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It is believed that human diseases and their underlying causal
pathways involve a complex interplay between multiple genetic
and environmental risk factors. The search for relevant genetic
variants, which typically have very small individual effects, is
challenging. While typically genetic association studies involve
testing for association between the phenotype and each individ-
ual genetic variant (e.g., single nucleotide polymorphism, SNP),
it is widely recognized that jointly assessing the effects of multiple
genetic markers can increase power or provide the opportunity
to test different hypotheses than those addressed by single-maker
analyses. Various statistical approaches that enable the joint use
of data from multiple genetic markers are under development.
This eBook contains a selection of manuscripts dealing with var-
ious aspects of assessing the effects of multiple markers in genetic
association studies, including: gene or region-based association
testing approaches, particularly for rare variant analysis; study of
gene-gene and gene-environment interactions; model selection
and prediction using high-dimensional genomic data.

Multi-marker tests of association can be used to maximize
power to detect association at the gene or regional level. The
study by Burkett et al. (2013) included in this issue considered
an approach for a multi-marker regional test. In particular, they
demonstrate how gene genealogies estimated from haplotype data
can be used to find disease-predisposing genetic variants and pro-
pose a tree-based test of association based on assessing haplotype
similarity of cases versus controls. Noting that genotype corre-
lations within an LD block asymptotically lead to a multivariate
normal distribution for score test statistics, Taub et al. (2013)
developed a set of weights for markers to maximize power of
multi-marker association tests, and found that a method previ-
ously proposed by Conneely and Boehnke (2007) is a practical
and powerful method for a range of scenarios.

Region or gene-level tests are particularly useful for rare vari-
ant analysis, because the power of typical single-marker asso-
ciation tests is very low for rare variants. Several manuscripts
in this issue focused on rare variant analysis. Notably, Thomas
et al. (2013) provide a comprehensive review on methods and
analysis strategies for next generation sequencing studies, focus-
ing on two major types of study designs: two-phase design for
subject subsampling, and family-based design for variant pri-
oritizing. Various issues are investigated using simulations and
preliminary data from two studies, providing valuable guidance

for sequencing study design in both pedigrees and unrelated sam-
ples. Stewart and Cerise (2013) also suggested harnessing the
power of family based designs in association tests and prioriti-
zation of genetic variants/regions—with a particular interest in
SNPs with MAFs between 0.03 and 0.12. They proposed a novel
non-parametric association test, which can accommodate large
families and case-control data. It is expected that such method
will better inform the design of follow-up sequencing efforts. Yoo
et al. (2013) proposed a multiple regression method for gene-
level association tests for quantitative traits, using both common
and rare variants, and found that their approach applied to both
common and rare variants provided a robust and powerful alter-
native to analyzing the common and rare SNPs separately. Also in
this issue, Xu et al. (2014) explored the potential utility of strati-
fied false discovery rate for region-based association tests for rare
variant data, concluding that their simulations demonstrated low
power for window-based tests, and that the estimated FDR values
tended to be much smaller than the true FDRs, likely at least par-
tially due to long-range linkage disequilibrium. They suggested
that use of external annotation information may improve power,
but warned that sample sizes in current sequencing studies will
not enable detection of many causal variants of realistic effect
sizes. Finally, Cook et al. (2014) explored the impact of genotyp-
ing errors on rare variant association tests. They conclude that
different types of errors in SNP genotyping can lead to inflated
type I error rate and decreased power, while certain rare variant
tests and study designs may be more robust to genotype errors.

Investigation of gene-gene interactions also involves
multi-marker analyses. Six manuscripts in this eBook addressed
gene-gene interactions, or the related topic of gene-environment
interactions. Lee et al. (2013) and Sung et al. (2014) investigated
methods for the analysis of interactions in family data. Chen and
Guo, and Millstein discussed potential solutions to the challenge
of high dimensionality in interaction studies. Simino et al. (2013)
and de las Fuentes et al. (2013) report their analyses of large-scale
epidemiologic cohorts, studying gene-alcohol and gene-drug
interactions, respectively. These papers highlighted two key
challenges in the current applications of methods for detecting
interaction effects. First, computational burden can become
prohibitive when interactions are investigated in genome-wide
data. Chen and Guo (2013) explored the possibility of overcom-
ing this constraint through the use of processor graphics cards
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(GPU), while in the analysis of longitudinal family data, Sung
et al. (2014) proposed using a computationally less intensive
method based on the hierarchical linear model (HLM). Second, it
is well-known that interaction analyses require very large sample
sizes, and real data analyses often fail to achieve genome-wide
significance (as shown in de las Fuentes et al., 2013). It remains an
open question to what extent top-ranking (but non-significant)
findings are informative in prioritizing genes for future studies.

Genetic risk prediction is an important area of growing inter-
est, which is ideally performed in a multi-marker framework.
Although risk prediction is recognized as an important goal of
human genetics research, efficient statistical methods are still not
well-established, and few studies have demonstrated successful
use of genetic risk prediction for complex traits. In this issue, Che
and Motsinger-Reif (2013) expand on their earlier work compar-
ing simple genetic risk scores with weighted risk scores, demon-
strating that the weighted methods outperform simple count risk
scores in general, including more complex situations involving
interactions or presence of linkage disequilibrium. Using longi-
tudinal data, Wineinger et al. (2013) applied methods including
n-fold cross-validation procedures to generate lipid genomic pre-
diction models based on previously reported genetic markers,
which led to improved prediction over non-genetic risk models.

Achieving both computational (and cost) efficiency in addi-
tion to statistical efficiency is a key challenge in multi-marker test-
ing. The contribution by Millstein and Volfson (2013) provides a
novel method (and an R package “fdrci”) where permutations can
be used to estimate FDR including confidence intervals in a non-
parametric manner, which can account for dependencies among
tests and is computationally parsimonious.

In summary, the articles in this Frontiers in Genetics Research
Topic have described and applied various approaches that aim to
better exploit currently available data with appropriate statistical
approaches, and discussed the technical challenges and compu-
tational issues that remain in practical data analysis. Application
of powerful novel analytical methods such as those described in
this Research Topic is a key factor enabling progress in complex
human disease research.
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