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Some of the central challenges for developing effective vaccines against HIV and hepatitis
C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly
replicating RNA viruses with the ability to establish long-term chronic pathogenic infection
in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both
viruses may co-exist among certain populations by virtue of common blood-borne, sexual,
or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic,
innate, and adaptive immune defenses but with some distinct mechanisms reflecting their
differences in evolutionary history, replication characteristics, cell tropism, and visibility to
mucosal versus systemic and hepatic immune responses. A potent and durable antibody
and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the
single biggest difference between the two vaccine design challenges is that in HCV, a
natural model of protective immunity can be found in those who resolve acute infection
spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+
T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui
et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-
infection suggests partial or lack of protective immunity against heterologous HCV strains,
possibly indicative of the degree of genetic diversity of circulating HCV genotypes and
subtypes. There is no natural model of protective immunity in HIV, however, studies
of “elite controllers,” or individuals who have durably suppressed levels of plasma HIV
RNA without antiretroviral therapy, has provided the strongest evidence for CD8+ T cell
responses in controlling viremia and limiting reservoir burden in established infection. Here
we compare and contrast the specific mechanisms of immune evasion used by HIV and
HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in
natural infection, and the challenges these pose for designing effective preventative or
therapeutic vaccines.
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LEADS FROM GENETIC ASSOCIATION STUDIES SUPPORT
IMPORTANCE OF IMMUNOLOGICAL MECHANISMS IN VIRAL
INFECTION OUTCOME
Genetic determinants of spontaneous HCV infection clearance
and HIV viral control using genome-wide association studies
(GWAS) and candidate gene studies have added crucial insight
into the influence of the host immune response on infection out-
come. For HIV the strongest genetic determinant of viral load
set-point and CD4+ T cell decline following infection, aside from
variants in the CCR5 molecule used by HIV for cell entry, are spe-
cific HLA class I alleles (e.g., HLA-B27 and HLA-B57; reviewed in
O’Brien et al., 2001) involved in T cell antigen presentation. More
recently, a GWAS has shown the association of HLA-C with viral
control (International HIVCS et al., 2010). The variation at HLA-C
associated with HIV outcome appears to affect cell surface expres-
sion of the HLA molecule (Thomas et al., 2009b). The HLA class I
molecules also act as ligands for natural killer (NK) cell receptors
and this interaction is known to influence the activation threshold

for NK cells. Particular combinations of killer immunoglobulin-
like receptors (KIR) and HLA class I ligands are strongly associated
with HIV infection outcome (Martin et al., 2002).

For HCV, studies that examine host genetic associations with
infection outcome clearly indicate that genotypic differences in
the interferon pathway such as interferon lambda 3 (IFN-λ3)
(Thomas et al., 2009a; Rauch et al., 2010), NK cell cytotoxicity
activation threshold (Khakoo et al., 2004) and specific HLA class I
and II alleles (McKiernan et al., 2004; Miki et al., 2013) are strongly
associated with resolution following HCV infection (reviewed in
Rauch et al., 2009a).

For both HIV and HCV, the genetic leads support the
involvement of CD8+ T cells and antigen presentation in infec-
tion outcome. Further evidence can be obtained from the
observed heterozygote advantage at the HLA loci for both viral
infections (Carrington et al., 1999; Hraber et al., 2007), likely
reflecting the presentation of an increased number of T cell
targets.
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VIRAL EFFECTS ON ANTIGEN PRESENTATION
To establish chronic infection, viruses such as HIV and HCV
must evade the host’s T cell response. The host’s T cell response
is governed by the assembly and presentation of antigen via the
polymorphic HLA class I and II molecules. In the case of HLA
class I presentation of viral peptides to CD8+ cytotoxic T cells
(CTL), the process requires correct folding of the HLA class I
molecules with b2-microglobulin in the endoplasmic reticulum.
In parallel, the viral peptides that have been processed by the pro-
teasome complex in the cytosol are then loaded onto the HLA
class I-β2-microglobulin complex via the transporter associated
with antigen presentation (TAP) protein. This tertiary structure is
then translocated to the surface of the cell via the golgi apparatus
for presentation to a CTL with the appropriate T cell receptor.
Both HIV and HCV have evolved several mechanisms to disrupt
this pathway including reduction of HLA class I expression and
mutational escape from antigen presentation.

EFFECTS ON HLA EXPRESSION
For HCV, the proteins core (Miyamoto et al., 2007) and NS3 (Khu
et al., 2004) have been shown to affect the function of the pro-
teasome complex (reviewed in Osna, 2009) and potentially HLA
class I presentation. Other evidence from the Huh-7 subgenomic
replicon system, suggests that HCV infection reduces HLA class
I surface expression via a stress-mediated mechanism that lowers
the efficacy of HLA class I folding in the endoplasmic reticulum,
although the mechanism does not appear to be specific for HLA
class I molecules (Tardif and Siddiqui, 2003). However, another
study by Herzer et al. (2003) utilizing liver cell lines and plas-
mid constructs showed increased HLA class I expression via the
action of the HCV core protein on TAP1 (function is dependent on
p53). Interestingly, increased HLA class I expression was only seen
in HepG2 cells (contain functional p53) and not in Huh-7 cells
(exhibit a non-functional p53), not for HLA class II (using a pan
HLA-DR antibody) and not for other HCV proteins used in a plas-
mid construct. However, the change in HLA class I expression on
the HepG2 cells did not appear to affect CD8+ T cell recognition
and may instead be related to NK cell cytotoxicity.

The ability to differentiate the effect of HCV on the expression
of the different HLA class I loci will be critical given the differ-
ing functions/interactions of HLA-A, -B, and -C alleles with NK
cell receptors and potentially CD8+ T cell antigen presentation.
It should be noted that in the studies described above, the pan
HLA-class I antibody W6/32 was used and this antibody does not
differentiate between the HLA class I loci.

Interactions between HIV and HLA surface expression are well
established. HIV Nef in particular down-modulates cell surface
expression of HLA-A and -B molecules, rendering them less vis-
ible to cytotoxic CD8+ T cells, however HLA-C and -E are not
selectively down-modulated, which renders them resistant to NK-
mediated lysis (Cohen et al., 1999). More recently, differential
expression levels of different HLA-C alleles mediated through
micro-RNA regulation were found to be important in influencing
HIV-1 control. Increased cell surface expression levels of HLA-C
were significantly associated with reduced longitudinal viral load
and rate of decline in CD4+ T cell count in a study involving over
5000 individuals with pre-treatment HIV-1 infection (Apps et al.,

2013). Furthermore, this effect was independent of all other HLA
allele-specific effects and was robust across different ethnic groups
with distinct HLA-C allele frequency distributions and linkage
relationships with HLA-A and -B alleles. Further, differential HLA-
C expression levels correlated with measured CTL responses and
frequency of viral escape mutation, signifying a direct modulatory
effect on disease outcome mediated through the quality of HLA-C
restricted T cell responses. While this is a “peptide-independent”
mechanism of control, it points to the importance of providing
sufficient epitopes for HLA-C in a vaccine immunogen not liable to
escape from responses binding with high or low expressing HLA-C
alleles.

Human leukocyte antigen class II presentation by antigen pre-
senting cells (APCs) to CD4+ T cells is important for both HIV
and HCV, but less is known about how these viruses affect HLA
class II presentation. In general, nascent HLA class II molecules in
the endoplasmic reticulum of APCs such as dendritic cells asso-
ciate with the invariant chain protein, which acts to prevent the
binding of endogenous peptides in the HLA class II pocket as well
as a chaperone for the HLA class II molecule to the golgi apparatus
for transportation to the cell surface. However, cell surface expres-
sion of HLA class II molecules is not possible until the invariant
chain is degraded by a protease such as cathepsin.

Hepatitis C virus is known to affect dendritic cell function and
maturation and has been shown to inhibit HLA class II (HLA-DR)
expression on dendritic cells (Siavoshian et al., 2005; Averill et al.,
2007; Saito et al., 2008). Subsequent studies have shown that
dendritic cells exposed to HCV exhibit decreased expression of
Cathepsin S with a corresponding decrease of HLA-DR expression
on the cell surface, mainly mediated through the HCV proteins
core and NS5A (Kim et al., 2012). Interestingly, hepatocytes may
act as APCs in the liver and similar interactions were observed
when these cells are transfected with core and NS5A (Kim et al.,
2012). More should be examined in this area for HCV as CD4+
T cells are critical in HCV infection outcome based on CD4+ T
cell depletion and HLA class II tetramer studies that clearly show
lack of CD4+ T cell help and a collapse in HCV-specific CD4+ T
cell responses within months of acute HCV infection is strongly
associated with persistence (Lucas et al., 2007; Schulze Zur Wiesch
et al., 2012).

Although less studied compared to interactions with HLA
class I, HIV Nef has been shown to influence HLA class II surface
expression through effects on intracellular trafficking (Stumptner-
Cuvelette et al., 2001). Notably, slower progression of pediatric
HIV disease has been associated with nef variants, which induced
greater down-modulation of surface HLA class II expression, pos-
sibly through reducing CD4+ T cell activation and therefore cell
loss (Schindlera et al., 2007).

VIRAL ESCAPE, DIVERSITY AND POPULATION LEVEL ADAPTATION
HIV and HCV have error-prone polymerases, rapid replication
cycles and in the case of HIV high intracellular recombination
rate, allowing for rapid generation, and selective outgrowth of
mutant strains, which escape antigen-specific antiviral responses
mediated by T cells and NK cells. There is now an exten-
sive literature documenting the predictable mutational networks,
which arise in circulating HIV and HCV strains as a result
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of escape from HLA-restricted T cell responses (Moore et al.,
2002; Gaudieri et al., 2006; Rauch et al., 2009b). The antigenic
diversity, which partly results from this escape mechanism, is
extreme compared to other vaccine-preventable virus infections,
and therefore requires especially broad-based immunity from
vaccines against HIV and HCV. What makes T cell escape partic-
ularly notable is that HLA, which mediates the peptide specific
targeting of virally infected cells, is the most polymorphic of
human gene systems, having become so as a result of myriad
microbial selective pressures in human evolution (Prugnolle et al.,
2005). To retain or even increase in vivo fitness despite muta-
tion in the context of the great diversity of HLA types across
a pandemic infection underscores the plasticity of these viruses
and the challenge of vaccinating against them at the population
level.

In terms of the diversity challenge for vaccines, among the nine
phylogenetically distinct HIV-1 group M subtypes, subtypes C
and B account for the majority of the global epidemic but have
as much as 30–40% inter-subtype diversity at certain segments of
the genome. Phylogenetic trees based on HCV sequences indicate
the challenge of diversity with HCV, which has an up to 3000-fold
higher replication rate than HIV and the absence of any constraint
imposed by overlapping open reading frames. HCV genotype 1 is
as diverse as all the subtypes of HIV (Figure 1). HCV is classified
into seven genotypes that differ by about 20–30% at the amino
acid level and multiple subtypes for each genotype that differ by
10–15% (Smith et al., 2014). We have previously shown that the
polymorphism profile of the different genotypes along sites in
the non-structural proteins of HCV vary and supports the obser-
vation that there is limited overlap in viral adaptations between
genotypes (Rauch et al., 2009b). The limited overlap in the adap-
tation profile of the genotype 1a and 3a strains likely reflects both
different T cell targets as well as different fitness costs associated
with variations at specific sites (Salloum et al., 2008; Dazert et al.,
2009).

A multi-epitope approach using non-structural proteins has
been successful to elicit effective immunity against heterologous
HCV strains suggesting potential for effective vaccine develop-
ment (Folgori et al., 2006; Lang Kuhs et al., 2012). However, a
limitation of vaccines developed for HCV is that the use of a small
number of T cell epitopes are not sufficient to cover the high
variability of HCV observed at the population level (Firbas et al.,
2006; Klade et al., 2008). A paucity in the number of known HCV-
specific HLA-restricted T cell epitopes is a challenge for a T cell
based HCV vaccine.

A further implication of T cell escape is the degree to which
escape can accumulate over time in viruses circulating in pop-
ulations, rendering natural, and vaccine-induced CD8+ T cell
responses ineffective against transmitting strains, especially those
restricted by common HLA alleles. The frequency of certain HLA-
driven escape mutations in HIV are highly correlated to HLA
allele frequency across ethnically diverse populations, including
for some well-known escape networks associated with “protec-
tive” HLA alleles (Kawashima et al., 2009). This is an inherently
difficult phenomenon to prove, however, as the more such adap-
tations might accumulate in a population, the less polymorphism
and less statistical power to show a correlation with any host trait
as evidence of an adaptive process. Notably early population-based
studies of HIV and HCV escape detected significant associations
between common population HLA alleles and the presence of
population consensus amino acids in autologous viruses, which
raised the possibility that these were HLA-driven adaptations that
had become fixed at the population level (Moore et al., 2002).
This clearly has implications for vaccine immunogens, which may
include such “population-adapted” areas.

CURRENT VACCINE DEVELOPMENT
There is recognition of the need to stimulate both arms of the
adaptive immune response for an effective preventative HCV vac-
cine (reviewed in Swadling et al., 2013) and evidence to support

FIGURE 1 | Phylogenetic analysis of (A) HIV pol and (B) HCV

NS5B polymerase sequences. Neighbor-joining trees were
constructed using the Tamura-Nei model. Note the distance bar
for HIV corresponds to 0.01 substitutions per site and for

HCV 0.025 substitutions per site. Common HCV subtypes 1a
and 1b are indicated on tree. HCV subtype and HIV clade
sequences obtained from www.hcv.lanl.gov and www.hiv.lanl.gov,
respectively.
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the inclusion of both structural and non-structural proteins
(reviewed in Torresi et al., 2011). Previous studies have shown
evidence of cross-reactive neutralizing antibodies (NAbs), par-
ticularly in the chimpanzee model (Choo et al., 1994; Forns
et al., 2000; Rollier et al., 2007; Meunier et al., 2011), but limited
data on vaccine candidates that elicit both NAbs and HCV-
specific T cell responses. Recently, encouraging results have
been reported by Martinez-Donato et al. (2014) who utilized a
mixture of HCV core, E1, E2, and NS3 in Alum (Mixpro-
tHC; containing likely conserved T cell epitopes) from a geno-
type 1b strain to induce cross-reactive IgG NAbs (to genotype
1a and 2a) and broad HCV-specific CD4+ and CD8+ T cell
responses (detected via proliferation and IFN-gamma ELISpot
assays) in immunized mice (BALB/c) and African Green Mon-
keys. Importantly, immunization with MixprotHC also sup-
presses viremia in a surrogate challenge model in mice. Other
vector-based and DNA-based vaccine candidates exist (reviewed
in Swadling et al., 2013) and outcomes from Phase II trials
should be informative as to their likely efficacy in “at-risk”
populations.

In the comparatively much larger and now 30 year old field
of HIV vaccine development, the lack of an effective vaccine
points to the many remaining barriers to inducing broadly NAbs
or effective CD8+ T cells capable of acting and persisting at the
site of mucosal HIV entry. Many current vaccine strategies pro-
gressing to clinical studies seek to address some of the evasion
mechanisms discussed here. For example, there has been testing
of various diversity-combating immunogen design approaches,
including mosaic vaccines in which inclusion of variant epitopes
is optimized, as well as strategies based on conserved immunogens
sequences. There are numerous adjuvants, vectors and delivery
vehicles designed to improve the efficiency of antigen presenta-
tion of vaccine antigens in order to stimulate effective antiviral
responses. There are two recent vaccine programs, however, which
raise the intriguing possibility that vaccines may need to induce
mechanisms of antigen presentation that are highly distinct from
those seen in natural infection for their protective effects. A novel
“tolerogenic” vaccine consisting of inactivated simian immunod-
eficiency virus (SIV) mac239 particles with particular bacterial
adjuvants has been shown to elicit CD8+ T-regulatory cells in vac-
cinated macaques. These T cell were not cytolytic but were able
to suppress the activation of SIV-positive CD4+ T cells, rendering
them less susceptible to SIV infection after challenge. In addi-
tion, these CD8+ T cells were found to be uniquely restricted by
non-classical MHCIb/E molecules (Andrieu et al., 2014), corre-
sponding to HLA-E in humans. Interestingly, recent data shows
HLA-E expression in liver biopsies correlates with HCV viral
load in chronic HCV-infected subjects and NK cells lacking the
inhibitory receptor for HLA-E (NKG2A) is associated with protec-
tion from HCV infection in high-risk exposure subjects (Thoens
et al., 2014). To date there has been no examination of non-classical
HLA-restricted CD8+ T cells in HCV infection. In contrast to the
CD8+ “T-regulatory” type cells described above, a vaccine based
on a rhesis CMV vector has produced durable protection or clear-
ance of SIV challenge infections in vaccinated macaques associated
with induction of effector memory CD8+ T cell responses. How-
ever, these CD8+ T cells have been found to target a diverse array

of promiscuous or dominant epitopes restricted by HLA class II
alleles, rather than HLA class I (Hansen et al., 2013). In both these
examples, properties of the vaccine appear to violate the usual
rules of CD8+ T cell priming and both show promising efficacy
in the SIV-macaque model, suggesting novel ways in which vac-
cines may avoid the evolutionary solutions that SIV/HIV may have
developed in natural infection.

CONCLUSION
In general, induction of CD4+ and CD8+ T cell responses a
key aim of most current vaccine candidates for HIV and HCV,
together with innate and humoral immunity as part of a coordi-
nated and long lived immune response. For preventative vaccines,
the efficacy of CD4+ and CD8+ T cells will crucially depend on the
extent to which the vaccine induced T cells can overcome natural
effects of these viruses on HLA expression, antigen presentation
and HLA-associated viral diversity.
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