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Pyroptosis is a gasdermin-mediated, pro-inflammatory form of cell death distinct from

apoptosis. In recent years, increasing attention has shifted toward pyroptosis as more

studies demonstrate its involvement in diverse inflammatory disease states, including

retinal diseases. This review discusses how currently known pyroptotic cell death

pathways have been implicated in models of age-related macular degeneration, diabetic

retinopathy, and glaucoma. We also identify potential future therapeutic strategies for

these retinopathies that target drivers of pyroptotic cell death. Presently, the drivers of

pyroptosis that have been studied the most in retinal cells are the nucleotide-binding

and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3)

inflammasome, caspase-1, and gasdermin D (GSDMD). Targeting these proteins may

help us develop new drug therapies, or supplement existing therapies, in the treatment

of retinal diseases. As novel mechanisms of pyroptosis come to light, including those

involving other inflammatory caspases and members of the gasdermin protein family,

more targets for pyroptosis-mediated therapies in retinal disease can be explored.

Keywords: pyroptosis, cell death, NLRP3, caspase-1, GSDMD, age-related macular degeneration, diabetic

retinopathy, glaucoma

INTRODUCTION

Cell death has long been a subject of interest in the study of retinal pathology. The role of
programmed cell death (PCD) in retinal diseases is a particularly exciting avenue of research
as the regulated nature of these cell death pathways implies that they can potentially be
interrupted ormanipulated by pharmacological interventions. Traditionally, apoptosis was equated
to PCD because it was the most well-studied and well-characterized form of PCD. Research
from the 1990’s suggested that apoptosis was the main mechanism of regulated cell loss in
retinal degeneration and this remained a popular view for most of the 21st century (1–3).
The Nomenclature Committee on Cell Death now recognizes that there are other types of
regulated cell death besides apoptosis–including necroptosis, ferroptosis, and pyroptosis (4).
Necroptosis involves the activation of the pseudokinase mixed-lineage kinase domain-like
protein (MLKL), receptor-interacting protein kinase 1 (RIPK1), and receptor-interacting protein
kinase 3 (RIPK3) (5). Ferroptosis, as the name suggests, is iron-dependent and is driven
by severe lipid peroxidation that results from loss of activity of the lipid repair enzyme
glutathione peroxidase 4 (GPX4) (6). Finally, pyroptosis is characterized by membrane pore
formation and rapid plasma membrane rupture caused by the binding of the N-terminal of
gasdermin proteins to the inner leaflet of the plasma membrane (7–9). As the mechanisms
of these cell death pathways have become clearer, more research has emerged supporting
their involvement in retinal disease. A recent review summarized the role of necroptosis and
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ferroptosis in blinding eye disease (10); however, no such
a review exists for pyroptosis. Here, we discuss the current
understanding of pyroptosis, the research implicating pyroptotic
cell death pathways in retinal diseases, and how this knowledge
can be applied to identifying novel therapeutic approaches to
retinopathies. Specifically, we will focus on the role of pyroptosis
in the pathogenesis and potential treatment of three of the most
prevalent retinal diseases–age-related macular degeneration,
diabetic retinopathy, and glaucoma.

OVERVIEW OF PYROPTOSIS

The term “pyroptosis” was first coined in 2001 by Cookson
and Brennan from the Greek roots “pyro,” relating to fire or
fever, and “ptosis” meaning falling, to describe pro-inflammatory
PCD (11). This distinguished pyroptosis from apoptosis, which
is non-inflammatory PCD. Initially, caspase-1 was believed to be
the effector of pyroptosis after Salmonella-infected macrophages
were found to undergo a caspase-1-dependent form of cell death
that was associated with pore formation and was distinguishable
from apoptosis (11–13). Later, this role shifted to gasdermin D
(GSDMD) when it was discovered that the cleaved, N-terminal
of GSDMD (GSDMD-N) could bind to and form pores in the cell
membrane, leading to pyroptotic cell death (14). Interestingly,
pore-forming activity is not exclusive to GSDMD-N; in fact, most
gasdermins have an N-terminal pore-forming domain and have
the ability to induce pyroptosis (7). This has led to our current
understanding of pyroptosis as gasdermin-mediated cell death.

The gasdermin protein family includes gasdermin A/B/C/D/E
(GSDMA/B/C/D/E) and DFNB59 (Pejvakin, PJVK) in humans.
Gasdermin proteins share 45% sequence homology, and all
members (except for Pejvakin) contain C-terminal and N-
terminal domains (7, 15). The C-terminal domain is a repressor
domain that, when linked to the N-terminal domain, auto-
inhibits the N-terminal’s cytotoxic activity (16, 17). Inflammatory
caspases or granzymes can cleave inactive, full-length gasdermin
and liberate its N-terminal domain (14, 18–20). When freed, the
N-terminal can then bind to phosphoinositides or cardiolipin on
the inner leaflet of the plasma membrane and form membrane
pores characteristic of pyroptotic cell death. Pyroptosis is also
associated with the release of pro-inflammatory cytokines IL-18
and IL-1β, through these approximately 18 nm-wide membrane
pores (21). This adds an additional pathological stressor to cells
that is not present with apoptotic cell death and is what earns
pyroptosis its designation as a pro-inflammatory form of cell
death (7, 8, 13, 15). It was previously thought that extracellular
fluid also enters plasma membrane pores during pyroptosis,
passively causing plasma membrane rupture (PMR) through
oncotic cell swelling. However, PMR is actually an active event
mediated by the cell-surface protein Ninjurin 1 (NINJ1) and has
been proposed to occur after pyroptotic cell death and IL-18/IL-
1β release (22).

Multiple different mechanisms can lead to gasdermin cleavage
in pyroptosis. The two most well-studied mechanisms are
the canonical and non-canonical inflammasome pathways.
The canonical inflammasome pathway, leading to canonical

pyroptosis, is mediated by caspase-1. Inflammasomes are
multimeric protein complexes, composed of a central sensor
protein, an adaptor protein ASC (apoptosis-associated speck-like
protein containing a caspase activation and recruitment domain),
and pro-caspase-1. The most well-studied sensor proteins known
to assemble canonical inflammasomes are NLRP1, NLRP3,
NLRC4, AIM2, and pyrin (23, 24). Other proteins such as
human NLRP2 and murine NLRP6 have also been implicated
in inflammasome signaling (25, 26). These proteins respond to
pathogen-associated and danger-associated molecular patterns
(PAMPs and DAMPs), which causes “activation” (i.e., assembly)
of the inflammasome. Pro-caspase-1 within the activated
inflammasome undergoes autocatalytic cleavage into mature
caspase-1, and mature caspase-1 can then cleave GSDMD to
cause pyroptosis (14, 23, 27). Mature caspase-1 also has the
ability to convert pro-IL-18 and pro-IL-1β into their mature
forms that are released from membrane pores during pyroptosis
(8, 12, 13). Intriguingly, inflammasomes can also be activated
and release inflammatory cytokines without necessarily causing
cell death through an unknown mechanism that may involve
the Toll-IL-1R protein SARM (sterile alpha and HEAT armadillo
motif-containing protein) (9, 28). The non-canonical pyroptosis
pathway does not depend on caspase-1; rather, it is triggered by
the direct binding of procaspase-4/5 in humans, or -11 inmice, to
intracellular lipopolysaccharide (LPS). Like caspase-1, activated
caspase-4/5/11 can then go on to cleave GSDMD to execute
pyroptosis. However, these caspases cannot directly process pro-
IL-18 and pro-IL-1β into their mature forms (15, 18, 29, 30).

Up until recently, the canonical and non-canonical
inflammasome pathways leading to GSDMD activation
were the only known pyroptotic pathways. However, in 2017,
both in vitro and in vivo studies showed that pyroptosis could
be induced by GSDME expression and cleavage of GSDME
into GSDME-N by caspase-3 (31, 32). Furthermore, in 2018,
it was found that GSDMD could also be cleaved by caspase-8
in mouse macrophages (33, 34). These findings were especially
interesting because caspases 3 and 8 were previously associated
with apoptosis and were not thought to be able to interact with
gasdermins. Overall, these studies improve our understanding
of pyroptosis as we now know that activation of other caspases
besides caspases 1/4/5/11 and other gasdermins besides GSDMD
can also cause pyroptotic cell death.

ROLE OF PYROPTOSIS IN RETINAL
DISEASE

Major findings from studies investigating pyroptosis in
age-related macular degeneration, diabetic retinopathy, and
glaucoma are summarized in Tables 1–3, respectively.

Pyroptosis and Age-Related Macular
Degeneration
Age-related macular degeneration (AMD) is the most common
cause of irreversible vision loss among the elderly in the
developed world, and is projected to affect 288 million
people globally by 2040 (58). AMD is a neurodegenerative
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TABLE 1 | Studies investigating pyroptosis in AMD.

Study Model/Cell type studied Technique Findings Relevance of findings to

pyroptosis

Tarallo et al. (35) Human RPE cells

transfected with pAlu

MTS cell viability assay The cytoprotective agent glycine

(pyroptosis inhibitor) did not rescue Alu

RNA-induced RPE degeneration

Alu RNA accumulation (a feature of

GA) may not induce RPE

degeneration via pyroptosis

Kerur et al. (36) Human RPE cells

transfected with pAlu,

subretinal injection of pAlu

in mice

Immunohistochemistry Gsdmd−/− mice were resistant to Alu

RNA-induced RPE degeneration; however,

there was no observed cleavage of

GSDMD into its N-terminal-pore-forming

p30 fragment in pAlu-transfected human

primary RPE cells or WT mice subretinally

injected with Alu RNA

GSDMD is required for Alu

RNA-induced RPE degeneration, but

plays a non-pyroptotic role

Tseng et al. (37) Lysosomal destabilization in

ARPE-19 cells using

Leu-Leu-OMe treatment

LDH release, caspase-1

inhibition with 10µM

Z-YVAD-FMK

Lysosomal destabilization induced LDH

release from ARPE-19 cells, mediated by

caspase-1

ARPE-19 cells undergo pyroptosis in

response to lysosomal destabilization

Gao et al. (38) Aβ intravitreal injections in

Long-Evans rats

Western blotting RPE-choroid protein lysates of rats

receiving Aβ injections showed significantly

greater cleavage of pro-GSDMD into

GSDMD-N compared to controls

Aβ upregulates GSDMD-N, a driver of

pyroptosis, in RPE cells

Sun et al. (39) Aβ-treated ARPE-19 cells Flow cytometry for positive

PI and caspase-1 staining

Aβ significantly increased the proportion of

ARPE-19 cells staining positive for both PI

and caspase-1

Aβ induces pyroptosis in ARPE-19

cells

Yang et al. (40) Aβ-treated ARPE-19 cells Immunofluorescence,

scanning electron

microscopy

Aβ triggered increased levels of

GSDMD-N, as well as swelling, bubbling,

and cell membrane rupture in ARPE-19

cells

Aβ causes upregulation of a

pyroptosis effector and morphological

characteristics of pyroptosis in

ARPE-19 cells

Liao et al. (41) atRAL-treated ARPE-19

cells

Western blotting Lysates of ARPE-19 cells treated with 15

uM atRAL showed increased levels of

cleaved GSDME at 6 and 12 h but

GSDMD remained full-length

atRAL-treated ARPE-19 cells may

undergo GSDME-mediated, rather

than GSDMD-mediated, pyroptosis

RPE, retinal pigment epithelium; pAlu, plasmid coding for Alu RNA; GA, geographic atrophy; WT, wild-type; ARPE-19, human adult retinal pigment; LDH, lactate dehydrogenase; Aβ,

amyloid beta; PI, propidium iodide; GSDMD/E, gasdermin D/E; GSDMD-N, N-terminal of gasdermin D; atRAL, all-trans retinal.

disease; accumulation of drusen deposits results in progressive
degeneration of photoreceptors and retinal pigment epithelium
(RPE), primarily in the macula. Clinically, AMD can present
as a spectrum of disease phenotypes, with the severity of the
disease depending on drusen size. Earlier stages of AMD are
defined by the presence of medium-sized drusen deposits and
do not present with vision loss. As drusen grow in size and
number, atrophy of photoreceptors, RPE, and choriocapillaris
and scotoma development can occur. These features are
characteristic of a late stage of AMD called geographic atrophy
(GA or “dry AMD”). Large drusen also increase the risk
of developing neovascular AMD, in which new, abnormal
vessels form and invade the outer retina, subretinal space,
or subRPE space. Exudative or “wet AMD” occurs when
these new vessels rupture and leak exudates, causing fluid
accumulation/hemorrhage and severe central vision loss if left
untreated (59, 60).

In 2011, Kaneko and colleagues discovered that reduction
of the RNase DICER1 led to accumulation of Alu RNA, non-
coding RNA transcripts expressed by the Alu retrotransposon, in
RPE from human donor eyes with GA. Alu RNA accumulation,
in turn, resulted in RPE degeneration in both humans and
mice (61). A year later, the same group found that Alu RNA
did not induce RPE degeneration in Nlrp3−/− or Casp1−/−

mice. This suggested that the canonical NLRP3/caspase-1-
dependent pyroptotic pathway may be involved in RPE
degeneration in AMD. However, glycine, a cytoprotective agent
that attenuates pyroptosis, did not rescue Alu RNA-induced
RPE degeneration in the same study. The authors concluded
that while NLRP3 and caspase-1 are critical for Alu RNA-
induced RPE degeneration, Alu RNA does not induce RPE
degeneration via pyroptosis (35). Gsdmd−/− mice, like Nlrp3−/−

and Casp1−/− mice, were shown to be resistant to Alu RNA-
induced RPE degeneration in a study by Kerur et al. (36),
but there was no observed cleavage of GSDMD into its N-
terminal pore-forming domain. Furthermore, reconstituting
Gsdmd−/− mice with a GSDMD mutant unable to undergo
cleavage (pGSDMD-D276A) restored susceptibility to Alu RNA-
induced RPE degeneration. Full-length GSDMD cannot induce
pyroptosis; thus, it must exert its effects on Alu RNA-induced
RPE toxicity through another mechanism. Administration of
mature IL-18 to Gsdmd−/− mice restored Alu RNA-induced
RPE degeneration and led to the appearance of annexin V
positive, propidium iodide (PI) negative staining RPE cells.
This suggested that GSDMD plays a role in Alu RNA-
induced cytotoxicity via IL-18-dependent apoptosis, rather than
pyroptosis, in RPE (36). While the above studies do not
support that RPE cells undergo pyroptotic cell death in response
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to Alu RNA, they do identify NLRP3, caspase-1, and full-
length GSDMD as potential therapeutic targets for AMD,
particularly for GA.

Lysosomal destabilization, which can result from drusen
accumulation and trigger inflammasome activation, has also been
studied for its potential to cause pyroptosis in AMD. Lysosomal
destabilization with Leu-Leu-OMe treatment induced IL-1β and
LDH release from ARPE-19 cells, mediated by caspase-1. These
findings indicate that lysosomal destabilization leads to a caspase-
1-dependent, pro-inflammatory, and lytic form of cell death
in RPE, characteristic of pyroptosis (37). Caspase-1 inhibition
may also therefore be a worthwhile therapeutic strategy for
AMD treatment.

Additional support for RPE pyroptosis in AMD comes from
research on amyloid beta (Aβ), a component of drusen. After
the NLRP3 inflammasome was activated by repeated intravitreal
injections of Aβ into the eyes of Long-Evans rats, RPE-choroid
protein lysates from Aβ-injected animals showed significantly
increased levels of GSDMD-N and decreased levels of full-length
GSDMD (38). This supported that GSDMD-mediated pyroptosis
can be activated in RPE cells and that NLRP3 and GDSMD-N
are possible targets for AMD therapy. In another study using Aβ-
induced ARPE-19 cells as a model for AMD, Baicalin was found
to alleviate Aβ-induced pyroptosis detected by flow cytometry
for positive PI and caspase-1 labeling (39). The protective
action of Baicalin was mediated by upregulating miRNA-223,
which had been previously found to reduce the expression of
NLRP3 (62). Baicalin’s anti-pyroptotic effects were reversed by
miRNA-223 knockdown, whereas adding MCC950 (an NLRP3
inhibitor) once again reduced pyroptosis (39). Lycium Barbarum
Polysaccharides (LBP), present in Goji berries, also rescued Aβ-
induced reduction of RPE cell viability at low (3.5 mg/L) and
high (14 mg/L) doses via attenuation of pyroptosis. Aβ triggered
increased levels of GSDMD-N and caused morphological
changes in RPE characteristic of pyroptosis, both of which were
reversed by LBP treatment (40). As such, inhibiting pyroptosis
using Baicalin or LBP may potentially be therapeutic for AMD.

There is also evidence that GSDME-mediated, rather than
GSDMD-mediated, pyroptosis occurs in RPE in the all-trans
retinal (atRAL) model of AMD. atRAL is generated during
the visual (retinoid) cycle and can accumulate in visual cycle
anomalies, causing RPE atrophy in AMD. Cleavage of GSDME
was detected at 6 and 12 h in lysates of atRAL-treated ARPE-
19 cells but GSDMD remained intact, suggesting that atRAL
triggers pyroptosis in ARPE-19 cells by activating the caspase-
3/GSDME pathway of pyroptosis (41). Research on GSDME-
mediated pyroptosis in retinal cells is sparse and further study is
required to see if this pathway can be targeted for the treatment
of AMD.

Pyroptosis and Diabetic Retinopathy
Diabetic retinopathy (DR) is a leading cause of preventable
vision loss in working-age adults and can be broadly classified
into two clinical stages: non-proliferative diabetic retinopathy
(NPDR) and proliferative diabetic retinopathy (PDR) (63). Early
in NPDR, retinal pericytes that support retinal capillaries are lost,
causing capillary occlusion and increased vascular permeability.

On fundoscopy, intra-retinal hemorrhages, microaneurysms, and
exudates called “cotton wool spots” may be observed in NPDR.
NPDR can eventually lead to PDR, in which vascular endothelial
growth factor (VEGF) promotes neovascularization in the retina.
These newly formed vessels have leaky tight junctions that can
result in vitreous hemorrhage or tractional retinal detachment
(TRD), and cause vision loss. Another cause of vision loss in DR
is diabetic macular edema (DME), where the macula becomes
thickened due to breakdown of the blood-retina barrier (BRB)
(64). DR is primarily considered a microvascular disease and
breakdown of the BRB is key to this disease state. Maintenance
of the BRB depends on the functioning of an interdependent
network of cells–including endothelial cells that make up the
inner BRB, supportive Müller cells and pericytes, and RPE cells
which form the outer BRB (65).

A previous review discussed modes of retinal cell death in
DR (66). Only Müller cell loss in diabetes was outlined to show
characteristics of pyroptosis while other retinal cells including
endothelial cells and pericytes were thought to primarily undergo
apoptosis or necrosis. More recent studies have found signs of
possible pyroptotic cell death in many types of retinal cells in
DR models including endothelial cells, pericytes, Müller cells,
and RPE. Endothelial cells line the retinal microvasculature and
comprise the highly selective inner BRB (65). NLRP3/caspase-1
activation and IL-1β release have been recorded in retinal
endothelial cells (RECs) in various in vivo and in vitromodels of
DR (42, 43, 67). Pyroptotic cell death and caspase-1 activity were
markedly increased in human retinal microvascular endothelial
cells (HRMECs) incubated in 30mM high glucose compared
to controls (44). Pyroptosis was identified in this study using
PI/caspase-1 fluorochrome inhibitor (FLICA) staining and flow
cytometry. This suggests that canonical pyroptosis may take
place in RECs and targeting NLRP3 and caspase-1 may be a
treatment strategy to prevent their loss in DR. Retinal pericytes
provide structural support to retinal vessel walls and regulate
the expression of tight junctions in adjacent endothelial cells
(65). A study published in 2020 showed that silencing GSDMD
inhibits IL-1β and IL-18 release, decreases pore formation, and
decreases lysis of human retinal pericytes exposed to 30mM
high glucose (45). Another study using advanced glycation
endproducts modified bovine serum albumin (AGE-BSA) to
simulate the DR environment found increased expression of
active caspase-1 and GSDMD-N as well as increased secretion
of IL-1β, IL-18, and lactate dehydrogenase (LDH) in human
retinal pericytes (HRPCs) alongside decreased HRPC viability
(46). Thus, pyroptotic pericyte loss may occur in DR and
blocking caspase-1 andGSDMD can potentially preserve pericyte
viability. Müller cells are the principal glial cells of the retina and,
because of their innate role in mediating neuroinflammation,
have long been speculated to participate in pyroptosis (66).
Protein levels of NLRP3, ASC, cleaved caspase-1 and cleaved
IL-1β were increased by 30mM high glucose in mouse primary
retinal Müller cells. Furthermore, NLRP3 antagonism with the
inhibitor drug MCC950 downregulated high glucose-induced
upregulation of pro-angiogenic factors including VEGF (47).
This implicated activation of the NLRP3 inflammasome pathway
in Müller cells in DR and provided support that NLRP3
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TABLE 2 | Studies investigating pyroptosis in DR.

Study Model/Cell type studied Technique Findings Relevance of findings to

pyroptosis

Jiang et al. (42) Primary human RECs

incubated in 25mM high

glucose

Western blotting Increased protein levels of NLRP3,

cleaved caspase-1, and IL-1β in high

glucose vs. normal glucose group

The NLRP3/caspase-1-mediated

pyroptotic pathway may be activated

in HRMECs in response to high

glucose

Chen et al. (43) HRMECs incubated in

30mM high glucose

Western blotting Increased protein levels of NLRP3,

cleaved caspase-1, and IL-1β in high

glucose vs. normal glucose group

The NLRP3/caspase-1-mediated

pathway may be activated in RECs in

response to high glucose

Gu et al. (44) HRMECs incubated in

30mM high glucose

PI and caspase-1 FLICA

staining, flow cytometry

Pyroptosis and caspase-1 activity were

markedly increased in

high-glucose-treated HRMECs vs. the

control group

High glucose promotes pyroptotic cell

death in HRMECs

Gan et al. (45) HRPs incubated in 30mM

high glucose

Pore formation: PI uptake

Cell lysis: LDH release

Cytokine release: ELISA

High glucose-treated HRPs experienced

greater pore-formation, cell lysis, and

release of IL-1β and IL-18 compared to

controls → these effects were reversed

with NLRP3, caspase-1, or GSDMD

inhibition

High glucose can induce the loss of

HRPs via GSDMD-mediated

pyroptosis

Yu et al. (46) HRPs incubated in

200µg/ml AGE-BSA

Protein expression: Western

blotting

Cytokine release: ELISA

LDH activity: LDH assay kit

Cell viability: cell

counting kits

AGE-BSA increased expression of active

caspase-1 and GSDMD-N and promoted

secretion of IL-1β, IL-18, and LDH in

HRPs, alongside decreasing HRP viability

HRPs undergo GSDMD-mediated

pyroptosis when treated with

AGE-BSA

Du et al. (47) Mouse primary retinal Müller

cells incubated in 30mM

high glucose

Western blotting Increased levels of NLRP3, cleaved

caspase-1, and IL-1β in high

glucose-treated mouse retinal Müller cells

The NLRP3/caspase-1-mediated

pyroptotic pathway may be activated

in Müller cells cultured under high

glucose conditions

Xi et al. (48) ARPE-19 cells incubated in

50mM high glucose

Western blotting High glucose upregulated protein

expression of caspase-1, GSDMD,

NLRP3, IL-1β, and IL-18 in ARPE-19 cells

High glucose may promote

GSDMD-mediated pyroptosis in

ARPE-19 cells

Zha et al. (49) ARPE-19 cells incubated in

50mM high glucose

Western blotting High glucose upregulated protein

expression of caspase-1, GSDMD,

NLRP3, IL-1β, and IL-18 in ARPE-19 cells

High glucose may promote

GSDMD-mediated pyroptosis in

ARPE-19 cells

HRMECs, human retinal microvascular endothelial cells; RECs, retinal endothelial cells; PI, propidium iodide; FLICA, fluorochrome-labeled inhibitors of caspases; HRPs, human retinal

pericytes; LDH, lactate dehydrogenase; ELISA, enzyme-liked immunosorbent assay; AGE-BSA, advanced glycation end-product modified bovine serum albumin; ARPE-19, human

adult retinal pigment epithelial cell line-19; NLRP3, nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3; IL-1β; interleukin-1β; IL-18,

interleukin-18; GSDMD, gasdermin D; GSDMD-N, N-terminal of gasdermin D.

specifically plays a role in late-stage neovascularization. Finally,
while the RPE (part of the outer BRB) is not traditionally viewed
to play a central role in the pathophysiology of DR, ARPE-
19 cells have recently been found to undergo pyroptotic cell
death under stimulation with 50mM glucose, which increased
expression of pyroptosis-associated proteins NLRP3, caspase-1,
and GSDMD (48, 49). Overall, the NLRP3/caspase-1/GSDMD
canonical pyroptotic pathway appears to play a role in the loss
of endothelial cells, pericytes, Müller cells, and RPE in cell
culture, and in animal and human models for DR. However,
few studies have directly demonstrated that the effector of
pyroptosis, GSDMD-N, is activated in DR. Future studies aimed
at GSDMD-N are needed to evaluate its potential to be a target
for DR therapy.

Pyroptosis and Glaucoma
Glaucoma is a group of ocular diseases characterized by the
progressive loss of retinal ganglion cells (RGCs), the neurons
that communicate visual information from the retina to the

brain (68). It is another leading cause of irreversible blindness
worldwide and is projected to affect 112 million individuals
aged 40–80 by 2040 (69). Various risk factors for glaucoma
have been identified–the most notable being elevated intraocular
pressure (IOP) and age–but the exact molecular mechanisms that
link these risk factors to RGC loss are still under investigation.
Past research has demonstrated that RGCs die by apoptosis
(70). However, recent studies have implicated inflammasomes,
caspase-1, and GSDMD in acute and chronic models of
glaucoma, suggesting that apoptosis is not the only form of cell
death involved in glaucomatous RGC loss.

In a mouse model for acute elevated IOP-induced glaucoma,
NLRP1, NLRP3, ASC, and caspase-1 levels were rapidly
upregulated in the retina after ischemic injury. Knockdown of
the gene encoding toll-like receptor 4 (TLR4) using TLR4−/−

mice reduced inflammasome production and RGC death after
ischemic injury (50). TLR4 deficiency therefore seems to protect
against RGC death through the inactivation of canonical
inflammasomes and may be a potential treatment strategy for
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TABLE 3 | Studies investigating pyroptosis in glaucoma.

Study Model/Cell type studied Technique Findings Relevance of findings to

pyroptosis

Chi et al. (50) Mouse model of acute

IOP-induced glaucoma

PCR, western blotting TLR4 deficiency protected against

inflammasome activation and RGC death

after acute IOP elevation via caspase-1

and caspase-8-dependent pathways

Pyroptosis-associated inflammatory

pathways take place and cause RGC

death after acute IOP elevation

Chi et al. (51) Mouse model of acute

IOP-induced glaucoma

PCR, western blotting Inhibition of HMGB1, like TLR4 deficiency,

protected against inflammasome

activation and RGC death after acute IOP

elevation via caspase-1 and

caspase-8-dependent pathways

Pyroptosis-associated inflammatory

pathways take place and cause RGC

death after acute IOP elevation

Qi et al. (52) RIR injury rat model TUNEL staining, western

blotting

Inhibition of TLR4 increased RGC survival

by decreasing apoptosis

TLR4-mediated pathway may lead to

RGC apoptosis rather than pyroptosis

after RIR injury

Pronin et al. (53) Acute OHT mouse model Western blotting,

immunohistochemistry

Within a few hours of inducing acute OHT

in mouse eyes, retinal levels of GSDMD,

caspase-1, and NLRP3 were

significantly increased

Markers of GSDMD-mediated

pyroptosis are upregulated in the

retina after exposure to acute OHT

Chen et al. (54) RIR injury mouse model HE staining, retrograde

FG-labeled imaging,

immunofluorescence,

western blotting

Genetic deletion of GSDMD significantly

increased retinal thickness and decreased

RGC death after RIR injury

Absence of an effector of pyroptosis

protects against RGC death after

RIR injury

Dong et al. (55) Chronic OHT rat model Western blotting Protein levels of mature caspase-1 were

elevated in rat retinas after chronic OHT

Caspase-1 processing, which can

lead to pyroptosis, is increased in rat

retinas with chronic OHT

Zhang et al. (56) Chronic OHT mouse model Western blotting Protein levels of NLRP3 and cleaved

caspase-1 were elevated during the

chronic OHT process

Components of the canonical

pyroptotic pathway are activated in a

chronic OHT mouse model

Wan et al. (57) RIR injury mouse model Western blotting RIR injury increased GSDMD-N expression

in Iba-1+ microglia

An effector of pyroptosis is

upregulated in microglia after

RIR injury

IOP, intra-ocular pressure; RGC, retinal ganglion cell; PCR, polymerase chain reaction; RIR, retinal ischemia/reperfusion; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end

labeling; OHT, ocular hypertension; HE, hematoxylin and eosin; FG, fluoro-gold; NLRP3, nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing

3; IL-1β; interleukin-1β; IL-18, interleukin-18; GSDMD, gasdermin D; GSDMD-N, N-terminal of gasdermin D; TLR4, toll-like receptor 4; HMGB1, high-mobility group box 1.

acute glaucoma. Chi et al. (50) also showed that caspase-
8 is the link between TLR4 and NLRP1/NLRP3 activation.
As discussed previously, caspase-8 is traditionally thought of
as an initiator of apoptosis but has also been found to play
non-apoptotic roles (71). In support of this idea, this study
demonstrated that inhibition of caspase-8 significantly reduced
levels of NLRP1, NLRP3, ASC, caspase-1, and IL-1β, and also
attenuated IOP-induced RGC death. Interestingly, inhibition
of caspase-8 completely suppressed production of IL-1β while
inhibition of caspase-1 only partially suppressed production of
IL-1β. Therefore, therapeutic strategies targeting caspase-8 may
be more effective at preventing inflammation in acute glaucoma
than those targeting caspase-1. A year later, the same authors
found that high-mobility group box 1 (HMGB1), an endogenous
ligand of TLR4, is also involved in the above pathway. Inhibition
of HMGB1 suppressed the production of NLRP3, ASC, activated
caspase-1, activated caspase-8, and IL-1β, and also decreased
RGC death after acute IOP elevation similarly to TLR4 (51).
Thus, blocking HMGB1 is another way to target TLR4-induced
inflammasome pathways in the treatment of acute glaucoma. A
study using a retinal ischemia/reperfusion (RIR) injury rat model
provided further support for TLR4-induced activation of NLRP3

and also found that inhibition of TLR4 decreased loss of RGCs.
However, the type of cell death studied and detected to occur
in these RGCs was apoptosis rather than pyroptosis (52). Aside
from acute ischemic injury, inflammasomes are also involved in
RGC loss from optic nerve crush injury. Following partial optic
nerve crush (pONC) in mice, NLRP3 was upregulated at the site
of injury and then propagated to the optic nerve head (ONH)
and the entire retina within 1 day. Furthermore, NLRP3−/−

mice experienced delayed RGC somal loss for 1 week and
similarly delayed/decreased axon loss (72). These findings are in
congruence with those from previous studies and support that
NLRP3 is important for inflammation and RGC death in models
of acute glaucoma, making it a worthwhile target for therapy.

The above studies implicated drivers of canonical pyroptosis
in glaucomatous RGC death, but they did not study the effector
of canonical pyroptosis, GSDMD. Pronin et al. (53) found that
within a few hours of inducing acute ocular hypertension (OHT)
in mouse eyes, retinal levels of GSDMD, in addition to activated
caspase-1 and NLRP3, were significantly increased. RGCs were
also shown to be the first cell type in the ganglion cell layer
(GCL) to significantly express cleaved GSDMD after acute OHT
injury (53). Taken together, these findings suggest that after acute
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elevation of IOP, inflammasomes are activated in the retina and
caspase-1 cleaves GSDMD to potentially trigger pyroptosis in
RGCs. In a mouse RIR injury model, intravitreal injection of a
Casp1 inhibitor (Z-YVAD-fmk)markedly reduced cleavage of IL-
1β and GSDMD, and restored RGC numbers during RIR injury.
Furthermore, genetic deletion of GSDMD significantly increased
retinal thickness and decreased RGC death after RIR injury (54).
Therefore, both caspase-1 inhibition and knockdown of GSDMD
expression are possible strategies to therapeutically attenuate
RGC death in acute glaucoma. This study also reconciled the
previously discovered role of caspase-8 in elevated IOP-induced
RGC death with findings from other disease states that caspase-
8 can cleave GSDMD, by showing that Casp8 silencing in mice
significantly lowered levels of cleaved GSDMD protein after
RIR injury (refer to Supplementary Figure 1 for a summary of
proposed caspase-8-mediated apoptotic and pyroptotic pathways
in acute glaucoma) (33, 34, 54).

The bulk of the research on pyroptosis in glaucoma has been
done on acute models, as outlined above. Few studies have
looked at the role of pyroptosis in chronic glaucoma. In human
donor eyes of chronic glaucoma patients, various inflammasome
components, including NLRP3 and caspase-1, were found to be
upregulated along with significant cleaved caspase-1 expression
in the retina. These early findings suggested that caspase-1 is
activated by inflammasome assembly in chronic glaucomatous
human retinas (73). NLRP3 and cleaved caspase-1 protein levels
were also elevated in the retina of rodent models of chronic
OHT (55, 56). These studies implicated P2X7 as the upstream
activator of NLRP3. P2X7 receptors are nonselective cation
channel receptors that contribute to inflammation in the central
nervous system and are activated by ATP (74). Activation of the
P2X7 receptor with an agonist (BzATP) increased expression of
NLRP3,Casp-1, andASC in rat retinal microglia. Inhibition of the
above pathway using the P2X7 inhibitor A438079 or the NLRP3
inhibitor MCC950 decreased microglial activation and protected
against RGC death (56). Thus, inhibiting the P2X7-NLRP3
pathway may be a therapeutic strategy for reducing microglial
activation and subsequent RGC death in chronic glaucoma.
Research on inflammatory signaling in glaucoma pathogenesis
has also identified other ion channels located at the surface of
RGCs, such as Transient Receptor Potential Vanilloid isoform 4
(TRPV4) and Pannexin-1 (Panx1), that act as potential sensors
and effectors of mechanical strain, ischemia, and inflammatory
responses. These signaling pathways are also associated with
RGC axonal injury and cell death and can be further explored for
potential interactions with inflammasome pathways in chronic
glaucoma (75).

NLRP3 and caspase-1 were shown to be increased in
the retina in the chronic glaucoma models above. However,
whether these pyroptosis inducers and the pyroptosis effector
GSDMD are expressed in neurons and RGCs specifically is
still debated. There is evidence from other disease states
that neurons express NLRP3. Functional inflammasomes and
caspase-1 activity were present in cultured human CNS neurons
and NLRP3 expression was detected in mesencephalic neurons in
a Parkinson’s disease model (76–78). However, in glaucomatous
human donor eyes, cleaved caspase-1 was more prominent in

non-ganglion cells (Brn-3-negative glial cells) (73). This favored
that RGCs may undergo cell death through a glial-cell mediated
inflammatory pathway. Pronin et al. (53), discussed above,
demonstrated the upregulation of NLRP3 inflammasome in
RGCs and astrocytes in acute OHT. Zhang et al. (56) from
above also supported a glial cell-mediated inflammatory pathway
by showing increased expression of inflammasome components
in rat retinal microglia rather than RGCs. Our recent research
using chronic glaucoma mouse model DBA/2J demonstrated
an age-dependent upregulation of NLRP3 in RGCs and a
concomitant increase in intraocular pressure (79). RIR injury
in mice increased GSDMD-N expression in Iba-1+ microglia,
suggesting that microglia undergo pyroptosis in response to RIR
injury. On the other hand, RGCs in this study were found to
undergo apoptosis (57). All in all, these controversies suggest
that inflammation in the glaucomatous eye consists of multiple
levels of responses that, at present, we do not fully understand.
Neuronal cells including RGCs, possibly perturbed by age-
related and/or IOP-induced inflammatory stress, activate glial
cells by releasing DAMPs and PAMPs, which could further result
in the release of pro-inflammatory cytokines and contribute
to neurotoxicity and loss of RGCs. Alternatively, sensors on
RGCs may respond to ischemia and inflammatory stress and
lead to the remodeling of axons and cell death (50, 80). More
research is needed, particularly in chronic models of glaucoma, to
determine how pyroptosis fits into this inflammatory picture and
whether pyroptotic drivers are appropriate therapeutic targets
for glaucoma.

IMPACT OF TARGETING PYROPTOTIC
CELL DEATH PATHWAYS ON EXISTING
THERAPEUTIC STRATEGIES FOR RETINAL
DISEASES

Potential novel therapeutic targets for AMD, DR, and glaucoma
have been highlighted throughout this review and are
summarized in Table 4. In brief, majority of the suggested
strategies target the canonical, NLRP3/caspase-1/GSDMD-
mediated pyroptotic cell death pathway. A few studies also
supported targeting caspase-3/GSDME and caspase-8/GSDMD
pathways in AMD and glaucoma. Aside from the possibility of
using these targets to develop new drugs for retinal diseases,
targeting pyroptotic cell death pathways can also have an impact
on existing therapies for retinal diseases, namely anti-VEGF.
Anti-VEGF therapy is the mainstay of treatment for ocular
angiogenic disease processes including AMD and DR (81).
Studies have shown that NLRP3 inflammasome-mediated
pathways can also affect angiogenesis in AMD and DR, and this
evidence will be reviewed below. Targeting these pathways may
be an alternative strategy to anti-VEGF treatment or enhance the
therapeutic effect of existing anti-VEGF treatments.

We know that inflammasome activation and release of
inflammatory cytokines are associated with pyroptotic cell
death; thus, we may expect that inhibiting these factors
would have a protective effect in retinal disease. On the
contrary, Nlrp3−/− and IL-18−/− mice showed significantly
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TABLE 4 | Potential pyroptotic targets for AMD, DR, and glaucoma therapy.

Potential pyroptotic targets for therapy

Disease NLRP3 Caspase-1 Caspase-3 Caspase-8 GSDMD, GSDMD-N GSDME, GSDME-N

AMD X X X X X

DR X X X

Acute glaucoma X X X X

Chronic glaucoma X X

Xrepresents that the pyroptosis-related protein has been demonstrated to play a role in the retinal disease on the left and may therefore be a potential novel therapeutic target for that

disease. AMD, age-related macular degeneration; DR, diabetic retinopathy; NLRP3, nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing

3; GSDMD/E-N, gasdermin-D/E; GSDMD-N, N-terminal of gasdermin D/E.

more choroidal neovascularization (CNV) development and
subretinal hemorrhage compared to wild-type (WT) mice in
a laser-induced model of wet AMD. Furthermore, intravitreal
injections of IL-18-neutralizing antibodies after laser-induced
CNV resulted in significantly increased CNV development in
WT mice, suggesting that IL-18 may protect against CNV
through the downregulation of VEGF. Indeed, treatment with
IL-18 significantly decreased the amount of VEGF secreted by
human ARPE-19 cells as well as mouse brain microvascular
endothelial cells (82). Therefore, NLRP3 could be used as a
protective agent against AMD and delivering IL-18 to the
eye may have a therapeutic effect on CNV progression by
decreasing VEGF. The latter was also supported by another
study that found that deficiency of IL-18 significantly increased
the number of CNV lesions in VEGF-Ahyper mice (83). In
2014, Doyle et al. (84) further demonstrated that IL-18 injection
would be safe to use in human eyes. They did not find
any measurable cell death, changes in cell morphology, or
compromise of plasma membrane integrity even when hyper-
physiological doses of recombinant human IL-18 were applied
to human ARPE-19 cells and native human RPE cells from
three donors. Interestingly, Doyle et al. (84) also showed that
IL-18 could enhance the CNV-attenuating effects of anti-VEGF
therapy when applied in tandem as an intravitreal injection
or systemically via a single subcutaneous dose. CNV volume
was most significantly reduced when intravitreal injection
of DMS1529 (mouse anti-VEGF) was combined with either
intravitreal or subcutaneous administration of GSK (mouse IL-
18) in C57BL/6J mice after laser-induced CNV. Systemic IL-
18 therapy was also effective at reducing CNV volume alone–
subcutaneous administration of GSK at a dose of 0.1 or 1.0 mg/kg
1 day before, and on each day after, laser-induced CNV both
significantly attenuated CNV and CNV-induced permeability
with no observable adverse effects (84). This shows the potential
of using intravitreal or subcutaneous IL-18 separately or
as an adjunct to existing anti-VEGF therapies to treat wet
AMD pathology.

While the above research is promising, it has been met
with some controversy. Tarallo et al. (35) found the opposite
effect of IL-18 where IL-18 neutralization protected against
RPE death in a mouse model for GA and IL-18 levels were
significantly greater in human eyes with GA than in healthy

controls. This implies that IL-18 is cytotoxic and may signify
that IL-18 plays different roles in wet vs. dry AMD. IL-18
levels were also found to be significantly elevated in the serum
of AMD patients compared to healthy controls, suggesting
that higher systemic levels of IL-18 are associated with AMD
diagnosis (85). This opposes the above suggestion that systemic
injection of IL-18 can be therapeutic for AMD. Furthermore,
while the studies by Doyle and colleagues suggested that NLRP3
could be used as a protective agent in AMD, other studies
have found that NLRP3 activation/consequent increase in active
IL-1β is pro-angiogenic and promotes VEGF-induced AMD
pathologies (83). Nucleoside reverse transcriptase inhibitors
(NRTIs) such as stavudine (d4T) also reduced CNV volume
in a laser-induced mouse model of CNV via blockade of a
P2X7-induced pathway of inflammasome activation (86). In
DR, studies have proposed that the pro-inflammatory events
associated with NLRP3 activity cause breakdown of the BRB and
subsequent neovascular response leading to PDR (87). Inhibition
of caspase-1 with minocycline prevented acellular capillary
development in STZ-induced diabetic and galactosemia mouse
models (88). Elevated protein expression of NLRP3, caspase-
1, and inflammatory cytokines was found in the proliferative
membranes of human donor eyes with PDR compared to healthy
controls (89). Similar results were seen in vitreous fluid samples
of DR patients, especially in PDR eyes with TRD and active
neovessel formation (90, 91). Finally, NLRP3 inhibition with
MCC950 downregulated high glucose-induced upregulation of
pro-angiogenic factors including VEGF (47). In sum, NLRP3-
mediated inflammatory pathways are involved in angiogenic
disease processes in AMD and DR, but further research is
required to resolve the debate over whether its role is deleterious
or beneficial.

DISCUSSION

In this review, we have outlined the role of pyroptosis as
a gasdermin-mediated inflammatory form of PCD in three
common retinal diseases–age-related macular degeneration,
diabetic retinopathy, and glaucoma. In AMD, GSDMD-mediated
pyroptosis appears to occur in RPE when triggered by lysosomal
destabilization or Aβ while GSDME-mediated pyroptosis occurs
in the atRAL model of AMD. The research on pyroptosis in
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DR is in more preliminary stages, with most of its evidence
for pyroptosis being limited to inflammasome activation
rather than gasdermin activation in endothelial cells, pericytes,
Müller cells, and RPE. Finally, there is support for gasdermin
involvement in RGC loss in acute glaucoma, but evidence
in chronic glaucoma models remains in its infancy. All
in all, as our understanding of pyroptosis has grown and
evolved, there is more support for its involvement in retinal
disease. However, there are still many limitations in our
understanding of pyroptosis in retinal disease that must
be addressed.

Firstly, the involvement of pyroptosis in retinal disease does
not exclude the occurrence of other forms of PCD such as
apoptosis, ferroptosis, and necroptosis. There is substantial
evidence for the involvement of these other PCD pathways in
retinal disease as well (10, 66, 92). Further research is needed
to uncover how different forms of PCD interact with each
other in the retina and what factors ultimately determine the
type of PCD an individual retinal cell will succumb to in
pathological states. This information is vital in the development
of therapies targeting PCD. If we target a form of PCD that
is not the primary mode of cell death naturally occurring
in AMD, DR, or glaucoma, then such treatments for these
diseases may be ineffective. Or, if blocking one form of PCD
such as apoptosis causes another, more inflammatory cell death
mechanism to occur, we could potentially do more harm. A
limited number of studies have provided some insight into
how different types of PCD may be linked. Jiang et al. (93)
showed that the caspase-3/GSDME pathway can result in either
apoptosis or pyroptosis, depending on the expression level of
GSDME. GSDME may therefore be the link between PCD
pathways we have been looking for and provide an explanation
for why we have been able to identify both apoptotic and
pyroptotic mechanisms in retinal disease. On the other hand,
Kayagaki et al. (22) identified that NINJ1 plays a potent role in
causing plasma membrane rupture and DAMP-release not only
following pyroptosis, but also during apoptosis and necrosis.
Therefore, targeting NINJ1 could be a downstream therapeutic
strategy that suppresses propagation of the cell death-associated
inflammatory response regardless of its upstream mechanism
(pyroptotic or otherwise).

We also need to be wary of the limitations in how we interpret
the existing literature on pyroptosis in retinal disease. Because
the essential role of gasdermin in pyroptosis was only recently
established in 2015, earlier research on pyroptosis in retinal
disease could only aim to identify inflammasome and caspase-
1 activation in these diseases. We now know that activated
inflammasomes can cause caspase-1 to cleave and release
inflammatory cytokines without resulting in cell death (9, 28).
Thus, we cannot assume that inflammasome activity, presence
of mature caspase-1, and release of inflammatory cytokines in
retinal cells necessarily means that pyroptosis is occurring in
those cells. In addition, with the discovery that caspases 3 and
8 can activate GSDME and GSDMD (respectively) to mediate
pyroptosis, we must also re-evaluate previous results suggesting
that activation of these caspases in retinal cells represented

apoptotic cell death. This also supports that there is significant
overlap and a complex interplay between pyroptotic and
apoptotic cell death that we do not currently understand. Many
questions related to this require further study. For one, under
what conditions do caspases 3 and 8 favor cleaving gasdermin
over their usual apoptotic substrates? Furthermore, what other
cell types and pathologies besides those already identified
demonstrate caspase-3/8-mediated pyroptosis as opposed to the
more well-known mechanisms of pyroptosis? GSDME-mediated
pyroptosis is increasingly being demonstrated to play a role in
cancer (94), but its involvement in neurodegenerative diseases
including retinal diseases is still largely unexplored. There
is also the question of if GSDMA/B/C-mediated pyroptosis
has a role to play in retinal diseases. The gold standard for
demonstrating the occurrence of pyroptosis should be the
identification of cleaved N-terminal of gasdermin proteins in
well-established models of retinal disease. More studies like
this would provide a better foundation for us to determine
if gasdermin-mediated therapy is a viable strategy for the
treatment of retinal pathologies. Gasdermin-mediated therapies
are currently being studied in tumor treatment (9), and potential
translation of these therapies to retinal diseases is another area
for future research.
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