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The launch of “Frontiers in Evolutionary 
and Genomic Microbiology” marks 
15 years since generation of the first genome 
sequence from a free-living organism 
(Fleischmann et al., 1995). In this relatively 
short time, microbial genome sequencing 
has allowed enormous advances in our 
understanding of the genomic basis of 
microbial life, and it is difficult to think 
of a sub-field of microbiology that has not 
been profoundly affected. The volume and 
diversity of data available from projects that 
are completed or ongoing (5,465 bacterial 
genomes and 209 archaeal genomes, accord-
ing to www.genomesonline.org, accessed 
December 21, 2010) presents both oppor-
tunities and challenges. One of the most 
exciting challenges is how to best exploit 
genomic data to understand the exceptions 
of bacterial and archaeal biology. These 
exceptions conflict with accepted hypoth-
eses and theories, and challenge the “rules” 
that we presently teach from microbiology 
textbooks. They also provide opportuni-
ties to uncover new commonalities and 
interactions between and within the three 
domains of life.

Such exceptions have sometimes been 
recognized for many years, but the avail-
ability of a new genome sequence can serve 
as a springboard for new experimental work. 
The results of this work can demonstrate a 
functional role for the exception and, in some 
cases, bring about a shift in perceptions. 
Many examples could be cited, but rather 
than provide an exhaustive list, the authors 
beg the indulgence of readers to focus on 
a personal area of interest – the cell biol-
ogy and evolutionary history of members 
of the Planctomycetes–Verrucomicrobia–
Chlamydiae (PVC) superphylum (Wagner 
and Horn, 2006). Several members of this 
group have a common cell plan that features 
a ribosome-free paryphoplasm separated 
from a ribosome-containing riboplasm by 

an intracellular membrane (Fuerst, 2005; 
Lee et  al., 2009). Planctomycete bacteria 
exhibit additional intracellular complexity, 
such as the double-layered membrane sys-
tem that surrounds the condensed genomic 
DNA of Gemmata obscuriglobus (Fuerst 
and Webb, 1991) or the anammoxosome 
(anaerobic ammonia-oxidizing compart-
ment) in the Brocadiaceae family (Jetten 
et  al., 2001). Both of these findings chal-
lenge the validity of restricting the terms 
“nucleus” and “organelle,” respectively, to 
the domain Eukarya. The availability of 
genome sequences from members of the 
PVC superphylum has allowed creative 
computational and experimental work to 
demonstrate – uniquely within the domain 
Bacteria – the presence of protein structures 
that resemble eukaryotic membrane coat 
proteins (Santarella-Mellwig et  al., 2010). 
A representative of these coat-like proteins 
was localized to paryphoplasmic vesicles in 
G. obscuriglobus (Santarella-Mellwig et  al., 
2010), and, most remarkably, these same 
vesicles were found to receive proteins endo-
cytosed by the Gemmata cell (Lonhienne 
et  al., 2010). Thus the availability of PVC 
superphylum genomes and subsequent 
experiments allowed demonstration of com-
monalities between eukaryotic and bacterial 
cellular trafficking, and of an exception to 
the rule of endocytosis as a stereotypically 
eukaryotic trait. The G. obscuriglobus genome 
sequence also provided a springboard for the 
discovery of sterols in this organism (Pearson 
et al., 2003), one of only a handful of exam-
ples in the Bacteria for another characteristic 
eukaryotic property. It remains to be seen 
whether the sterols of Gemmata contribute to 
the structure of its complex endomembrane 
system. If so, this would provide an interest-
ing parallel to the presence of other unusual 
planctomycete molecules (the ladderanes) in 
the anammoxosome of the anammox planc-
tomycetes (Sinninghe Damsté et al., 2002).

These genome-enabled findings in the 
PVC superphylum have naturally spurred 
other efforts to use high-throughput com-
putational analyses to better understand 
the evolutionary history and uncover the 
genomic basis of unusual aspects of PVC 
member biology. Because of the relatively 
large phylogenetic distances separating 
members of the PVC phyla, there is an 
urgent need for closing the gaps with more 
genome sequences. However, while we 
wait for these sequences to be generated, it 
is worthwhile to consider novel analytical 
approaches that can accommodate the phy-
logenetic distances of the currently avail-
able PVC genomes. Whole-genome scans 
for positive Darwinian selection are widely 
used to detect evolution of genome novelty, 
but commonly used methods (e.g., evalu-
ation of non-synonymous to synonymous 
substitution rate ratio across evolutionary 
lineages) are sensitive to saturation of syn-
onymous sites and thus cannot be used to 
study evolution of distantly related organ-
isms. Such challenges stimulate the devel-
opment of alternative methodologies such 
as the analysis of indel (insertion/deletion) 
events, which occur less frequently than 
amino acid replacements, accumulate more 
slowly, and generate functional changes 
through positive selection. They thus can 
be employed to characterize evolution of 
diverged organisms such as members of the 
PVC superphylum (Kamneva et al., 2010). 
While these new methodologies have been 
successfully developed for characterization 
of this particular group of organisms, they 
could be applied to any of the relatively 
newly described phyla where cultured rep-
resentatives and genomes are sparse, and 
phylogenetic distances are large.

Arguably the most exciting genome-based 
insights into microbial ecology have been 
obtained from metagenomics, the analysis 
of entire microbial communities (Rondon 
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the bacterial tree drive the development of 
new bioinformatic tools. These combina-
tions can (or could) feature some of the 
many new genome-based methodologies – 
ranging from synthetic genomics (Gibson 
et al., 2010) and single-cell environmental 
genomics (Ishoey et al., 2008), to genome-
based microbial systematics and taxonomy 
(Konstantinidis and Tiedje, 2005) and 
powerful functional genomics screens that 
explore host–pathogen relationships in a 
high-throughput fashion (Waterfield et al., 
2008). We can therefore expect that as we 
continue to gain unprecedented insight into 
the gene inventory underlying the biology 
of bacteria and archaea (both cultured and 
currently uncultured) we will also discover 
creative new ways to harness the power of 
microbial genomics to understand excep-
tions and challenge current perceptions. 
“Frontiers in Evolutionary and Genomic 
Microbiology” provides an ideal publish-
ing platform to describe both novel findings 
and novel approaches, and we look forward 
to receiving both types of contributions.
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