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Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus,
such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens
at pre-harvest stage when heat and drought field conditions favor A. flavus colonization.
Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy
for preventing aflatoxin contamination is through the enhancement of corn host resistance
to Aspergillus infection and aflatoxin production. Constant efforts have been made by
corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin
accumulation have been determined in certain resistant corn inbred lines. A number
of reports of quantitative trait loci have provided compelling evidence supporting the
quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important
findings have also been obtained from the investigation on candidate resistance genes
through transcriptomics approach. Elucidation of molecular mechanisms will provide in-
depth understanding of the host–pathogen interactions and hence facilitate the breeding
of corn with resistance to A. flavus infection and aflatoxin accumulation.
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INTRODUCTION
Aflatoxins are produced by Aspergillus flavus, an ear rot fun-
gus that infects corn. Aflatoxins are carcinogenic to humans and
animals. Consequently, they are of great concern as food con-
taminants and are closely monitored in oily-seeded crops and
dairy products (Payne, 1992; Gourama and Bullerman, 1995).
Aflatoxins are designated as B1, B2, G1, G2, M1, and M2 types
based on their molecular structures. Aflatoxin B1 is the most
toxic form which is found in fungal-infected corn kernels (Bhat-
nagar et al., 2006). The production of aflatoxin B1 starts soon
after the colonization of A. flavus in the developing corn kernels
(Thompson et al., 1983). Accumulation of aflatoxin B1 contin-
ues during the maturation of corn. Commercial corn hybrids
are generally susceptible to A. flavus infection. The Food and
Drug Administration (FDA) has imposed a strict limit of 20 ppb
on aflatoxin concentration present in corn (Aflatoxin Guidelines,
http://www.admcrs.com/Aflatoxin.html). Aflatoxins remain sta-
ble under food processing conditions. Once corn is contaminated
with aflatoxins, few detoxification options are available. There-
fore, the prevention of aflatoxin accumulation should start in
pre-harvest corn stage.

Aspergillus flavus infection and aflatoxin accumulation in pre-
harvest corn largely depend on the local weather and field
conditions. High temperature and drought conditions are in favor
of aflatoxin production, thus posing the high risk of an aflatoxin
outbreak. The colonization of A. flavus also frequently occurs at
sites damaged by insects. In many locations of the southeastern
United States, including Mississippi, A. flavus infection in corn
is a chronic problem. In 1998, a severe aflatoxin outbreak in

corn fields occurred in Mississippi and throughout the South-
east, resulting in considerable economic loss to corn farmers
(Robens and Cardwell, 2005). In Mississippi, efforts to reduce
aflatoxin contamination in corn at the pre-harvest stage have
focused on multiple strategies including bio-control using atox-
igenic A. flavus strains, optimal agronomic practices (irrigation,
fungicides, planting dates), and breeding for host resistance (Lar-
son, 1997; Cleveland et al., 2004). While notable improvement
can be achieved through optimizing cultural practices for control
of pre-harvest aflatoxin contamination, combination strategy by
including breeding for corn host resistance would be the most
promising and effective avenue.

RESISTANT CORN GERMPLASM DEVELOPED BY USDA–ARS
AT MISSISSIPPI STATE
As early as in the 1970s, USDA–ARS scientists at Mississippi State
University initiated breeding programs for screening and devel-
oping corn germplasm with resistance to A. flavus infection and
aflatoxin accumulation. Reliable techniques (such as side-needle
inoculation) were first developed to assure that all germplasm lines
were treated with the same amount of fungal inoculums (Zummo
and Scott, 1989; Windham et al., 2005, 2009; Buckley et al., 2006).
Numerous germplasm and breeding lines were screened with such
consistent methods. The results of these evaluations established
the foundation of today’s collection of Mississippi corn inbred
lines that possess naturally occurring resistance to aflatoxin accu-
mulation (Windham and Williams, 1998, 1999, 2002; Windham
et al., 1999, 2010; Williams et al., 2002, 2005a,b, 2008; Williams,
2006). Resistant corn inbred lines were developed by consecutive
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selfing and selection against aflatoxin accumulation. In 1988, the
first inbred line Mp313E with resistance to A. flavus infection was
released (Scott and Zummo, 1990). Mp313E was developed from
germplasm Tuxpan. Since the release of Mp313E, additional resis-
tant corn germplasm lines (Mp420, Mp715, Mp717, Mp718, and
Mp719) have also been released; all exhibit significantly low levels
of aflatoxin accumulation under artificial inoculation conditions
(Scott and Zummo, 1992; Williams and Windham, 2001, 2006,
2012). Mp715, Mp718, and Mp719 also have lineages tracking
back to germplasm Tuxpan. Tuxpan is a US derivative of Tux-
peño, one of the most productive and successful Mexican races of
corn.

In the continual field studies conducted under artificial inoc-
ulation conditions, aflatoxin levels were evaluated for selected
resistant corn inbred lines, single-cross hybrids from the selected
resistant corn inbred lines, and a set of commercial corn hybrids.
In 1999, aflatoxin level in the resistant corn inbred line Mp715
was 24 ppb which was contrasted to the level of 1622 ppb in
SC212m, a susceptible corn inbred line. In 1996, aflatoxin level
in the single-cross hybrid Mp715 × Mp313E was 18 ppb com-
pared to 1532 ppb in the single cross of GA209 × SC212m.
In 2001, aflatoxin level for Mp715 was 14 ppb compared to
9289 ppb for SC212M. In 2008, aflatoxin level was as low as
17 ppb for the single-cross hybrid of Mp313E × Mp717, whereas
it was as high as 10800 ppb for a commercial hybrid. Similar

results were observed in 2009, where aflatoxin levels ranged
from 5 ppb for the single-cross hybrid of Mp313E × NC388
to 1992 ppb for a commercial hybrid. From these studies, the
lowest aflatoxin levels were found in the single-cross hybrids of
the resistant inbred lines developed by the USDA–ARS Corn
Host Plant Resistance Research Unit (CHPRRU) at Mississippi
State. Four of the single-cross hybrids had aflatoxin levels
lower than the FDA action level of 20 ppb in the 2008 and
2009 field studies. Commercial corn hybrids generally con-
tained consistently high levels of aflatoxins in the studies con-
ducted in 2008 and in 2009 at Mississippi State (Daves et al.,
2010).

THE IDENTIFICATION OF MAJOR RESISTANCE
QUANTITATIVE TRAIT LOCI (QTLs)
The resistant corn inbred lines exhibited significant general com-
bining ability for reduced aflatoxin accumulation in a diallel
cross, indicating good breeding values for the resistance trait
(Williams et al., 2007). To incorporate the resistance into com-
mercially acceptable lines for corn farmers, CHPRRU has made
important progress in combining traditional and molecular breed-
ing methods to develop resistant corn lines. Among the resistant
corn germplasm lines developed by CHPRRU at Mississippi State,
Mp313E and Mp715 are two of the most important parental lines
used for breeding of A. flavus resistance and aflatoxin reduction.

FIGURE 1 | Chromosome bin map showing the positions of the

identified QTL regions from the two Mp313E-derived QTL mapping

populations. The significant genes marked in the map were from a
separate genome-wide microarray study. Eight genes were located to

seven most significant QTL regions based on the microarray study. A
significant candidate gene, NPCs–NUP85, is located to the chromosome
5 QTL region (Chr 5, bin 5.05) which is from Mp313E (Kelley et al.,
2012).
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They have been used as resistance donors for many of the new
experimental lines in the CHPRRU breeding programs. Two quan-
titative trait loci (QTL) mapping populations with Mp313E as a
parental line were developed and investigated. The population
from Mp313E × Va35 included 216 F2:3 families and was eval-
uated for aflatoxin accumulation over 3 years (Davis et al., 2000;
Willcox et al., 2013). A total of 15 QTL regions were identified
(Figure 1). Four QTLs on chromosomes 1, 4, and 9 were above
a significance level of 23.58 in likelihood ratio. The chromo-
some 4 (bin 4.04–4.08) QTL was associated with Mp313E. The
Mp313E × B73 population contains 210 F2:3 families and was
also evaluated for 3 years (Brooks et al., 2005). A total of seven
QTL regions were identified (Figure 1). The two QTLs on chro-
mosomes 2 and 4 were most significant and were associated
with Mp313E. From these studies, up to 48% of the genotypic
effects of the resistance can be explained by the QTLs identi-
fied on chromosomes 2, 3, and 4 from Mp313E. Significant
progress has been made to increase corn host plant resistance
by DNA marker-assisted breeding. However, a major obstacle
has been that the genomic regions containing the QTLs are
large and indecipherable without the knowledge of the underly-
ing genetic and molecular information. Closely linked molecular
markers to the QTLs, ideally from resistance genes, are needed
to expedite the breeding process and to reduce the breeding
cycles.

COMPARATIVE GENOME-WIDE GENE EXPRESSION STUDY
ON SELECTED CORN INBRED LINES
Corn host resistance to A. flavus infection and aflatoxin accumu-
lation is a quantitative trait potentially controlled by many genes.

Characterization of the corresponding genes and their effects is
essential for the breeding of resistant corn lines. To characterize
genes involved in the corn host plant resistance, a microarray study
was conducted to investigate gene expression patterns in two resis-
tant corn inbred lines (Mp313E and Mp04:86) and two susceptible
corn inbred lines (Va35, B73) under artificial inoculation in field
conditions (Kelley et al., 2012).

Developing kernels of corn were collected from field for RNA
preparation. The field experimental plan was a randomized, com-
plete block design with split plots and three replications. The
average aflatoxin levels in mature corn kernels from the inocu-
lated primary ears of each genotype were measured as 195 ppb for
Mp04:86, 140 ppb for Mp313E, 1243 ppb for Va35, and 3791 ppb
for B73. Mp04:86 was a resistant recombinant inbred line derived
from the cross of Mp715 (resistant) × Va35 (susceptible), and it
was selected by the phenotypic trait of low-level aflatoxin accu-
mulation. The microarrays (from the NSF Maize Oligonucleotide
Array Project) used in this experiment contained 57,452 maize
gene probes (Pontius et al., 2003).

The log2 fold changes (inoculation/un-inoculation) for each
gene probe were used as gene expression values, resulting in
a high-dimensional (57,452 × 4) data matrix. Principal com-
ponent analysis (PCA) was used to analyze the resulting gene
expression values. PCA is a commonly used technique in find-
ing patterns and relationships between variables in data analysis
and the results can be displayed in biplots. The direction and
length of the arrows in the biplots represented the larger vari-
ances in the gene expression values of each corn inbred line
(Figures 2A,B). By using PCA analysis, the resistant corn inbred
lines (Mp313E and Mp04:86) were separated from the susceptible

FIGURE 2 | Biplots of PCA on the log2 ratios (I/U ) of expressed genes in

corn inbred lines. The eigenvectors evidently separated into resistant and
susceptible groups, respectively. Genes coordinately expressed in resistant
lines located near the eigenvectors for Mp313E and Mp04:86. Genes

coordinately expressed in susceptible lines located near the eigenvectors for
Va35 and B73. (A) PCA of 13,107 expressed genes and (B) PCA of a subset of
500 expressed genes. The arrows represent eigenvectors. The direction and
length represent the larger variance of the fold changes (Kelley et al., 2012).
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corn inbred lines (Va35 and B73). It had important implica-
tions. The patterns of gene expression appeared to be similar
in Mp313E and Mp04:86 in contrast to those of Va35 and B73.
The fact that Mp04:86 was clustered with Mp313E (resistant,
not a parent) but not with the susceptible parent Va35 strongly
indicated that Mp313E and Mp04:86 might have shared simi-
lar resistance mechanisms. It is worth mentioning that the PCA
analysis was directly applied to all gene expression values without
any pre-selection by statistical significance levels. These findings
demonstrated that all levels of the gene effects collectively con-
tributed to the grouping of resistant genotypes versus susceptible
genotypes.

The microarray data were also analyzed statistically to deter-
mine the significance levels and the significant genes were selected
for further validation by quantitative real-time PCR (qRT-PCR)
experiments. Fifty genes that were statistically significant from
microarray study were selected for a qRT-PCR analysis in a sep-
arate time course experiment using developing kernel samples of
Mp313E and Va35. Thirty-one of the 50 genes were found to
be significantly differentially expressed (P < 0.05) by analysis of
qRT-PCR data. Among these genes, eight were mapped to seven
previously identified QTL regions (Figure 1; Kelley et al., 2012).

Three of the mapped significant genes (Figure 1) that were
highly expressed in Va35 were known plant stress responsive
genes. AI664980 encodes a glycine-rich RNA-binding protein
(GRBP2; Naqvi et al., 1998; Govrin and Levine, 2000; Singh et al.,
2011). TC234808 encodes a protein that governs the large and
small ribosomal subunits assembly. Both AI664980 and TC234808
genes have RNA-binding domains and are likely to be involved
in the post-transcriptional regulation in plant defense systems.
BG266083 encodes stress-induced small heat shock proteins
(sHSPs). The development of ear rot caused by A. flavus infection
in the susceptible corn inbred line Va35 showed hypersensitiv-
ity. AI664980 (GRBP2) protein was reported to be associated
with plant–pathogen hypersensitivity interactions (Naqvi et al.,
1998).

The resistant corn inbred line Mp313E appeared to have highly
expressed genes encoding RNA transport regulators, molecular
chaperones, and detoxification proteins. TC231674 is homolo-
gous to the human nucleoporin NUP85 which is a component
of the nuclear pore complexes (NPCs). Studies have strongly
suggested that components of NPCs regulate the transport of
R proteins (Cheng et al., 2009; Garcia and Parker, 2009; Faris
et al., 2010). TC231674 gene was found highly expressed in the
resistant line Mp313E. BM498943 encodes ethylene responsive
protein (ETHRP) which belongs to the universal stress responsive
protein family. BM379345 encodes a metallothionein-like pro-
tein (MTLP) involved in the detoxification of heavy metal ions.
It was found that increased aflatoxin production was associated
with high levels of certain trace metal elements (Lillehoj et al.,
1974).

EXPLORATION OF COMPUTATIONAL AND STATISTICAL
METHODS ON ANALYSIS OF RNA PATHWAY GENE
EXPRESSION DATA
Evidence from the microarray study showed that TC231674,
which encodes a possible RNA transport regulator, was highly

expressed in the resistant corn inbred line Mp313E. A num-
ber of previous studies have demonstrated that RNA transport
pathway genes play direct roles in plant defense (Piffanelli et al.,
1999; Chisholm et al., 2006; Walley et al., 2007). RNA transport
pathways are made up from a number of different protein com-
plexes. For example, the cap binding complex (CBC), spliceosome,
transcription-export complex (TREX), exon-junction complex
(EJC), and translation initiation factors (eIFs) are involved in the
transport of mRNA (Nakielny et al., 1997). Importins, exportins,
Ran-GTP-related protein complex, and the survival motor neu-
ron complex (SMN) are for the transport of rRNA, tRNA, and
snRNA molecules (Kindler et al., 2005; Jambhekar and Derist,
2007; Vazquez-Pianzola and Suter, 2012). All RNAs are trans-
ported across the nuclear membrane through NPCs (Köhler and
Hurt, 2007; Meier and Brkljacic, 2009; Deslandes and Rivas,
2011; Rivas, 2012). Several reports have shown that nucle-
oporins are directly involved in the regulation of R protein
activities.

The expression patterns of corn RNA transport pathway genes
and their relations were studied by a qRT-PCR experiment in
the selected resistant and susceptible corn inbred lines (Asters
et al., 2014). The advance of qRT-PCR technique makes it possi-
ble to precisely describe and compare the level of gene expression
changes (Heid et al., 1996; Kubista et al., 2006; Rieu and Powers,
2009). In contrast to the comprehensive genome-wide microarray
or RNA sequencing techniques, qRT-PCR provides the flexibility
to measure gene expression levels on more samples across a wide
range of experimental conditions as “phenotypic traits.” This is an
important and novel strategy since it presents a way to overcome
the commonly seen“phenotyping bottleneck”due to the limitation
of available measureable traits compared with the huge amount of
genomic single nucleotide polymorphisms (SNPs) data. We aimed
at the exploration on using gene expression values as the “pheno-
typic data” in addition to the levels of aflatoxin accumulation to
conduct future genetic marker analysis.

Experiments were conducted to establish a computational
pipeline for analysis of qRT-PCR gene expression data (Asters
et al., 2014). This research aimed at the qRT-PCR gene expres-
sion analysis of more corn inbred lines, focused pathways, with
an experimental design in parallel to a typical breeding project,
so that statistical analysis over potential DNA markers, candi-
date gene expression levels, and aflatoxin levels could directly
apply. Resistant (Mp718, Mp719, and Mp04:104) and suscep-
tible (Va35, Mp04:85, and Mp04:89) corn inbred lines were
used in this experiment. Experimental conditions consisted of
two treatments (inoculated and un-inoculated with A. flavus),
six corn inbred lines with three replications for each, and two
sample collection time points at 2 and 7 days after inocu-
lation (DAI). Since these inbred lines were offspring from a
single cross of Mp715 and Va35, only up to two possible alleles
for each gene were involved in all samples. The gene expres-
sion variations observed in these samples were likely related
to gene regulating patterns associated with the resistance or
susceptibility.

Forty RNA transport pathway genes and 16 candidate
genes identified from the previous microarray experiment were
investigated. Trends of gene expression patterns were observed
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among the test corn inbred lines (Figure 3). AI664980 showed
significant variations among samples with down-regulation pat-
terns in resistant lines. TC231674 was found highly expressed
in the resistant corn line Mp718. Of the 56 genes ana-
lyzed, 17 were significantly differentially expressed between the
resistant and the susceptible groups. Most of the significant
genes were from the NPC and SMN protein complexes. Resis-
tance candidate genes BE050050, TC231674, and BM498943
were found positively correlated. Whereas the susceptibility-
related gene AI664980 was found negatively correlated with
BE050050 (−0.97; Asters et al., 2014). The inclusion of pre-
viously identified candidate genes in this research provided
another way of validation. The observation was consistent
with the previous findings on TC231674 where it was found
highly expressed in a different resistant corn inbred line
Mp313E.

The genes from the RNA transport pathways were considered as
being selected from a static gene network. However, in contrast to

the methods excessively used in the functional clustering by match-
ing with Gene Ontology (GO) terms, the analysis in this study
aimed to explore a method on determination of gene relationships
from the empirical gene expression data. Susceptibility-related
gene AI664980 was found clustered with six test genes (Nup88,
eIF2, CD443591, CA399536, SPN1, and MAGOH) by a network
analysis method, suggesting a similar expression pattern of these
genes in response to A. flavus infection. Resistance candidate genes,
such as TC231674 and BE050050, appeared as isolates in the net-
work. Further experiments with more genes included are needed
to reveal positions of these genes in the empirical network regard-
ing corn defense against A. flavus infection and toxin production
(Asters et al., 2014).

CONCLUSION
Many studies have shown that significantly low levels of aflatoxin
accumulation have been achieved in a number of resistant corn
inbred lines. However, an efficient transfer of such resistance to

FIGURE 3 | Examples (A–D) showing that qRT-PCR gene expression

values can be used as “phenotypic data” for statistical analysis.

Each scatterplot represents gene expression values measured for one
gene across all samples. The horizontal axis represents the 72 samples

with different colors coded for the six corn inbred lines. Samples 1–36
were collected at 2 DAI and samples 37–72 were at 7 DAI. The
vertical axis represents the relative gene expression values (Asters
et al., 2014).
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commercially available corn lines has been proven difficult due
to the complex nature of this quantitative trait. Many genes were
proposed to be involved in the corn host plant resistance to the afla-
toxin reduction. The exploration for effective methods to identify
and prioritize resistance genes will expedite the discovery of DNA
markers and facilitate the breeding for corn host resistance.

For future work, we propose the use of multi-environmental
gene expression data as “phenotypic data” for calculation of the
DNA marker genetic effects in performing genomic selection for
the breeding of corn host resistance. Parallel quantitative pro-
teomics and metabolomics approaches will also be explored to
identify proteins and metabolites related to A. flavus responsive
pathways. Using transcriptomics, proteomics, and metabolomics
data as “phenotypic data” will facilitate the identification of con-
nections among genome regions, resistance-related genes and
proteins, aflatoxin contents, and other metabolites for statistical
analysis and modeling. The application of the resulting statistical
models will be very helpful on estimating marker genetic effects
and predicting the breeding values for aflatoxin resistance in corn.

REFERENCES
Asters, M. C., Williams, W. P., Perkins, A. D., Mylroie, J. E., Windham, G. L., and

Shan, X. (2014). Relating significance and relations of differentially expressed
genes in response to Aspergillus flavus infection in maize. Sci. Rep. 4, 4815. doi:
10.1038/srep04815

Bhatnagar, D., Cary, J. W., Ehrlich, K., Yu, J., and Cleveland, T. E. (2006). Under-
standing the genetics of regulation of aflatoxin production and Aspergillus flavus
development. Mycopathologia 162, 155–166. doi: 10.1007/s11046-006-0050-9

Brooks, T. D., Williams, W. P., Windham, G. L., Willcox, M. C., and Abbas, H.
K. (2005). Quantitative trait loci contributing resistance to aflatoxin accumula-
tion in the maize inbred Mp313E. Crop Sci. 45, 171–174. doi: 10.2135/cropsci
2005.0171

Buckley, P. M., Williams, W. P., and Windham, G. L. (2006). Comparison of two inoc-
ulation methods for evaluating corn for resistance to aflatoxin contamination.
Miss. AFES Bull. 1148.

Cheng, Y. T., Germain, H., Wiermer, M., Bi, D., Xu, F., García, A. V., et al. (2009).
Nuclear pore complex component MOS7/Nup88 is required for innate immunity
and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21,
2503–2516. doi: 10.1105/tpc.108.064519

Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. (2006). Host–microbe
interactions: shaping the evolution of the plant immune response. Cell 124, 803–
814. doi: 10.1016/j.cell.2006.02.008

Cleveland, T. E., Yu, J., Bhatnagar, D., Chen, Z. Y., Brown, R. L., Chang, P. K., et al.
(2004). Progress in elucidating the molecular basis of the host plant–Aspergillus
flavus interaction, a basis for devising strategies to reduce aflatoxin contamination
in crops. J. Toxicol. 23, 345–380.

Daves, C. A., Windham, G. L., and Williams, W. P. (2010). Aflatoxin Accumulation
in commercial corn hybrids artificially inoculated with Aspergillus flavus in 2008
and 2009. Miss. AFES Res. Rep. 24:9.

Davis, G. L., Windham, G. L., and Williams, W. P. (2000). QTL for aflatoxin reduction
in maize. Maize Genet. Conf. 41, 22.

Deslandes, L., and Rivas, S. (2011). The plant cell nucleus, a true arena for
the fight between plants and pathogens. Plant Signal. Behav. 6, 42–48. doi:
10.4161/psb.6.1.13978

Faris, J. D., Zhang, Z. C., Lu, H. J., Lu, S. W., Reddy, L., Cloutier, S., et al. (2010). A
unique wheat disease resistance-like gene governs effector-triggered susceptibility
to necrotrophic pathogens. Proc. Natl. Acad. Sci. U.S.A. 107, 13544–13549. doi:
10.1073/pnas.1004090107

Garcia, A. V., and Parker, J. E. (2009). Heaven’s gate: nuclear accessibility and
activities of plant immune regulators. Trends Plant Sci. 14, 479–487. doi:
10.1016/j.tplants.2009.07.004

Gourama, H., and Bullerman, L. B. (1995). Aspergillus flavus and Aspergillus par-
asiticus: aflatoxigenic fungi of concern in foods and feeds. J. Prot. Ecol. 58,
1395–1404.

Govrin, E. M., and Levine, A. (2000). The hypersensitive response facilitates plant
infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751–757.
doi: 10.1016/S0960-9822(00)00560-1

Heid, C. A., Stevens, J., Livak, K. J., and Williams, M. P. (1996). Real time quantitative
PCR. Genome Res. 6, 986–994. doi: 10.1101/gr.6.10.986

Jambhekar, A., and Derist, J. L. (2007). Cis-acting determinants of asymmetric,
cytoplasmic RNA transport. RNA 13, 625–642. doi: 10.1261/rna.262607

Kelley, R. Y., Williams, W. P., Mylroie, J. E., Boykin, D. L., Harper, J. W., Windham, G.
L., et al. (2012). Identification of maize genes associated with host plant resistance
or susceptibility to Aspergillus flavus infection and aflatoxin accumulation. PLoS
ONE 7:e36892. doi: 10.1371/journal.pone.0036892

Kindler, S., Wang, H. D., Richter, D., and Tiedge, H. (2005). RNA transport
and local control of translation. Annu. Rev. Cell. Dev. Biol. 21, 223–245. doi:
10.1146/annurev.cellbio.21.122303.120653

Köhler, A., and Hurt, E. (2007). Exporting RNA from the nucleus to the cytoplasm.
Nat. Rev. Mol. Cell Biol. 8, 761–773. doi: 10.1038/nrm2255

Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jona, J., Lind, K., et al.
(2006). The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125.
doi: 10.1016/j.mam.2005.12.007

Larson, E. (1997). Minimizing aflatoxin in corn. Miss. Cooper. Ext. Serv. Info. Sheet
1563.

Lillehoj, E. B., Garcia, W. J., and Lambrow, M. (1974). Aspergillus flavus infection
and aflatoxin production in corn: influence of trace elements. Appl. Microbiol. 28,
763–767.

Meier, I., and Brkljacic, J. (2009). The nuclear pore and plant development. Curr.
Opin. Plant Biol. 12, 87–95. doi: 10.1016/j.pbi.2008.09.001

Nakielny, S., Fischer, U., Michael, W. M., and Dreyfuss, G. (1997). RNA transport.
Annu. Rev. Neurosci. 20, 269–301. doi: 10.1146/annurev.neuro.20.1.269

Naqvi, S. M. S., Park, K. S., Yi, S. Y., Lee, H. W., Bok, S. H., and Choi, D. (1998).
A glycine-rich RNA-binding protein gene is differentially expressed during acute
hypersensitive response following Tobacco Mosaic Virus infection in tobacco.
Plant Mol. Biol. 37, 571–576. doi: 10.1023/A:1006031316476

Payne, G. A. (1992). Aflatoxins in maize. Crit. Rev. Plant Sci. 10, 423–440. doi:
10.1080/07352689209382320

Piffanelli, P., Devoto, A., and Schulze-Lefert, P. (1999). Defence signaling pathways in
cereals. Curr. Opin. Plant Biol. 2, 295–300. doi: 10.1016/S1369-5266(99)80052-1

Pontius, J. U., Wagner, L., and Schuler, G. D. (2003). “UniGene: a unified view of
the transcriptome,” in The NCBI Handbook, Bethesda, MD: National Center for
Biotechnology Information.

Rieu, I., and Powers, S. J. (2009). Real-time quantitative RT-PCR: design,
calculations, and statistics. Plant Cell 21, 1031–1033. doi: 10.1105/tpc.109.066001

Rivas, S. (2012). Nuclear dynamics during plant innate immunity. Plant Physiol.
158, 87–94. doi: 10.1104/pp.111.186163

Robens, J., and Cardwell, K. F. (2005). “The cost of mycotoxin management in the
United States,” in Aflatoxin and Food Safety, ed. H. K. Abbas (Boca Raton, FL:
CRC Press), 1–12. doi: 10.1201/9781420028171.ch1

Scott, G. E., and Zummo, N. (1990). Registration of Mp313E parental line of maize.
Crop Sci. 30:1378. doi: 10.2135/cropsci1990.0011183X003000060080x

Scott, G. E., and Zummo, N. (1992). Registration of Mp420 germplasm line of
maize. Crop Sci. 32:1296. doi: 10.2135/cropsci1992.0011183X003200050054x

Singh, U., Deb, D., Singh, A., and Grover, A. (2011). Glycine-rich RNA binding
protein of Oryza sativa inhibits growth of M15 E. coli cells. BMC Res. Notes 4:18.
doi: 10.1186/1756-0500-4-18

Thompson, D. L., Payne, G. A., Lillehoj, E. B., and Zuber, M. S. (1983). Early appear-
ance of aflatoxin in developing corn kernels after inoculation with Aspergillus
flavus. Plant Dis. 67, 1321–1322. doi: 10.1094/PD-67-1321

Vazquez-Pianzola, P., and Suter, B. (2012). Conservation of the RNA transport
machineries and their coupling to translation control across eukaryotes com-
parative and functional genomics. Comp. Funct. Genomics 2012, 287852. doi:
10.1155/2012/287852

Walley, J. W., Coughlan, S., Hudson, M. E., Covington, M. F., Kaspi, R., Banu, G.,
et al. (2007). Mechanical stress induces biotic and abiotic stress responses via a
novel cis-element. PLoS Genet. 3:e172. doi: 10.1371/journal.pgen.0030172

Willcox, M. C., Davis, G. L., Warburton, M. L., Windham, G. L., Abbas, H. K., Betran,
J., et al. (2013). Confirming QTL for aflatoxin resistance from Mp313E in different
genetic backgrounds. Mol. Breed. 32, 15–26. doi: 10.1007/s11032-012-9821-9

Williams, W. P. (2006). Breeding for resistance to aflatoxin accumulation in maize.
Mycotoxin Res. 22, 27–32. doi: 10.1007/BF02954554

Frontiers in Microbiology | Food Microbiology July 2014 | Volume 5 | Article 364 | 6

http://www.frontiersin.org/Food_Microbiology/
http://www.frontiersin.org/Food_Microbiology/archive


Shan and Williams Elucidation of corn resistance to Aspergillus flavus

Williams, W. P., Krakowsky, M. D., Windham, G. L., Balint-Kurti, P., Hawkins,
L. K., and Henry, W. B. (2008). Identification maize germplasm with resistance
to aflatoxin accumulation. Toxin Rev. 27, 319–345. doi: 10.1080/15569540802
399838

Williams, W. P., and Windham, G. L. (2001). Registration of maize germplasm line
Mp715. Crop Sci. 41, 1374–1375. doi: 10.2135/cropsci2001.4141374-ax

Williams, W. P., and Windham, G. L. (2006). Registration of maize germplasm line
Mp717. Crop Sci. 46, 1407. doi: 10.2135/cropsci2005.09-0330

Williams, W. P., and Windham, G. L. (2012). Registration of Mp718 and
Mp719 Germplasm lines of maize. J. Plant Regist. 6, 200–202. doi:
10.3198/jpr2011.09.0489crg

Williams, W. P., Windham, G. L., and Buckley, P. M. (2005a). “Enhancing maize with
resistance to Aspergillus flavus infection and aflatoxin accumulation,” in Aflatoxin
and Food Safety, ed. H. K. Abbas (New York, NY: CRC Press), 379–394.

Williams, W. P., Windham, G. L., Buckley, P. M., and Perkins, J. M. (2005b). South-
western corn borer damage and aflatoxin accumulation in conventional and trans-
genic corn hybrids. Field Crops Res. 91, 329–336. doi: 10.1016/j.fcr.2004.08.002

Williams, W. P., Windham, G. L., and Buckley, P. M. (2007). Diallel analysis of
aflatoxin accumulation in maize. Crop Sci. 48, 134–138. doi: 10.2135/crop-
sci2007.05.0306

Williams, W. P., Windham, G. L., Buckley, P. M., and Daves, C. A. (2002). Afla-
toxin accumulation in conventional and transgenic corn hybrids infested with
southwestern corn borer (Lepidoptera: Crambidae). J. Agric. Urban Entomol. 19,
227–236.

Windham, G. L., Hawkins, L. K., and Williams, W. P. (2010). Aflatoxin accumu-
lation and kernel infection of maize hybrids inoculated with Aspergillus flavus
and Aspergillus parasiticus. World Mycotoxin J. 3, 89–93. doi: 10.3920/WMJ
2009.1183

Windham, G. L., and Williams, W. P. (1998). Aspergillus flavus infection and accu-
mulation in resistant and susceptible maize hybrids. Plant Dis. 82, 281–284. doi:
10.1094/PDIS.1998.82.3.281

Windham, G. L., and Williams, W. P. (1999). Aflatoxin accumulation in commercial
corn hybrids in 1998. Miss. AFES Res. Rep. 22:8.

Windham, G. L., and Williams, W. P. (2002). Evaluation of corn inbred lines and
advanced breeding lines for resistance to aflatoxin contamination in the field.
Plant Dis. 86, 232–234. doi: 10.1094/PDIS.2002.86.3.232

Windham, G. L., Williams, W. P., Buckley, P. M., Abbas, H. K., and Hawkins, L.
K. (2005). “Techniques used to identify aflatoxin resistant corn,” in Aflatoxin and
Food Safety, ed. H. K. Abbas (New York, NY: CRC Press), 407–421.

Windham, G. L., Williams, W. P., and Davis, F. M. (1999). Effects of the southwestern
corn borer on Aspergillus flavus kernel infection and aflatoxin accumulation in
maize hybrids. Plant Dis. 83, 535–540. doi: 10.1094/PDIS.1999.83.6.535

Windham, G. L., Williams, W. P., Hawkins, L. K., and Brooks, T. D. (2009).
Effect of Aspergillus flavus inoculation methods and environmental condi-
tions on aflatoxin accumulation in corn hybrids. Toxin Rev. 28, 70–78. doi:
10.1080/15569540802450037

Zummo, N., and Scott, G. E. (1989). Evaluation of field inoulation teqhniques
for screening maize genotypes against kernel infection by Aspergillus flavus in
Mississippi. Plant Dis. 73, 313–316. doi: 10.1094/PD-73-0313

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 21 May 2014; accepted: 29 June 2014; published online: 21 July 2014.
Citation: Shan X and Williams WP (2014) Toward elucidation of genetic and functional
genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin
contamination. Front. Microbiol. 5:364. doi: 10.3389/fmicb.2014.00364
This article was submitted to Food Microbiology, a section of the journal Frontiers in
Microbiology.
Copyright © 2014 Shan and Williams. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org July 2014 | Volume 5 | Article 364 | 7

http://dx.doi.org/10.3389/fmicb.2014.00364
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Food_Microbiology/archive

	Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to aspergillus flavus infection and aflatoxin contamination
	Introduction
	Resistant corn germplasm developed by USDA--ARS at mississippi state
	The identification of major resistance quantitative trait loci (QTLs)
	Comparative genome-wide gene expression study on selected corn inbred lines
	Exploration of computational and statistical methods on analysis of RNA pathway gene expression data
	Conclusion
	References


