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Flow cytometric sorting is a powerful tool to physically separate cells within mixed

microbial communities. If combined with phylogenetic staining (fluorescence in situ

hybridization, FISH) it allows to specifically sort defined genotypic microbial populations

from complex natural samples. However, the targeted enrichment of freshwater

ultramicrobacteria, such as members of the LD12 clade of Alphaproteobacteria

(SAR11-IIIb), is still challenging. Current FISH protocols, even in combination with signal

amplification by catalyzed reporter deposition (CARD), are not sufficiently sensitive for

the distinction of these bacteria from background noise by flow cytometry, presumably

due to their low ribosome content and small cell sizes. We, therefore, modified a CARD

based flow sorting protocol with the aim of increasing its sensitivity to a level sufficient for

ultramicrobacteria. This was achieved by a second signal amplification step mediated

by horseradish peroxidase labeled antibodies targeted to the fluorophores that were

previously deposited by CARD-FISH staining. The protocol was tested on samples from

an oligo-mesotrophic lake. Ultramicrobacteria affiliated with LD12 Alphaproteobacteria

could be successfully sorted to high purity by flow cytometry. The ratios of median

fluorescence signal to background ranged around 20, and hybridization rates determined

by flow cytometry were comparable to those obtained by fluorescence microscopy.

Potential downstream applications of our modified cell staining approach range from

the analysis of microdiversity within 16S rRNA-defined populations to that of functional

properties, such as the taxon-specific incorporation rates of organic substrates.

Keywords: flow cytometry, flow sorting, fluorescence in situ hybridization, catalyzed reporter deposition,

immunohistochemistry, freshwater bacterioplankton, ultramicrobacteria

Introduction

Flow cytometry has become an essential tool in aquatic microbiology (Wang et al., 2010). Indi-
vidual microbial cells can be characterized, distinguished, and even physically sorted based
on their fluorescence and light scattering properties. A wide range of fluorescent dyes are
available for non-autofluorescent microbes. For example, DNA binding dyes allow a fast and
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accurate determination of total cell numbers as well as estima-
tions of cell size and DNA content (Felip et al., 2007), and combi-
nations of membrane permeable and impermeable dyes are used
to determine physiological states of cells (Lopezamoros et al.,
1995). When applied to complex bacterial communities those
techniques are, however, limited to bulk analyses in which traits
are assigned to operationally defined populations typically com-
posed of taxonomically and functionally diverse species. There-
fore, there is demand for taxon-specific labeling approaches that
are compatible with flow cytometry. Various immunohistochem-
ical tools are available for this purpose in clinical applications.
Their application is however limited to well-characterized taxa
with cultivated representatives (Alvarez-Barrientos et al., 2000).

Cultivation independent staining protocols such as fluores-
cence in situ hybridization (FISH) can overcome this limitation.
Extensive databases of environmental 16S and 23S rDNAs such
as SILVA or RDP (Pruesse et al., 2007; Cole et al., 2014) and
various software tools facilitate the design of specific probes for
most environmental bacteria (Ludwig et al., 2004; Yilmaz et al.,
2011). FISH with directly labeled oligonucleotide probes how-
ever only performs reliably if the ribosome content of the target
cells is high (Hoshino et al., 2008). This is not the case for most
microbes in the pelagic zones of non-eutrophic waters, thus cre-
ating a need for signal amplification steps. Catalyzed reporter
deposition (CARD) FISH is routinely applied for the microscopic
quantification of suchmicrobes (Pernthaler et al., 2002). This sig-
nal amplification procedure increases fluorescence intensities by
26–41 fold compared to standard FISH protocols (Hoshino et al.,
2008; Stoecker et al., 2010). CARD-FISH and flow cytometry have
been successfully combined for the sorting of planktonic marine
bacteria with fairly large cell sizes and consequently high ribo-
some content (Sekar et al., 2004) and this combination has even
been suggested for cell quantification in environmental samples
(Manti et al., 2011). However, flow cytometry and CARD-FISH
have so far never been applied to specifically target the smallest
members of natural bacterioplankton communities (i.e., ultrami-
crobacteria) such as the LD12 Alphaproteobacteria or the fresh-
water acI Actinobacteria (Warnecke et al., 2005; Newton et al.,
2011; Salcher et al., 2011), and it is unclear if CARD-FISH would
provide sufficient signal intensities for this purpose.

Here, we present 2C-FISH, a modified FISH protocol based
on sequential CARD that allows for flow cytometric sorting of
small ultramicrobacteria that are not detectable by the previously
described protocols. This was achieved by a second round of sig-
nal amplification with horseradish peroxidase labeled antibodies
specific for the fluorophore previously deposited by CARD-FISH.

Materials and Methods

Sampling
Lake Zurich is an oligo-mesotrophic prealpine lake with a maxi-
mal depth of 136m (Posch et al., 2012). Samples were taken at the
deepest point (N47◦18′8.82′′ E8◦34′42.91′′) on August 27 in 2010
and on May 18, June 22 and July 26 in 2011. After pre-filtration
through 0.8µmpore size membrane filters (Whatman) cells were
fixed in formaldehyde (1.7% v/v) at 4◦C for 15 h and collected
on white membrane filters (GTTP02500, Millipore, diameter

25mm, pore size, 0.22µm). Twenty ml of sample was collected
on each filter, which is approximately 5–10 times more than
would be used for microscopic counting. The filtered volumes
were optimized to collect a maximal number of cells while retain-
ing a single cell layer. The filters were rinsed with particle-free
deionized water, dried at room temperature and stored at−20◦C.

CARD-FISH (Fluorescence In Situ Hybridization
and Catalyzed Reporter Deposition)
CARD-FISH and automated image analysis were conducted as
described by Salcher and colleagues (Salcher et al., 2011). The fol-
lowing HRP-labeled oligonucleotide probes were used: BET42a,
LD12-121 and NON338 (Manz et al., 1992; Wallner et al., 1993;
Salcher et al., 2011). Additionally, the theoretical probe affin-
ity of probe LD12-121 was analyzed in silico and optimized by
the addition of six nucleotides (Yilmaz and Noguera, 2004; Yil-
maz et al., 2011). The optimal stringency for the newly designed
probe LD12-115 (5′-CTGAACCACAAGGCAGATTCCCACAT-
3′) was determined on environmental samples, by increasing the
concentrations of formamide in the hybridization buffer until the
signal was lost. The most stringent conditions with acceptable
fluorescence signal strength were at 60% of formamide.

2C-FISH (Double CARD-FISH)
Initial CARD-FISH
The first parts of 2C-FISH were derived from the CARD-FISH
protocol by Sekar et al. (2003) with the following modifications
(see Table 1 for a step-by-step protocol): (i) Filters were not
coated with agarose in order to facilitate subsequent cell removal.
(ii) Lysozyme and achromopeptidase pre-digestion treatments
were reduced to 30 and 20min, respectively. (iii) The hybridiza-
tion and incubations for tyramide signal amplification were con-
ducted in 25mm petri dishes containing 2ml of the respective
reagents. (iv) The first and second washing steps after hybridiza-
tion were prolonged to 20 and 45min. (v) The time of signal
amplification using fluorescein labeled tyramides was increased
to 30min. (vi) After the washing step with PBS-T (Phosphate-
Buffered Saline plus 0.01% Triton X-100) the filters were washed
2more times in 1x PBS at 37◦C for a total of 20min and processed
as described below while still wet.

Antibody Binding and Secondary Signal Amplification
The filters were cut into 4 equal pieces and transferred to
0.5ml reaction tubes (Eppendorf) containing 500µl of 20–100x
diluted Anti-Fluorescein-HRP conjugate (Roche, Switzerland)
in Tris/NaCl/blocking buffer (TNB, 100/150mM/1%). Antibody
binding was conducted over night at 4◦C, followed by 3 wash-
ing steps in 1x PBS for a total of 20min at 37◦C. A secondary
tyramide amplification step again using fluorescein labeled tyra-
mides was conducted in 2ml reaction tubes (Eppendorf) at 37◦C
in a water bath for 20min, followed by 3 washing steps in 1x PBS
for a total of 20min.

Cell Removal
The cells were removed from the filters as previously described
(Sekar et al., 2004). Briefly, each quarter of a filter was further
cut into 4 sections, transferred to a 2ml reaction tube (Eppen-
dorf) containing 1.5ml of NaCl/Tween 80 (150mM/0.05%) and
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TABLE 1 | Detailed 2C-FISH protocol.

PERMEABILIZATION

1 Incubate filters in 0.01M HCl (RT, 10min)

3 Incubate filters in freshly prepared lysozyme solution (37◦C, 30min)

4 Wash filters in PBS and MQ

5 Incubate filters in freshly prepared achromopeptidase solution (37◦C,

20min)

6 Wash filters in MQ and ethanol, air dry

HYBRIDIZATION

7 Cover inside of small petri dish with parafilm (25mm)

8 Place filter inside, add hybridization mix

9 Close and seal the lid with parafilm

10 Incubate (35◦C, 2 h)

11 Prepare and preheat washing buffer

12 Wash filters in washing buffer (37◦C, 20–30min)

13 Incubate filters in PBS-T (45min, 37◦C)

TYRAMIDE SIGNAL AMPLIFICATION

15 Prepare 0.15% H2O2

16 Mix 1ml of amplification buffer + 10µl 0.15% H2O2 + 2µl fluorescein

labeled tyramide

17 Dab filters onto blotting paper to remove excess liquid (don’t let filters dry)

18 Incubate filters in tyramide solution in the dark (37◦C, 30min)

19 Wash filters in PBS-T (37◦C, 10min) and 2 times in PBS in the dark

(37◦C, 2x 10min)

ANTIBODY BINDING, SECONDARY CARD

20 Dilute antibodies 20–100 times with TNB buffer in a 500µl reaction tube

21 Cut filters in 4 sections and place them in antibody solution

22 Incubate (4◦C, overnight)

23 Wash 3x in PBS (37◦C, 20min total)

24 Prepare amplification mix (see above)

25 Incubate (37◦C, 20min)

26 Wash 3x in PBS (37◦C, 20min total)

CELL REMOVAL

27 Cut each filter section in 4 pieces

28 Add 1.5ml NaCl/Tween 80 mix to 2ml reaction tube

29 Place filter sections inside, incubate in the dark (4◦C, 20min)

30 Attach the reaction tube to a vortex, vortex at full speed (RT, 15min)

31 Transfer cell suspension to a fresh reaction tube and process within 24 h

RT, room temperature.

incubated at 4◦C for 20min. The reaction tubes were attached
to a rotating shaker with adhesive tape (Vortex Genie 2 with 3
inch platform, Scientific Industries; Time Tape, Milian) and vor-
texed at full speed for 15min. The cell suspension was transferred
to fresh reaction tubes and processed on the same day. If larger
debris particles were present, an additional filtration step was
introduced (Swinnex filter holders, diameter 13mm; Whatman
polycarbonate filters, pore size 0.8µm). A detailed step-by-step
protocol of the whole procedure is presented in Table 1.

Flow Cytometry
Flow cytometry was conducted with an InFlux V-GS Flow
Cytometer (Cytopeia Inc.) equipped with a blue laser (Sapphire
HP, 200mW, 488 nm wavelength, Coherent Inc.) and an UV
laser (Lightwave Electronics, CY-PS, 60mW, wavelength of

355 nm) controlled by a computer equipped with the software
Spigot 5.2 (Pentium 4, 3GHz, Windows 2000). Sheath pressure
was set to 23 psi and sample pressure was adjusted to 1500–3000
events/sec. Side scatter, blue (460 ± 25 nm, DAPI) and green
fluorescence (531 ± 20 nm, 2C-FISH/CARD-FISH) signals
were analyzed in logarithmic amplification mode. Eight peak
calibration particles (Sphero Rainbow Calibration Particles) were
used to confirm the linearity of the instrument and to determine
changes in channel numbers per decades of signal intensity at 531
± 20 nm (Sharrow, 2001). Side scatter, 460 and 531 nm inten-
sities were extracted to .csv files with FCSExtract 1.02 (http://
research.stowers-institute.org/mcm/efg/ScientificSoftware/Utilit
y/FCSExtract/index.htm). Standardized cytograms were pro-
duced by randomly selecting 100,000 events from each acquired
sample. Thresholds for the calculation of signal to noise ratios
were determined individually for each sample and set to the
99.5% quantiles of channel numbers in the corresponding nega-
tive controls (R version 3.1.2, pastecs package; R Development
Core Team, 2011). Relative signal intensities (i.e., signal to
beads ratios) were determined based on intensities of fluorescent
beads recorded together with the samples (Flow Check R© YG,
1µm diameter). For the determination of hybridization rates
and for flow sorting, cells were counter-stained with DAPI
(4′,6-Diamidino-2-phenylindole, 0.5µg ml−1) and analyzed
based on their blue and green fluorescent signals. Flow sorting
was conducted in “two tube” mode (two-way sorting) with
a preset of “Purity- Yield” (1 drop pre and post coincidence
window, 1 drop sort mode). Target populations were selected in
bivariate dot plots depicting green vs. blue fluorescence. For each
sorting gate 50,000–250,000 cells were sorted and immediately
processed for microscopic analysis.

Microscopic Evaluation of Suspended CARD-
and 2C-FISH Stained Cells
Subsamples of 70–100µl of the sorted cell populations were
spotted within a diameter of 5mm on black membrane filters
(Osmonics, pore size 0.22µm, diameter, 25mm). Filters were
mounted on microscopic slides with mounting medium con-
taining DAPI (Pernthaler et al., 2002) and analyzed at a Zeiss
microscope (Zeiss Imager Z2) at 630X magnification (Zeiss Plan
Apochromat, NA 1.4). Micrographs were produced by acquir-
ing z-stacks of 7 images followed by image processing with the
AxioVision module “Extended Focus” (Zeder and Pernthaler,
2009).

Results and Discussion

Freshwater ultramicrobacteria such as LD12 Alphaproteobacte-
ria (also known as SAR11-IIIb, Salcher et al., 2011; Grote et al.,
2012) or acI Actinobacteria (Warnecke et al., 2005) are char-
acterized by a very small cell size, streamlined genomes, and
high microdiversity (Zaremba-Niedzwiedzka et al., 2013; Ghylin
et al., 2014). Although these microbes may numerically dominate
freshwater microbial assemblages (Newton et al., 2011), attempts
to obtain pure cultures have failed so far, thusmaking cultivation-
independent approaches all the more indispensable. Moreover,
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taxonomy-based sorting (e.g., by flow cytometry) may be ham-
pered by the very small cell size of ultramicrobacteria. We there-
fore developed a protocol that successfully combines population
specific staining and flow sorting of ultramicrobacteria affiliated
with LD12 Alphaproteobacteria.

Development of 2C-FISH
Initial tests showed that conducting CARD-FISH for LD12 ultra-
microbacteria directly in liquid phase was problematic (data not
shown). The required centrifugation speeds (>14,000 × g) led
to co-sedimentation of particles presumably from the block-
ing reagent and no detection of probe signals. We therefore
conducted CARD-FISH on membrane filters and detached the
cells at the end of the procedure (Figure 1). Microscopic eval-
uation confirmed successful labeling, however, the cell detach-
ment procedure led to a substantial if not complete loss of sig-
nal (Figures 2D, 3H). Similar observations were made using a
probe targeting substantially larger cells affiliated with Betapro-
teobacteria (BET42a). In this case, the remaining signal was how-
ever still sufficient for microscopic and flow cytometric detection
(Figure 2B). One possible cause for this phenomenonmay be cell
permeabilization (Vives-Rego et al., 2000): Activated tyramides

FIGURE 1 | Principle of 2C-FISH. CARD-FISH step: Cell walls are

permeabilized, horseradish peroxidase (HRP) conjugated oligonucleotide

probes are hybridized to complementary sites of the ribosomes, and signal

amplification is conducted with fluorescein labeled tyramides. Secondary

signal amplification step: HRP conjugated anti-fluorescein Fab fragments are

bound to the fluorophores deposited during the CARD-FISH step, and a

second CARD signal amplification with fluorescein labeled tyramides is

subsequently performed.

and soluble proteinaceous cellular components appear to leak out
of the permeabilized cells and attach in their immediate proxim-
ity on the filter surface. While these compounds may still con-
tribute to the overall fluorescence of a cell before the detachment
procedure, this signal is lost once the cells are resuspended. In
fact, a microscopic inspection of filters after cell detachment still
yielded numerous cell-shaped spots with apparently CARD-FISH

FIGURE 2 | Cytograms [probe fluorescence (520 ± 15nm) vs. side

scatter]. (A–D) Natural bacterial assemblages after CARD-FISH with probes

BET42a (B), LD12-121(D), and corresponding negative controls with probe

NON338 (A,C). (E–H) Natural bacterial assemblages after 2C-FISH with

probes LD12-121 (F), LD12-115 (H), and corresponding negative controls

(E,G). Color codes: Light gray: Events with too large side scatter values that

were excluded from analysis. Red and dark gray: Events with fluorescence

intensities above and below the 99.5% quantile of the fluorescence intensities

of the negative controls (A,C,E,G).
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FIGURE 3 | Cytograms (probe fluorescence vs. DAPI fluorescence) and

epifluorescence micrographs. Cytograms of natural bacterial assemblages

(Continued)

FIGURE 3 | Continued

after 2C-FISH with the probes NON 338 (A) and LD12-115 (B). The red circle

symbolizes the approximate position of the sorting gate. Epifluorescence

micrographs (left: DAPI fluorescence; right: Probe fluorescence). (C,D): Cells

sorted after 2C-FISH with the probe LD12-115. (E,F): Natural bacterial

assemblage after CARD-FISH with the probe LD12-115. (G–J): Natural

bacterial assemblage after CARD-FISH (G,H) and 2C-FISH (I,J) with the probe

LD12-121 after resuspension of the cells.

conferred fluorescence, albeit without corresponding DAPI sig-
nal (data not shown). Unfortunately, none of our attempts to
overcome this issue by adjusting fixation and permeabilization
conditions were successful, nor were increased hybridization
and amplification times or increased concentrations of dex-
tran sulfate, probe or labeled tyramide. We therefore aimed
at increasing the number of fluorophore molecules bound
per cell:

i. Probe optimization: The rather low binding strength of the
published probe LD12-121 (Salcher et al., 2011) was improved
from a theoretical binding strength (1G◦overall) of −14.0
to −18.2 kcal mol−1 by the addition of six nucleotides to
the 5′-end (http://mathfish.cee.wisc.edu/probeaff.html). The
modified probe (LD12-115, TGAACCACAAGGCAGATTC-
CCACAT) resulted in clearly improved signal intensities of
individual cells (Figure 3F). At the same time, it did not
change the total proportions of detected LD12 cells. The
number of sequences targeted by the original and modified
probe in the SILVA database (SSU r121 PARC, Pruesse et al.,
2007), was 843 and 833, respectively, i.e., both probes cov-
ered 91–91.9% of all sequences affiliated with LD12 Alphapro-
teobacteria. The number of outgroup hits with 0 mismatches
was 26 for both probes, and the modified version had
substantially less outgroup hits with one mismatch (1 vs.
46). Probe LD12-115 therefore represents a superior option
for quantifying LD12 Alphaproteobacteria in environmental
samples.

ii. Second CARD layer: Cells labeled with the new probe were
still not sufficiently detectable by flow cytometry after removal
from the filters (data not shown). Therefore a second sig-
nal amplification step similar to the one described by Kub-
ota et al. (2006) was introduced (Figure 1). However, we
replaced the anti-DNP staining system suggested by those
authors with an anti-fluorescein detection system that made
use of fluorescein-labeled tyramide in both amplification
steps. Besides reducing the number of required reagents,
our approach allows for the contribution of both ampli-
fication steps to the final fluorescent signal of cells. This
strategy substantially increased the fluorescence signals of
the suspended cells, to levels that were sufficient, both, for
microscopy and flow cytometry (Figures 2F, 3J). If com-
bined with the optimized probe LD12-115, the signal inten-
sities and signal to noise ratios were comparable to those of
CARD-FISH stained Betaproteobacteria (Figures 2H, 3B,D;
Table 2). Betaproteobacteria in Lake Zurich are typically
large and fast growing cells (e.g., Limnohabitans sp., Eckert
et al., 2012) that generally show bright CARD-FISH signals
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TABLE 2 | Overview of analyzed samples and quantitative information on hybridization efficiency.

Sample n Probe S/N FC 2C-FISH Rel. int. FC (x 10−3) 2C-FISH %Hyb FC 2C-FISH %Hyb Mic CARD FISH

27.08.2010 2 Bet42a 18.34 ± 0.08* 1.79 ± 0.01* n.d. 5.7

27.08.2010 2 LD12-121 n.d n.d n.d. 10.4

27.08.2010 3 NON-338 n.d n.d n.d n.d

18.05.2011 5 LD12-121 6.97 ± 1.23 1.57 ± 0.08 n.d. 22.4

18.05.2011 3 NON-338 n.d n.d n.d n.d

22.06.2011 2 LD12-115 16.66 ± 4.35 2.15 ± 0.56 13.45 ± 0.91 15.7

22.06.2011 2 NON-338 n.d n.d 0.03 ± 0.00 n.d

26.07.2011 3 LD12-115 26.47 ± 12.69 2.90 ± 1.14 5.97 ± 1.32 10.9

26.07.2011 3 NON-338 n.d n.d 0.19 ± 0.12 n.d

*CARD-FISH was used for all analyses with probe Bet42a; S/N FC, Signal to noise ratios determined by flow cytometry; Rel. int. FC, Intensities relative to those of fluorescent beads;

%Hyb FC, Hybridisation rates determined by flow cytometry; %Hyb Mic, Hybridisation rates determined by microscopy; n.d, not determined.

(Figure 2B;Table 2). In this context we also analyzed a culture
of the freshwater strain Limnohabitans sp. RIM47 (Kasal-
ický et al., 2013) after CARD-FISH and 2C-FISH staining
by flow cytometry (see Supplementary Information). How-
ever, no significant improvement of the signal to noise ratio
of 2C-FISH as compared to CARD-FISH was observed (data
not shown). This suggests that the 2C-FISH approach is useful
for very small cells, but does not provide additional advantage
for bacteria that can be sufficiently stained for flow cytomet-
ric analysis by CARD-FISH only. By contrast, a population of
acI Actinobacteria from Lake Zurich could only be visualized
by flow cytometry after 2C-FISH staining (Supplementary
Figure S1).

Potential Applications and Limitations of 2C-FISH
While we did not aim to develop a protocol for a flow cyto-
metric quantification of ultramicrobacterial populations in water
samples, we nevertheless compared the relative abundances of
LD12 in Lake Zurich water samples as either determined by our
new approach in combination with flow cytometry or by CARD-
FISH in combination with microscopy. Generally, the differ-
ences between 2C-FISH stained replicates were low (coefficient
of variation ≤0.22) and the agreement between flow cytometric
(2C-FISH stained) andmicroscopic (CARD-FISH stained) deter-
minations of cell proportions were good to excellent (Table 2).
However, since the preparation of 2C-FISH samples is also con-
siderably more time-consuming than CARD-FISH, we see the
main potential of this approach in its combination with flow
sorting based applications.

CARD-FISH stained and sorted cells have been successfully
used as templates for PCR amplicon sequencing (Sekar et al.,
2004). The same holds true for cells stained by 2C-FISH, since
no additional chemicals apart from FAB fragments are involved
in this procedure. One potential application could, therefore, be a
population wide assessment of the diversity of selected functional
genes (e.g., of rhodopsin genes, Martinez-Garcia et al., 2012) or
of phylogenetic markers with higher resolution than 16S rRNA
genes (Whitaker et al., 2003). Unlike community-level ampli-
con sequencing or sequence similarity based recruitment from

metagenomes, such an approach might be more robust against
erroneous assignments due to recent events of horizontal gene
transfer.

Other molecular approaches such as producing population
metagenomes from sorted cells can also be envisaged, but
might require prior adaptations of the here presented protocol.
Specifically, the limited yield of a targeted cell enrichment by
flow sorting (depending on in situ densities, between 105–106

cells can be obtained) would make whole genome amplification
(WGA) inevitable (Blainey, 2013). However, currentWGAmeth-
ods are not compatible with formaldehyde fixation (Clingenpeel
et al., 2014). Therefore, alternative fixation protocols (e.g., using
ethanol) might be necessary in order to amplify genomic material
from flow sorted 2-C stained ultramicrobacteria. As a proof of
principle, we sorted formaldehyde- and ethanol-fixed cells of the
freshwater strain Limnohabitans sp. RIM47 after 2C-FISH stain-
ing. We first subjected the sorted cells to WGA. Subsequently
we could amplify 16S rRNA genes from WGA products (Sup-
plementary Figure S2), as confirmed by sequence analysis (see
Supplementary Material).

Another potential application might be to quantify the uptake
of radiolabeled organic compounds in flow sorted 2C-FISH
stained ultramicrobacteria, as has been done for methionine
in autofluorescent marine picocyanobacteria (Zubkov et al.,
2003). A precise determination of the taxon-specific incorpo-
ration rates of organic substrates could provide valuable infor-
mation about the ecophysiology of bacterial populations (e.g.,
their uptake kinetics) and about their contribution to the total
microbial utilization of these compounds. This would add quan-
titative information to the different substrate utilization pat-
terns of freshwater microbes as revealed by CARD-FISH and
microautoradiography (Salcher et al., 2013), and it might even-
tually allow for the testing of the increasingly detailed hypothe-
ses generated from genomic data, e.g., carboxylic acid vs. car-
bohydrate specialization of LD12 Alphaproteobacteria and acI
Actinobacteria, respectively (Zaremba-Niedzwiedzka et al., 2013;
Ghylin et al., 2014). In summary, our approach will add to
the spectrum of available single-cell tools for the study of
aquatic ultramicrobacteria such as LD12 Alphaproteobacteria,
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and it might help to gain new insight into their diversity and
ecophysiology.
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