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In clinical medicine, lipids are commonly measured biomarkers used to assess an indi-
vidual’s risk for cardiovascular disease, heart attack, and stroke. Accurately predicting
longitudinal lipid levels based on genomic information can inform therapeutic practices
and decrease cardiovascular risk by identifying high-risk patients prior to onset. Using
genotyped and imputed genetic data from 523 unrelated Caucasian Americans from the
Bogalusa Heart Study, surveyed on 4,026 occasions from 4 to 48 years of age, we gener-
ated various lipid genomic risk models based on previously reported markers.We observed
a significant improvement in prediction over non-genetic risk models in high density lipopro-
tein cholesterol (increase in the squared correlation between observed and predicted
values, ∆R2

=0.032), low density lipoprotein cholesterol (∆R2
=0.053), total cholesterol

(∆R2
=0.043), and triglycerides (∆R2

=0.031). Many of our approaches are based on an
n-fold cross-validation procedure that are, by design, adaptable to a clinical environment.
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AUTHOR SUMMARY
Genomic studies have produced promising results which have
guided researchers studying the etiology of complex disease. Yet,
the transition from bench to bedside has been less successful for a
variety of reasons, including the lack of clinically relevant results
and the failure to replicate across studies. We provide a frame-
work for applying previously reported genomic results to lipid
level prediction by leveraging a polygenic model. Our designs
are based on n-fold cross-validation, which naturally mimic a
dynamic, sequentially updated clinical environment. We expect
variations of our approach may be implemented in future clini-
cal applications as patients’ genomic information becomes more
readily available and medicine moves toward personalized risk
assessment.

INTRODUCTION
Cardiovascular disease is a leading cause of mortality and morbid-
ity throughout the urbanized world, largely due to atherosclerosis
(National Heart, 2012). Risk models designed to predict cardio-
vascular disease have been generated using traditional risk factors
(Siontis et al., 2012). Lipids, specifically high density lipoprotein
cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-
C), total cholesterol (TC), and triglycerides (TG) are among the
most commonly measured biomarkers within clinical medicine,
used to screen and assess individual risk for cardiovascular dis-
eases. A surfeit of common variants implicated in lipid metabolism
has been discovered through genome-wide association studies
(GWAS) (Hindorff et al., 2009). Yet, in clinical practice the her-
itable component of cardiovascular disease risk has been largely

neglected as the utility, practicality, and strategy for incorporating
these results remains uncertain.

Biases in publishing are well-documented (Munafò et al., 2004;
Dwan et al., 2008), and genetic results often fail to replicate across
studies and/or populations (Greene et al., 2009; Dumitrescu et al.,
2011). Even in the absence of missing heritability (Manolio et al.,
2009), these present challenges in the transition from bench to bed-
side. One method to circumvent this problem is to treat the patient
population as a continually growing sample from which one can
fit models, draw inferences, and make predictions. When updated
sequentially, such data can be used to evaluate future patients
against those previously admitted based on relevant factors. To
an extent, this practice is routinely performed in a clinical setting
where a physician assesses risk based on published findings on
non-genetic factors and prior experience. However, implement-
ing genomic information requires a more refined approach as the
amount of data is vast and the effect of any individual genetic
marker is likely small (Park et al., 2010, 2011).

There are various methods designed to integrate the results
from genetic association studies into individual prediction.
Machine learning approaches are becoming more common, but
require a more complex interpretation (Wei et al., 2009; Okser
et al., 2010). Allele-counting methods (Lango et al., 2008; Evans
et al., 2009) and its extension to weighted allele-counting meth-
ods (International Schizophrenia Consortium et al., 2009; Paynter
et al., 2010) are popular and easily implemented. The latter con-
tains a more natural interpretation of genomic risk but assumes
genetic predictors are measured accurately. We assessed the pre-
dictive performance of various polygenic models on lipid levels in
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a longitudinal cohort, from adolescence to middle life, of unre-
lated European Americans from the Bogalusa Heart Study (BHS)
(Frerichs et al., 1976). We found that these approaches can sub-
stantially improve prediction but appear to be limited to methods
involving only markers previously reported to be associated with
the phenotype.

RESULTS
The BHS is a long-term, longitudinal cohort study investigat-
ing cardiovascular disease progression in children in and around
Bogalusa, Louisiana. Among the study participants with available
genetic data, we identified a sample of 523 individuals, surveyed at
age 4–48 years old on 4,026 occasions, that were genetically deter-
mined to be ancestrally European and unrelated to other sample
participants (see Materials and Methods). Sample statistics are
presented in Table 1.

Genetic markers previously reported to be associated with
HDL-C, LDL-C, TC, or TG were extracted (Dataset S1 in Supple-
mentary Material) – including genotyped (n= 117) and imputed
markers (n= 90). Of these, 77 were previously reported to be asso-
ciated with HDL-C, 62 with LDL-C, 65 with TC, and 40 with
TG. Single marker association analyses were performed on all
the extracted genetic markers for each lipid phenotype (Dataset
S2 in Supplementary Material). Though no individual marker
reached the threshold for genome-wide significance, there was a
non-uniform distribution of p-values with a trend toward asso-
ciation (Figure 1). This provided an indication that polygenic
models could explain a reasonable portion of the variation in
lipid levels, above and beyond traditional, non-genetic risk fac-
tors. Seven genomic risk models were calculated, and are referred
to as the NCBI risk score, BHS-A and BHS-R risk scores, BLR-A
and BLR-R, and BRR-A and BRR-R. Each method is described in
the Methods and a general summary of the n-fold cross-validation
approach implemented in the BHS scores is presented in Figure 2.

The agreement between observed and predicted outcomes for
each risk score are presented in Table 2. The predictive accuracy
was measured as the square of the Pearson’s correlation between
the observed and predicted outcomes (and is referred to as R2 in
the remainder of the text). Non-genetic models were first consid-
ered, which included only the covariates age, sex, and body mass
index. For these risk models, R2 ranged from 0.137 for HDL-C to
0.223 for LDL-C. These values were 0.183 and 0.218 for TC and
TG, respectively.

The NCBI risk score was constructed using only markers pre-
viously reported to be associated with each lipid phenotype. It
is identical to the weighted allele-counting method, where each
weighting factor was assigned its previously reported estimate. The
inclusion of the NCBI risk scores statistically improved predictive
accuracy for each lipid phenotype beyond the non-genetic mod-
els. The largest improvement in R2 occurred for LDL-C which
increased 0.052 to 0.276 (p= 2.32× 10−15). TC increased 0.043
(p= 1.04× 10−13), TG increased 0.031 (p= 9.58× 10−13), and
HDL-C increased 0.017 (p= 4.26× 10−8).

The structure of the BHS-A and BHS-R risk scores are sim-
ilar to the weighted allele-counting method, but with weights
assigned for each individual based on estimates calculated from
the remaining study participants – an implementation of n-fold

Table 1 | Sample summary statistics (n=523).

Mean (SD)

Age at first observation (years) 10.2 (3.4)

Number of observations 7.7 (1.9)

Years between observations* 3.0 (3.5)

HDL cholesterol (mg/dL) 52.3 (18.2)

LDL cholesterol (mg/dL) 108.2 (35.4)

Total serum cholesterol (mg/dL) 174.8 (38.7)

Serum triglycerides (mg/dL)* 82.0 (62.0)

Systolic blood pressure (mmHg) 109.2 (11.9)

Diastolic blood pressure (mmHg) 70.2 (10.3)

*Indicates median (interquartile range).

FIGURE 1 | QQ-plot of single marker associations between previously
reported genetic risk markers and lipid levels.

cross-validation. BHS-A scores were calculated using all markers
previously reported to be associated with HDL-C, LDL-C, TC,
or TG. BHS-R scores, like the NCBI risk scores, were calculated
using only markers that were previously found to be associated
with the particular lipid phenotype. We use the letter A to refer
the entire set of All previously reported lipid risk markers and
R to refer to the set of markers previously Reported with each
lipid (see Dataset S1 in Supplementary Material for a comprehen-
sive marker list). For each phenotype, the inclusion of either risk
score statistically improved R2. The BHS-R risk scores performed
better than the BHS-A scores. This can likely be attributed to an
increase in variance introduced in the BHS-A scores by including a
larger portion of non-causal markers. Considerable improvements
in R2 were achieved using the BHS-R risk scores over the non-
genetic models. The largest absolute increase occurred with LDL-C
rising 0.039 over the non-genetic model (p= 6.53× 10−12). TC
had a similar improvement (0.032, p= 3.76× 10−11), while both
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FIGURE 2 | Diagram of the n-fold cross-validation approach used to
calculate the BHS genomic risk scores; where i is the index
corresponding to the i th subject, β̂−i is the marker effect calculated
after excluding the i th subject, and xi is the genotype (additive coding)
of the i th subject.

HDL-C and TG had smaller, yet moderate improvements (0.019,
p= 7.20× 10−9; and 0.020, p= 6.14× 10−8, respectively).

The Bayesian lasso regression (BLR) and Bayesian ridge regres-
sion (BRR) models fit each marker simultaneously using a
Bayesian lasso and ridge penalty, respectively. Among all models,
the BLR-R model was best at predicting HDL-C levels, increasing
R2 0.032 over the non-genetic model. These models performed on
par with the NCBI and BHS risk scores (Table 2). The BLR and
BRR models are better designed to detect novel, predictive loci as
larger numbers of likely non-causal markers can be included in
the polygenic model without significantly decreasing the predic-
tive accuracy. This is shown by comparing the difference in R2

between BLR-R and BLR-A (and BRR-R and BRR-A) against the
difference between the BHS-R and BHS-A – the former which tend
to be smaller. As the decrease in R2 in the BHS models appears to
be non-trivial when including a larger proportion of markers not
previously associated, one should be cautious of recent findings
(Chatterjee et al., 2013; Dudbridge, 2013) which advocate a more
liberal threshold for the inclusion of genetic variants in polygenic
prediction models.

Finally, the NCBI risk score model was applied to select age
ranges to assess the predictive performance of the genetic risk
at different time points, from childhood into adulthood, against a
non-genetic model (Table 3). Significance and R2 was calculated at
10 years age intervals from 10 to 40 years of age after controlling,
and not controlling for the individual’s previous lipid measure-
ment. Across age ranges, the NCBI risk scores were significantly
associated with the outcomes when previous lipid levels were not
considered. In general, there did not appear to be a trend toward
increased to decreased prediction across time. The largest gains
in prediction over the non-genetic model occurred at age 30 for
HDL-C and age 20 for the other lipid measurements. Alterna-
tively, controlling for an individual’s previous lipid measurement
tended to decrease the gain in predictive accuracy of the NCBI
risk model – in a number of instances resulting in no association
between the risk score and the outcomes. These results suggest
that the combined influence of known genetic risk of lipid levels is

substantial and roughly stable over time; but only in certain cases
(e.g., TG at age 20) do known genetic risk estimates provide infer-
ence above and beyond the individual’s lipid history – otherwise
little may be gained.

DISCUSSION
Risk prediction models have been successfully utilized in car-
diovascular medicine to enable appropriate risk stratification of
patients. Leveraging genomic data to further enhance cardiovas-
cular risk prediction is an attractive option as many traditionally
low-risk individuals routinely experience cardiovascular events,
potentially explained by genomic susceptibility. While the mod-
els we propose provide substantial improvements over the non-
genomic models, our models focus on intermediate phenotypes
(i.e., lipids) associated with cardiovascular diseases rather than
cardiovascular diseases themselves. Until further follow-up data
incorporates clinical end-points, specifically heart attack, stroke,
and death, our results, if used in clinical or public health con-
texts, would only bear on raising an individual’s awareness of
an increased or decreased risk of lipid levels. This is not to say
that genomic testing should be performed as a substitute for lipid
measurements. Clearly if an individual is able to provide a DNA
sample at some point in time, they are also likely to be able
to provide a blood sample for lipid measurement at that time.
Rather, in the presence of available genomic data (e.g., if or when
sequencing is routinely performed on all patients), genomic risk
metrics like the models we proposed may be used to guide treat-
ment, inform interventions, or identify high-risk patients prior to
onset.

The benefits of implementing genomic approaches into per-
sonalized health care have become a popular topic as the medical
community appears ripe to integrate decades’ worth of scientific
evidence into clinical practice. We expect the attraction of geno-
typing will continue to grow as sequencing costs steadily decline.
However, there are looming questions concerning genomics’ use-
fulness in the clinic and the manner in which it is applied. We
have demonstrated a number of methods for predicting lipid lev-
els, based on previously reported genetic findings, which provide
an improvement over non-genetic models. While the NCBI risk
scores tended to perform slightly better – likely as a result of the
individual estimates originating from larger studies and leading
to less uncertainty in the parameters – we highlight the util-
ity of the BHS, BLR, and BRR as estimates obtained from these
methods are calculated within the study cohort; thus, potentially
eliminating variation between studies and/or populations. Mean-
while, researchers or clinicians constructing polygenic risk scores
generated from publicly available data, such as the traditional
weighted allele-counting method, should be cautious. From an
initial set of 271 markers we identified in the GWAS Catalog1 as
being previously reported to be associated with lipid levels, we dis-
covered that 38 referenced a different (incorrect) marker than the
original study, and the correct marker could not be determined in
three additional cases after reviewing the manuscripts. The inter-
pretation of the parameters estimates also present some challenges.

1http://www.genome.gov/gwastudies
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Table 2 | Predictive accuracy, measured as the square of the Pearson’s correlation between observed and predicted outcomes.

HDL-C LDL-C TC TG

Non-genetic 0.137 (0.119, 0.156) 0.223 (0.201, 0.248) 0.183 (0.161, 0.205) 0.218 (0.189, 0.249)

NCBI risk score 0.154 (0.133, 0.175) 0.276 (0.249, 0.302) 0.226 (0.202, 0.252) 0.249 (0.220, 0.280)

BHS-A risk score 0.152 (0.133, 0.172) 0.254 (0.228, 0.280) 0.211 (0.188, 0.237) 0.227 (0.199, 0.260)

BHS-R risk score 0.156 (0.136, 0.178) 0.262 (0.237, 0.288) 0.215 (0.191, 0.240) 0.238 (0.210, 0.270)

BLR-A 0.161 (0.143, 0.182) 0.258 (0.233, 0.285) 0.210 (0.185, 0.234) 0.234 (0.202, 0.267)

BLR-R 0.169 (0.148, 0.190) 0.258 (0.233, 0.283) 0.211 (0.188, 0.235) 0.236 (0.205, 0.269)

BRR-A 0.158 (0.139, 0.179) 0.259 (0.233, 0.286) 0.210 (0.187, 0.236) 0.230 (0.200, 0.262)

BRR-R 0.167 (0.147, 0.189) 0.257 (0.232, 0.283) 0.211 (0.188, 0.236) 0.235 (0.205, 0.269)

Percentile bootstrap 95% confidence intervals based on 2,000 replicates are included in parentheses.

Table 3 | Predictive accuracy of the NCBI risk score for age-specific lipid levels.

Age Previous measurement? HDL-C LDL-C TC TG

∆R2 p ∆R2 p ∆R2 p ∆R2 p

10 No 0.025 8.63×10−4 0.060 9.71×10−7 0.049 3.30×10−6 0.010 0.016

20 0.018 5.49×10−3 0.074 5.32×10−8 0.088 3.05×10−9 0.055 8.75×10−6

30 0.037 7.15×10−5 0.063 7.60×10−7 0.044 2.96×10−5 0.026 4.28×10−4

40 0.017 3.91×10−3 0.037 2.47×10−4 0.044 5.38×10−5 0.048 3.49×10−5

20 Yes – 0.116 0.013 1.31×10−3 0.022 8.12×10−5 0.064 4.98×10−6

30 0.025 3.80×10−4 0.008 0.016 – 0.092 0.009 0.023

40 – 0.740 – 0.503 0.006 0.039 0.025 8.63×10−4

∆R2 represents the increase in R2 over a non-genetic model. The model was assessed when the previous lipid measurement was not controlled for as a covariate

(No), and when it was (Yes).

The most commonly used lipid units reported in previous stud-
ies, and those presented here, are in mg/dL. However, in some
instances estimates were presented in mmol/L, scaled to the pheno-
typic variance, or both. We successfully converted 55 such markers,
but could not unambiguously determine the parameters estimates
on 21 other occasions.

The n-fold cross-validation approach we implemented in this
study mimics a dynamic clinical setting where records are main-
tained on previously admitted patients, and a subsequent patient
may be evaluated based on how he or she likens to these others. It
is illogical to believe risk estimates should remain fixed over time
and additional data should be ignored. Instead, risk models can be
continually updated as more patient outcomes are observed and
the predictive accuracy of the training dataset improves. However,
how to best construct such a sequentially updated database for
group specific prediction is unclear, and requires far more atten-
tion than we were able to provide in this study. How should the
database initially be constructed to ensure stability in the pre-
dictions for the first set of patients? How should the predictive
model be designed to account for emerging predictors or effects
which change over time? What effect will un-blinding the patient
or physician, by providing prediction results, have on intervention
outcomes and future predictions? These questions, and others,
must first be addressed.

There are options which may have improved our approach.
First, as part of the cross-validation, we chose to exclude all
observations from a study participant prior to assigning genomic

risk and evaluating prediction. We could have improved our
overall accuracy by only excluding the observation (and later
observations) that we were attempting to predict. For exam-
ple, if our intention was to predict a participant’s LDL-C at
age 30, we could have included the participant’s observations
before age 30 and excluded the others. This would equate to
estimating and subsequently incorporating the random effect cor-
responding to each participant at each observation. There are
challenges in properly summarizing these results as the accu-
racy would be greater in participants with more observations.
We also note that the participant’s genomic risk score would
differ at each time point. Though such an analysis is more com-
putationally demanding, in practice we expect this approach
to be ideal. If variations of these approaches were to be used
in clinical practice, risk estimates would need to be recalcu-
lated for each newly admitted patient (or observation). Bayesian
approaches, like the BLR and BRR, which provide a more straight-
forward method of updating results with the acquisition of
new data, would be more reasonable in this setting. Finally,
we did not account for linkage disequilibrium between previ-
ously reported lipid genetic risk markers or model gene-gene
and gene-environment interactions. Properly modeling linkage
disequilibrium could improve prediction. Meanwhile, the role
of interactions (Zuk et al., 2011) and their impact on predic-
tion is uncertain (Aschard et al., 2012). Yet, we expect that the
approaches presented here could be adapted to accommodate such
effects.
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The results from GWAS and the ubiquitous nature of missing
heritability have proven that polygenic methods must be utilized in
order to garner any clinically relevant, actionable item from genetic
studies of common traits. We were able to effectively summarize
GWAS results by taking advantage of numerous, small marker
effects. Approaches such as ours, with the availability of genomic
data, could be applied in the clinical setting to improve disease risk
assessment, treatment, and prevention.

MATERIALS AND METHODS
STUDY PARTICIPANTS
The BHS is a long-term, longitudinal, cohort study investigat-
ing the natural progression of cardiovascular disease in children
throughout the community of Bogalusa, Louisiana. Details outlin-
ing ascertainment have been previously described (Berenson and
Pickoff, 1995). Briefly, cardiovascular disease risk factor examina-
tions, including the collection of blood samples for lipid measure-
ment, were performed on self-reported Caucasians and African
Americans, at 3- to 4-year-intervals beginning from 1973 to 1974
and gathered through nine large cross-sectional surveys of children
aged 4–17 years and 10 cross-sectional surveys of adults aged 18–
48 years. This strategy has resulted in a panel of serial observations
on individuals starting at childhood and extending through adult-
hood. Collectively, the derived data includes 12,163 individuals
representing 37,317 unique observations. We focused on a subset
of these individuals (n= 523), specifically unrelated Caucasians
(238 male, 285 female) with between 4 and 13 unique observations
per participant and available genotype data.

GENOTYPING
Genotyping methods have been previously described (Smith
et al., 2010). Briefly, genetic data on 1,202 BHS participants were
obtained using the Illumina Human610 Genotyping BeadChip
(Eberle et al., 2007) and HumanCVD BeadChip (Keating et al.,
2008), with calls made using BeadStudio software. Quality con-
trol measures were implemented, resulting in 545,821 uniquely
genotyped markers. The final average call rates were high (99.95
and 99.32%, respectively), with a high minimum call rate of
the genotyped, known lipid genetic risk markers (99.15%), and
high concordance between platforms (>99.98%) and high repro-
ducibility (>99.99%). The degree of European ancestry for each
study participant was calculated using a supervised clustering
analysis (Libiger and Schork, 2012) from publicly available Euro-
pean reference panels (n= 1,335). Participants estimated to be
less than 90% ancestrally European were removed from down-
stream analyses. Among remaining participants, relatedness was
assessed using pairwise IBD estimation in PLINK (Purcell et al.,
2007). Participants were excluded such that the estimated pro-
portion of IBD between any two remaining individuals was less
than 0.1.

IMPUTATION
Prior to imputation, genetic markers were excluded which demon-
strated high missingness (>0.05), failed Hardy–Weinberg equi-
librium (p < 0.0005), or had exceedingly rare alternative alleles
(minor allele frequency <0.005). The remaining genetic data were
pre-phased (Howie et al., 2012), and genome-wide imputation

was performed on the resulting haplotypes using the default
parameters in IMPUTE v2.2.2 (Howie et al., 2009). The 1000
Genomes Phase 1 integrated variant set haplotypes were used
as the reference panel (Altshuler et al., 2010). Genomes were
divided into approximately 5 Mb segments (avoiding chromo-
some and centromere boundaries) with phasing and imputation
calculated on each. Imputed markers with information values less
than 0.5 were removed from the analysis. GTOOL v0.7.0 was used
to convert imputed genotyped posterior probabilities into calls.
Genotypes were considered missing if the posterior probability of
any genotype was not greater than 90%.

STATISTICAL ANALYSES
The primary outcomes of interest were HDL-C, LDL-C, TC, and
TG. In each analysis, these phenotypes were analyzed using various
regression models controlling for age, sex, and body mass index
as fixed effects covariates while treating the study participant as a
random effect to account for the longitudinal nature of the data.
All statistical analyses were performed in R v2.13.2 (R Develop-
ment Core Team, 2011) using the packages BLR (de los Campos
and Rodriguez, 2012) and lme4 (Bates et al., 2011).

Modeling age
Lipid levels tend to display a sigmoidal trend over lifetime. We
hypothesized that a function which accounts for this trend would
be more appropriate than a linear term. However, as the present
study includes longitudinal measurements, we chose to explore
options which would still operate in a linear mixed model frame-
work. For each observation i, we constructed the function f(agei),
such that:

f
(
agei

)
= sin

(
π

2
·

2agei −
(
age(n) + age(1)

)
age(n) − age(1)

)

where age(1) is the study minimum age and age(n) is the study
maximum age. Notably, this function achieves a maximum of one
at the maximum observed age and a minimum of negative one
at the minimum age. We compared model fit using AIC. In each
case, the model using f(agei) had better fit (Table 4) and visually
appeared more appropriate. Thus, we modeled age using f(agei)
in all analyses.

Lipid genetic risk markers
Genetic markers that had been previously identified in GWAS as
being associated with HDL-C, LDL-C, TC, or TG (p < 1.0× 10−7),
were derived from European populations, and present in the
National Human Genome Research Institute (NHGRI) GWAS
Catalog were included in the analyses (Dataset S1 in Supplemen-
tary Material). For each lipid measurement, two sets of markers
were constructed: (1) all reported lipid markers (given the suffix
A); and (2) only those genetic markers previously reported to be
associated with that lipid (given the suffix R).

Non-genetic model
An n-fold cross-validation approach was used to assess predictive
accuracy. One patient (and each of their observations) was first
excluded. Lipid levels of the remaining study participants were
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Table 4 | Model fit statistics (AIC) using age as a linear term and the

sine function, f (agei) in a non-genetic model.

Linear Sine

HDL-C 32923.79 32923.58

LDL-C 36982.23 36916.02

TC 37922.29 37839.51

TG 40445.38 40428.51

regressed on fixed and random effect covariates. The correspond-
ing fixed effects estimates were multiplied by the excluded patient’s
fixed covariates and summed together to obtain a predicted lipid
measurement. This method was repeated for each participant in
the study, and the square of the Pearson’s correlation coefficient
between the true and predicted outcomes was recorded. In math-
ematic terms, let Xi be a ki× p matrix where ki is the number of
observations on the ith study participant where i= {1, 2,. . ., 523}
and p is the number of fixed covariates. For the non-genetic model,
p is equal to four (intercept, age, sex, body mass index). Similarly,
let X−i be a (K− ki)× p matrix where K is the total number of
observations from all study participants,and each row corresponds
to an observation in the dataset, excluding the ith study partici-
pant. Let Z−i be the study participant covariance matrix, and let
Y−i be the vector of outcomes after excluding the ith study partic-
ipant. Then the fixed effects estimate for B−i, B̃−i , in the equation:

Y−i = X−iB−i + Z−iU−i + ε−i

can be calculated as B̃−i = XT
−i R−1
−i Y−i where ε−i is a vector of IID

random error terms with mean zero and covariance matrix R−i

and U−i is a vector of random effects. The predicted lipid levels
for the ith study participant, Ŷi , are calculated as:

Ŷi = Xi B̃−i

This process is completed for i= {1, 2,. . ., 523} study partici-
pants. Finally, predictive accuracy, measured as the square of the
Pearson’s correlation coefficient (and referred to as R2 in the text),
between Y and Ŷ is calculated, where Y= (Y1, Y2,. . ., Y523)T and

Ŷ =
(

Ŷ1, Ŷ2, . . . , Ŷ523

)T
.

NCBI risk score
The NCBI risk score was calculated using only markers previously
reported to be associated with each lipid phenotype. It is identical
to the weighted allele-counting method, where the reported esti-
mates were assigned to each weighting factor. In instances where
multiple studies reported association with the same marker, the
estimate obtained by the largest study was used. Significance was
assessed by regressing lipid levels on the risk scores, controlling
for fixed and random effects. An n-fold cross-validation approach
was then used to assess predictive accuracy after including the
NCBI risk score. The method is equivalent to the method pre-
sented above, with the exception that p is equal to five; and in
addition to intercept, age, sex, and body mass index, the X matrices
include the NCBI risk scores.

In a similar manner, NCBI risk scores were assessed for age-
specific association and predictive accuracy at 10-year-intervals
between 10 and 40 years of age. Observations were included that
were within 2.5 years of the desired age (e.g., 7.5–12.5 years of age
for the age 10 interval). Only one observation per individual was
included. In instances where multiple observations from the same
interval occurred within the age range, the observation closest
to the desired age was used. Additionally, at ages 20, 30, and 40,
the NCBI risk model was assessed after including the most recent
previous lipid measurement as a fixed effects covariate.

BHS risk scores
The BHS-A and BHS-R risk scores were calculated using all
reported lipid risk markers and only those reported to be associ-
ated with the lipid measurement examined, respectively. Separate
marker effects for each individual were calculated using n-fold
cross-validation. These marker effects were subsequently incor-
porated into a weighted allele-counting procedure to generate a
risk score (Figure 2). In mathematical terms, let xi,j be the vector
of (identical) genotypes for the ith study participant at the jth
marker where j= {1, 2,. . ., J } and J is the number of markers in
the set of interest. Similarly, let x−i,j be the vector of genotypes for
all others, excluding the ith study participant, at the jth marker.
Then the marker effect estimate for β−i,j , β̂−i,j , in the equation:

Y−i = x−i,jβ−i,j +W−iθ−i + Z−iV−i + e−i

can be calculated as β̂−i,j = xT
−i,j S−1

−i Y−i , where e−i is a vector of

IID random error terms with mean zero and covariance matrix
S−i , W−i is a matrix of fixed effects covariates with effects θ−i ,
and V−i is a vector of random effects. The BHS risk score for the
ith study participant, ϕi, can be calculated as:

ϕi =

J∑
j=1

xi,j β̂−i,j

Lipid levels were regressed on the BHS risk scores to obtain
significance measurements after controlling for fixed and random
effects, and predictive accuracy was assessed in the same manner
as presented above.

BLR and BRR models
The BLR and BRR models were fit using the BLR package (Howie
et al., 2009) in R v2.13.2 (Howie et al., 2012), and predictive accu-
racy was assessed using n-fold cross-validation. Age, sex, and body
mass index were treated as fixed effects covariates, and the study
participant covariance matrix was used as the grouping factor. All
markers in the set were included simultaneously using the lasso
penalty in the BLR models and the ridge penalty in the BRR mod-
els. Posterior estimates of the fixed and marker effects from the
training models were used to calculate the prediction values in the
testing sets. Let V (y) be the variance of the lipid measurement in
the training set, h2

= 0.5 be the heritability of the lipid measure-
ment (Knoblauch et al., 1997), and MSx be the average sum of
squares of the training genotypes. Then in the BLR model, priors
were set to the following:

VarE : df = 5; S = V
(
y
) (

1− h2) (df − 2
)

,
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lambda : type = “random”; value =
2
(
1− h2

)
h2

MSx ;

shape = 2; rate =

(
shape− 1

)
value2

,

VarU : df = 5; S =
V
(
y
)

h2

3

And the BRR model priors were set as:

VarE : df = 5; S = V
(
y
) (

1− h2) (df − 2
)

,

VarBR : df = 5; S =
V
(
y
)

h2
(
df − 2

)
MSx

,

VarU : df = 5; S =
V
(
y
)

h2

3

These values provide a prior expectation of the residual vari-
ance that is three quarters of the phenotypic variance and a
relatively flat prior density over a wide range of the regulariza-
tion parameter. When the degree of freedom is set to five, priors
have finite mean and variance and a relatively small influence on
inference (Makowsky et al., 2011). Let Xi be the ki×m matrix
of genotypes for the ith study participant, where m is the total
number of markers in the set, and let Wi be the matrix of fixed

covariates. If βL
−i and βR

−i are the vectors of posterior genotype

estimates for the BLR and BRR models, respectively; and θL
−i

and θR
−i are the vectors of posterior fixed effects estimates for the

BLR and BRR models, respectively, in the training models which
exclude the ith study participant. Then the predicted outcomes for

the ith study participant using the BLR model, Ŷ
L
i , and the BRR

model Ŷ
R
i are equal to:

Ŷ
L
i = Xiβ

L
−i +Wiθ

L
−i ,

Ŷ
R
i = Xiβ

R
−i +Wiθ

R
−i

The predictive accuracy of these models was calculated as
described above.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/Statistical_Genetics_and_Methodo
logy/10.3389/fgene.2013.00086/abstract

Dataset S1 | Genetic markers previously reported to be associated with
lipid level phenotypes and previously reported parameter estimates.

Dataset S2 | Single marker association results.

REFERENCES
Altshuler, D., Durbin, R. M., Abecasis,

G. R., Bentley, D. R., Chakravarti,
A., Brooks, L. D., et al. (2010). A
map of human genome variation
from population-scale sequencing.
Nature 467, 1061–1073.

Aschard, H., Chen, J., Cornelis, M.
C., Chibnik, L. B., Karlson, E. W.,
and Kraft, P. (2012). Inclusion of
gene-gene and gene-environmental
interactions unlikely to dramatically
improve risk prediction for com-
plex disease. Am. J. Hum. Genet. 90,
962–972.

Bates, D., Maechler, M., and Bolker,
B. (2011). lme4: Linear Mixed-
Effects Models Using S4 Classes.
R Package Version 0.999375-42.
Available at: http://CRAN.R-
project.org/package= lme4

Berenson, G. S., and Pickoff, A. S.
(1995). Preventative cardiology and
its potential influence on the early
natural history of adult heart disease:
the Bogalusa Heart Study and the
Heart Smart Program. Am. J. Med.
Sci. 310(Suppl. 1), S133–S138.

Chatterjee, N., Wheeler, B., Sampson, J.,
Hartge, P., Chanock, S. J., and Park,
J. H. (2013). Projecting the perfor-
mance of risk prediction base on
polygenic analyses of genome-wide
association studies. Nat. Genet. 45,
400–405.

de los Campos, G., and Rodriguez,
P. P. (2012). BLR: Bayesian Linear

Regression. R Package Version
1.3. Available at: http://CRAN.R-
project.org/package=BLR

Dudbridge, F. (2013). Power and pre-
dictive accuracy of polygenic risk
scores. PLoS Genet. 9:e1003348.
doi:10.1371/journal.pgen.1003348

Dumitrescu, L., Carty, C. L., Taylor,
K., Schumacher, F. R., Hindorff,
L. A., Ambite, J. L., et al. (2011).
Genetic determinants of lipid
traits in diverse populations from
the population architecture using
genomics and epidemiology (PAGE)
study. PLoS Genet. 7:e1002138.
doi:10.1371/journal.pgen.1002138

Dwan, K., Altman, D. G., Arnaiz,
J. A., Bloom, J., Chan, A. W.,
Cronin, E., et al. (2008). Systematic
review of the empirical evidence of
study publication bias and outcome
reporting bias. PLoS ONE 3:e3081.
doi:10.1371/journal.pone.0003081

Eberle, M. A., Ng, P. C., Kuhn, K.,
Zhou, L., Peiffer, D. A., Galver,
L., et al. (2007). Power to detect
risk alleles using genome-wide
tag SNP panels. PLoS Genet.
3:e170. doi:10.1371/journal.pgen.
0030170

Evans, D. M., Visscher, P. M., and
Wray, N. R. (2009). Harnessing
the information contained within
genome-wide association studies to
improve individual prediction of
complex disease. Hum. Mol. Genet.
18, 3525–3531.

Frerichs, R. R., Srinivasan, S. R.,
Webber, L. S., and Berenson, G.
R. (1976). Serum cholesterol and
triglyceride levels in 3,446 children
from a biracial community: the
Bogalusa Heart Study. Circulation
54, 302–309.

Greene, C. S., Penrod, N. M.,
Williams, S. M., and Moore, J.
H. (2009). Failure to replicate
genetic association may provide
important clues about genetic
architecture. PLoS ONE 4:e5639.
doi:10.1371/journal.pone.0005639

Hindorff, L. A., Sethupathy, P., Junkins,
H. A., Ramos, E. M., Mehta, J. P.,
Collins, F. S., et al. (2009). Poten-
tial etiologic and functional impli-
cations of genome-wide association
loci for human diseases and traits.
Proc. Natl. Acad. Sci. U.S.A. 106,
9362–9367.

Howie, B., Fuchsberger, C., Stephens,
M., Marchini, J., and Abecasis, G. R.
(2012). Fast and accurate genotype
imputation in genome-wide associ-
ation studies through pre-phasing.
Nat. Genet. 44, 955–959.

Howie, B. N., Donnelly, P., and
Marchini, J. (2009). A flexible
and accurate genotype imputa-
tion method for the next gener-
ation of genome-wide association
studies. PLoS Genet. 5:e10000529.
doi:10.1371/journal.pgen.1000529

International Schizophrenia Consor-
tium, Purcell, S. M., Wray, N.

R., Stone, J. L., Visscher, P. M.,
O’Donovan, M. C., et al. (2009).
Common polygenic variation con-
tributes to risk of schizophrenia
and bipolar disorder. Nature 460,
748–752.

Keating, B. J., Tischfield, S., Murray, S.
S., Bhangale, T., Price, T. S., Gless-
ner, J. T., et al. (2008). Concept,
design and implementation of a car-
diovascular gene-centric 50 k SNP
array for large-scale genomic asso-
ciation studies. PLoS ONE 3:e3583.
doi:10.1371/journal.pone.0003583

Knoblauch, H., Busjahn, A., Münter, S.,
Nagy, Z., Faulhaber, H. D., Schuster,
H., et al. (1997). Heritability analy-
sis of lipids and three gene loci in
twins link the macrophage scavenger
receptor to HDL cholesterol concen-
trations. Arterioscler. Thromb. Vasc.
Biol. 17, 2054–2060.

Lango, H., UK Type 2 Diabetes Genet-
ics Consortium, Palmer, C. N., Mor-
ris, A. D., Zeggini, E., Hattersley, A.
T., et al. (2008). Assessing the com-
bined impact of 18 common genetic
variants of modest effect sizes on
type 2 diabetes risk. Diabetes 57,
3129–3135.

Libiger, O., and Schork, N. J. (2012).
A method for inferring an indi-
vidual’s genetic ancestry and
degree of admixture associated
with six major continental pop-
ulations. Front. Genet. 3:322.
doi:10.3389/fgene.2012.00322

www.frontiersin.org May 2013 | Volume 4 | Article 86 | 7

http://www.frontiersin.org/Statistical_Genetics_and_Methodology/10.3389/fgene.2013.00086/abstract
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/10.3389/fgene.2013.00086/abstract
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=BLR
http://CRAN.R-project.org/package=BLR
http://dx.doi.org/10.1371/journal.pgen.1003348
http://dx.doi.org/10.1371/journal.pgen.1002138
http://dx.doi.org/10.1371/journal.pone.0003081
http://dx.doi.org/10.1371/journal.pgen.{\penalty -\@M }0030170
http://dx.doi.org/10.1371/journal.pgen.{\penalty -\@M }0030170
http://dx.doi.org/10.1371/journal.pone.0005639
http://dx.doi.org/10.1371/journal.pgen.1000529
http://dx.doi.org/10.1371/journal.pone.0003583
http://dx.doi.org/10.3389/fgene.2012.00322
http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Wineinger et al. Lipid polygenic prediction

Makowsky, R., Pajewski, N. M., Kli-
mentidis, Y. C., Vazquez, A. I.,
Duarte, C. W., Allison, D. B., et
al. (2011). Beyond missing her-
itability: prediction of complex
traits. PLoS Genet. 7:e1002051.
doi:10.1371/journal.pgen.1002051

Manolio, T. A., Collins, F. S., Cox,
N. J., Goldstein, D. B., Hindorff,
L. A., Hunter, D. J., et al. (2009).
Finding the missing heritability
of complex diseases. Nature 461,
747–753.

Munafò, M. R., Clark, T. G., and Flint,
J. (2004). Assessing publication bias
in genetic association studies: evi-
dence from a recent meta-analysis.
Psychiatry Res. 129, 39–44.

National Heart, Lung and Blood
Institute. (2012). Morbidity and
Mortality Chart Book. Available at:
http://www.nhlbi.nih.gov/resources/
docs/cht-book.htm [accessed
September 4, 2012].

Okser, S., Lehtimäki, T., Elo, L. L.,
Mononen, N., Peltonen, N., Kähö-
nen, M., et al. (2010). Genetic
variants and their interactions in
the prediction of increased pre-
clinical carotid atherlsclerosis: the
cardiovascular risk in young Finns

study. PLoS Genet. 6:e1001146.
doi:10.1371/journal.pgen.1001146

Park, J. H., Gail, M. H., Weinberg, C. R.,
Carroll, R. J., Chung, C. C., Wang,
Z., et al. (2011). Distribution of
allele frequencies and effect sizes and
their interrelationships from com-
mon genetic susceptibility variants.
Proc. Natl. Acad. Sci. U.S.A. 108,
18026–18031.

Park, J. H., Wacholder, S., Gail, M. H.,
Peters, U., Jacobs, K. B., Chanock, S.
J., et al. (2010). Estimation of effect
size distribution from genome-wide
association studies and implications
for future discoveries. Nat. Genet. 42,
570–575.

Paynter, N. P., Chasman, D. I., Paré, G.,
Buring, J. E., Cook, N. R., Miletich, J.
P., et al. (2010). Association between
a literature-based genetic risk score
and cardiovascular events in women.
JAMA 303, 631–637.

Purcell, S., Neale, B., Todd-Brown, K.,
Thomas, L., Ferreira, M. A., Bender,
D., et al. (2007). PLINK: a toolset
for whole-genome association and
population-based linkage analyses.
Am. J. Hum. Genet. 81, 559–575.

R Development Core Team. (2011). R:
A Language and Environment for

Statistical Computing. Available at:
http://www.R-project.org/

Siontis, G. C., Tzoulaki, I., Siontis, K.
C., and Ioannidis, J. P. (2012). Com-
parisons of established risk predic-
tion models for cardiovascular dis-
ease: systematic review. BMJ 344,
e3318.

Smith, E. N., Chen, W., Kähö-
nen, M., Kettunen, J., Lehtimäki,
T., Peltonen, L., et al. (2010).
Longitudinal genome-wide asso-
ciation of cardiovascular disease
risk factors in the Bogalusa Heart
Study. PLoS Genet. 6:e1001094.
doi:10.1371/journal.pgen.1001094

Wei, Z., Wang, K., Qu, H. Q., Zhang,
H., Bradfield, J., Kim, C., et al.
(2009). From disease association
to risk assessment: an opti-
mistic view from genome-wide
association studies on type 1 dia-
betes. PLoS Genet. 5:e1000678.
doi:10.1371/journal.pgen.
1000678

Zuk, O., Hechter, E., Sunyaev, S. R., and
Lander, E. S. (2011). The mystery
of missing heritability: genetic inter-
actions create phantom heritability.
Proc. Natl. Acad. Sci. U.S.A. 109,
1193–1198.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 16 March 2013; accepted: 25
April 2013; published online: 21 May
2013.
Citation: Wineinger NE, Harper A,
Libiger O, Srinivasan SR, Chen W,
Berenson GS and Schork NJ (2013)
Genomic risk models improve prediction
of longitudinal lipid levels in children
and young adults. Front. Genet. 4:86. doi:
10.3389/fgene.2013.00086
This article was submitted to Frontiers in
Statistical Genetics and Methodology, a
specialty of Frontiers in Genetics.
Copyright © 2013 Wineinger , Harper,
Libiger , Srinivasan, Chen, Berenson and
Schork. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the orig-
inal authors and source are credited
and subject to any copyright notices
concerning any third-party graphics
etc.

Frontiers in Genetics | Statistical Genetics and Methodology May 2013 | Volume 4 | Article 86 | 8

http://dx.doi.org/10.1371/journal.pgen.1002051
http://www.nhlbi.nih.gov/resources/docs/cht-book.htm
http://www.nhlbi.nih.gov/resources/docs/cht-book.htm
http://dx.doi.org/10.1371/journal.pgen.1001146
http://www.R-project.org/
http://dx.doi.org/10.1371/journal.pgen.1001094
http://dx.doi.org/10.1371/journal.pgen.{\penalty -\@M }1000678
http://dx.doi.org/10.1371/journal.pgen.{\penalty -\@M }1000678
http://dx.doi.org/10.3389/fgene.2013.00086
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

	Genomic risk models improve prediction of longitudinal lipid levels in children and young adults
	Author summary
	Introduction
	Results
	Discussion
	Materials and methods
	Study participants
	Genotyping
	Imputation
	Statistical analyses
	Modeling age
	Lipid genetic risk markers
	Non-genetic model
	NCBI risk score
	BHS risk scores
	BLR and BRR models


	Supplementary material
	References


