variables were being investigated, there
is the possibility of stereotype threat, where groups are primed to
perform better or worse.

From our experience, the following discussion questions are
effective at addressing some of the important issues involved with
random sampling and designing experiments.

• If you had a chance to play the game under different circum-
stances, would you be able to perform better? Describe any
factors that may have kept you from doing your best while
playing the game.

• Do you think outside factors (like the ones you or others men-
tioned in the previous question) could impact the results of a
study? Should researchers provide some type of motivation for
their subjects in various studies to do their best?

• If you were conducting this study again, how would you
control for any key factors that may influence each subject’s
performance?

• Ask small groups to design their own study, addressing other not
so obvious conjectures.
- Are there any variables (such as academic major or gender)

that explain why some players solve Tangrams puzzles faster
than others?

- What type of student improves the most when playing this
type of game?

- Is it helpful for a second student to provide hints?

ADDITIONAL DATA SETS
The Tangrams game and corresponding labs are designed to be
flexible so that students can design studies related to their interests.
In another semester at West Point, we investigated the relationship
between academic major and Tangrams performance. Students
majoring in math, science, and engineering disciplines (MSE) were
compared to those majoring in other disciplines (non-MSE). In
this study, the raw data resulted in a p-value of 0.353 for the
two sample t -test. When outliers were removed from the data,
the p-value decreased to 0.071. Other classes have tested two-
way or three-way factorial designs. For any variables that students
are interested in testing, the nature of the Tangrams game tends
to produce positively skewed data and outliers. Thus, any study
conducted by students with this game provides opportunities to
demonstrate the importance of data cleaning and model assump-
tions. Table 4 contains a list of suggested independent variables
that could be used to explain Tangrams performance.

In this paper, we focused on the time to complete the puzzle
as the response or dependent variable. The Tangrams game offers
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Table 4 | Candidate independent variables to explainTangrams

performance.

Variable Research question

Gender Do males or females perform better at

tangrams?

Academic major Do students majoring in science,

technology, engineering, and mathematics

perform better at tangrams than other

students?

Type of high school attended Do students who attended private or public

high schools perform better at tangrams?

Athlete Do college athletes perform better at

tangrams than non-athletes?

Political affiliation Do students who affiliate with the

democratic, republican, or other parties

perform better at tangrams?

Academic performance Do students who made the dean’s list

perform better at tangrams than those that

did not?

many more dependent variables that can be investigated. Table 5
contains a list of some of the other dependent variables that can
be investigated using Tangrams.

In more advanced courses, small groups of student researchers
have used these online games to develop more complex research
studies. For example, one group built upon Butler and Baumeis-
ter’s (1998) findings that a friendly observer (compared to neutral
or hostile observers) had a detrimental effect on the ability of par-
ticipants to accurately complete difficult tasks. They conducted a
study with a repeated measures design to determine whether this
effect would be the same if the friendly observer actively offered
advice on how to solve Tangrams puzzles.

We have developed a series of online games and associated labs
like the one discussed in this paper. Multiple independent variables
can be used to test memory or spatial reasoning skills. Students
can choose variables (such as using hints, amount of time allowed,
or number of pieces) that are very likely to result in small p-values
even with small sample sizes. Other independent variables, such
as gender or major, are less likely to have small p-values. When
multiple studies are conducted, we typically find no more than
one or two of the studies will show significant differences among
gender. This can lead to very interesting discussions of publica-
tion bias that can occur when only research studies with small
p-values are published. Each game-based lab or research project
allows for quick, anonymous, and automated data collection that
can be used to demonstrate the importance of impacts of data
cleaning and model assumptions on the results of a study.

STUDENT COMMENTS AND ASSESSMENT
In statistics education, it is often challenging to have students
experience the true complexities of conducting a large research
study. Designing an experiment, collecting and analyzing data,
and deciding upon and carrying out the appropriate statistical
test are usually too time-consuming, costly, or impractical for an

Table 5 | Candidate dependent variables.

Variable Description

Puzzle completion time Time to complete a tangrams puzzle

Puzzle success or failure Given a fixed amount of time, whether or

not a student can complete the puzzle

Number of moves Number of moves (a flip or rotation)

required to solve the puzzle

Time to quit Time before a student quits a puzzle that

is impossible to solve

Time to receive a hint Time until a student asks the game for a

hint

Number of puzzles solved Given a fixed amount of time, the number

of puzzles that a student can solve

introductory statistics course. As a result, most students learn sta-
tistical calculations without a tie to the context of the scientific
research and become disinterested in, and even cynical toward,
statistics. An alternative to lectures and textbook style problems is
to incorporate research-like experiences in the classroom.

The Classroom Undergraduate Research Experience (CURE)
survey of undergraduate science evaluated courses that contain
research-like experiences. Research-like experiences are activities
that contain “Group work, reading primary literature, data col-
lection and analysis. . . students conduct research in which the
outcome is not known (even to the course instructor) and stu-
dents have at least some input into the research topic and design of
the methodological approach.” Results of the CURE survey show
that “Students in high research-like courses report learning gains
similar in kind and degree to gains reported by students in ded-
icated summer research programs” (Lopatto, 2010). In addition,
Wei and Woodin (2011) found “Evidence is emerging that these
approaches are introducing more underrepresented minorities to
scientific research in the classroom.” These game-based labs are
designed so that, with technology, students can gain many of the
benefits of research-like experiences.

A formal assessment of student attitudes and learning was con-
ducted throughout the 2011–2012 school year. These materials
were taught in five sections of an introductory statistics course.
When we asked students what they liked best about the lab, typical
responses were:

• The data set was real and we played a part in creating it.
• To be able to see an actual scenario where what we learned can

be used.
• The fact that we could collaborate. . .
• . . .work at own pace, ask questions as needed.
• I liked that getting the data was very quick and easy.
• Playing the game!

As a group, students enjoyed playing the games. Even though
the online game is fairly simple with plain graphics, it was consid-
ered a welcome break from normal classroom activities. The level
of interest in trying to explain potential biases in Tangrams perfor-
mance was very high. Ideas ranged from number of hours of sleep
to SAT scores to the age of the player. This activity also seemed
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Table 6 | Survey results for 115 students after completing theTangrams lab.

Survey question Strongly

agree (%)

Agree

(%)

Neutral

(%)

Disagree

(%)

Strongly

disagree (%)

The Tangrams lab was a good way of learning about hypothesis testing 43 38 8 7 3

Students who do not major in science should not have to take statistics courses 5 10 23 37 24

Statistics is essentially an accumulation of facts, rules, and formulas 10 34 30 19 6

Creativity plays a role in research 30 47 12 7 4

If an experiment shows that something does not work, the experiment was a failure 9 2 5 31 52

The tangrams lab had a possible effect on my interest in statistics 17 38 32 13 1

to truly engage students who were otherwise quiet throughout the
semester.

Many students commented that they liked using “real” data for
the first time in their course. This comment came as a surprise
because the instructors had used data from economics, sports, sci-
entific, and military websites in lessons prior to this lab. However,
to the students, if they are not involved in the collection of the
data, it is not real to them. Involving students in data collection
makes them much more interested in the outcome of a statistical
process. In addition, messy data makes the decision process more
real to students.

In many courses using the lab, students had yet to actively
experience the context for the statistical procedures they were
learning. They had only seen textbook type questions that give
them the research question, the experiment, the data, and the sta-
tistical procedure to use. After completing the lab, many students
commented that they saw how statistical procedures are actually
used by people outside the statistics classroom. Survey results sug-
gest that students enjoyed the lab and felt like they had learned
from the experience. In this assessment, 81% of students either
agreed or strongly agreed that the Tangrams lab was a good way
of learning about hypothesis testing, while only 10% disagreed.
seventy-four percent either agreed or strongly agreed that the
Tangrams lab improved their understanding of using statistics in
research. Complete results of the survey are displayed in Table 6.

Although our students have laptop computers and are required
to bring them to class, the Tangrams lab has been implemented
in other classroom conditions. In large sections, where each stu-
dent does not have a laptop, students can play the game outside
of class in preparation for the next class period. If no comput-
ers are available in class, the guided labs that we have available are
detailed enough to allow students to do most of the computational

work outside the classroom, where most students presumably have
access to a computer. The instructor can then use class time to
discuss results and interpretations of findings.

CONCLUSION
Online games and guided labs such as Tangrams are fun and
effective ways to incorporate a research-like experience into an
introductory course in data analysis or statistics. The labs leverage
their natural curiosity and desire to explain the world around them
so they can experience both the power and limitations of statisti-
cal analysis. They are an excellent way for instructors to transition
from textbook problems that focus on procedures to a deeper
learning experience that emphasizes the importance of proper
experimental design and understanding assumptions. While play-
ing the role of a researcher, students are forced to make decisions
about outliers and possibly erroneous data. They experience messy
data that make model assumptions highly questionable. These labs
give students the context for understanding and discussing issues
surrounding data cleaning and model assumptions, topics that are
generally overlooked in introductory statistics courses.
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