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The preclinical characterization of gene modified adoptive cellular immunotherapy

candidates for clinical development often requires the use of mousemodels. Gene-

modified lymphocytes (GML) incorporating chimeric antigen receptors (CAR) and T-

cell receptors (TCR) into immune effector cells require in vivo characterization of

biological activity, mechanism of action, and preclinical safety. Typically, this

characterization involves the assessment of dose-dependent, on-target, on-

tumor activity in severely immunocompromised mice. While suitable for the

purpose of evaluating T cell-expressed transgene function in a living host, this

approach falls short in translating cellular therapy efficacy, safety, and persistence

from preclinical models to humans. To comprehensively characterize cell therapy

products in mice, we have developed a framework called “DIAL”. This framework

aims to enable an end-to-end understanding of genetically engineered cellular

immunotherapies in vivo, from infusion to tumor clearance and long-term

immunosurveillance. The acronym DIAL stands for Distribution, Infiltration,

Accumulation, and Longevity, compartmentalizing the systemic attributes of

gene-modified cellular therapy and providing a platform for optimization with the

ultimate goal of improving therapeutic efficacy. This reviewwill discuss both existent

and emerging examples of DIAL characterization in mouse models, as well as

opportunities for future development and optimization.

KEYWORDS

CAR-T cells, immunotherapy, adoptive cell therapy, tumor microenvironment,
animal models
1 Introduction

Mouse models are routinely used in the preclinical characterization of gene-modified

adoptive cellular immunotherapy candidates for clinical development. Adoptive transfer

studies in mice, initially in the context of allograft transfer, underpin our understanding of

T cell function, trafficking, and therapeutic potential (1–3). The first human studies of

gene-modified T cells occurred in the 1980s (4), where a neomycin resistance cassette was

retrovirally transduced into tumor-infiltrating lymphocytes (TIL) from patients with
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melanoma before infusion into patients. These pioneering studies

demonstrated the ability of autologous lymphocytes transferred into

patients, along with interleukin-2 (IL-2) treatment, to persist for

months. The persistence of the transgene was determined through a

PCR-based detection assay, which enabled detection of the

adoptively transferred cells. Prior to this landmark human clinical

study, a similar approach employing TIL therapy was successfully

implemented in mice, resulting in complete regression of syngeneic

murine tumors (5). Thus, the mouse study served as a valuable early

model for investigating the distribution and function of adoptively

transferred tumor-infiltrating lymphocytes.

The development of gene-modified chimeric T-cell receptors

that enhance T cell function toward tumor cells in an MHC-

independent manner was first described by Eshhar and colleagues

in 1989 (6). These chimeric receptors, termed immunoglobulin T-

cell receptor (TCR) chimeras, combined an extracellular antibody-

like antigen binding molecule with a TCR and an intracellular CD3

zeta (CD3z) signaling domain. While effective in vitro, these initial

designs lacked the co-stimulatory framework that enabled enhanced

T-cell function and persistence in vivo.

In 2002, the “second generation” chimeric antigen receptor (CAR)

was introduced, addressing the limitations of the previous design (7).

This evolved design enabled transduced T cells to produce high levels

of endogenous IL-2, supporting the maintenance of cytotoxic function

and persistence. Over the years, multiple second-generation CAR-T

were developed, incorporating co-stimulatory domains such as CD28

or 4-1BB (8). These designs differed from the first-generation

constructs by their ability to drive T cell expansion in the presence

of continual antigen exposure (9). The functional improvement was

further demonstrated by the requirement of co-stimulation for tumor

regression in mouse models of ALL (10, 11).

A few years later, the second-generation CAR-T design was

reduced to practice with the first evidence of CAR-T-mediated

tumor responses in human clinical trials in advanced follicular

lymphoma (12). Subsequent clinical trials led to the development of

second generation CAR-T therapy targeting CD19, resulting in the

approval of tisagenlecleucel and axicabtagene ciloleucel for the

treatment of refractory lymphoma and pediatric leukemia. Thus,

the preclinical validation of second-generation CAR-T in mice

informed the subsequent clinical development and approval of

gene-modified lymphocyte (GML) therapy.

In parallel with second-generation CAR-T, transgenic T-cell

receptor (TCR-T) therapy gained momentum as another genetically

modified approach for redirecting potent T-cell responses in solid

tumors. Building upon the initial success of TIL therapy, Rosenberg

et al. engineered autologous gene-modified TCR-T against the

melanosome antigen MART-1 (13). These modified TCR-T cells

demonstrated persistence and induced tumor regressions in a limited

number of patients. The development of the PMEL-1 mouse model,

targeting another prevalent melanosome antigen in mice, provided

strong preclinical evidence. In this model, transgenic PMEL-1 (gp100)

directed T cells were transferred into mice bearing melanotic, poorly

immunogenic B16 tumors (14). In both preclinical and clinical settings,

tumor regression and persistence of the TCR-T were observed,

accompanied by autoimmune responses such as vitiligo, which were

observed in both mice and humans (15, 16).
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The future development of therapies against HLA-restricted

cancer-testis (CT) antigens including NY-ESO-1, PRAME, MAGE-

A3 and MAGE-A4, among others, showcased additional

opportunities for the efficacy of TCR-T against solid tumors.

However, the development of a fully analogous mouse model

posed challenges due to the lack of homology, expression and/or

cross-reactivity of TCRs with mouse peptide-MHC (pMHC). In

most cases, representative antigens with known high-affinity CD8

TCRs such as PMEL-1, tyrosinase-related protein 1 (TRP1) or

ovalbumin (OVA/OT-I) were used as proxies for human TCR-T.

The process of preclinical validation for GML is constantly

evolving, and new guidance is emerging (17). However, the primary

objective of preclinical testing remains consistent: to confirm the

biological activity, mechanism of action, and preclinical safety of the

therapy before its use in patients.

While animal models, particularly severely immunocompromised

mice, are commonly employed for CAR-T validation, the current

approach often focuses on assessing fundamental attributes such as

dose-dependence, on-target on-tumor activity, and the absence of

uncontrolled proliferation and toxicity. While these attributes

validate the functionality of the transgene and the manufacturing

process, they overlook several critical aspects that should be

considered when designing GML as therapeutics for oncology.

These aspects include modeling on-target, off-tumor toxicity

and exhaustion, understanding the impact of lymphodepleting

chemotherapy (LDC) on toxicity or cell expansion, evaluating

tumor heterogeneity and antigen escape, evaluating the tumor

microenvironment (TME) with its soluble factors and immune

suppressor cells, overcoming barriers to infiltration, exploring the

consequences (both positive and negative) of long-term expansion

and persistence, and evaluating toxicities such as cytokine-release

syndrome (CRS) and immune effector-cell-associated neurotoxicity

syndrome (ICANS).

To characterize the cell therapy product and its design attributes

more comprehensively, we have developed a framework called

“DIAL”. This framework provides a holistic understanding of

genetically engineered cellular immunotherapies in vivo,

encompassing their journey from infusion to tumor regression and

continued immunosurveillance. The acronym DIAL represents

Distribution, Infiltration, Accumulation, and Longevity, which

serve to compartmentalize the systemic attributes of gene modified

cellular therapy (Figure 1). Additionally, DIAL serves as a platform

for optimizing these attributes, with the ultimate goal of enhancing

overall therapeutic efficacy. This review will discuss both existing and

emerging examples of DIAL optimization, their characterization in

mouse models, and potential avenues for future development. Given

the rapidly evolving nature of this field, it is not feasible to cover each

topic exhaustively with examples of each emerging technology.

Instead, each section will focus on key examples, emphasizing areas

for improvement and future advances.
2 Distribution

Optimal drug distribution refers to the efficient and rapid

delivery of drug material to the desired site of action from the site
frontiersin.org
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of administration. The distribution of adoptively transferred

lymphocytes for cellular therapy is analogous to pharmacologic

distribution of biologics and small molecules, with certain

key distinctions.

As donor-derived “living drugs”, infused GML exhibit a

distribution pattern similar to endogenous lymphocytes (18–20).

Following intravenous infusion, T-lymphocytes follow the vascular

circulation, extravasate into tissues, diffuse into target sites, and

recirculate through uptake in lymphatic tissue via high endothelial

venules, ultimately returning to the vasculature through either the

thoracic duct or vascular circuits (21). While the initial use of CAR-T

focused on treating of B cell malignancies in the periphery it is

important to note that GML also can distribute in compacted tissues

and encounter their cognate antigens. This interaction allows them to

receive survival and proliferation signals, promoting their expansion.

The expansion phase of GML products induced by antigen

encounter sets adoptive cell therapy (ACT) apart from other

therapeutic approaches. During this phase, the levels of the

therapeutic cells (measured by the presence of CAR or TCR-

positive cell by flow cytometry or gene copy number by PCR)

increase relative to the infusion levels. The peak and duration of

this elevation depends on the antigenic burden and the

microenvironmental context of antigen encounter, both of which

influence the extent of proliferation and expansion. Over time, the

infused cells undergo apoptosis in various tissues. The initial phase of

decay occurs rapidly after the initial expansion, while the second

phase of decay proceeds gradually over weeks to months. This

gradual decline may be attributed to factors such as loss of

stimulation, activation-induced cell death, and exhaustion (22).

The composition of cell therapy infusion products plays a

pivotal role in determining their distribution. When accounting

for effector, memory and naïve subsets, both rodents and human
Frontiers in Immunology 03
exhibit a similar distribution pattern for ACT (21, 23–25). Factors

such as cell size and the presence of receptors that govern lymphatic

tropism (such as L-selectin and CCR7) can influence the survival

and recirculation of cells post-infusion. Further, the relative

composition of these subsets can impact the proliferative and

metabolic potential of the transferred lymphocytes.

In the case of commonly used laboratory mice (Mus musculus),

variations in CAR-T and TCR-T distribution may be attributed to

factors like strain differences, extent of immune competence, and

discrepancies in housing and sourcing facilities. Nonetheless,

working with laboratory mice generally offers the advantage of

predictability and consistency in experimental outcomes.
2.1 Distribution – cellular manufacturing

The ex vivo manipulation and expansion of GML, often referred

to as cellular manufacturing, represents the initial stage where

subsequent distribution patterns can be influenced. The

manufacturing process involves complex interplay of factors that

dictate the cellular kinetics (CK) of the grafted cells, including post-

infusion cell survival, tissue infiltration, antigen-induced expansion,

recirculation through the lymphatics into the bloodstream, terminal

differentiation, and elimination.

Early T cell manufacturing processes focused on scaling up large

numbers of cells for infusion into patients who would subsequently

receive supportive doses of IL-2 (26, 27). In comparison, CAR-T

therapy had key distinctions, requiring fewer cells for infusion and

demonstrating the ability to persist without patient-administered

IL-2. However, many of the principles established with TIL therapy,

such as T cell activation though their TCR using anti-CD3

antibodies or antigen-presenting cells, and expansion in the
FIGURE 1

The DIAL framework. Distribution, infiltration, accumulation, and longevity are classified as key attributes and areas to focus on for enhancing cell
therapy products. Examples of interventions are provided for each attribute and discussed in the text.
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presence of moderately high (>100 IU/mL) levels of IL-2 for 1-2

weeks, were initially maintained in GML protocols.

However, it was observed that sustained expansion in IL-2

could lead to cell exhaustion and limited persistence in vivo (28).

Consequently, various protocol modifications were adopted in

cellular manufacturing to preserve the fitness and persistence of

the transferred cells post-infusion (29, 30).

In the years following the development of the initial CD19

CAR-T therapy, numerous modifications to manufacturing

protocols were explored. These included the use of CD3/CD28

beads and alternative cytokines such as IL-7, IL-15, and IL-21,

which promoted a stem cell memory phenotype (31–33).

Additional enhancements involved incorporating small molecules

into expansion media to further boost memory characteristics,

promote persistence, and increase anti-tumor activity (34–39).

The results demonstrated that process modifications preserving a

memory cell phenotype enabled enhanced persistence, as

determined by factors such as proliferative potential, resistance to

stress (e.g., serial antigen stimulation or low cell dosing), and

improved distribution to lymphatics and secondary lymphoid

organs, facilitating recirculation (40).

Administration of high doses of CAR-T cells after prolonged

manufacturing times and in conjunction with supportive IL-2 can

lead to severe toxicities and lack of long-term durability, even when

the target antigen is not present in normal tissues (41). Because of

these potential issues, many of the recent advancements in

autologous cellular manufacturing focus on preserving GML

stemness as a means of improving potency and reducing toxicity,

with a heightened focus on the T memory stem-cell (TSCM). This

subset of memory T cells with self-renewal capacity was first

identified in mice (34) and subsequently in human (28) and non-

human primate (42). TSCM have similar cell surface markers and

metabolic potential compared to naïve T cells, and have an

enhanced proliferative potential compared to other memory and

effector subsets. For CAR-T, it is important to consider that recently

activated naïve T cells are often not distinguished from native TSCM

cells and thus may differ in functional capacity and fate. There are a

variety of ways to enhance the CAR- TSCM fraction: mechanical

enrichment of naïve/memory subsets (29, 43), addition of factors or

cytokines to induce stemness (31, 37, 44), and shortening the

manipulation of peripheral cells and reducing manufacturing time

(45, 46). Although much of the modeling for CAR-TSCM is

performed using human cells in immunocompromised mice, the

underlying principles can be applied to immunocompetent strains

as well.

Murine T cell manufacturing processes are not optimal for

translation to human CAR-T cell manufacturing. Mouse T cells

exhibit many dissimilarities compared to their human counterparts.

Additionally, available protocols for murine T cell transduction and

expansion, as well as lymphodepletion, create disparities in

comparison to humans.

To begin with, murine T cells do not expand ex vivo to the same

extent as human T cells. They require different media and

conditions for activation and do not consistently expand for

greater than approximately 10-14 days. Furthermore, the source

of cells differs between murine and human protocols. Murine
Frontiers in Immunology 04
protocols primarily utilize splenic T cells, whereas human

protocols rely on peripheral blood T cells (47, 48).

Lastly, lymphodepletion in mouse typically involves low-dose

(<5 Gy) whole-body irradiation, whereas lymphodepleting

chemotherapy (LDC) is almost exclusively used in humans. These

differing protocols can lead to variations in the dynamics of

lymphopenic immune cell recovery and cytokine production,

which are crucial for supporting the expansion of transferred cells

and promoting memory phenotypes.

Despite these differences, genetically engineered fully murine

model systems can still be utilized to highlight many of the

advantages of generating stem-like T cells for ACT (49–55). In

the future, the development and engineering of GML could benefit

from a combination of both immunocompetent syngeneic murine

and immunocompromised human xenograft model systems. This

approach would provide a more comprehensive understanding of

the various factors required to achieve optimal cell distribution.
2.2 Distribution – choice of antigen

The choice of antigen and context of antigen encounter will

influence the initial distribution of the gene-modified cells. After

intravenous infusion, cell therapy products follows a pattern of

distribution that involves vascular circulation, extravasation,

diffusion into tissue, and recirculation primarily through

lymphatics and vascular circuits. GML can distribute in tissues

and encounter their cognate antigens in the tumor, triggering

survival and proliferation signals that allow for expansion

and continued distribution (Figure 2A). Different types of

lymphocytes may have varying tendencies to distribute to tissues

and lymphatics.

In cases where antigen is readily accessible in blood-based

tumors, the process of expansion and distribution is facilitated.

However, when the antigen is confined to poorly vascularized or

compacted tissues, both the accessibility and the context of antigen

encounter are compromised. Non-genetically modified

lymphocytes, particularly T cells, have the capability to produce

cytokines and transcription factors that promote proliferation and

antigen-induced expansion. GML, with their expressed receptors,

further enhance antigen-induced expansion to exaggerated levels,

which can be augmented by preceding lymphodepletion. It is

important to note that the differences between mouse and human

lymphodepletion, as discussed earlier, can also lead to discrepancies

in interpreting preclinical models when evaluating antigen-specific

expansion in humans.

Antigens that exhibit a tumor-specific expression profile

facilitate confined and intended cell expansion. On the other

hand, more promiscuous antigens increase the risk of “off-tumor”

toxicities and promote effector differentiation, which can lead to

eventual dysfunction. When target-directed activity induces both

direct cytotoxicity and paracrine effects through cytokine

production, widespread antigen expression outside the tumor can

exacerbate systemic inflammation. This, in turn, hampers the cells’

ability to infiltrate the tumor efficiently. This phenomenon is

commonly referred to as on-target, off-tumor toxicity. However,
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promiscuous antigen expression can also impede cell expansion and

distribution by diverting cells into non-tumor tissues, effectively

excluding a portion of the transferred GML from their

intended target.

The ideal antigen for tumor targeting would be uniquely

expressed in the tumor and absent in normal tissues. However,

for CAR-T therapy, such antigens are rare, with only a few examples

like EGFRvIII and aberrantly glycosylated protein glycoforms such

as Muc1 falling into this category (56, 57). Most CAR targets show a

preference for tumor expression but are also detected in normal

tissues. The most successful CAR targets have been observed in B

cell malignancies, where normal expression occurs in cells that are

apparently dispensable. Another wave of CAR targets is emerging,

with lower levels of normal tissue expression but not complete

absence. These targets aim to strike a balance between effective

tumor targeting and minimizing off-target toxicities. It is

challenging to achieve complete avoidance of target engagement

in normal tissues, so efforts are focused on selecting targets with

reduced normal tissue expression to mitigate potential toxicity

while still enabling successful tumor targeting.

This expanded repertoire of CAR targets opens up new

possibilities for successful immunotherapy beyond B cell

malignancies, where targets expressed in dispensable tissues have

shown promising outcomes. Preclinical mouse models provide

certain examples where on-target, off-tumor toxicity can be

monitored. However, it’s important to note that these models

often involve immunocompromised mice using mouse cross-
Frontiers in Immunology 05
reactive single-chain variable fragments (scFvs) or transgenic

approaches to introduce the human antigen.

For instance, one study showed that a low-affinity Her2 CAR-T

specifically targeted Her2-expressing tumors while avoiding

accumulation in the mouse liver, where Her2 was artificially

expressed using adenovirus (58). In another example, an affinity-

tuned, mouse cross-reactive GPC3 CAR-T was able to avoid lethal

toxicity against GPC3 expressed in the mouse lung and induce

regression of human hepatocellular carcinoma tumors (59).

However, caution must be exercised when interpreting off-tumor

toxicities in mice, as some results may not align with human studies.

For instance, a high-affinity GD2 CAR-T demonstrated lethal CNS

toxicity in a mouse model of neuroblastoma (60), whereas human

clinical trials using a similar GD2-targeted CAR-T via intravenous

and intracerebroventricular therapy showed good tolerability

without signs of off-tumor CNS toxicities (61).

In contrast to CAR therapy, GML TCR therapy offers access to

certain tumor-specific targets, particularly due to its ability to

recognize intracellular proteins presented as peptides in the

context of the major histocompatibility complex (pMHC). These

targets primarily fall into the categories of cancer-testis antigens,

tumor-viral antigens, and mutant neoantigens. The presence of

these unique tumor-specific targets presents opportunities for

precise and personalized immunotherapy approaches.

GML TCR therapy allows for the targeting of antigens that are

specifically expressed by tumor cells, offering potential advantages

in terms of enhanced tumor specificity and reduced toxicity
B

A

FIGURE 2

Distribution. (A) T cells isolated from patient’s peripheral blood or mouse lymphoid organs are engineered to express a CAR. CAR-T cells are
expanded ex vivo and infused back into the patient or in tumor-bearing mice. Upon infusion, CAR-T cells distribute through the body, migrate to the
tumor, and kill target-expressing tumor cells. (B) delivery of mRNA-encoding CAR ligands using lipid nanoparticles (LNPs) to lymph nodes results in
expression of the target by APC. Target-expressing APC prime and activate CAR-T cells, allowing for expansion and migration to the tumor.
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compared to CAR therapy. This approach broadens the range of

tumor-specific antigens that can be targeted, expanding the

possibilities for developing effective treatments against various

types of cancer. However, achieving broad targeting will

necessitate the rapid development of personalized TCR-T

therapies (62), which cannot be practically modeled in mice.

For the majority of the aforementioned targets, fully mouse

surrogate CAR/TCR systems, transgenic mice, or cross-reactive

mouse antibodies are not typically used in preclinical studies.

While on-tumor activity can be measured, there remains a

significant gap in the investigation of off-tumor inflammation and

toxicity. Consequently, examples of off-tumor engagement by GML

are predominantly observed in human clinical trials, and the overall

implications for cell survival, distribution, and toxicity in these

scenarios remain poorly understood.

Furthermore, it’s worth noting that many GML TCR therapy

approaches are often combined with interleukin-2 (IL-2) to

enhance cellular expansion and persistence. However, the use of

IL-2 in these therapies brings its own considerations and potential

dose-limiting toxicities. These toxicities may include vascular leak

syndrome, hypotension, and renal dysfunction. Modeling IL-2

toxicity in mice is challenging, primarily because mice can

tolerate high levels of IL-2 without experiencing the dose-limiting

toxicities observed in humans.

A recent advancement in GML engineering is the application of

combinatorial antigen targeting technology. This approach aims to

more precisely target tumor tissues while avoiding off-tumor

inflammation and promoting optimal GML distribution. However,

it is important to note that most logic-gated CAR-T systems have

only been demonstrated at the preclinical level in mouse models.

Logic gating approaches typically involve two distinct binding

events and can fall into different categories:
Fron
1. OR gating: Both antigen-binding fragments can

simultaneously engage with the target and trigger

signaling. This can occur through tandem engagement,

where both antigen-binding molecules are joined and

signal through a shared intracellular domain (ICD), or

through the expression of separate CARs in a bicistronic

format.

2. AND gating: Both antigen-binding fragments are required

to engage the target in order to initiate signaling.

3. ON gating: The CAR is not expressed or fully functional

until the addition of a second pharmacologic agent, which

can be a small molecule, protein, or antibody-like drug.

“Universal CARs” also fall in this category.

4. NOT gating: The second antigen-binding fragment can

disable or “turn off” the signaling initiated by the first

antigen binder, typically expressed in normal tissues.

5. IF … THEN gating: The first antigen binder drives

signaling through a secondary transcription factor,

leading to the expression of the second protein, which

can be a fully competent CAR molecule.
While “OR” gated CAR-T, used in multiple dual and tandem

formats, is being evaluated in clinical trials for hematologic
tiers in Immunology 06
malignancies, most logic-gating approaches have only been

described and validated in preclinical studies in mice (63–66).

Since most logic-gating strategies require two separate events to

initiate signaling, they may have limitations such as leakiness or a

loss of precise temporal control. For a more detailed discussion on

the benefits and challenges associated with various logic-gating

approaches to mitigate on-tumor, off-target toxicity, a recent review

provides in-depth coverage (67).

An innovative approach aims to address some of the challenges

faced by other technologies by combining distinct antigen binding

domains with mutually dependent signaling domains downstream

of the TCR complex. Researchers proposed coupling the

intracellular domains (ICDs) of SLP76 and LAT to single-chain

variable fragment (scFv) domains that recognize different antigens.

By engineering mutations that prevent simultaneous binding of the

Grb2 family member GADS, this approach creates a tightly

regulated logic gate that has the potential to enable tumor-specific

expansion of dual CAR-T cells (68).

The SLP76/LAT logic gate was validated using a commonly used

xenograft model of acute lymphoblastic leukemia (NALM6) in NSG

mice, where the tumor cells expressed ROR1 and CD19 antigens as

dual targets. Encouragingly, this approach demonstrated an

improved balance between efficacy and off-tumor toxicity

compared to traditional “split CAR” and “Syn-NOTCH” logic-

gating strategies. The development of technologies that provide

more precise control over dual antigen targeting in the future may

not only help in managing off-tumor toxicity but also enhance the

distribution properties of CAR targeting molecules.

This advancement opens up possibilities for the exploration of

dual-antigen-defined tumor types. It offers the potential for improved

efficacy by combining the favorable attributes of TCR GML (tumor

specificity) and CAR GML (targeting broader indications).
2.3 Distribution – cell priming strategies

To enhance GML expansion, strategies have been explored to

mimic peripheral priming mechanisms in secondary lymphoid

organs (SLO) by targeting oxygen, nutrient, and co-stimulatory

ligand-accessible regions of the body. Initially, the concept of

enhancing adoptive T cell therapy involved using viral-specific T

cells as a platform for tumor-directed CAR or TCR transgenes.

These priming responses can be engaged passively, through

endogenous viral antigen presentation, or actively, via vaccination

against the viral antigen (69, 70). In recent approaches, in vitro

priming of CAR-T cells with oncolytic viruses through their native

TCR has been combined with in vivo boosting, leading to

impressive responses in preclinical models of melanoma and

glioma (71).

Despite the early enthusiasm and adoption of viral-specific T

cells as a CAR platform, and the development of innovative

approaches to prime peripheral expansion of CAR-T, only a

limited number of human clinical trials have been initiated using

these approaches. It’s important to note that most viral-specific T

cells are being explored as an allogeneic platform due to their

reduced potential for alloreactivity (NCT04288726, NCT03740256,
frontiersin.org
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NCT01475058, NCT01430390). In addition to viral-specific T cells,

other lymphocyte lineages such as NK cells, iNKT cells, gd T cells,

and MR1 T cells that can recognize non-MHC antigens in tumors

may also be considered as GML platforms (72–75). While these

alternative ACT platforms have the ability to naturally expand in

the presence of their cognate ligands, similar to viral-specific T cell

priming, and show potent responses in mouse models, it remains to

be seen if they exhibit similar expansion and distribution potential

to ab CAR-T cells in human patients.

Recent synthetic approaches to enhance CAR-T expansion include

“CAR vaccine” strategies, which involve the delivery of mRNA-

encoded CAR ligands using lipid nanoparticles (LNPs) to lymph

nodes (Figure 2B). This allows CAR-T cells to undergo in vivo

expansion and stimulation in lymphatic regions. The CARVac

strategy demonstrated that LNP-mediated delivery of the CLDN6

antigen to antigen-presenting cells (APCs) in the lymphoid

compartments of mice could promote robust expansion of CLDN6

CAR-T cells and improved anti-tumor efficacy (76). Another approach

involved in vivo expression of “amphiphile ligands” that could be

delivered by LNPs and inserted into the membrane of APCs to present

cognate ligands, facilitating GML proliferation (77, 78). Interestingly,

neither of these approaches resulted in substantial elimination of the

CAR-antigen expressing APCs. Clinical testing of CARVac is

underway to enhance CAR-T expansion against CLDN6-positive

solid tumors (NCT04503278). Although data generated in mouse

models demonstrated a significant increase in expansion and

improved anti-tumor efficacy, data from human trials are still in the

early stages and inconclusive regarding the priming benefits of the

“CAR vaccine” approach. Nonetheless, these and future strategies to

safely enhance peripheral CAR-T expansion can be effectively modeled

in mice and have the potential to drive GML activity using lower

infused doses or lymphodepletion-free regimens.
3 Infiltration

Following successful systemic distribution, transferred immune

cells may encounter various physical and chemical barriers as they

navigate towards tumor-associated antigens and exert their cytotoxic

function. In the case of hematologic malignancies, GML may not

require extensive infiltration to encounter antigens. However, this is

not the case for the majority of carcinomas. Fortunately, immune

cells, such as T cells, possess receptors that facilitate extravasation

from the vasculature into inflamed tissues and further penetration

into the extracellular matrix (ECM) based on chemokine receptor

expression, cytokines, and chemical gradients (79). While most CXC

and CC chemokine receptors are already expressed on peripheral T

cells at various activation stages (80), there are instances where

enforced overexpression of these receptors enhances GML’s ability

to access tumors by leveraging native chemical gradients.
3.1 Infiltration – engineering chemotaxis

One important aspect of successful infiltration is the ability of T

lymphocytes to undergo extravasation and chemotaxis towards sites
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of inflammation. Naturally circulating T cells acquire this capacity

as a result of effector differentiation following antigen recognition

and priming in secondary lymphoid organs (SLO). As described

earlier, there are various methods to enhance GML priming using

synthetic and natural mechanisms. Additionally, receptor

overexpression in GML has been shown to augment their

infiltration capacity. Some approaches focus on tumor-specific

cues to modify chemotactic receptor expression, while others aim

to increase lymphoid-homing capacity, recirculation, and survival

in a more general manner, thereby enhancing anti-tumor function

(81). Proof-of-mechanism for tumor-specific strategies primarily

comes from engineered preclinical mouse models and xenograft

model systems, where overexpression of the chemokine receptor

can influence the infiltration and accumulation of CAR-T cells

compared to their unmodified counterparts.Chemokine receptor

overexpression in GML has been utilized to address potential

trafficking deficiencies in solid tumors (Figure 3A). The strategic

rationale behind these approaches is often similar:
1. Tumors are found to express sufficient levels of chemokine

ligands, creating chemotactic gradients.

2. Peripheral T cells or endogenous tumor-infiltrating

lymphocytes (TIL) show low levels or downregulation of

the cognate or paired chemokine receptor(s).

3. Re-expression of the lost or downregulated receptor is

shown to synthetically augment and/or restore infiltration

in preclinical mouse models.
Examples of receptors engineered into GML include CCR2,

CCR4, CXCR2, CXCR3, CXCR4, and CX3CR1 (82–88). Recent

examples showed overexpression of CXCR2 enhanced infiltration

of CAR-T hepatocellular carcinoma xenografts where the tumors

were shown to express high levels of CXCR2 ligands including

CCL2, CXCL1, CXCL2, and CXCL5 (89); CXCR1 overexpression

enhanced T and NK CAR cells to migrate into ovarian or pancreatic

tumors (90, 91) and CCR2 transduction into MSLN CAR-T cells

enhanced migration into CCL2 positive malignant pleural

mesotheliomas (86, 92). Although some of these examples exploit

chemotactic gradients that may be generally expressed in inflamed

tissues rather than specifically in tumors, a recent study used a

tumor-specific strategy by forcing overexpression of the chemokine

receptor CXCR6 on mesothelin-targeted CAR-T cells. This

approach led to enhanced regression of pancreatic tumor

xenografts. CXCR6, which is normally lowly expressed on

peripheral blood T cells, is naturally attracted to its counterpart

ligand CXCL16. In this case, CXCL16 was found to be highly

expressed by malignant pancreatic epithelial cells, making it an

attractive tumor-specific strategy (93).

Other strategies have been explored to improve infiltration and

survival of transferred ACT without directly targeting the tumor.

Some of these strategies involve factors such as IL-7/CCL19 or L-

selectin overexpression to increase tumor penetration of ACT (81,

94). Notably, L-selectin overexpression in mice allowed for

equivalent tumor infiltration and improved anti-tumor function

of CAR-T cells by decreasing the activation threshold of the

transferred cells, contrary to the presumed improvement in
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lymphoid organ homing. While these strategies have shown

therapeutic merit in preclinical models, few have been validated

in human clinical trials. It remains to be seen whether these

strategies can enhance the success of GML-based solid

tumor therapy.

A recent report suggested that ex vivo expansion of CAR-T cells

in the presence of TGF-b could significantly enhance tumor

infiltration and efficacy in xenograft tumor models (95). This

approach aimed to epigenetically rewire peripheral blood T cells

toward a resident memory T cell phenotype (TRM), which would

enhance accumulation and promote stemness of the transferred

CAR-T cells targeting MSLN. In CAR-TRM treated, regressing

xenograft tumors, there was a marked increase in CAR-T cell

infiltration, and depletion of CD103+ cells diminished the benefits

of the so-called CAR-TRM cells. Interestingly, overexpression of the

TRM transcription factor RUNX3, which had been used previously to

enhance TRM expansion in murine tumor models, did not

phenocopy the CAR-TRM cells (96). This expansion strategy

represented the first attempt to enhance CAR-T infiltration in

murine models using ex vivo process engineering. Intriguingly, a

similar protocol was used in human clinical trials to enhance

neoantigen-directed TCR-T cells targeting mutant KRAS G12D

pMHC (97). In this clinical trial, a TGF-b-based ex vivo expansion

protocol was employed to enhance TCR-T cell infiltration in

pancreatic ductal adenocarcinoma, leading to a dramatic reduction

of lung lesions and a durable clinical response in one patient.

Another strategy to improve GML infiltration involves

introducing chemotactic factors or cytokines into tumor-targeted

therapeutics, such as engineered oncolytic viruses (OVs). Studies
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using mouse models demonstrated that intra-tumoral injection of

adenovirus engineered to produce IL-15 and RANTES could

promote GD2 CAR-T cell infiltration into solid tumors in

immunocompromised mice (98), and this approach is also being

explored in human clinical trials (NCT03740256). Subsequent

efforts showed that intra-tumoral injection of OVs, such as

vaccinia, could promote T cell infiltration by producing high

systemic levels of CXCL11 (99). Other combinations propose

introducing cytokine or immune checkpoint blockade (ICB)

payloads into OVs, which, together with the oncolytic activity of

the virus, can enhance CAR-T cell infiltration and survival in

preclinical models of solid tumors (100–102). Unexpectedly, OV-

mediated introduction of intra-tumoral Type 1 interferon (IFNb)
was shown to drive CAR-T cell apoptosis, which was prevented by

deleting IFNAR1 in the engineered cells (103). Given that many

OVs naturally induce the production of Type I interferon, a deeper

understanding of the potential benefits, pitfalls, timing, and

sequencing of combination OV and CAR-T therapy is warranted

(104). The combination of OV and CAR-T therapy for solid tumors

is a subject of ongoing research and a separate review (105).
3.2 Infiltration – navigating physical
barriers

In addition to challenges posed by suboptimal chemotactic

gradients, solid tumors often create physical barriers that promote

immune exclusion. Immune exclusion can be caused by immune or

non-immune stroma in the TME, which may impede immune cell
B

A

FIGURE 3

Infiltration. (A) Chemokine receptors can be engineered into CAR-T cells, enhancing the sensitivity to chemokine gradients and ultimately migration
and infiltration to the tumor site. (B) Extracellular matrix-(ECM) rich tumor types physically restrict lymphocytic infiltration, creating an immune-
excluded TME. Use of combination agents that directly or indirectly target tumor fibrosis may facilitate GML infiltration into the TME.
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infiltration. The next section of this review will delve into the

discussion of soluble and metabolic factors that contribute to

immune exclusion. This section will primarily focus on tumors

characterized by fibrogenic stromal cells, also known as cancer-

associated fibroblasts (CAFs), which produce collagen-containing

matrices that physically restrict lymphocytic infiltration. However,

it is important to note that certain human tumors, such as

pancreatic ductal adenocarcinoma, possess extensive stroma that

cannot be accurately modeled in preclinical species. Despite this

limitation, preclinical strategies have been developed to counteract

non-immune stromal cells using CAR-T cells, either by directly

eliminating CAFs or indirectly targeting stromal-derived barriers.

In addition, use of combination agents that directly or indirectly

target tumor fibrosis may represent an alternative strategy to

improve GML infiltration into extracellular matrix-(ECM) rich

tumor types (Figure 3B).

Developing strategies to target the extracellular matrix (ECM)

presents multiple challenges. One of the key challenges is the

development and validation of preclinical models that accurately

replicate CAF-containing fibrogenic stroma observed in pancreatic,

colon, hepatocellular, gastric, esophageal, head and neck, cervical,

and breast cancers. While mouse models can partially capture

certain aspects of fibrotic tumors, such as modeling the increased

interstitial fluid pressure induced by fibrosis (106), they are likely to

fall short in simulating the complexity of combining fibrosis-

targeting agents with GML. Additionally, CAFs, like other

components of the immune stroma, are heterogeneous and play

diverse roles in cancer, some of which may not be adequately

modeled in mice. Furthermore, fibrogenic stroma in humans often

develops in the pre-metastatic niche, resulting from the recruitment

of factors from the bone marrow and facilitating vascular access

before tumor establishment. Most of the strategies mentioned above

have been described using cell line-derived xenograft (CDX) or

genetically engineered mouse models (GEMM), which rarely fully

replicate the extent of stiff, fibrotic ECM seen in cancer patients.

Strategies encoded in GML to target fibrosis include directly

eliminating fibrogenic cells in the tumor. One of the prominent

targets on CAFs is the fibroblast-associated protein (FAP) (107–

109). Murine reactive FAP CAR-T cells have shown effectiveness in

multiple preclinical models, but potential toxicity concerns arise

due to the depletion of FAP-expressing bone marrow stromal cells

(110, 111). There have been limited opportunities to test this

concept in human clinical trials, but FAP CAR-T cells appear to

be tolerated at subtherapeutic doses (NCT01722149). Another

genetic strategy to enhance access to ECM-rich tumors involves

engineering CAR-T cells to secrete ECM-degrading enzymes, such

as hyaluronidase or heparinase (112, 113). In both preclinical

examples, the encoded and secreted enzymes did not interfere

with CAR-T cell function and effectively degraded the matrix in

mouse xenograft tumor models. Although these efforts have shown

benefits in various murine models, there is limited proof-of-concept

evidence from human clinical trials regarding ECM degradation

and/or fibroblast targeting.

Myeloid cells can also impede GML infiltration into tumors.

Targeting tumor-associated macrophages (TAMs) and myeloid-

derived suppressor cells (MDSCs) broadly for depletion can be
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challenging due to potential toxicities. However, recent studies

suggest that certain receptors may serve as tumor-specific targets,

allowing for safer targeting of these suppressive cell types. For

TAMs, targeting the folate receptor b (FRb) with a CAR in

syngeneic mouse models was shown to be safe and promoted

increased infiltration of MSLN CAR-T cells in multiple tumor

models (114). MDSC targeting was facilitated by a DR5 agonist

costimulatory CAR expressed on the cell surface of Mucin 1

(MUC1) CAR-T cells (115). This approach demonstrated

improved anti-tumor activity in an MDSC-admixed tumor model,

presumably through increased infiltration, although direct evidence

was not provided. Interestingly, the concept of targeting MDSCs

with DR5 agonist antibodies has been previously tested in mice and

humans, showing promising results and offering a novel approach

to enhance GML infiltration (116, 117).
3.3 Infiltration – combination strategies

An indirect approach to disrupt factors that suppress

lymphocytic infiltration involves tumor debulking through

surgery, chemotherapy, or radiation. However, these therapies can

have a dual effect as radiation and chemotherapy-resistant tumors

often develop fibrosis as a consequence of treatment (118). This

fibrotic response can vary depending on the therapeutic regimen

but is a common outcome due to oxidative stress in the TME. To

address therapy-induced fibrosis, targeted therapies have been

explored to inhibit cancer-associated fibroblasts (CAFs), the

extracellular matrix (ECM), or overall tumor architecture.

In terms of targeting the ECM, small molecule inhibitors of lysyl

oxidase (LOX) and LOX-blocking antibodies have shown

impressive activity in a GEMM of breast cancer. However, these

approaches have not yet demonstrated success in human clinical

trials (119, 120). Other small molecule inhibitors such as fasudil

(ROCK inhibitor) and defacitinib (FAK inhibitor) have been used

to attenuate focal adhesion signaling in tumor cells, influencing

ECM remodeling by reducing matrix metalloproteinase (MMP)

deposition and the desmoplastic response, respectively (121). Both

fasudil and defacitinib have shown improved survival in mouse

models of pancreatic cancer (LSL-KrasG12D/+; LSL-Trp53R172H/

+;Pdx-1-Cre), and early-stage clinical trials combining defacitinib

with immune checkpoint inhibitors (ICI) have demonstrated stable

disease with increased T cell infiltration in post-treatment biopsies.

Although there are currently no planned clinical studies with

fasudil, its potential remains to be explored. Recombinant

hyaluronidase or pegylated recombinant hyaluronidase 20

(PEGPH20) have been tested in combination with chemotherapy

for pancreatic ductal adenocarcinoma (PDAC) based on strong

combination activity observed in KPC mouse models (106).

PEGPH20 was able to reduce interstitial fluid pressure (IFP) in

these models and improve the response to chemotherapy

(gemcitabine + nab-paclitaxel). However, a randomized

controlled Phase III trial of this combination did not demonstrate

a significant benefit. The reasons why the KPC mouse model was

not predictive of an improved combination response remain

unclear. Another preclinical strategy involves targeting discoidin
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domain receptor 1 (DDR1) with neutralizing antibodies to disrupt

collagen-containing stromal fibers (122). Targeting DDR1 to reduce

collagen disposition enhanced the effects of chemotherapy and

GML in orthotopic tumor models and mouse models of

pancreatic cancer (KPC mice). To date, GML combinations with

targeted inhibitors of ECM deposition have shown strong effects in

multiple mouse models but have not translated successfully in

clinical trials. This highlights the need to develop more predictive

preclinical models of desmoplasia and matrix deposition to improve

the infiltration of GML into tumors.

Administration of GML directly following chemotherapy may

improve infiltration by exerting anti-fibrotic effects and shifting

suppressive myeloid cells to a pro-inflammatory phenotype. Murad

et al. demonstrated improved infiltration following chemotherapy in

murine preclinical studies using cyclophosphamide prior to PSCA

CAR-T administration in metastatic prostate and pancreatic cancer

models (123). Interestingly, cyclophosphamide has been used to treat

pulmonary fibrosis due to its lymphodepleting mechanism of action,

which can suppress fibrotic inflammation (124). Alternative

preconditioning therapies, such as fludarabine/cyclophosphamide

(Flu/Cy) plus nab-paclitaxel (FNC), have been used in human

clinical trials of CLDN18.2 CAR-T (125). These regimens,

incorporating taxanes in addition to standard Flu/Cy, may improve

GML efficacy by reducing tumor burden, conditioning the TME, and

enhancing infiltration. However, there is a lack of preclinical mouse

studies supporting the use of FNC preconditioning. The differences in

metabolism of conventional chemotherapies between mice and

humans make it challenging to model these combinations

accurately, but exploring indication-specific regimens to improve

responses should be considered.

Another potential approach to enhance GML infiltration

involves intra-tumoral injection of surgically resected or debulked

tumors to facilitate T cell-mediated clearance of minimal disease.

Mouse models utilizing gel-embedded CAR-T have been described,

demonstrating clearance of partially resected MSLN+ xenograft

tumors (126). The fibrin gel-embedded MSLN CAR-T enabled

clearance of tumor cells at the margin of surgical resection,

minimizing on-target, off-tumor toxicity and complications

associated with wound healing. The fibrin glue appeared to

support CAR-T survival and infiltration into the tumor margin,

clearing minimal residual tumor cells and preventing additional

treatment-induced inflammation and fibrosis. A study to explore

this approach in locally advanced breast cancer is planned.
4 Accumulation

In comparison to hematological malignancies, solid tumors

present numerous challenges within the TME that hinder the

activation and functionality of T cells, thereby limiting the

efficacy of cell therapies (Figure 4A). Various factors within the

TME can impede the successful accumulation and subsequent

expansion of T cells, including metabolic properties (such as

hypoxia, nutrient limitation, and ionic imbalance), the presence

of suppressive cell types (such as TAMs, MDSCs, and Tregs), and

the presence of suppressive cytokines or soluble factors (such as
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TGF-b and IL-10) (114, 127). Genetic engineering strategies for

CAR-T cells aimed at counteracting the suppressive TME are

commonly referred to as “armoring” approaches (128).

While there are diverse strategies to enhance the performance of

CAR-T cells, a primary objective is to improve their accumulation

within the TME. This can be achieved by enhancing their survival

or promoting increased cell division rates. In this review, we classify

accumulation strategies as either “defensive” or “offensive.”

Defensive strategies aim to protect GML from factors that

suppress their proliferation or survival, while offensive strategies

involve the elimination of suppressive cells or factors to facilitate

GML accumulation (Figure 4B). To provide preclinical validation,

we will also assess the feasibility of modeling these strategies

in mice.
4.1 Accumulation - defensive strategies

4.1.1 Metabolism
T-cell metabolism plays a crucial role in determining both cell

survival and the effectiveness of antitumor immune responses.

However, understanding the intricate metabolic crosstalk between

CAR-T cells and TME poses challenges for in vitro modeling.

Therefore, the utilization of in vivo models becomes highly

significant in dissecting the complex metabolic pathways involved

in this interaction. Syngeneic models have emerged as valuable tools

for investigating T-cell metabolism due to their flexibility in

engineering specific immune subsets and accurately representing

immune components within the TME.

Chang et al. utilized a sarcoma model expressing or lacking the

spectrin-b2 antigen, which determines tumor rejection, to

investigate T-cell fitness in different TMEs. Expanding upon these

findings, the researchers further investigated T-cell metabolism

using OT-I mice. Their groundbreaking work revealed a

fundamental concept: the competition for glucose between CAR-

T cells and the TME leads to reduced cytokine production and

facilitates tumor growth (129). Additional insights into aerobic

glycolysis-induced T-cell differentiation came from studies

employing CD4CreLdhafl/fl mice lacking LDHA in T cells. These

studies demonstrated that aerobic glycolysis promotes effector T-

cell differentiation, highlighting LDHA as a critical therapeutic

target (130). Subsequently, transgenic PMEL-1 mice were used to

explore the modulation of LDHA in cell therapy. This study

demonstrated that the metabolic characteristics of antigen-specific

T cells, along with their persistence, accumulation, and antitumor

immunity, could be effectively modulated through the

administration of exogenous cytokines (131).

The adjustment of T cells to hypoxic and nutrient-deprived

tumors triggers a metabolic switch to glycolytic metabolism,

primarily mediated by the transcription factor HIF-1a (132, 133).

The critical role of HIF-1a in inducing T cell effector status has been

demonstrated using HIF-1 or HIF-2afl/fl dlckCRE mice (134).

However, under chronic hypoxia, this metabolic switch might

lead to terminal differentiation, anergy, and exhaustion. This is

particularly relevant for transferred lymphocytes, which lack access

to native priming mechanisms that can maintain memory cell
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persistence for extended periods. Therefore, rewiring the hypoxia

response could potentially tailor T-cell differentiation, sustain

persistence, and enhance antitumor responses in CAR-T cells.

Syngeneic mice have also played a critical role in exploring the

importance of amino acids (such as arginine, tryptophan, and

glutamine) in the biology of tumor-infiltrating lymphocytes

(TILs). The scarcity of these amino acids in the TME can drive

dysfunction of CAR-T cells and TILs. The essential role of arginine

in T-cell activation, proliferation, and cytokine production has been

demonstrated in TCR transgenic mouse models of CD4+ T cells

specific for the influenza HA110–119 peptide (135). Sustained Arg1

activity require transport of arginine into the cell through cationic

amino acid transporters. CAT2B is thought to be the most efficient

in the transport of arginine into cells. Indeed, M-MDSCs or PMN-

MDSCs derived from Cat2-/- mice adoptively transferred in tumor-

bearing mice displayed a significantly reduced ability to inhibit T

cell proliferation in in vitro assays (136). This was confirmed in vivo

in a thymoma tumor model, where the anti-tumor activity of

adoptively transferred antigen-specific CD8+ T cells was

significantly enhanced in Cat2-/- vs. wild-type mice as a result of

decreased ability of Cat2-/- MDSCs to suppress T cell function and

proliferation (136, 137).

4.1.2 Soluble factors
In addition to its role in forcing metabolic reprogramming,

hypoxia induces the accumulation of extracellular adenosine. The

ectonucleotidases CD39 and CD73 lead to the sequential

dephosphorylation of extracellular ATP and their expression on

tumour cells, immune cells, fibroblasts, endothelial cells, and
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stromal cells is upregulated by hypoxia and TGFb in the TME

(138). Activated T effector cells can sense extracellular adenosine

through the adenosine A2A receptor (A2AR), which triggers

accumulation of intracellular cyclic adenosine monophosphate

(cAMP) and limits TCR-mediated activation and expansion of

effector T cells (139).

Numerous preclinical studies have demonstrated the potential

advantages of inhibiting the adenosine pathway to augment the in

vivo function of CAR-T cells (140–142). However, it is worth noting

that the regulation of the adenosine pathway differs significantly

between mice versus human. In mice, Tregs express CD39 and

exhibit high levels of CD73 on their cell surface. This allows them to

degrade ATP and generate adenosine, which has a dual impact:

inhibiting effector T cells while enhancing the suppressive

capabilities of Tregs (143, 144). Conversely, in the human T cell

compartment, CD73 expression is primarily observed on the

surface of naïve CD8 T cells and is only present in a small

fraction of mature CD4 and CD8 memory T cells (145).

Importantly, CD73 expression on Tregs is nearly absent, making

the co-expression of CD73 with CD39 on Tregs a rare

occurrence (146).

Transforming growth factor-b (TGFb) is produced by multiple

cells in the TME, and its expression is further enhanced by hypoxia

(147). Due to its potent immunosuppressive effect and widespread

presence in solid tumors, TGFb has emerged as a popular target for

cell therapy. Two commonly used strategies to modulate TGFb
activity involve the expression of dominant negative TGFbRII or
targeted knockout (KO) of TGFbRII (148–155). The complex

nature of TGFb poses challenges for systemic therapies, as they
B
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FIGURE 4

Accumulation. (A) The TME is rich of immunosuppressive factors that can inhibit CAR-T activation, proliferation, and accumulation even in presence
of target antigen. (B) CAR-T can be engineered to alleviate distinct challenges of the TME. Armoring strategies can shield CAR-T cell, decreasing
their sensitivity to inhibiting factors (TGFb, PD-L1, adenosine), or can endow them with the ability to target immunosuppressive cells (anti-MDSCs).
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often result in a wide range of side effects. In contrast, intrinsic T

cell approaches offer a more targeted solution that avoids these

issues. However, it’s important to note that testing the impact of

TGFb inhibition in cell therapy often relies on xenograft mouse

models. While these models provide valuable insights, they do not

fully replicate certain aspects such as lymphopenic proliferation

following LDC or the interaction with endogenous adaptive

immune cells, which are known to be influenced by TGFb (156,

157). Therefore, the use of syngeneic or humanized murine models

may be crucial to fully elucidate the effects of TGFb-based armoring

strategies on cell therapies.

4.1.3 Inhibitory molecules
Engineering inhibitory molecules to bypass negative signaling is a

promising approach to enhance CAR-T cell accumulation. Inhibition

of the programmed death-1 (PD-1) checkpoint pathway through the

expression of a dominant negative PD-1 receptor (PD-1 DNR) has

shown efficacy in enhancing the antitumor function of mesothelin-

targeted CAR-T cells in xenograft models of pleural mesothelioma

with high PD-1 expression (158). PD-1 DNR expression

demonstrated superior efficacy compared to systemic PD-1

blockade, which required multiple doses to achieve effectiveness.

Additionally, fusion receptors combining the PD-1 ectodomain and

CD28 endodomain, known as switch receptors, have also been shown

to enhance the antitumor function of CAR-T cells in xenograft

models (158–160).

In addition to PD-1, CAR-T cells have been equipped with a

dominant negative receptor for tumor necrosis factor receptor

superfamily member 6 (TNFRSF6), also known as FAS. In

syngeneic tumor models, expression of FAS DNR in CAR- or

TCR-engineered T cells protected the cells from FAS ligand

(FASL)-induced apoptosis, leading to improved in vivo

persistence and tumor eradication (161). Lymphocyte activation

gene-3 (LAG-3) knockout CAR-T cells have also been tested in

xenograft models (162). However, when exploring inhibitory

molecules like CTLA-4, which requires interaction with its

ligands CD80 and CD86 expressed on myeloid cells, the use of

syngeneic or humanized models becomes crucial (163).
4.2 Accumulation - offensive strategies

4.2.1 Cytokines
Improving the effectiveness of CAR T-cell therapy hinges on

strategies that can shape the immune regulatory milieu within

tumor tissue. In this context, offensive armoring strategies play a

significant role. One approach is to engineer CAR-T cells with a

transgenic cytokine that can overcome the insufficient production

of pro-inflammatory factors in the TME. The transgenic cytokine

can provide autocrine stimulation to sustain the survival and

amplification of CAR-T cells, as well as paracrine modulation of

the endogenous immune cell environment, thereby reducing

systemic toxicity and remodeling the TME.

IL-12 has been studied as a cytokine for armoring CAR T cells,

and its antitumor efficacy has been demonstrated in xenograft and
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immunocompetent syngeneic mouse models of ovarian cancer or

hepatocellular carcinoma (164, 165). To further enhance the

therapeutic potential of IL-12-secreting CAR T cells, Zhang et al.

developed an NFAT-inducible membrane-bound IL-12, combining

tumor-specific and inducible T-cell-mediated delivery with

membrane-restricted localization (166). However, establishing a

direct correlation between preclinical data and clinical toxicity

remains challenging, as toxicity associated with IL-12 utilization

is a primary concern. Variability in immune responses and

toxicities, which occur in a dose-dependent manner, must be

carefully considered in ongoing and future clinical trials (167).

IL-18 is another proinflammatory cytokine being explored in

preclinical models and early clinical trials for cell therapy. Similar to

IL-12, the efficacy of CAR T cells engineered to secrete IL-18 has been

studied in xenograft and syngeneic mousemodels (168, 169). Murine T

cells expressing 19m28mz-P2A-mIL18 CAR were infused in C57BL/6

hCD19+/- mCD19+/- mouse model (169). This immune-competent,

conditioning-dependent, tumor model uses systemic hCD19 modified

EL4 (EL4[hCD19]) thymoma tumors infused into C57BL6mice with a

knockout murine CD19 (mCD19−/−), knock-in human CD19

(hCD19+/−) phenotype (C57BL6 [mCD19−/− hCD19+/−]) (170).

These mice have restricted expression of one functional copy of the

hCD19 gene in normal B cells, resulting in a retained immune-

competent phenotype (170, 171). This model showed that IL-18

secreting CAR-T cells are efficacious in the absence of

lymphodepleting chemotherapy. IL-18 secreting CD19 CAR-T

demonstrated encouraging efficacy in an early clinical trials or the

treatment of patients with relapsed/refractory B-cell non-Hodgkin

lymphomas (NHL) or chronic lymphocytic leukemia (CLL)

(NCT04684563) (172).

IL-15 is a pleiotropic cytokine that plays a role in innate and

adaptive immune cell homeostasis and peripheral immune

function. CD19 CAR T cells, IL-13Ra2 CAR T cells, and GD2

CAR T cells engineered to secrete IL-15 have shown increased

expansion and in vivo anti-tumor activity in xenograft mouse

models of Burkitt lymphoma, gl ioma, and metastatic

neuroblastoma, respectively (173–175). However, there are

concerns about prolonged exposure to IL-15, as IL-15 transgenic

mice developed leukemia with a T-cell or NK-cell phenotype (176).

The use of IL-15 to enhance the performance of CAR T cells will be

further discussed in the section on longevity.

4.2.2 Direct targeting of immunosuppressive
populations

Enhancing the accumulation of GML in the TME can be achieved

by directly targeting and eliminating immunosuppressive cell

populations, as discussed earlier for CAFs and MDSCs. Tumor-

associated macrophages (TAMs) are another important target in

cancer treatment due to their abundance in tumors and association

with poor prognosis (177). One example of targeting TAMs is the use

of CAR-T cells directed against CD123, which is expressed on both

Hodgkin lymphoma (HL) cells and TAMs within the TME. These

CAR-T cells recognize and eliminate both HL cells and TAMs,

overcoming immunosuppression and exhibiting sustained clearance

in xenograft models of progressive Hodgkin lymphoma. In mouse
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models, rechallenging with the same tumor cell line resulted in

controlled tumor growth, suggesting a protective memory response

(178). However, caution should be exercised when interpreting long-

term survival and persistence of T cells in immunocompromised

mice, considering the role of homeostatic cytokines, potential

compensatory mechanisms, and the broader context of

human immunology.

Another approach involves equipping CAR-T cells with an

additional CAR targeting FRb, which is specifically expressed on

immunosuppressive TAMs (114). Specific targeting and elimination

of TAMs was addressed in the previous section as a means of

improving infiltration into solid tumors, however, this strategy can

have benefits in repolarizing the suppressive TME. In syngeneic

murine tumour models of C57BL/6 mice bearing ID8 RFP-fLuc

tumors (which lack mFRb expression), transfer of CAR-T cells

following cyclophosphamide preconditioning selectively eliminated

FRb+ TAMs, recruited pro-inflammatory monocytes and tumor-

specific CD8+ T cells, and reduced tumor growth. This targeting

approach shows promise in modulating TAMs and enhancing the

antitumor immune response.

Regulatory T cells (Tregs) can also be targeted by cellular

immunotherapies. However, systemic blockade of Tregs has led to

life-threatening autoimmune side effects in patients due to

depletion of CD25+ effector T cells. While there is early in vitro

proof-of-concept showing that NK-92 cells expressing an anti-

CD25 CAR can target Tregs, in vivo data are lacking, and

concerns about on-target, off-tumor toxicity remain (179). In vivo

studies in syngeneic models have shown that an immunotoxin

targeting CD25 can selectively kill intratumoral Tregs while

boosting endogenous immunity (180). Although incorporating

such an approach into GML-based therapy is tempting, further

studies are required to better understand the risk of on-target, off-

tumor toxicities.
5 Longevity

One of the unique characteristics of GML which sets it apart

from traditional therapeutics, is its ability to persist in the host for

months or even years. This prolonged persistence enables GML to

potentially drive long-term disease remission and provide ongoing

immunosurveillance against residual tumor cells (Figure 5A). The

potential for long-term persistence is becoming increasingly evident

over time, as seen in patients with leukemia who have experienced

10 or more years of clinical remission with ongoing evidence of

CD19 CAR-T cell function (181). While studies have demonstrated

long-term engraftment of memory CD8 cells in mice through serial

transfer (182), there is currently no known research on the

persistent functional exposure of GML in mice.

Long-term engraftment of human T cells in NOD-scid

IL2Rgnull (NSG) mice is complicated by xenograft-versus-host

(xGvHD) immune-reactivity. This immune reactivity arises from

both the MHC mismatch between human and mouse and the

compromised immune system of the NSG mice, which is unable to

reject the human T cell graft. Consequently, long-term engraftment

studies in NSG mice may be confounded by toxicity that is specific
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to the model and may not accurately represent autologous GML

therapy in humans. While NSG mice with Class I and Class II MHC

knock-out can attenuate this toxicity (183, 184), they remain

severely immunocompromised and may still generate xGvHD

responses through the interaction of non-classical MHC

molecules (e.g., CD1) or stress molecules (MICA/B) (185).

Therefore, conducting short-term studies (~30 days) or using

mouse models that can predict the consequences of long-term

engraftment and endogenous immune conditioning and

repertoire spreading may be more feasible and informative.

Immunocompetent or syngeneic models, on the other hand, are

not often used to study persistence due to challenges with T cell

engineering, expansion, and the lack of models with slow tumor

growth and endogenous antigen expression. Nonetheless, there are

examples suggesting that transduced and expanded murine GML

can be effective and persistent, and further development of these

models is warranted (186).

Modifications aimed at enhancing GML longevity encompass

various approaches, including alterations to intracellular domains,

introduction of cytokines through genetic or pharmacological

means, and deletion of intracellular inhibitory proteins that limit

lymphocyte function, cytotoxicity, and persistence. These strategies

not only promote the longevity of GML but can also be utilized to

recruit endogenous lymphocytes, thereby extending the durability

of the therapeutic response (Figure 5B).
5.1 Longevity – co-stimulatory domains

Early clinical trials with CD19 CAR T cells demonstrated that

incorporating the 4-1BB co-stimulatory domain in the intracellular

domain (ICD) of second-generation CARs, referred to as BBz,
resulted in enhanced persistence compared to CARs containing the

CD28 co-stimulatory domain (CD28z). The enhanced persistence of

BBz CAR-T cells was attributed to 4-1BB’s ability to activate TRAF/

NF-kB signaling, promoting fatty acid oxidation and mitochondrial

biogenesis, which contrasted with the predominantly glycolytic

signaling downstream of CD28 (187). Clinical data showed that

CD28z CAR-T persistence rarely exceeded 42 days (188, 189),

while BBz CAR-T persistence often exceeded 1 year in patients

achieving complete responses (190).

Subsequent investigations consistently revealed distinct metabolic

responses between CD28z and BBz CAR-T cells, with CD28zCAR-T
cells exhibiting a “fast burn” metabolic response driven by PI3K-

induced aerobic glycolysis, and BBz CAR-T cells displaying a “slow

burn” oxidative metabolism primarily fueled by fatty acid breakdown,

aligning with 4-1BB’s role in T memory development and longevity

(191). These findings indicated that the design of the CAR ICD can

directly influence its persistence. Researchers have since developed

various versions of second-generation CARs containing additional

costimulatory domains such as ICOS and OX40 (192, 193), as well as

third-generation CARs, aiming to enhance the balance between anti-

tumor cytotoxicity and persistence (194, 195). While these versions

have demonstrated strong activity in mouse xenograft tumor models

using NSG mice, clinical evidence of persistence superior to second-

generation BBz CAR-T cells in humans is yet to be established (196).
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Although preclinical mouse models cannot fully replicate the

persistence of engrafted T cells observed in humans, studies

comparing BBz and CD28z CAR-T cell performance in standard

xenograft models have shown similar tumor-clearing effects

between the two at high doses. However, at lower doses, BBz
CAR-T cells demonstrated functional superiority, indicating

better memory conversion and resistance to the stress of low cell

dosing (197). While mouse models can indirectly predict the

longevity and persistence of GML based on the design of the

CAR’s intracellular domain (ICD), it is essential to acknowledge

the limitations of these models in fully replicating the long-term

engraftment and endogenous immune-conditioning observed

in humans.
5.2 Longevity – role of cytokines

In clinical trials for TIL and TCR-T therapy, IL-2 is commonly

used to support the function and persistence of the adoptively

transferred cells. However, in the case of CAR-T therapy, IL-2 is

rarely used to enhance CAR-T persistence. This may be attributed,

in part, to the CAR-T cells’ ability to produce paracrine IL-2

through the engagement of co-stimulatory CAR intracellular

domains (ICD). Additionally, IL-2 is avoided in GML therapy

due to the toxicities associated with higher doses needed to

maintain the anti-tumor function of transferred T cells (198).
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Recent advancements have led to the development of

orthogonal versions of IL-2 that can be genetically engineered

into CAR-T cells, promoting expansion and longevity with

limited systemic toxicities (199, 200). By engineering CD19 CAR-

T cells to express mutated IL-2Rb receptors, which can only be

activated by cell-encoded, mutated orthogonal IL-2 (ortho-IL-2),

selectivity can be achieved without encountering the negative effects

of IL-2 binding on wild-type T or NK cells. Two separate groups

have described this mutant IL-2 “orthokine” pair and demonstrated

its effectiveness in combination with suboptimal doses of CAR-T

cells, leading to CAR-T expansion, tumor reduction, and

persistence without the need for repeated CAR-T infusions.

Interestingly, in preclinical xenograft models using NSG mice,

higher doses of ortho-IL-2 were found to induce weight loss,

although this toxicity was determined to be unrelated to xGvHD

based on studies with TCR knockout mice. The authors speculated

that the observed toxicity, which occurred at doses much higher

than those required for tumor regression, was target-dependent, as

weight loss and toxicity were observed in mice bearing NALM6

tumors but not in tumor-deficient mice (201). A human clinical

trial testing the IL-2 orthokine and CAR-T pairing (STK-009) is

currently enrolling patients with relapsed or refractory CD19

positive hematologic malignancies to evaluate the combination of

autologous CD19 CAR-T cells with orthogonal IL-2 (201). This trial

aims to assess the safety and efficacy of this approach in a

clinical setting.
B

A

FIGURE 5

Longevity. (A) Cytokines employed for CAR-T ex vivo expansion can affect their differentiation and ability to self-renew and persist in the host upon
infusion. Longevity is measured by quantification of CAR-T in peripheral blood, and results in durable remission. Persistence of human CAR-T in
immunocompromised mice is complicated by potential GvHD and lack of homeostatic cytokines. (B) Engineering of cytokines enhancing CAR-T cell
stemness and fitness directly or indirectly improves endogenous T cell recruitment. CRISPR KO of intracellular checkpoint inhibitors or combination
with CPI blocking antibodies can further improve CAR-T persistence.
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The differentiation status of T cells directly influences their

longevity and antitumor activity. T cells with a stem-like phenotype,

characterized by enhanced self-renewal and proliferation capacity,

are associated with better clinical responses (202–207).

Manipulating the differentiation status of T cells is a commonly

explored strategy to improve the quality and efficacy of GML.

Common-gamma chain cytokines such as IL-7 and IL-15 are

frequently used in cell therapy to either promote a less

differentiated product during the expansion stage or engineered

into GML as an armoring strategy for in vivo enhancement (207).

IL-15 plays a crucial role in the homeostasis and development of

CD8+ T cells by inhibiting activation-induced cell death (AICD)

and upregulating antiapoptotic mediators like Mcl1 and Bcl-2

(208). IL-15-secreting CAR-T cells exhibited a less differentiated

phenotype compared to unarmored CAR-T cells in a syngeneic

model of subcutaneous B16 melanoma. They also showed reduced

expression of PD1, prolonged persistence, and superior cellular

activity (48). In another study, IL-15-armored CAR-T cells

completely prevented tumor relapse in a xenograft model but

were associated with severe liver toxicity and a GvHD score

(209). Clinical studies have also reported IL-15 administration-

related toxicity in cancer patients (210).

To mitigate IL-15 toxicity, researchers generated CD19 CAR-T

cells that overexpressed both IL-15 and IL-15 receptor alpha. This

strategy successfully blocked toxicity while maintaining the

persistence and anti-tumor activity of CAR-T cells induced by IL-

15 (209). However, the observed toxicity in mice is a subject of

debate, as another study found that CD19 CAR-T cells expressing

membrane-bound chimeric IL-15 delayed leukemia development,

exhibited sustained resistance after tumor clearance, and generated

long-lived TSCM cells without any associated toxicity (211).

Interleukin-7 (IL-7) plays a crucial role in enhancing the

homeostasis and survival of memory and naïve T cells by

upregulating Bcl-2 and repressing proapoptotic markers (212).

Several studies have demonstrated that in vitro expansion of

CAR-T cells with IL-7 leads to a higher frequency of cells

exhibiting a memory stem cell phenotype (33). These cells

retained a less differentiated phenotype and exhibited increased

resistance to dysfunction upon repetitive encounters with antigens.

Early reports showed that constitutive expression of IL-7

enhanced the in vivo efficacy of CD19 CAR-T cells in a xenograft

model of leukemia. However, it did not improve long-term

persistence compared to CAR-T cells expressing IL-2 or IL-15

(213). IL-7-expressing CLDN18.2 CAR-T cells demonstrated

increased proliferation, decreased apoptosis, and lower expression

of exhaustion markers compared to unarmored CAR-T cells (214).

However, IL-7 signaling specifically suppresses IL7Ra transcription

as a homeostatic regulatory mechanism, promoting the survival of

the maximum possible number of T cells given the available IL-

7 (215).

To overcome the potential loss of IL-7 responsiveness, IL-7Ra
was engineered into EBV-CTLs, resulting in an efficient response to

IL-7 and in vivo activity in a xenograft model (216). Similarly, the

introduction of a constitutively active IL-7 receptor (C7R)

improved the in vivo antitumor activity of GD2-CAR-T cells in a
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xenograft model of metastatic neuroblastoma and EphA2-CAR-T

cells in a orthotopic xenograft model of glioblastoma (217). It is

important to note that GD2-CAR-T cells expressing C7R are

currently being tested against relapsed or refractory

neuroblastoma and other GD2-positive cancers (NCT03635632).

Although autonomous or antigen-independent proliferation was

not reported in this study, activating mutations of IL7R are present

in 10% of pre-T-cell acute leukemias, raising concerns about

unwanted proliferation associated with this approach.

Interleukin-21 (IL-21) is a crucial cytokine involved in

regulating the function of CD8+ T cells and has emerged as a

potential target for cancer immunotherapy. IL-21 enhances CD8+ T

cell activity by promoting their proliferation, differentiation, and

increasing the expression of cytotoxic molecules like perforin and

granzyme B (218). Additionally, IL-21 indirectly enhances anti-

tumor activity by promoting antibody production by B cells, aiding

in targeting and killing tumor cells (219).

Recent studies have demonstrated the effectiveness of IL-21 in

improving the anti-tumor effect of CAR-T cells. GPC3 CAR-T cells

expressing IL-15 and IL-21 exhibited significantly greater anti-

tumor efficacy in mice compared to CAR-T cells without IL-21

expression (220). These IL-21 expressing CAR-T cells are currently

being evaluated in clinical trials for the treatment of hepatocellular

carcinoma (HCC) (NCT02932956 and NCT02905188). Another

study utilized NFAT-inducible secreted IL-21, which demonstrated

increased anti-tumor efficacy in NSG mice and resistance to

immune suppression induced by chronic lymphocytic leukemia

cells (221). Engineered switch receptors have also been explored to

provide IL-21 signaling. Wang et al. tested a receptor composed of

the IL-4 ectodomain and the IL-21 endodomain and compared it to

a receptor with the IL-7 endodomain (222). The IL-4/IL-21 inverted

receptor conferred enhanced in vivo efficacy to GPC3 CAR-T cells

against a xenograft model expressing varying levels of GPC3,

compared to unarmored CAR-T cells or those with the IL-4/IL-7

inverted receptor. The study also observed a higher number of

CD3+ T cells in the peripheral blood of mice receiving cells

expressing the IL-4/IL-21 inverted receptor, indicating improved

in vivo persistence (222). However, as previously mentioned,

conclusions about in vivo persistence in xenograft models should

be interpreted with caution.

Another interesting approach is the incorporation of a motif for

STAT3 recruitment at the C-terminus of CD3z, enabling IL-21

signaling upon CAR engagement (223). CD19 CAR-T cells

expressing this chimeric receptor demonstrated enhanced

proliferation and cytokine polyfunctionality compared to control

CAR-T cells in xenograft models of NALM6 human leukemia cells

and subcutaneous CD19+ tumors, suggesting a key role for STAT3

in suppressing terminal differentiation of T cells (223–225).
5.3 Longevity – blocking inhibitory
mechanisms

GML therapy can benefit from strategies that overcome co-

inhibitory mechanisms, which naturally restrict long-term
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1264882
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Giardino Torchia and Moody 10.3389/fimmu.2023.1264882
proliferation of T cells. One approach is to induce intra-tumoral

production of checkpoint inhibitor (CPI) antibodies, antibody-like

fragments, or soluble PD1. Several studies have reported the use of

CAR-T cells engineered to secrete constitutive or inducible CPI in

mouse models (226–228). While these preclinical studies in

xenograft mouse models have shown improved CAR-T function,

such as enhanced expansion, cytolytic activity, or effector function,

similar enhancements have not yet been observed in human clinical

trials (229, 230). It is worth noting that the human trials utilized CPI

in combination with CD19 CAR-T for CPI-insensitive indications,

leaving open the possibility of using CPI-secreting CAR-T for CPI-

sensitive tumors. However, since multiple versions of CPI

antibodies are available as co-therapy, it remains unclear whether

there are advantages or disadvantages to driving their expression

from the GML itself. Further research is needed to elucidate the

potential benefits and drawbacks of this approach.

Additional T cell checkpoints can hinder the expansion of

GML, although their impact on longevity remains uncertain.

Knocking down CTLA-4 expression using shRNA did not

enhance the function or persistence of CD19 CAR-T cells based

on 28z, but co-expression of CD80 alongside a first-generation CAR

containing CD3z significantly increased expansion when CTLA-4

was knocked down (231). Currently, there are no known human

clinical trials combining the CTLA-4 antibodies ipilumumab or

tremelimumab with CAR-T or TCR-T. Trials testing CAR-T cells

that produce CTLA-4 and PD1 antibodies against MUC1, EGFR,

and MSLN are enrolling, but no preclinical or clinical data have

been reported (NCT03179007, NCT03182816, NCT03182803).

Blockade of LAG3 using CRISPR/Cas-mediated knockout did not

show benefit in in vitro preclinical models but was not tested in

mice (162). On the other hand, blockade of PD1 and Tim3, either

alone or in combination, improved the activity of CD123-directed

CAR-T cells in xenograft models of AML (232). Other T cell

checkpoints include soluble molecules such as TGFb and

adenosine, which, as discussed in the previous section, can

regulate both GML accumulation and longevity. Moreover,

intracellular T cell checkpoints have been validated through gene

deletion or expression of dominant-negative receptors (DNR),

revealing additional mechanisms that can limit GML expansion.

Several molecules, including SHP-1, CBLB, PTPN2, CISH, HPK1,

PTP1B, RASA2, and SOCS1, have been identified as intrinsic

checkpoints that can constrain T cell effector function,

accumulation, and expansion (233–240). While targeting these

intrinsic checkpoints individually is an active area of research,

combinations of checkpoint deletions have also emerged (241).

For instance, double knockout (DKO) of both regnase-1 and

roquin-1 greatly increased T cell effector function, accumulation,

and expansion in xenograft models compared to single knockout

alone. However, the DKO also resulted in uncontrolled

lymphoproliferation and toxicity in some mice. This finding

emphasizes the need to understand the interaction of intracellular

checkpoints in GML and develop mechanisms to prevent their

uncontrolled expansion in patients, as unregulated persistence can

have undesirable consequences.
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6 Discussion

“All models are wrong, but some are useful” – George E.P. Box.

GML have transformed the therapeutic landscape for multiple B

cell malignancies and are making steady progress into additional

tumor types and even autoimmune diseases. As with any evolving

therapeutic class, GML are undergoing continual modifications to

improve their activity and safety profiles in order to broaden their

applicability. As the diseases that can be targeted with GML are

theoretically unlimited, the solution set for therapeutic design will

inevitably diverge from those used for the treatment of B cell

malignancies. In order for these designs to be validated and

implemented, preclinical models are required.

Until robust three-dimensional or organotypic models that can

recapitulate human tumor and normal tissue biology are readily

available, GML development will continue to be dependent on the

mouse as the default preclinical model to understand safety and

efficacy profiles before human clinical trials. Mouse models for

GML are simultaneously useful and distracting. They can be very

useful to understand on-target activity and efficacy, acute GML

expansion and pharmacodynamics, and proximal effector functions

such as cytokine release. However, they are distracting in that they

miss key aspects of GML challenges such as off-tumor toxicities,

representative secondary cytokine secretion from myeloid,

epithelial, or stromal cells, and control of metastatic and

heterogenous disease similar to human tumors. Additional

artifacts include xenograft-versus-host reactivity of human T cells

engrafted in NSG mice, lack of validation of fully murinized GML

designs and protocols, differences in lymphodepletion regimens,

and studies in pathogen-free facilities that do not account for the

influence of natural indigenous gut microbiota.

Due to the varied and unpredictable behavior of GML between

mice and humans, a framework called “DIAL” has been developed

to compartmentalize and study individual GML behaviors. The

framework allows for understanding of aspects of the cell journey

that can studied and optimized in isolation. For example,

distribution studies which require vaccine-like cell priming can be

studied using immunocompetent syngeneic mouse models while

human GML manufacturing optimization may be best studied in

NSG mice. Infiltration can be explored using genetically engineered

mouse models that mimic tumor fibrosis (242), and early passage

patient-derived xenograft (PDX) models in NOG or NSG mice

might retain sufficient stroma to prevent immune-infiltration and

exclude unmodified GML (243). PDX models can likewise be used

to study accumulation, where native human tumor architecture,

soluble factors, and hypoxia can affect GML survival. Likewise,

syngeneic models can be deployed to complement the PDX model

to capture immunosuppressive facets of TME that prevent

accumulation. Strategies to enhance GML longevity can be

limited due to technical factors such as development of xGvHD

(NSG mice) and the challenges of optimizing murine GML

manufacturing or treating rapidly growing tumors in most

syngeneic models. Still, certain cytokines and intracellular designs

have the potential to improve GML activity in NSG mice at
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suboptimal doses, which can serve as surrogates for extended

longevity. Longevity of GML response can also be demonstrated

using tumor rechallenge studies in immunocompetent mice,

demonstrating that GML-induced long-term immunity can be

acquired via the expansion of endogenous anti-tumor T cells

(244). These studies provide rationale for modification of GML

with membrane bound cytokines or checkpoint inhibitors to bring

about long-lasting remissions against heterogeneous tumors.

Following the success of CAR and TCR-T therapies in multiple

tumor types, next-generation approaches will incorporate

increasing complexity through genetic editing and engineering to

augment GML functions. As each of these functions require

validation through mechanistic and safety data, extensive

preclinical testing in animals will be highly warranted if not

required. While mice remain the most popular animal model for

preclinical GML testing, canine and non-human primate (NHP)

studies have also been conducted. Studies in non-murine species

facilitate the study of unique GML attributes against tumors;

canines present with spontaneous and heterogeneous tumors and

are pathogen-exposed, as are several NHP species that provide the

most genetically similar model to human, and present the most

relevant model to recapitulate the consequences of LDC as well as

allowing longitudinal sampling (245). Until non-murine models are

more consistently used and understood, however, a mixture of

murine models to deconstruct multiple GML functions will still be

preferred. Future development of complex GML may benefit from

co-evolution of efficient and specific murine and human gene-

editing tools and vectors to more accurately predict these functions

preclinically in order to decrease drug development cycle times,

and improve efficacy and safety of the next wave of cell-

based therapeutics.
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