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The Clostridium genus is a large, diverse group consisting of Gram-positive,

spore-forming, obligate anaerobic firmicutes. Among this group are historically notorious

pathogens as well as several industrially relevant species with the ability to produce

chemical commodities, particularly biofuels, from renewable biomass. Additionally,

other species are studied for their potential use as therapeutics. Although metabolic

engineering and synthetic biology have been instrumental in improving product tolerance,

titer, yields, and feed stock consumption capabilities in several organisms, low

transformation efficiencies and lack of synthetic biology tools and genetic parts make

metabolic engineering within the Clostridium genus difficult. Progress has recently been

made to overcome challenges associated with engineering various Clostridium spp. For

example, developments in CRISPR tools in multiple species and strains allow greater

capability to produce edits with greater precision, faster, and with higher efficiencies.

In this mini-review, we will highlight these recent advances and compare them to

established methods for genetic engineering in Clostridium. In addition, we discuss

the current state and development of Clostridium-based promoters (constitutive and

inducible) and reporters. Future progress in this area will enable more rapid development

of strain engineering, which would allow for the industrial exploitation of Clostridium for

several applications including bioproduction of several commodity products.

Keywords: clostridium, synthetic biology, CRISPR, metabolic engineering, biotechnology of microorganisms

INTRODUCTION

For production of fuels and chemicals, two competing design models exist. One design paradigm
aims to endow some heterologous trait (e.g., a biomass utilization or production phenotype) onto
a highly editable platform organism (e.g., E. coli) with the rationale that strain engineering can
be performed more quickly and in a high-throughput manner. High throughput methodologies
can enable rapid construction of balanced pathways (Smanski et al., 2014), synthetically designed
genetic parts (Jones et al., 2015; Rohlhill et al., 2017), and whole-genome recoding (Ostrov et al.,
2016). However, importing heterologous pathways often requires significant effort to achieve the
production titers attained by native producing strains. The alternative approach is to improve
strains which innately have the desired trait. Such strains already contain and use necessary genes
and pathways, including cofactor regeneration. Engineering strains which already have a desired
phenotype can avoid potential challenges such as the metabolic burden of high expression of
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heterologous genes, cofactor imbalance, genetic instability of
imported genes or pathways, among others (Wu et al., 2016;
Czajka et al., 2017; Wang M. et al., 2017). Development of
an advanced genome engineering “tool kit” in non-platform
organisms brings these two models closer together.

Advancements in the synthetic biology tool kit are required
to better utilize the biotechnologically important capabilities
of the Clostridium genus. The Clostridium genus is home
to multiple industrially relevant strains. These Gram-positive,
spore-forming, obligate anaerobic firmicutes are natively capable
of cellulosic and hemicellulosic biomass degradation (e.g.,
C. cellulolyticum) (Heinze et al., 2017), carbon fixation (e.g.,
C. carboxidivorans, C. ljungdahlii) (Jones et al., 2016), advanced
biofuel production (e.g., C. acetobutylicum, C. beijerinckii)
(Liu K. et al., 2015), platform chemical production (e.g.,
C. pasteurianum) (Xin et al., 2016), and acting as anti-cancer
therapeutics (C. novyi-NT) (Staedtke et al., 2016). Additionally,
genome editing tools are of medical interest to better understand
the many pathogenic strains in the genus (e.g., C. botulinum,
C. tetani, C. perfringens) (Ng et al., 2013). Clostridium genome
engineering hasmademuch progress recently in the development
of synthetic biology tools, although it still lags behind workhorse
organisms (e.g., E. coli). Continued progress in this genus
will enable broadened engineering on new platforms. In this
mini-review, we discuss recent progress in the development of
synthetic biology tools for members of the Clostridium genus
and compare these to the established methods. Emphasized
are CRISPR-based tools for genome editing and transcriptional
perturbation as well as the library of genetic parts available for
use in Clostridium.

GENE EDITING

ClosTron
ClosTron Technology Utilizes Group II Mobile Introns

for Efficient Targeted Gene Disruption in Clostridium
Bacterial group II intron technology enables site-directed genetic
disruptions based on the retrohoming of Mobile Group II
introns. The mobility of Mobile Group II introns provides a
convenient method of gene disruption as retrohoming is efficient
and specific. The technology works by inserting an intron into
chromosomal DNA through the plasmid-based monocistronic-
expression of a ribonucleoprotein complex comprising RNA in a
lariat configuration (acting as a ribozyme) and an intron-encoded
protein (IEP). The Mobile Group II introns are minimally
dependent on host factors, as the IEP (LtrA in the model system
based on the Lactococcus lactis Ll.LtrB intron) performs multiple
activities: maturase for facilitating RNA splicing, endonuclease
for cleavage of the DNA strand opposite the RNA splice, and
reverse transcriptase which uses intron RNA as template to insert
DNA into the host chromosome. The host DNA repairmachinery
replaces intron RNA with DNA, completing the insertion. The
term Targetron was first used to refer to targeted Group II
introns when the L1.LtrB intron was furthermodified to include a
retrotransposition-activated selection marker (RAM), providing
a means to select for successful targeting events (Zhong et al.,
2003). The RAM is inserted into the domain IV of the intron

and consists a marker (often an antibiotic resistance gene)
inactivated by the insertion of a Group I intron which is self-
catalytically spliced out of mRNA in an orientation dependent
manner. The marker gene and group I intron are oriented in the
opposite directions such that it is only spliced out of the L1.LtrB
mRNA, and a functional marker gene can only be expressed after
successful chromosomal insertion occurs (Figure 1A).

The specific targeting, or retrohoming, is accomplished
through protein-specific DNA binding as well as programmed
RNA-DNA complementarity. This complementarity over a 13-
nucleotide region allows for the specification of the DNA target
site by altering the intron sequence. However, the target site is
limited to DNA sites compatible with the IEP. The Targetron
system has been used to perform gene targeting in both Gram
positive and negative bacteria (Karberg et al., 2001) including
several Clostridium spp.: C. perfringens (Chen et al., 2005, 2007),
C. acetobutylicum (Shao et al., 2007) and C. pasteurianum (Pyne
et al., 2014). ClosTron was developed as an adaptation of
Targetron technology for efficient gene targeting specifically in
Clostridium species. The original ClosTron plasmid, pMTL007,
tailored the commercially available E. coli Targetron vector,
pACD4k-C, to include standardized genetic parts such as
promoters, origins of replications and RAMs suitable for efficient
gene editing in Clostridium (Heap et al., 2007). ClosTron introns
are designed using a computer algorithmwhich identifies suitable
sequences, based on a 35 bp region recognized by the IEP, to
which the intron can be targeted within the desired gene (Heap
et al., 2010). These introns are expressed on vectors which follow
the format of the pMTL80000 modular plasmids, allowing for
the availability of a range of genetic parts. Flanking the RAM
with FRT sites permits reuse of the same marker after FLP-
FRT recombination (Heap et al., 2010). In C. perfringens, DNA
fragments of up to 1.0 kb were successfully integrated into the
chromosome in addition to an ermB RAM at a frequency of
5 × 10−8 integrants per cell, a 10−4 fold decrease in integration
frequency when no additional cargo is added (Heap et al., 2010).

ClosTron has been employed in targeted gene disruption
across the Clostridium genus including C. acetobutylicum
(Hönicke et al., 2014; Liu Z. et al., 2015; Xu M. et al.,
2015), C. beijerinckii (Heap et al., 2010; Liu et al., 2016),
and C. botulinum (Meaney et al., 2015, 2016), as well as the
closely related species,Clostridioides difficile (Clostridium difficile,
Dingle et al., 2011; Baban et al., 2013; Hensbergen et al., 2015;
Lawson et al., 2016). However, gene disruption using ClosTron is
limited to IEP recognition sites, the frequency of which decreases
as the length of the target sequence decreases. Additionally,
while a scarless deletion is often preferred for gene knockouts,
ClosTron merely disrupts the gene of interest and the intron,
along with its RAM, remains in the host chromosome.

Transposon-Based Random Mutagenesis
Transposon Mobile Elements Have Been Utilized in

Random Mutagenesis in Clostridium
Among these, Tn916/Tn1545 family of transposons (called
conjugative transposons) were among the first elements available
for random gene insertions in Clostridium. These transposons
consist of four functional modules responsible for conjugation,

Frontiers in Microbiology | www.frontiersin.org 2 February 2018 | Volume 9 | Article 154

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Joseph et al. Synthetic Biology Toolkit for Clostridium

FIGURE 1 | Counter Selection markers used in Clostridium spp. and their mechanisms of selection. The native gene of interest (G.O.I) is represented in red, desired

insert in blue, and the counter selection marker gene in dark purple. The green and blue bars represent regions of homology between the chromosome and donor

plasmid. (A) ClosTron: RAM disrupted by a Group I intron (white triangle) is only active after the L1.LtrB intron is inserted into the chromosome; (B) pyrE

complementation: PyrE catalyzes conversion of 5-fluoroorotic acid (5FOA) to 5-fluororotidine monophosphate (5FOMP) producing toxic fluorodeoxyuridine

monophosphate (FdUTP); (C) Allele-Coupled Exchange: (1) double-crossover event at the pyrE locus results in truncated version of pyrE for counter selection with

same mechanism as (B), (2) successful homologous recombination inserts a promoter-less copy of the pyrE gene directly downstream a native constitutive promoter,

allowing production of uracil 5′ monophosphate (UMP). Note: must be performed on pyrE deficient strain; (D) MazF protein degrades mRNA at 5′-ACA-3′ sequences;

(E) Cas9: successful homologous recombination gRNA-targeted double stranded break resulting in cell death.

recombination, regulation and accessory functions (often
antibiotic resistance). Although its expression can be plasmid-
based, the conjugative ability of Tn916 (Flannagan and Clewell,

1991) has allowed its transfer from the chromosome of hosts
such as E. coli and Bacillus subtilis into Clostridium species
(Woolley et al., 1989). The use of Tn916-like transposons is
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limited by their large size, a predilection to insert in multiple
copies or specific “hot spots,” and deletions at the site of insertion
(Awad and Rood, 1997; Wang et al., 2000; Hussain et al., 2005).
While non-conjugative transposon systems, such as Mu phage
and EZ-Tn5-based transposon systems have addressed several
of these concerns and have been successfully employed in
Clostridium (Chen et al., 2005; Lanckriet et al., 2009; Vidal et al.,
2009), they are limited by a preferential insertion into rRNA
genes (Lanckriet et al., 2009; Vidal et al., 2009).

Mariner-transposable Himar1-based systems were developed
for random mutagenesis in Clostridium (Cartman and Minton,
2010; Liu et al., 2013; Zhang Y. et al., 2015; Zhang et al., 2016).
The Himar1 transposable element, whose sequence includes
a transposase gene flanked by short inverted terminal repeat
sequences (ITRs), was originally discovered in the horn fly and
has been shown to insert quasi-randomly into the genomes of
several bacteria species, including members of the Clostridium
genus. Successful Himar1-based events have been recorded in
C. acetobutylicum (Zhang Y. et al., 2015), C. perfringens (Liu
et al., 2013) and C. sporogenes (Zhang J. et al., 2015). Himar1
transposase binds and cuts the element in its ITR region which,
in turn, is inserted at a TA dinucleotide target site. This has been a
valuable tool for mutagenesis in AT-rich Clostridium as it inserts
average at one copy per cell.

Counter-Selection Markers
Counter-Selection Markers Enable the Isolation of
Double Crossover Homologous Recombination
Events in Clostridium spp.
Targeted gene disruption in bacteria can be achieved through
plasmid-based, double crossover recombination events. The first
event incorporates a vector containing a pair of homology arms
flanking a cargo sequence into a target gene locus through
homologous recombination (HR). In the second crossover, the
specific region between the homologous sequences is deleted
from the genome and is replaced by cargo DNA. Counter-
selection markers are genetic elements which, when present,
result in cell death; these markers are useful for selecting for
chromosomal insertions which do not contain undesirable parts
(e.g., the vector backbone of the recombination plasmid left over
in a single-crossover event). Very few double-crossover events
had been isolated within members of the Clostridium genus prior
to the development of Clostridium-specific counter-selection
marker systems (Awad et al., 1995; Bannam et al., 1995). Before
routine usage of counter-selection markers, targeted homologous
recombination in Clostridium had only been successful in a
few species, the majority of which were segregationally unstable
single cross-over integrations (Green and Bennett, 1996; Green
et al., 1996; Nair et al., 1999; Liyanage et al., 2001; Harris et al.,
2002; O’Connor et al., 2006). By contrast, the sacB gene from B.
subtilis has been used to screen for double-crossover events in
E. coli from the early 1990’s.

One counter-selection marker method involves deactivating
an easily screenable gene and then complementing the mutant
strain with a heterologous version of that gene as a counter
selective marker. Specifically, a disruption of pyrE, pyrF, or
upp genes create uracil auxotrophic mutants which require

supplementation for growth but are also resistant to the
antimetabolites 5-fluoroorotic acid (5-FOA) or 5-fluorouracil (5-
FU). By including a functional copy of the disrupted gene on the
backbone of the donor DNA plasmid, double crossover events
can be isolated as the mutants that demonstrate a resistance to
5-FOA or 5-FU (Tripathi et al., 2010; Heap et al., 2012; Croux
et al., 2016) (Figure 1B). Similarly, in C. perfringens, disruption
of the galKT operon produces mutants unable to produce the
enzymes involved in galactose metabolism. GalK catalyzes the
production of galactose-1-phosphate (Gal-1-P) from galactose,
and GalT catalyzes its consumption. The accumulation of Gal-
1-P is believed to inhibit cell growth by causing intracellular
stress and inducing stress-responsive genes (Lee et al., 2009,
2014). By including only the galK gene and not the galT gene
on the integration vector and plating mutant cells on galactose
supplemented plates, unedited cells do not grow due to an
accumulation of Gal-1-P while mutants that undergo a double-
crossover event can be isolated (Nariya et al., 2011b).

Allelic Coupled Exchange (ACE) couples a counter selection
marker gene to a desired double crossover event. This has been
demonstrated in two ways. One method exploits the 5-FOA
resistance conferred by a disrupted pyrE or pyrF gene. This
method does not require the cells to be auxotrophic for uracil
prior to recombination, nor does it rely on a heterologous version
of the gene as a counter selection marker. ACE technology
employs asymmetric homology arms to direct the order in which
crossover events occur. The longer arm, homologous to a 1,200
bp region immediately downstream of the pyrE of pyrF directs the
first crossover event in which the entire plasmid is incorporated
into the genome. The second crossover event excises the plasmid
backbone and is directed by the shorter armwhich is homologous
to a 300 bp internal region of the pyrE or pyrF gene. This second
recombination replaces the wildtype pyrE gene with a truncated
form thereby producing a mutant that can be screened based on
5-FOA resistance (Heap et al., 2012). Alternatively, a promoter-
less heterologous pyrE gene or antibiotic marker can be inserted
in the integration vector with the regions of homology such
that a successful double crossover event places the silent gene
directly downstream of a constitutive promoter (Heap et al.,
2012). However, unlike previous methods which relied heavily
on ClosTron technology to first produce auxotrophic mutants,
pyrE mutants can be created utilizing ACE technology while the
use of an antibiotic marker circumvents the need for a requisite
mutant strain (Heap et al., 2012; Minton et al., 2016) (Figure 1C).
ACE has been proven to be applicable over a range of Clostridium
species, having been used for gene editing in C. acetobutylicum
(Bankar et al., 2015; Ehsaan et al., 2016; Willson et al., 2016) and
C. sporogenes (Heap et al., 2012; Zhang Y. et al., 2015), as well as
C. difficile (Heap et al., 2012; Ng et al., 2013).

Several heterologous genes have been used for
counterselection. The cytosine deaminase gene (codA) from
E. coli can be used for counterselection based on the ability of
the CodA protein to catalyze the conversion of 5-fluorocytosine
(5-FC), an innocuous pyrimidine analog, to 5-FU (Cartman
et al., 2012). codA can only be used for counterselection in strains
with a functional upp gene but no native codA gene (Ehsaan
et al., 2016). However, a bioinformatics survey suggests several
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Clostridium species contain codA homologs, restricting the
applicability of codA among the genus (Al-Hinai et al., 2012).

Toxin-antitoxin systems are another useful source of
counters-election markers. The E. coli-based mazF is an mRNA
interferase, coded along with mazE in an operon. Under regular
cell conditions, mazE binds to and inhibits mazF activity.
During cellular stress, mazE is degraded, allowing mazF to
bind mRNA, degrading them at 5′-ACA′3′ sequences, thereby
arresting cell growth. mazF, coupled with an antibiotic resistant
marker flanked by FRT sites, can be used as a counter selection
marker in plasmid based homologous recombination. mazF
is placed on the gene disruption plasmid under the control of
an inducible lac promoter. A double crossover event can be
isolated in cells able to grow on lactose-supplemented plates
(Al-Hinai et al., 2012) (Figure 1D). The use of mazF requires
no prior mutation for successful screening, is independent of
the availability of Clostridium genetic parts, and has been shown
to function across Clostridium species (Al-Hinai et al., 2012;
Sandoval et al., 2015; Zhang J. et al., 2015). Flp-frt recombination
has also been used to eliminate the backbone of a donor plasmid
following a single-crossover event in C. acetobutylicum, allowing
for the use of an antibiotic gene as a marker for the crossover
event after the donor plasmid had been cured (Lee S. H. et al.,
2016).

Crispr-Based Editing
CRISPR/Cas9 Allows Efficient, Marker-Less Gene

Editing in Clostridium
Clustered Regularly Interspaced Palindromic Repeats (CRISPR),
along with its CRISPR associated (Cas) proteins is an adaptive
immunity system in prokaryotes (Barrangou et al., 2007;
Wiedenheft et al., 2012). The type II CRISPR system native to
the Streptococcus pyogenes bacteriumwas the first CRISPR system
exploited for gene engineering (spyCas9) (Jinek et al., 2012). This
CRISPR system consists of the single Cas9 effector protein, which
can bind to and implement a double stranded break (DSB) to a
targetedDNA systemwhen co-expressed with a single guide RNA
targeting a 20 bp region immediately adjacent to the protospacer
adjacent to a motif (PAM). In the case of spyCas9, the PAM
consensus sequence is NGG, providing many possible target
sites.

The CRISPR/Cas9 system has been used as a counter-selection
tool to select for homologous recombination events in several
Clostridium species (Wang et al., 2015; Bruder et al., 2016;
Huang et al., 2016; Nagaraju et al., 2016; Wang S. et al.,
2017; Wasels et al., 2017) (Table 1). Clostridium spp. lack or
have inefficient non-homologous end-joining (NHEJ) systems,
so a Cas9-mediated chromosomal DSB results in cell death
(Cui and Bikard, 2016; Xu et al., 2017). Thus, to select for
successful homologous recombination events, one can selectively
eliminate non-edited members of the population by targeting the
wild type sequence (Figure 1E). Studies in E. coli have shown
the DSB can enhance homologous recombination in bacteria,
whereby homology directed repair (HDR) occurs after a break
has been induced (Jiang et al., 2013). However, studies in different
Clostridium species suggest that HDR efficiency in these species
is too low to select for successful HDR events (Wang et al., 2015,

2016a; Li Q. et al., 2016). The use of CRISPR/Cas9 represents a
major advancement in Clostridium gene editing in Clostridium as
scarless edits are enabled.

The limited number of characterized genetic parts for
Clostridium poses a challenge with CRISPR/Cas9 engineering.
For example, simultaneous constitutive expression of the sgRNA
and Cas9 protein often resulted in few to no transformed colonies
in the presence of a homologous repair donor vector, as DSBs
result in cell death before recombination can occur (Bruder
et al., 2016; Li Q. et al., 2016; Nagaraju et al., 2016; Wang et al.,
2016a). This can be addressed by placing Cas9 expression under
the control of an inducible promoter (Nagaraju et al., 2016;
Wang et al., 2016a; Wang S. et al., 2017; Wasels et al., 2017).
Another strategy is to use a two-plasmid system, where the donor
DNA and sgRNA are introduced separately from the Cas9 gene.
This method avoids the transformation of very large plasmids,
which have reduced transformation efficiency, but it requires two
separate transformation events (Wasels et al., 2017). Using these
methods, successful recombinants were isolated at a rate up to
100% (Wasels et al., 2017) with commonly observed efficiencies
of greater than 50% (Table 1).

Cas9 nickase (Cas9n) systems exploit CRISPR gene editing
while circumventing the lethality associated with the co-
expression of a guide RNA with Cas9. This method utilizes
Cas9n, a mutated form of the Cas9 protein, with the ability to
only cut one DNA strand.While simultaneous expression of Cas9
and guide RNA is fatal to cells in the absence and presence of
a donor template, implementing a single nick into the genome
via Cas9n allowed homologous recombination without the lethal
effects of Cas9, thus permitting a mixed population of edited and
unedited strains to coexist. (Xu T. et al., 2015) Therefore, several
serial dilutions are required to enhance the edited population
through increased likelihood of homologous recombination at
the nicked site, reduced growth rate of the nicked strains, or some
combination of both. CRISPRn has been used to implement gene
deletions and insertions in C. acetobutylicum, C. beijerinckii and
C. cellulolyticum with up to 100% efficiency (Xu T. et al., 2015; Li
Q. et al., 2016; Xu et al., 2017) (Table 1).

Longer regions of homology on the donor have been shown
to increase efficiency. In C. cellulolyticum, donor template arm
lengths greater than 0.2 kb had an efficiency of more than 95%
when compared with smaller arms which were only 55% efficient
in a CRISPRn system (Xu T. et al., 2015). A similar study using
Cas9 in C. acetobutylicum demonstrated an increased efficiency
when homology arm lengths of 1 kb were used as opposed to 500
bp arm lengths (Bruder et al., 2016).

Application of these advanced CRISPR tools is still limited
in Clostridium due to low plasmid transformation efficiencies
and a lack of characterized recombineering and NHEJ tools.
Recombineering, through lambda red technology, has facilitated
gene engineering in E. coli via the use of linear DNA repair
templates, a process that skips the cloning steps required in
plasmid-based homologous recombination methods. Coupled
with CRISPR, this technology enables multiplexed ssDNA
recombineering events with efficiencies allowing large libraries
(>105 members) to be constructed in parallel (Ronda et al., 2016;
Garst et al., 2017). However, the lack of ssDNA recombineering
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TABLE 1 | CRISPR-based genetic editing and gene repression in Clostridium spp.

Effector Species Homology arm

length (bp)

Transformation

Eff. (CFU/µg)

Editing

efficiency

(%)

Cas9

promoter

Gene

targeted

Desired edit Citation

Cas9 C. acetobutylicum 664 NR 100 tet (inducible) upp DNM Wasels et al., 2017

500 NR 100 upp 66 bp del

1,000 NR 100 upp 306 bp rep

C. beijerinckii 1,000 NR 67 spoIIE pta 50 bp del Wang et al., 2016a

1,000 1.05 * 102 80 bgaL (inducible) pta 50 bp del

1,000 3.94 * 102 0 pta 1,500 bp del

1,000 2.92 * 102 87 pta 1,614 bp ins

1,000 NR >99 pta SNM

1,000 NR NR spoIIE spo0A 262 bp del Wang et al., 2015

C. autoethanogenum NR NR >50 tet (inducible) caethg_ 0385 del Nagaraju et al., 2016

NR NR >50 caethg_ 05552 del

C. acetobutylicum 500 0.2 100 thl cac1502 rep w/trunc.

gene

Bruder et al., 2016

1,000 0.38 100 cac1502 rep w/trunc

gene

1,000 0.4 NR cac1502 rep w/

Pthl::afp

C. Ijungdahlii NR NR 100 ptb pta 1,000 bp del Huang et al., 2016

NR NR >75 adhE1 2,600 bp del

NR NR 100 ctf 1,200 bp del

NR NR >50 pyrE 570 bp del

C.saccharoperbutyl-

acetonicum

N1-4

1,000 1.5 * 104 NR bgaL (inducible) buk del Wang S. et al., 2017

1,000 1.6 * 104 75 pta del

C. pasteurianium 1,000 2.6 100 thl cpaAIR 567 bp del Pyne et al., 2016

Cas3* C. pasteurianium NR 9.5 100 N/A cpaAIR 762 bp del Pyne et al., 2016

Cas9n C. cellulolyticum 1,000 NR 100 fdx pyrF 23 bp del Xu T. et al., 2015

1,000 NR NR mspI 23 bp del

500 NR 100 X-21 12 bp del

200 NR 100 X-22 12 bp del

100 NR <95 B-gal 6 bp ins

200 NR <95 B-gal 6 bp ins

500 NR >95 B-gal 6 bp ins

1,000 NR >95 B-gal 6 bp ins

1,000 NR 100 NR 710 bp ins

1,000 NR 100 NR 1,720 bp ins

1,000 NR 0 NR 3,000 bp ins

1,000 NR 0 NR 6,000 bp ins

C. acetobutylicum NR 15.5 30 ptb pyrE 20 bp del Li Q. et al., 2016

NR NR 7 adc 20 bp del

NR NR 100 thl agrA 20 bp del

C. beijerinckii NR NR 19 thl adc 20 bp del

NR 14.6 98 xlyR 20 bp del

150 NR 0 xlyR 20 bp del

200 NR 0 xlyR 20 bp del

500 NR 30 xlyR 20 bp del

1,000 NR 100 xlyR 20 bp del

(Continued)
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TABLE 1 | Continued

Effector Species Homology arm

length (bp)

Transformation

Eff. (CFU/µg)

Editing

efficiency

(%)

Cas9

promoter

Gene

targeted

Desired edit Citation

NR NR 50 araR 20 bp del

NR NR 100 cbei3923 20 bp del

NR NR 40 cbei4495 20 bp del

NR NR 43 xylR 1149 bp del

C. cellulolyticum NR NR NR NR Ccel_3198** 120 bp ins Xu et al., 2017

Type Species Target strand Repression (%) dCas9 expression Gene targeted Citation

dCas9 C. beinjerinckii NR 65–95 thl amy Wang et al., 2016b

C. acetobutylicum NR 45 ptb spo0A Li Q. et al., 2016

C. beinjerinckii NR 84 spo0A

C. celluvorans NR 95 thl nuoG Wen et al., 2017

C. acetobutylicum Nontemplate 90 ptb Plasmid-based afp Bruder et al., 2016

Template 20 Plasmid-based afp

Nontemplate NR hprK

Nontemplate NR glpX

All mentions of Cas9 refer to Streptococcus pyogenes-derived Cas9. Reported editing efficiencies are the fraction of successful mutants of total colonies screened. del, deletion;

DNM, dinucleotide modification; ins, insertion; NR, Not reported; rep, replacement; SNM, Single nucleotide modification; trunc, truncation. *Cas3 is the effector protein in the native

C. pasteurianum type I-B CRISPR system. **Targeted region downstream of Ccel_3198 gene.

machinery functional in Clostridium hinders the development
of comparable Clostridium-based technologies. Although a
RecT protein from C. perfringens demonstrated recombineering
activity in C. acetobutylicum recently, the results obtained were
not comparable to routine recombineering events in E. coli (Dong
et al., 2014). Similarly, the expression of Ku and LigD genes from
Mycobacterium tuberculosis enabled NHEJ in E. coli following the
implementation of a DSB via Cas9 (Su et al., 2016). Although
NHEJ related genes (ku, DNA ligase, and ligD) are found on the
C. cellulolyticum, they are not highly expressed and NHEJ events
have not been observed in the species after a Cas9 DSB (Xu T.
et al., 2015). Heterologous expression of such genes may enable
NHEJ in Clostridium.

Repurposing endogenous CRISPR systems has been proposed
as an alternative to transforming and expressing CRISPR-Cas
genes in Clostridium. A type I-B CRISPR system was identified
in C. pasteurianum based on its genome sequence. The PAM
sequence recognized by its Cas effector protein was determined
via a bioinformatics survey of existing spacer sequences This
system was used to target the cpaAIR gene in C. pasteurianum
when transformed with a plasmid based expression copy of
its CRISPR array and a homology repair template (Table 1).
The donor DNA/targeting plasmid was transformed at a higher
efficiency compared to a similar Cas9 based system, since the
plasmid did not need to house the large CRISPR effector protein
(9.5 vs. 2.6 CFU/µg) (Pyne et al., 2016). While the use of native
CRISPR systems circumvents the need to express heterologous
Cas effector proteins, the applicability of these systems may
be limited to strains with functional CRISPR/Cas machinery
and by unknown PAM sequences. Although application has not
been reported in Clostridium, other CRISPR-Cas9 systems have
been identified in other bacteria, including thermophilic Cas9

systems which can be utilized for gene editing in thermophiles
(Mougiakos et al., 2017b) in lieu of spyCas9 as it is temperature
sensitive (Mougiakos et al., 2017a).

Gene Silencing in Clostridium Can Be Achieved via a

Catalytically Dead Cas9 Mutant
The catalytically dead Cas9 (dCas9) does not demonstrate
endonuclease activity but retains its ability to bind to DNA at
a specified target region. In a CRISPR interference (CRISPRi)
system, dCas9 is targeted to a sequence by a guide RNA and
binds to it, sterically hindering transcription initiation. CRISPRi
has enabled simple, tunable, reversible gene knockdown at a
transcriptional level. One needs only to express sgRNAs and
with the aid of bioinformatics tools, can specifically implement
gene expression knock-downs. This method is reversible, with no
permanent change in the genome (Qi et al., 2013). Additionally,
CRISPRi activity can be modulated not only through controlling
the expression of dCas9 (Li X. T. et al., 2016), but also by
the relative position of the dCas9 protein to the promoter and
gene start site (Kim et al., 2017), allowing tight control of
gene expression. CRISPRi technology has been used for gene
knockdowns in C. acetobutylicum (Bruder et al., 2016; Li Q. et al.,
2016), C. beijerinckii (Li Q. et al., 2016; Wang et al., 2016b)
and in C. cellulovorans (Wen et al., 2017) and has been used
to silence both native (Li Q. et al., 2016; Wang et al., 2016b;
Wen et al., 2017) and heterologous genes (Bruder et al., 2016)
(Table 1). Gene repression of up to 97% was achieved although
the effectiveness of CRISPRi varies among species with similar
configurations (Li Q. et al., 2016). The tunability of dCas9 has yet
to be fully explored inClostridium, as it has been in other bacterial
systems (Li X. T. et al., 2016; Kim et al., 2017). In fact, one
study showed activity of the knockdown target unintentionally
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increased over the time of fermentation (Wang et al., 2016b).
This increase was attributed to variable strength of the thiolase
promoter, which controlled the transcription of dCas9.

Gene expression knockdowns have also been accomplished
on the translational level in Clostridium through antisense RNA
(asRNA) technology. The asRNA knockdown method involves
targeting an mRNA transcript using its asRNA. This method
has been used to investigate the function of genes in various
Clostridium species (Cooksley et al., 2010; Fagan and Fairweather,
2011; Chandrasekaran et al., 2016; Chu et al., 2016; Xu et al.,
2017), several of which are essential genes, making a genetic
knockout unfeasible. asRNA technology has also been used to
manipulate gene expression affecting solvent titers (Tummala
et al., 2003; Sillers et al., 2009). asRNAs are tunable and reversible,
and have been effective in silencing, achieving as high as
90% repression levels of certain genes. However, despite their
lengths (>100 bp) asRNAs have been shown to be promiscuous,
binding especially to transcripts with a high homology to the
target sequence (Cooksley et al., 2010). Consequently, asRNA
technology requires large constructs for efficient gene repression
while CRISPRi provides repression specificity, using a 20 nt
sgRNA choice.

GENETIC PARTS

In addition to development of DNA editing tools, a “toolbox”
of well-characterized biological parts including promoters,
ribosomal binding sites (RBS), origin of replication (ORI), and
terminators for Clostridium is in need for further advancement
of metabolic engineering efforts. Expanding this toolbox would
enable assemblies of individual or grouped genes to enhance
productivity and yield of desired products or outcomes.

Promoters
Promoters are often the simplest way to control transcription,
and promoters with various activities are valuable in any
synthetic biology toolkit. However, promoters available for
use in Clostridium originate from a few strains and are
not always transferrable to non-native hosts. Constitutive
promoters of ptb (phosphotransbutyrylase) and thl (thiolase)
fromC. acetobutylicum andC. pasteurianum are commonly used,
however, promoter activity vary in different strains and stages of
growth (Pyne et al., 2015; Lee J. et al., 2016; Yang et al., 2017).
Therefore, there is a need for well-characterized promoter parts
in synthetic biology.

Whole-transcriptomic sequencing offers comprehensive
profiles of gene expression and transcriptome changes of an
organism with high precision. Promoter motifs identified from
RNA-seq analysis of E. coli and gram-positive B. subtilis are
commonly used to screen for promoters in other organisms
using bioinformatics tools (Borden et al., 2010). Promoter
motifs are less well-established in Clostridium, thus relying on
promoter motifs of B. subtilis as a reference (Paredes et al., 2004).
Successful promoter prediction through bioinformatics requires
more transcriptomic studies in Clostridium.

As screening for native promoters is time-consuming,
mutagenesis methods such as error prone PCR, saturation

mutagenesis, or site-specific mutagenesis of a known
characteristic such as a hairpin are utilized to rapidly generate a
library of synthetic promoters with varying strengths. A library
of synthetic promoters using a web-based tool WEBLOGO
was used to rapidly generate a library of promoters of various
strengths by randomizing the flanking regions surrounding
the -35 and -10 consensus sequences of promoter thl for
C. acetobutylicum and C. ljungdahlii (Yang et al., 2017).

Several inducible promoters have been used to balance
and map metabolic pathways, study function and regulation
of promoters or genes, and express recombinant proteins
in Clostridium: xylose-inducible promoter-repressor system
from Staphylococcus xylosus (Girbal et al., 2003; Nariya
et al., 2011a); lactose-inducible promoter comprising of a
transcriptional regulator gene, bgaR, and a bgaL promoter from
C. perfringens (Hartman et al., 2011; Al-Hinai et al., 2012;
Banerjee et al., 2014); laminaribiose-inducible promoters (Mearls
et al., 2015); arabinose-induced promoter (Zhang J. et al.,
2015); tetracycline-inducible system (Walker and Köpke, 2015),
anhydrotetracycline-inducible system (Dong et al., 2012); and
radiation-induced promoter in C. acetobutylicum for cancer
radiation therapy (Nuyts et al., 2001). Factors to be cognizant
in using inducible promoters are its sensitivity to the inducer,
as the cost of inducers may increase for large-scale production
applications, and “leaky” expression in the absence of the
inducer. Therefore, a quantitative measurement of transcription
is necessary for characterization of promoters.

Reporters
Genetic reporters, genes which act as an observable proxy for
some unobservable process, can provide measurement of gene
expression and screening and characterization of promoters. An
ideal reporter system has (1) high sensitivity and specificity, (2)
a large dynamic range of detection, and (3) low endogenous
levels of the reporter in the strain of interest. Chloramphenicol
acetyltransferase (catP) has been used to select for active
promoters by catalyzing the transfer reaction of an acetyl group
from acetyl-CoA to the antibiotics chloramphenicol (Cm) and
thiamphenicol (Bullifent et al., 1995). While Cm is effective
in C. perfringens, other species such as C. acetobutylicum
and C. beijerinckii NCIMB 8052 are naturally resistant to the
antibiotic (Feustel et al., 2004). As the reporter mechanism is
selection, it is not ideal for measurement of specific promoter
activity. Interestingly, a catP-lacZ fusion reporter provides an
initial screen to select for catP expressing promoters on agar with
varying Cm concentrations, and subsequent colorimetric screen
to measure accurate promoter activities (Yang et al., 2017).

lacZ from Thermoanaerobacterium thermosulfurigens EM1,
as well as gusA (or uidA) from E. coli encoding β-galactosidase
and β-glucuronidase respectively, are used to study quantitative
and qualitative gene expression in Clostridium (Tummala
et al., 1999; Feustel et al., 2004). A major advantage of the
lacZ and gusA genes is the versatility of detection systems,
depending on the substrate. lacZ reporter substrates reported
in Clostridium include the substrates 5-bromo-4-chloro-
3-indolyl-β-D-galactoside (X-GAL) (Feustel et al., 2004),
o-nitrophenyl-β-D-galactopyranoside (ONPG) for colorimetric
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and spectrophotometric assays (Adcock and Saint, 2001; Tan
et al., 2015), and 4-methylumbelliferyl-β-D-galactopyransoside
(MUG) for fluorescent assays (Adcock and Saint, 2001). gusA
reporters utilize analogous substrates to β-galactosidase assays:
MUG for fluorescence, 5-bromo-4-chloro-3-indolyl-glucuronide
for colorimetric, and p-nitrophenyl-β-D-glucuronide for
spectrophotometric detection. Compared to lacZ, gusA is smaller
and more stable with low background as a fusion reporter with
the gene of interest in many organisms including Clostridium
spp. (Ravagnani et al., 2000; Mani et al., 2006). Although not
commonly used, other enzymatic-based reporters available
include the alkaline phosphatase gene (phoZ) isolated from
Enterococcus faecalis (Gibson and Caparon, 2002) and the
β-1,4-endoglucanase gene (eglA) from C. saccharobutylicum
(Quixley and Reid, 2000).

Bioluminescent reporters provide amplified measurements of
genes expressed at low quantities. Despite the need for oxygen,
luciferase reporters (luc and lucB) from North American firefly
(Photinus pyralis) in Clostridium spp. can be achieved with the
addition of ATP and washing cells with a neutral pH buffer (e.g.,
PBS) (Davis et al., 2000; Phillips-Jones, 2000; Feustel et al., 2004).
In addition, luciferase fusion with secreting protein PPEP-1 in
C. difficile enabled low-background luciferase expression in an
anaerobic environment and luminescence measurement in an
aerobic environment, albeit with a delayed signal (Oliveira Paiva
et al., 2016). Likewise, bacterial luciferases (luxAB) of the lux
system (luxCDABE) from Vibrio fischeri provide a luminescent
output in the presence of flavin mononucleotide and long-
chain aldehyde substrate in C. perfringens (Bullifent et al., 1995;
Phillips-Jones, 2000). Although various strategies enable use of
bioluminescent reporters in anaerobic bacteria, transcription
activity is not directly correlated with the output (Iqbal et al.,
2017).

Fluorescent reporters such as green fluorescent protein (GFP)
and its variants allow real-time measurements of gene expression
at a single cell level without the need of substrates. Although GFP
variants CFP and mCherryOpt can be expressed in Clostridium,
exposure to oxygen is required for the intrinsic chromophore to
fluoresce (Ransom et al., 2015). FMN-based fluorescent proteins
(FbFPs) including LOV (Light Oxygen Voltage) domains from
plants and bacterial blue light receptors are an emerging class of
fluorescent reporters for anaerobes (Drepper et al., 2007; Christie
et al., 2012; Seo et al., 2018). These fluorescent reporters can
be utilized with and without oxygen, light, and voltage, hence
the name. They are smaller (∼13 kDa) than GFP (∼25 kDa)
allowing relatively faster turnover rates and fusion with protein
of interest without disrupting its native function. Furthermore,
improved LOV (iLOV) proteins can retain 60–70% fluorescence
in a broad pH range of 4–11 (Mukherjee et al., 2013). Excitation
of improved LOV (iLOV) with blue-light wavelength at 450 nm
emits an emission peak at 495 nm (Mukherjee et al., 2013), while
GFP excitation and emission spectra are at 488 and 507 nm,
respectively. iLov has been utilized as a fluorescent reporter in
several Clostridium species: C. cellulolyticum (Teng et al., 2015),
C. ljungdahii (Molitor et al., 2016), as well as C. difficile in which
it was used for real-time measurement of protein localization and
secretion via fusion to FtsZ, a cell division protein (Ransom et al.,

2015; Teng et al., 2015; Buckley et al., 2016; Molitor et al., 2016).
iLov expression has also been observed in C. acetobutylicum
(Buckley et al., 2016).

The quantum yield (brightness) of iLOV is lower than
GFP, however. Thus, there are some considerations to lower
noise when using FbFPs. Flavin-based media such as reinforced
clostridial medium (RCM) and PETC give high fluorescent
backgrounds which can be reduced by eliminating yeast and
beef extract (Molitor et al., 2016). Also, species such as C.
acetabutylicum have a natural green auto-fluorescence that can
increase the background signal (Buckley et al., 2016). A negative
control plasmid containing a non-fluorescent reporter such as
gusA can be utilized to tune excitation wavelength (i.e., 450 vs.,
470 nm) to improve noise-to-signal fluorescence (Buckley et al.,
2016).

Origins of Replication
As the plasmid is a fundamental synthetic biology tool, the origin
of replication is fundamental to successful plasmid stability.
Several origins of replication have been found to be effective
in Clostridium species including: pBP1, pCB102, pCD6 and
pIM13, which are included in the pMTL80000 series plasmids
(Heap et al., 2009). Origins pBP1 and pCB102 are native to
Clostridium (C. botulinum and C. butyricum, respectively), while
pIM13 and pCD6 were isolated from B. subtilis and Clostridioides
difficile, respectively. The origin-strain pair exhibit varying levels
of stabilities. For example, pCB102 is stable in C. botulinum
ATCC 305, but not as stable in C. acetobutylicum 824 (Minton
et al., 2016).

Conditional origins are useful for when the presence of
a plasmid is required only under certain conditions, such
as recursive recombination editing. In C. acetobutylicum, the
pAMβ1 replicon from E. faecalis, is unstable in the absence
of antibiotic challenge (Lee S. H. et al., 2016). Recently, a
temperature sensitive origin of replication derived from the
pWV01 from Lactococcus lactis subsp. cremoris was tested in
C. ljungdahlii, having the plasmid maintained at a permissive
temperature of 20◦C but lost by dilution at 37◦C (Molitor et al.,
2016).

Terminators
Terminators play an important role in gene expression stability.
Often overlooked, transcriptomic studies and computational
tools such as TransTerm and RNAMotif can identify and
predict Clostridium terminators (Chen et al., 2011; Wang
et al., 2011). The adc (acetoacetate decarboxylase) terminator
from C. acetobutylicum and fdx (ferrodoxin) terminator from
C. pasteurianum (Cartman and Minton, 2010; Fagan and
Fairweather, 2011; Nariya et al., 2011b; Pyne et al., 2015; Zhang
Y. et al., 2015) are the most commonly used. The terminator
of the C. difficile 630 ferrodoxin gene, CD0164, was identified
in silico and is present on the pMTL80000 plasmids routinely
used in several Clostridium species (Heap et al., 2009; Ng
et al., 2013). Non-native terminators, including bidirectional
E. coli terminator BB1_B1010 from iGEM Parts Registry, have
demonstrated stronger termination over native adc terminator
(Lee J. et al., 2016).

Frontiers in Microbiology | www.frontiersin.org 9 February 2018 | Volume 9 | Article 154

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Joseph et al. Synthetic Biology Toolkit for Clostridium

CONCLUSIONS

Several Clostridium spp. have the potential to be platform
organisms for industrial use. However, additions to the available
toolkit are required for high-throughput methods of strain
engineering. One consistent hurdle is low DNA transformation
efficiency, commonly as low as 10 CFU/µg (Table 1). However
recent efforts to improve transformation protocols (Pyne et al.,
2013) and the isolation of a hyper-transformable strain have
resulted in higher efficiencies (Grosse-Honebrink et al., 2017;
Schwarz et al., 2017). Further directions include library-based
methods requiring high transformation efficiencies which would

prove to be a step change improvement over current screening
method. Although several studies have focused on increasing
the availability of parts such as promoters and reporters, the
synthetic biology toolkit can further be expanded through the
characterization of other genetic parts such as ribosomal binding
sites and terminators. Improvement in these areas will accelerate
progress toward a sustainable bio-based economy.
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