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A generic property of the communication between neurons is the exchange of pulses at 
discrete time points, the action potentials. However, the prevalent theory of spiking neuronal 
networks of integrate-and-fire model neurons relies on two assumptions: the superposition 
of many afferent synaptic impulses is approximated by Gaussian white noise, equivalent to 
a vanishing magnitude of the synaptic impulses, and the transfer of time varying signals by 
neurons is assessable by linearization. Going beyond both approximations, we find that in 
the presence of synaptic impulses the response to transient inputs differs qualitatively from 
previous predictions. It is instantaneous rather than exhibiting low-pass characteristics, depends 
non-linearly on the amplitude of the impulse, is asymmetric for excitation and inhibition and 
is promoted by a characteristic level of synaptic background noise. These findings resolve 
contradictions between the earlier theory and experimental observations. Here we review the 
recent theoretical progress that enabled these insights. We explain why the membrane potential 
near threshold is sensitive to properties of the afferent noise and show how this shapes the 
neural response. A further extension of the theory to time evolution in discrete steps quantifies 
simulation artifacts and yields improved methods to cross check results.

Keywords: leaky integrate-and-fire model, perfect integrator, diffusion approximation, non-linear response, 
shot noise

1 Introduction
Understanding neural networks requires the 
characterization of how neurons transfer syn-
aptic inputs to a sequence of outgoing action 
potentials. A basic feature of neuronal interac-
tion is the emission of action potentials, each 
causing a small change of the membrane poten-
tial in the receiving cell. The integrate-and-fire 
neuron model has a long history in neuroscience 
(Lapicque, 1907; Gerstein and Mandelbrot, 1964; 
Stein, 1965) reviewed in Brunel and van Rossum 
(2007). Despite its simplicity the model success-
fully reproduces prominent features of neuronal 

dynamics, for example it qualitatively captures 
the relation between injected current and firing 
rate (Rauch et al., 2003; La Camera et al., 2004). 
Equipped with an additional adaptation mecha-
nism, the model also reproduces with high accu-
racy the sequence of action potentials of a neuron 
subject to current injection (Jovilet et al., 2008).

The transmission properties of neuron models 
not only depend on the signal to be transmitted, 
but also on the activity of the remaining input 
channels of the cell. The remaining inputs can be 
regarded as noise with respect to the signal under 
consideration. If this background noise level is low, 
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a population of neurons faithfully transmits an 
injected current stimulus up to high frequencies 
(Knight, 1972; Gerstner, 2000). Independent of 
the origin of the noise and the associated noise 
model, the framework of spike response models 
(Gerstner, 2000) shows that for increasing noise 
level the transmission becomes progressively 
more smooth. Often the impact of the signal on 
the neural dynamics can be assumed to be small 
compared to the entire synaptic barrage so that a 
linear approximation of the response is justified. 
Linear responses to arbitrary transient signals can 
be constructed as superpositions of responses to 
sinusoidal variations of the considered signal vari-
able, such as the afferent firing rate. Since a neuron 
receives many synaptic afferents each having only 
a small impact, a common approach is to replace 
the total synaptic input by a Gaussian white noise 
in the so called diffusion approximation: only the 
mean m and the variance s2 of the total input are 
kept (Siegert, 1951; Johannesma, 1968; Ricciardi 
and Sacerdote, 1979; Lánský, 1984; Risken, 1996). 
In this approximation, the afferent spike trains to a 
neuron translate into – possibly time dependent – 
parameters m(t) and s(t) of the corresponding 
Gaussian white noise. Mean and variance can vary 
independently for example by different co-mod-
ulations of the rate of excitatory and inhibitory 
afferents. For the leaky integrate-and-fire neuron 
a modulation of the mean was found to cause a 
low-pass response, whereas modulations of the 
variance are transmitted instantaneously (Lindner 
and Schimansky-Geier, 2001) up to linear order. 
Experiments confirmed these transfer properties 
for Gaussian white noise currents injected into 
cells in vivo (Silberberg et al., 2004).

Realistic synaptic currents are extended in 
time, causing low-pass filtering and the suppres-
sion of fast fluctuations in the total input current. 
Given such filtered background noise, modula-
tions of the mean are transmitted up to arbitrarily 
high frequencies (Brunel et al., 2001; Fourcaud 
and Brunel, 2002), equivalent to an immediate 
response. For more realistic onset dynamics of 
the action potential the neuron model becomes 
a low-pass (Fourcaud-Trocmé et  al., 2003). 
However, the cutoff frequency increases with the 
speed of voltage change at action potential onset 
(Naundorf et al., 2005) and can reach very high 
frequencies.

The literature cited above rests on the assump-
tion, that the sum of the synaptic inputs can be 
approximated as Gaussian white noise. However, 
synaptic inputs arrive as small impulses. Therefore, 
the work reviewed here (Helias et  al., 2010a) 
reconsiders the integrate-and-fire model neuron, 
the simplest neuron model which allows us to 

study the impact of finite and identical synaptic 
impulses on the stationary and transient neural 
properties. The analysis of such neural dynamics 
is complicated, because it comprises two quali-
tatively different processes. On the one hand, 
the membrane voltage continuously changes in 
time in a deterministic way due to ionic currents 
through the membrane. On the other hand, the 
incoming synaptic impulses typically arrive at dis-
crete, unpredictable time points and cause rather 
sudden changes of the voltage. Very recently, for 
the case of finite synaptic amplitudes drawn ran-
domly from an exponential distribution at each 
incoming impulse, an exactly solvable framework 
was presented (Richardson and Swarbrick, 2010). 
The firing rate, the membrane potential distribu-
tion and the response properties are in qualitative 
agreement with the results for identical synaptic 
amplitudes, focused on in the present review.

In Section 2 we illustrate that the frequently 
invoked diffusion approximation causes artifacts 
and we show how to remedy them by the recently 
developed theory (Helias et al., 2010a). As a result, 
in Section 3 we show how neurons can employ 
the pulse-like synaptic interaction in order to fos-
ter fast signal transfer and to perform non-linear 
operations on short transient signals. In the pres-
ence of many synaptic afferents, a single synap-
tic impulse is intuitively lost in the total synaptic 
barrage. In Section 4 we show, however, why the 
reverse is true: in the presence of a certain number 
of synaptic inputs a neuron operates optimally. 
The issue of artifacts by shortcomings of neural 
simulation tools and how they can theoretically 
be addressed (Helias et al., 2010) is the topic of 
Section 5. Finally, in Section 6 we summarize our 
results, put them into the context of the existing 
literature and provide an outlook.

2 Shishi odoshi – The deer scarer
In this review we illustrate recent conceptual 
advances in the theory of neuronal dynamics 
using a model reduced to the fundamental mech-
anisms. The model is not an abstract equation 
but has a concrete analogy. The shishi odoshi, as 
it is depicted in Figure 1A is frequently found in 
Japanese gardens and used to chase away deers (or 
birds) and please humans. A bamboo tube, open 
at one end, accumulates water. Once the tube is 
filled, the shishi odoshi tilts and the water drains 
(Figure 1C). Returning into the initial position 
the shishi odoshi starts over again. The basic oper-
ation of a neuron is very similar: Each incoming 
excitatory synaptic impulse from other neurons 
causes the membrane potential to depolarize by 
a small amount, like the shishi odoshi in the rain 
(Figure 1B). Once a threshold value V

u
 is reached, 

Linear response
For input signals that only weakly affect 
a non-linear system, a linear 
approximation of the system suffices to 
explain the signal transfer. The response 
to a brief (Dirac d) impulse completely 
characterizes the dynamics. The 
response to a sum of inputs is the sum 
of the single responses (superposition 
principle). The responses to positive 
and negative impulses are identical with 
opposite sign.

Integrate-and-fire model neuron, 
perfect integrator
A neuron model with membrane 
voltage V as dynamical variable. If V 
exceeds the threshold V

u
 an action 

potential occurs and V is reset to a 
lower value V

r
. An incoming synaptic 

impulse causes a jump in V describing 
the amplitude of the postsynaptic 
potential. In the leaky integrate-and-fire 
model the leak current through the 
membrane causes V to approach a 
resting level in absence of inputs.
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with constant speed on average, the probability 
density is the same for all values in the range. The 
number of raindrops falling into the tube within a 
time interval varies from interval to interval, so a 
frequently made approximation of the total input 
is a constant current with some fluctuations, as 
opposed to many individual inputs. Formally, 
this replacement is achieved by considering the 
effect of each input to vanish as the rate of arrival 
goes to infinity (see Lánský, 1984, for a rigorous 
derivation). The stationary properties of a neu-
ron in this so called diffusion approximation or 
Fokker–Planck theory (Risken, 1996; Ricciardi 
et al., 1999) are known since long (Siegert, 1951; 
Johannesma, 1968; Ricciardi and Sacerdote, 1979; 
Risken, 1996). For the special case of individual 
excitatory synaptic impulses the steady state 
probability density can still be obtained analyti-
cally (Sirovich et al., 2000; Sirovich, 2003). If the 
amplitude of excitatory and inhibitory synaptic 
impulses are drawn randomly from an exponen-
tial distribution, the stationary firing rate is known 
analytically (Jacobsen and Jensen, 2007). For this 
case, a recently presented analytical framework 
also allows to calculate the membrane potential 
distribution and the response properties up to 
linear order (Richardson and Swarbrick, 2010).

Before we delve into the theory let us pause 
for a moment and consider what happens in the 

the neuron fires an action potential, the voltage 
returns to the reset potential V

r
, and the process 

begins from the start. This analogy has probably 
been made several times before; just recently we 
found the work by Misonou (2010). Technically, 
the equation describing both the shishi odoshi 
and the above reduction of neuronal dynamics 
is called the perfect integrator. Despite its sim-
plicity, the dynamics still captures some proper-
ties that remained unexplained by contemporary 
theory. For illustration, we decided to resort to the 
analogy of the shishi odoshi, because it allows an 
intuitive understanding of the concepts underly-
ing the mathematical formulation (Helias et al., 
2010a; Richardson and Swarbrick, 2010).

Consider a shishi odoshi in persistent, heavy 
rain (Figure 1B). If we watched the level of water 
V(t) in the tube, we would see a typical time 
course as shown in Figure 1D. The same holds for 
a neuron receiving a bombardment of excitatory 
synaptic impulses. The membrane voltage V(t) 
increases until it reaches the threshold value V

u
 

and the neuron emits an action potential (indi-
cated by the markings at the top of Figure 1D). 
After such an event, both in case of the shishi 
odoshi and the neuron, V is reset to V

r
. On the 

left side of the figure the probability of the perfect 
integrator to assume a particular value of V is 
shown. Since V travels through the range V

r
 to V

u
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Figure 1 | The shishi odoshi is analogous to a neuron. 
(A) Water, traditionally from a steady source, accumulates 
in a bamboo tube. (B) Raindrops that hit the opening are a 
better analogy for the synaptic impulses received by the 
neuron. (C) Once the water level reaches a critical value, 
the shishi odoshi tilts, releases the accumulated water, 
and returns to its original position causing the 
characteristic knocking sound when the bamboo hits the 
stone. (D) Similarly, a neuron integrates synaptic input 
until the membrane potential V reaches a threshold 

voltage V
u
 (upper dashed line). Then the neuron generates 

an action potential (a spike, vertical marking) and the 
membrane potential is reset to Vr (lower dashed line). If 
the neuron receives random excitatory input pulses, the 
probability distribution p(V) of the membrane potential is 
uniform (sketched to left of the vertical axis). (E) In the 
presence of many synaptic afferents (gray) p(V) 
determines how an additional synaptic impulse (black 
spike at t0) influences the neuron’s time dependent firing 
rate ν(t).

Probability density
In an ensemble of identical neurons 
each neuron has a voltage V, which may 
be different due to random synaptic 
input. The probability density p(V) 
describes the fraction p(V)·∆V of 
neurons with a voltage in the small 
interval between V and V + ∆V.

Diffusion approximation or 
Fokker–Planck theory
In this limit the effect of a single 
synaptic impulse vanishes, but the rate 
of impulses diverges, so that the 
fluctuations caused by the total input 
remain the same. The resulting 
membrane dynamics is equivalent to 
the diffusive motion of a particle. The 
Fokker–Planck equation describes how 
the probability density p(V,t) of an 
ensemble of such systems evolves over 
time t.
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particular also in the shaded area in Figure 2B. 
This fact has been known for deterministic 
input since the work of Knight (1972) and here 
we extended the argumentation to the arrival of 
input pulses at random points in time. So appar-
ently the description of the system in the diffusion 
approximation leads to discrepancies in the prob-
ability distribution of V close to the threshold V

u
. 

Formally, the value p(V
u
) at threshold is called the 

boundary condition.
As indicated above, the preceding argumenta-

tion is based on simplifications in order to explain 
the concepts. First of all, real neurons do not stay 
depolarized, but any deviation of the membrane 
potential from its resting value will decay in the 
absence of further input because of leak cur-
rents through the membrane. In the analogy of 
the shishi odoshi, such a leak corresponds to a 
small hole at the lower end of the bamboo tube. 
Furthermore here we considered excitatory input 
alone. In case of neurons in the brain, there are 
both excitatory and inhibitory synaptic inputs 
from other cells. The original publications deal 
with the leaky integrate-and-fire model (Helias 
et al., 2010, 2010a), including leak and inhibition 

vicinity of the threshold in the diffusion approxi-
mation in contrast to the situation in the model. 
In this region, shaded in Figure 2A, random fluc-
tuations of the input cause a threshold crossing 
the more likely the closer V gets to V

u
. At V

u
, the 

system immediately crosses the threshold, or fluc-
tuates to a slightly smaller value, since it is impos-
sible to have no fluctuation at all. Hence in the 
diffusion approximation, the probability p(V) has 
to drop to zero at V

u
 (Brunel et al., 2001) as shown 

in Figure 2A. However, this is not what happens 
in the real system where the input is composed 
of many small input events, drops of water or 
excitatory synaptic impulses respectively. Here 
inputs are not received continuously, but rather 
at specific points in time. Upon reception of such 
an input event V(t) jumps to a new, slightly larger 
value. These little jumps happen often, and drive 
V(t) up close to the threshold. Contrary to the dif-
fusion case, the probability p(V) does not have to 
approach 0 close to threshold. Instead V(t) jumps 
over the threshold when the next input event is 
received, so for all voltages below threshold the 
picture is just the same. Thus in the actual system, 
p(V) is flat all over the range from V

r
 to V

u
, in 
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Figure 2 | Background shapes equilibrium density and 
response. (A) Probability density of voltage V of a perfect 
integrator driven by Gaussian white noise (2). (B) Probability 
density of a perfect integrator driven by excitatory synaptic 
impulses of finite size w causing the same drift and 
fluctuations as in (A) given by (3). The green curve shows 
the collective histogram of a direct simulation of a 
population of 20,000 model neurons with random initial 
conditions observed for 1 s (bin size (V

u
 − Vr)/100 same as 

line width of black curve). The density near threshold most 
strongly differs on the scale of the synaptic amplitude w 

(gray shaded region). (C) An additional excitatory impulse of 
amplitude s shifts the density (here for Gaussian white 
noise background input), so that the gray shaded area 
exceeds the threshold. (D) The probability Pinst. to respond 
with an action potential corresponds to the area of density 
above threshold in (C). Pinst. depends on the shape of the 
density near threshold and hence on the type of 
background input (black: background of synaptic impulses 
of size w given by (5), gray: Gaussian white noise 
background (4). Further parameters used for this and all 
other figures are specified in Section 7.

Boundary condition
The stationary solution p(V) of the 
Fokker–Planck equation requires the 
specification of p(V

u
), the value at the 

boundary of the domain, here firing 
threshold V

u
. The boundary condition 

determines the firing rate and the 
probability to respond with spike 
emission to synaptic inputs. The present 
work derives the boundary condition 
for the case of synaptic voltage jumps.
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synaptic currents, can be treated in the framework 
of the refractory density approximation (Chizhov 
and Graham, 2008). The approximation of neu-
ral transfer properties by linear response in the 
diffusion approximation has been proven to suc-
cessfully capture the global features of recurrent 
network dynamics (Brunel and Hakim, 1999; 
Brunel, 2000; Mattia and Del Guidice, 2002, 2004) 
as well as qualitative properties of the transmis-
sion of correlated activity by pairs of neurons (De 
la Rocha et al., 2007; Shea-Brown et al., 2008). In 
this section we illustrate which features of neural 
transfer are missed by neglecting that neurons 
communicate by synaptic impulses. To this end, 
we focus on the firing rate of a neuron triggered 
on the arrival of an incoming synaptic impulse of 
amplitude s, as illustrated in Figure 1E, assuming 
the other afferents are active irregularly.

Although the differences in the membrane 
potential distribution for Gaussian noise input 
and for finite synaptic jumps are most pronounced 
within a narrow range of voltages below thresh-
old (Figures 2A,B, shaded area), these differences 
noticeably affect the transmission of transient 
signals by a population of neurons. The reason 
is, that the width of the range is comparable to 
the amplitude w of a postsynaptic potential of the 
background activity. A single synaptic impulse of 
amplitude s can elicit an action potential in the cell, 
if the membrane potential is closer to threshold 
than s. This means that the fraction P

inst.
 of cells 

that fire a spike in direct response to this impulse is 
equal to the shaded area in Figure 2C. The shape of 
the density close to threshold (Figures 2A,B) deter-
mines the size of this area. Since for Gaussian white 
noise background input the density goes to zero at 
threshold, the response probability to lowest order 
grows quadratically for small synaptic amplitudes s, 
as shown in Figure 2D. Synaptic background input 
of finite impulses causes a finite, positive value of 
the density at threshold. So there are more neu-
rons ready to fire and the response probability is 
larger and grows linearly in the amplitude s. Similar 
arguments have been invoked to explain the fast 
component in the presence of filtered Gaussian 
noise (Brunel et al., 2001) and in the spike response 
model at low noise (Gerstner, 2000).

In the example of the perfect integrator, the 
response to an incoming synaptic impulse is 
instantaneous in time. The fraction P

inst.
 of neurons 

in the population fires a spike in direct succession 
to the received input impulse. Also the diffusion 
approximation yields an instantaneous response 
for an excitatory impulse, because the event causes 
an impulse-like co-modulation of the mean and of 
the variance. The response to modulations of the 
variance is instantaneous in neurons (Silberberg 

in order to derive a general theory. Qualitatively, 
however, the above arguments apply just in the 
same manner. The correction provided by the 
theory becomes most important for the case of 
strong mean drive, as in the illustrative example 
presented here Figure 1. For excitation and inhi-
bition of comparable strength (balanced regime), 
the deviation of the density from the diffusion 
approximation is typically smaller.

3 The fast response of neurons
Depending on what is considered the “code” by 
which neurons communicate with each other, dif-
ferent aspects of the transformation of the syn-
aptic input signal to the outgoing sequence of 
action potentials are of interest. Assuming action 
potentials to appear stochastically, their activity 
is well described by a time varying firing rate. In 
this view neurons communicate with a rate code 
and their transfer properties are determined by 
the stationary firing rate n

0
. This rate obviously 

depends on the size of the postsynaptic potentials 
w elicited by an incoming synaptic impulse and 
by the frequency l of their arrival. For the per-
fect integrator, the firing rate is n

0
 = lw/(V

u
 − V

r
), 

because (V
u
 − V

r
)/w impulses are needed to bring 

the membrane voltage from reset to threshold. In 
this particular case the diffusion limit yields exactly 
the same firing rate. For more realistic neuron 
models, however, the firing rate differs from the 
diffusion approximation. In Helias et al. (2010a) 
we derive an analytical approximation correcting 
for these deviations for small impulses w, which 
is simpler than the iterative analytical solution 
(Cope and Tuckwell, 1979). For exponentially dis-
tributed synaptic amplitudes an analytically exact 
result for the firing rate became available recently 
(Richardson and Swarbrick, 2010).

Many studies investigating recurrent networks 
rest on the assumption that a population of neu-
rons can be described by a time varying firing 
rate and that the barrage of synaptic impulses 
is well approximated in the diffusion limit, or 
equivalently, as an effective Gaussian white noise. 
The time varying firing rate then translates into 
continuously changing mean and variance of the 
corresponding Gaussian noise current (Brunel 
and Hakim, 1999; Lansky and Sacerdote, 2001; 
Mattia and Del Guidice, 2002, 2004). For small 
modulations of the population rate the modula-
tion of the neural firing rate can be obtained in 
linear approximation (Brunel and Hakim, 1999; 
Brunel et  al., 2001; Lindner and Schimansky-
Geier, 2001). Non-linear neuron models require 
numerical solutions (Omurtag et  al., 2000; De 
Kamps, 2003; Richardson, 2007, 2008) and neu-
ron models with several dynamical variables, like 
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causes the same impulse-like perturbation of the 
variance as an excitatory impulse, so the same fast 
response is expected in both cases. For exponentially 
distributed synaptic background pulses, this asym-
metry persists. Richardson and Swarbrick (2010) 
showed that sinusoidal modulations of the rate of 
excitatory incoming impulses are transmitted in the 
limit of arbitrary high frequencies, while the modu-
lation of inhibition is suppressed in this limit. The 
reason is the same as in the case of impulses illus-
trated in Figure 2C: excitatory synaptic impulses 
cause jumps over the threshold, whereas inhibi-
tory impulses do not. The diffusion approximation 
would yield a symmetric result for excitation and 
inhibition. In motor neurons, Fetz and Gustafsson 
(1983) found that the integral of the firing rate 
response follows the time course of the EPSP on 
its rising flank, but not when the voltage decays. 
For the integrate-and-fire model neuron, where 
the EPSPs jump abruptly, this observation directly 
translates to the impulse-like response present for 
EPSPs but not for IPSPs. In more realistic models 
which include a rise time of the EPSP, this immedi-
ate response is dispersed over the rising flank of the 
voltage deflection. Earlier studies pointed out that 
this sharpening of the response is due to voltage 
trajectories crossing the threshold on the upstroke 

et al., 2004) and in the integrate-and-fire model 
(Lindner and Schimansky-Geier, 2001), giving rise 
to an impulse in the firing rate response.

In the perfect integrator the firing rate immedi-
ately returns to its baseline value after the instanta-
neous response (Figure 3C). The reason is that the 
probability density remains effectively unchanged 
by the extra excitatory input: all neurons that where 
shifted across threshold are reinserted at the lower 
end of the density as illustrated in Figure 3A. For 
an inhibitory incoming input, however, the den-
sity is shifted away from threshold toward nega-
tive voltages. Consequently, after the impulse has 
been received, the firing rate of the population is 
zero, since there are no neurons with a voltage close 
enough to threshold, as shown in Figure 3B. Only 
gradually, as the neurons receive excitatory back-
ground spikes, will the gap in the density below 
threshold be reoccupied so the population reap-
proaches its equilibrium firing rate, as shown in 
Figure 3D. Hence, the responses to excitatory and 
inhibitory synaptic impulses are asymmetric, as 
recently observed in somatosensory cortex in vivo 
(London et al., 2010). In particular, the inhibitory 
response does not exhibit a fast component. This 
is in contrast to the prediction of the diffusion 
approximation, because here an inhibitory impulse 
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excitatory impulse of amplitude w shifts the probability 
density (luminance coded, bright colors indicate high 
density) upward, so that a small part of the density 
exceeds the threshold. This leads to an instantaneous 
spiking response, visible as a d-shaped deflection in the 
firing rate n (C). The reset of the membrane voltage to Vr 
after the spike moves the excess density down, so that 

the density equals the state before the impulse. (B) An 
additional inhibitory impulse of amplitude −w deflects the 
density downward (7). It does not evoke a response 
concentrated at the time of the impulse (D). Instead, the 
firing rate n drops and exponentially reapproaches its 
equilibrium value n0 (D) as the density gradually relaxes to 
its steady state on a time scale 1/l, with l the rate of 
synaptic background impulses (6).
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et al., 2010). Intuitively one would suspect that 
the presence of the other synaptic inputs acts like 
noise (indicated as s in Figure 4A), so that the 
effect of the single synaptic pulse at t

0
 becomes 

the more negligible, the stronger this noise is. 
One can therefore ask the question, whether the 
sequence of action potentials generated by the 
neuron still contains information about the spike 
timing of a particular incoming synaptic impulse 
(London et al., 2010). For some non-linear sys-
tems, like neurons, it is known that the transfer 
of a signal from input to output becomes opti-
mal at a certain level of background noise. The 
effect is called stochastic resonance (reviewed in 
McDonnell and Abbott, 2009). Experimentally 
it has been found in mechanoreceptors of cray-
fish (Douglass et al., 1993), in the cercal sensory 
system of crickets (Levin and Miller, 1996), and 
in human muscle spindles (Cordo et al., 1996). 
Thresholded Gaussian processes are simple 
theoretical models exhibiting this phenom-
enon (Boven and Aertsen, 1990). For the leaky 
integrate-and-fire neuron in linear approxima-
tion stochastic resonance has been reported for 
sinusoidal periodic input currents (Lindner and 

of the EPSP and correspondingly found a depend-
ence on the rate of change of the voltage (Herrmann 
and Gerstner, 2001; Chizhov and Graham, 2008; 
Goedeke and Diesmann, 2008). Spike response 
models fitted to simulations of integrate-and-fire 
models provide a quantitative numerical solution 
for the non-linear asymmetric response in this case 
(Herrmann and Gerstner, 2001).

A similar observation is made in the leaky 
integrate-and-fire model (Helias et al., 2010a). In 
this case, however, the response to an excitatory 
impulse not only has an instantaneous compo-
nent, but the firing rate is also slightly elevated 
thereafter over a time-span of milliseconds. The 
reason is the non-uniform probability density 
between reset and threshold. The shift due to the 
extra impulse deflects the population from its sta-
tionary state and it only gradually relaxes back.

4 Stochastic resonance of fast 
response
A neuron in the cortex receives synaptic afferents 
from numerous presynaptic sources. The activ-
ity of these inputs often shows only small cor-
relations (Ecker et al., 2010; Hertz, 2010; Renart 
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Figure 4 | Stochastic resonance. (A) A neuron 
receives balanced excitatory and inhibitory background 
input (gray spikes). The probability of eliciting an 
immediate response to a particular synaptic impulse 
(black spike at t0) depends on the amplitude s of the 
fluctuations caused by the other synaptic afferents. 
(B) The spread of the probability density of the voltage 
depends on the amplitude s of the fluctuations caused by 
all synaptic afferents (8). At low fluctuations (s < sopt, 
blue) it is unlikely to observe the voltage near threshold, 
the density there is negligible. At intermediate 

fluctuations (sopt, green), the density below threshold is 
elevated. Increasing the fluctuations beyond this point 
(s > sopt, red) spreads out the density to negative 
voltages, effectively depleting the range near threshold. 
(C) Probability density (8) near threshold (luminance 
coded with equal-density lines) over voltage V (horizontal 
axis) as a function of the fluctuation s (vertical axis). At 
the optimal level of fluctuations sopt, the density near 
threshold becomes maximal. (D) The voltage integral of 
this density determines the probability of eliciting a firing 
response and has a single maximum at sopt (9).

Stochastic resonance
A phenomenon exhibited by some 
non-linear, stochastic systems 
transferring input to output (like 
neurons). The transfer of the input 
signal becomes optimal (in absolute 
amplitude or the signal-to-noise ratio 
of the output) if a certain amount of 
noise is added to the input. In the 
integrate-and-fire neuron model the 
non-linearity is provided by the 
threshold and the noise by uncorrelated 
synaptic input.
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indicated in Figure 4C. Here a single additional 
impulse of size w is sufficient to cause a thresh-
old crossing. For even higher noise the density 
near threshold ultimately decreases again. The 
threshold prevents the density to spread beyond, 
so for larger s the density is effectively pushed 
toward negative voltages, as shown in Figure 4B 
(red curve). Consequently the probability den-
sity below threshold assumes a maximum at an 
optimal noise level s

opt
 (Figure 4C) which directly 

translates into the maximum of the instantaneous 
response (Figure 4D).

The classical notion of stochastic resonance 
considers the signal-to-noise ratio in the output 
to exhibit a maximum at a certain level of noise in 
the input. In the system at hand, the absolute value 
of the instantaneous response probability shows a 
maximum. In this sense, we use the term stochas-
tic resonance in its broader meaning, as recently 
suggested (McDonnell and Abbott, 2009). The 
leaky integrate-and-fire neuron exhibits a mecha-
nism in complete analogy to the simple example 
presented here (Helias et al., 2010, 2010a).

5 Effect of time discretization on 
probability density and response 
properties
In simulations of recurrent neuronal networks, 
time is customarily discretized into an equidis-
tant grid (for example Gerstein and Mandelbrot, 
1964; MacGregor and Lewis, 1977), see Brette 
et al. (2007) for a recent review. The spacing of 
the grid is called the computation step size h. This 
approach enables the simulation of large neuronal 
networks on laptop computers and high-perform-
ance clusters in an efficient manner. In traditional 
implementations, the evolution of the membrane 
potential progresses in steps of h and the times 
of action potentials are constrained to the time 
grid. This, however, may cause artificial synchro-
nization in neural networks (Hansel et al., 1998), 
which can be avoided by resetting the membrane 
potential at a continuous time threshold crossing 
found by interpolating between two points on the 
grid (Hansel et al., 1998; Shelley and Tao, 2001). 
The accuracy required in a simulation depends on 
the scientific question. In simulations in discrete 
time, the error of spike timing drops only linearly 
with the simulation step size (Morrison et  al., 
2007). Therefore recently developed algorithms 
combine the representation of spikes in continu-
ous time with the efficient progression of time in 
discrete steps (Morrison et al., 2007; Hanuschkin 
et  al., 2010; See Figure 5B). Nevertheless, many 
simulations still rely on time discretization and 
if only a low accuracy in spike timing is required 
grid constrained implementations commonly 

Schimansky-Geier, 2001). Also for non-periodic 
signals which are slow compared to the dynam-
ics of the neuron, an adiabatic approximation 
reveals stochastic resonance (Collins et al., 1996). 
Neither approximation, however, is valid for a 
synaptic impulse, which is a fast non-periodic 
signal. In (Helias et  al., 2010, 2010a) we dem-
onstrate that the non-linear fast response of 
the leaky integrate-and-fire model exhibits pro-
nounced stochastic resonance.

The intuitive explanation of stochastic reso-
nance in neurons rests on the observation that 
a single synaptic impulse cannot depolarize the 
neuron sufficiently to cause an action potential on 
its own, as a single raindrop will not tilt an empty 
shishi odoshi. In the presence of many synaptic 
afferents, or when the shishi odoshi is in torrential 
rain, there is at each point in time a certain prob-
ability that the system is already close to its thresh-
old so that a single additional impulse suffices 
to ultimately cause an action potential, a single 
additional raindrop turns the bamboo tube. This 
explains why the response increases with increas-
ing background noise. In order to understand 
why the response decreases again when there is 
too much noise, we need to specify the model a 
bit more carefully. We consider an integrator as 
before, but with balanced excitatory and inhibi-
tory synaptic inputs, so that the mean voltage does 
not change over time. For simplicity, in the follow-
ing we assume that the mean value corresponds 
to the reset potential Vr

. In the perfect integrator 
the presence of inhibition causes the problem that 
the membrane potential might become arbitrar-
ily negative. In neurons this is prevented by the 
leak current, driving the voltage back to the mean 
and by the finite value of the inhibitory reversal 
potential. For the case of V above the mean V

r
, 

we follow Fusi and Mattia (1999), Mattia and Del 
Guidice (2002) and introduce a constant negative 
current, so that in the absence of any synaptic 
input (noise s = 0), the membrane potential rests 
at V

r
. In their model, arbitrary negative voltages 

cannot occur because the membrane potential is 
constrained to V > V

reversal
, mimicking the inhibi-

tory reversal potential. In contrast, we imagine the 
mean potential between reversal and threshold 
and therefore introduce a current that is con-
stant and positive, if the membrane voltage V is 
below its mean level V

r
. In our operating range 

we expect the model of Fusi and Mattia (1999) to 
exhibit qualitatively the same results. Gradually 
increasing the noise, the probability of finding 
the neuron at voltages larger than V

r
 increases; 

the membrane potential distribution becomes 
wider, as shown in Figure 4B (blue curve). The 
density right below threshold grows as well, as 
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synaptic events are taken into account. Each such 
event causes a jump of the voltage, indicated by 
the green arrows in the diagram. This way the 
synaptic input again spreads the density and the 
voltage might exceed the threshold, indicated by 
the narrow stripe of density above threshold at 
t + h. (3) Due to the firing threshold of the neu-
ron, these supra-threshold states are immediately 
reset to the reset potential. As a result, the density 
observed at the end of the third step has a finite 
value at threshold which is elevated compared to 
the model in continuous time because all spikes 
arriving in the interval h are projected to grid 
position t  +  h. For the leaky integrate-and-fire 
neuron, discretization of time slightly lowers the 
stationary firing rate, while the transient response 
properties experience only minor changes (Helias 
et al., 2010). The division of the time evolution 
operator into three subsequent steps allows us 
to extend the Fokker–Planck theory to proc-
esses evolving in discrete time steps. Next to this 
approximation, Helias et  al. (2010) presents a 
numerical scheme to obtain the stationary prop-
erties of such processes with arbitrary precision.

6 Conclusion
6.1 Key findings
The work reviewed in this article (Helias et al., 
2010, 2010a) extends the theory of integrate-
and-fire neuron models to capture the effect of 
synaptic pulse coupling. We demonstrate that 
the pulsed nature of synaptic afferents changes 
both the stationary properties of neurons and 
their dynamical response to transient inputs. 

have shorter run times. This is particularly relevant 
for simulations involving synaptic plasticity which 
typically run over long periods of biological time. 
It is, however, important to distinguish between 
the accuracy of the mathematical model of nature 
and the accuracy of the solver used to integrate the 
equations. Otherwise the researcher cannot decide 
whether the observed discrepancies with nature 
are just due to a technical problem or whether the 
model fails to represent a relevant aspect.

In Helias et al. (2010) we observed that time 
discretization changes the shape of the membrane 
potential density. In particular the probability 
density near threshold increases with coarser 
time discretization. We have seen above that the 
shape of the membrane potential distribution 
determines the response properties of the model. 
Let us therefore assess the artifacts caused by the 
discretization of time. Here we characterize the 
artifacts using the model with constant restor-
ing force introduced in Section 4. A treatment of 
the full leaky integrate-and-fire model is given 
in Helias et al. (2010). Figure 5A illustrates the 
time evolution of the membrane potential density 
in one cycle of the simulation. The time evolu-
tion in neural simulators is typically divided into 
three different phases (Morrison and Diesmann, 
2008): (1) Starting at t, the deterministic neural 
dynamics evolves. As in the example of the last 
section, this evolution is a drift of the membrane 
potential away from threshold, so that the density 
contracts and a gap emerges between the highest 
observable voltage (red) and the threshold V

u
. (2) 

At the end of the time step at t + h the incoming 
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Figure 5 | Time discretization and continuous time 
simulation. (A) Time evolution of the probability density 
(density plot) of the membrane voltage in an integrator 
with constant drift −m0 in discrete time steps of duration 
h. Within one step the density moves away from the 
threshold due to the drift, such that the highest possible 
voltage is indicated by the red line. Synaptic impulses 
are taken into account at the end of the time step at 
t + h, so the voltage jumps by a random amount as 
indicated by the green arrows. This again inflates the 
density, also populating states above threshold V

u
. By 

subsequent thresholding (blue) each neuron above V
u
 

emits a spike and is reset, so the density above 

threshold vanishes. In the stationary state, after one 
cycle of duration h the density is identical again. This 
allows to derive an effective time-discrete Fokker–Planck 
equation describing the stationary density. (B) 
Schematic of continuous spike timing in discrete time 
simulations. The membrane potential of a neuron 
(dashed curve) evolves in time, driven by synaptic 
impulses (black dots). The membrane potential crosses 
the threshold in (t + h, t + 2h). The exact location t

u
 is 

determined and this information is passed to the target 
neurons as an offset value d with respect to the 
subsequent point on the temporal grid. Adapted from 
Hanuschkin et al. (2010).
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required to understand which operations neurons 
are able to perform and to analyze the dynam-
ics of recurrent networks of such neurons. The 
prevailing theory to address the latter question 
employs in addition to the above mentioned diffu-
sion approximation a linearization of the transfer 
function (Brunel and Hakim, 1999; Brunel et al., 
2001; Lindner and Schimansky-Geier, 2001). 
Going beyond both of these approximations, we 
discover novel features of neuronal transfer even 
in the simple leaky- and perfect integrate-and-fire 
models.

The higher density near threshold due to 
non-zero synaptic amplitudes increases the frac-
tion of neurons in a population that responds 
rapidly to afferent signals. Moreover, a neuron’s 
response to an excitatory incoming impulse has 
an immediate component, but an inhibitory 
impulse just delays the next firing, an inherent 
asymmetry due to the rectifying property of the 
threshold. A simple geometric argument allows 
us to transcend the linear approximation and to 
uncover the full non-linear dependence of the fast 
component of the neuronal response on input 
amplitude. The nature of the background activity 
shapes this non-linearity. Even in the presence of 
substantial background noise, often assumed to 
linearize transfer, we still find the threshold of 
the neuron to impose this asymmetry. The asym-
metry is a generic non-linearity present in any 
excitable system. This finding is in contradiction 
to the prevalent diffusion approximation. This 
limit predicts a symmetric fast response for excita-
tory and inhibitory impulses alike, because both 
modulate the fluctuations in the input at high fre-
quencies (Lindner and Schimansky-Geier, 2001). 
For realistic EPSPs, the excitatory response is con-
centrated in the short time interval of the rise 
time. Experimentally, these response properties 
have first been documented a long time ago for 
neurons of cat motor cortex (Fetz and Gustafsson, 
1983) and an even earlier theory made accord-
ing qualitative predictions (Knox and Poppele, 
1977). The theory of spike response models yields 
a formal framework which quantitatively explains 
the asymmetry of the response and the sharp-
ening with respect to the postsynaptic potential 
(Herrmann and Gerstner, 2001).

The geometric consideration explaining the 
instantaneous response also elucidates why a 
certain amount of additional uncorrelated syn-
aptic input promotes the fast spiking response. 
The dependence on the noise amplitude of this so 
called stochastic resonance is more pronounced 
than for the previously known linear transfer of 
sinusoidal currents (Lindner and Schimansky-
Geier, 2001). This means that the neuron optimally 

In particular, we obtain more accurate expres-
sions for the equilibrium firing rate (cf. Siegert, 
1951) and the membrane potential distribution 
(cf. Brunel, 2000). We find that approximating 
the total synaptic current by a Gaussian white 
noise qualitatively changes the observed proper-
ties. The reason is that this diffusion approxima-
tion neglects threshold crossings by finite jumps. 
Mathematically, our approach amounts to a novel 
boundary condition for the Fokker–Planck equa-
tion (Risken, 1996). The importance of the type of 
noise for the boundary condition has previously 
been highlighted (Hanggi and Talkner, 1985). Our 
hybrid theory combines the diffusion approxi-
mation with a description of the finite synaptic 
impulses and enables us to quantitatively explain 
the increased probability of finding a neuron’s 
membrane potential closely below threshold. A 
similar effect has been observed in the case of 
synaptic currents with slow temporal dynam-
ics (Brunel et  al., 2001; Fourcaud and Brunel, 
2002; Moreno-Bote and Parga, 2006; Chizhov 
and Graham, 2008). However, the underlying 
mechanisms are different. While in our case the 
probability flux over threshold is limited by the 
finite rate of excitatory synaptic events, in the 
earlier studies the flux is limited by the slower 
fluctuations caused by the low-pass filtered syn-
aptic Gaussian noise. In the presence of synap-
tic filtering the effect of non-vanishing synaptic 
amplitudes on the probability density remains. 
The simplest case to realize this is a perfect inte-
grator driven by excitatory positive current pulses 
of some waveform and finite duration. The total 
input current is positive I(t) > 0 at any time point, 
so the membrane potential is monotonously 
increasing, except at threshold crossings when the 
reset to a lower voltage takes place. Identifying the 
threshold value with the reset, the voltage always 
moves in the same direction along the voltage axis, 
now forming a ring. All points on the ring are 
equivalent, so the resulting membrane potential 
density must reflect this symmetry and hence is 
uniform. For filtered Gaussian noise, however, the 
density is not uniform (cf. Fourcaud and Brunel, 
2002, their Figure 4) not even for purely excitatory 
drive. This demonstrates that the effect of finite 
synaptic amplitudes is a general phenomenon and 
not an artifact of the simple integrate-and-fire 
dynamics. For balanced excitatory and inhibitory 
input, however, we found that the deviations from 
the diffusion approximation are smaller.

Obtaining simple analytical expressions for the 
stationary probability density of the membrane 
voltage also leads to new insights into the time 
dependent transfer of information by neurons. The 
characterization of their input–output relation is 
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period of time, such that the membrane poten-
tial distribution over the ensemble is stationary. 
An additional excitatory pulse impinging on the 
population shifts this distribution to higher volt-
ages within the rise time of the EPSP, thus popu-
lating the region beyond the separatrix. Neurons 
with a membrane voltage above the separatrix 
emit an action potential after a further short delay, 
constituting a fast population response. This 
response appears within a short time interval of 
the order of the sum of the rise time of the EPSP 
and the time for action potential initiation and 
corresponds to the immediate response reported 
here. Future work needs to address the dynamics 
in more detail to obtain quantitative results.

6.2 Simulation technology and theory
The last two decades have brought accelerated 
progress in the technology to simulate neuronal 
networks. Both hardware and software devel-
opment have made tools available that are eas-
ily capable of simulating networks of 100,000 
neurons and more with realistic synaptic con-
nectivity. With the increased complexity of the 
simulation experiments, however, understand-
ing and interpreting the results becomes more 
challenging. In the classical sense, a model is 
an abstraction of the real biological system that 
reproduces experimentally observed phenomena. 
The reduced complexity allows to draw conclu-
sions about the necessary features that lead to the 
phenomenon. The possibility to perform simula-
tions that take into account biological features in 
great detail bears the possibility to subsequently 
check whether the approximations and assump-
tions entering the simplified model are justified. 
However, such simulations bring the danger of 
producing results comparable in complexity to 
experimental data. A particular result may leave 
us puzzled about whether we observe an interest-
ing effect, a shortcoming of the simulation tech-
nique, or even an error in the computer program. 
For example, in grid constrained simulations of 
the leaky integrate-and-fire model supplied with 
random input spikes we consistently observed 
lower stationary spikes rates than predicted by 
the classical theory of Siegert (1951). In Helias 
et  al. (2010) we addressed this problem by the 
construction of a new theory taking into account 
the discretization of time and the finite amplitude 
of synaptic impulses. The predicted spike rate is 
in good agreement with the simulation results. 
While this verifies that the simulation program 
works correctly it remained unresolved whether 
the result of Siegert (1951) or our simulation is 
closer to the true spike rate of the model because 
the new theory incorporates a technical detail of 

transmits fast changes in its input to the output if 
it receives a certain well defined amount of unre-
lated background activity.

Many theoretical studies focused on the 
transfer of sinusoidal modulations of some 
parameter of the input to a neuron model up to 
linear response. In early sensory areas, such as 
the visual system or the auditory system, how-
ever, transient inputs are frequently observed. 
These transient signals often evoke responses 
that depend non-linearly on a parameter of the 
input. Cells in primary visual cortex show non-
linear responses depending on the local contrast 
(Geisler et al., 2007). In the auditory system of the 
locust the probability of response increases non-
linearly with the sound pressure (Gollisch and 
Herz, 2005). The responses in the latter system 
occur with sub-millisecond precision, but single 
action potentials appear unreliably with a prob-
ability that grows non-linearly with the mem-
brane depolarization. These findings are in line 
with the increasing and saturating non-linearity 
of the fast response discussed here. The disper-
sion of the membrane potential distribution in 
the auditory cell is due to subthreshold fluctua-
tions by cell-intrinsic noise (Gollisch and Herz, 
2005). Functionally these fluctuations promote 
the response at low stimulus intensities through 
stochastic resonance (Collins et  al., 1996). Our 
analytical results render this transient processing 
amendable to theoretical analysis using integrate-
and-fire dynamics.

For synaptic impulses which are not small 
compared to the distance between reset voltage 
and threshold, the presented theory cannot be 
employed because it still relies on the diffusion 
approximation as long as the voltage is sufficiently 
far away from threshold. However, the recently 
developed theory for excitatory and inhibitory 
synaptic jumps with exponentially distributed 
amplitudes (Richardson and Swarbrick, 2010) 
confirms that even for large synaptic jumps the 
altered response properties are governed by the 
same mechanisms reviewed here. Also for a par-
ticular class of exactly solvable integrate-and-fire 
models the transfer of correlations by pairs of 
neurons was recently shown to be sensitive to 
the spiking nature of the input (Rosenbaum and 
Josic, 2011). A limitation of current theories is 
the assumption of a hard threshold defined by 
an exact value V

u
. We presume that a more real-

istic soft threshold (Naundorf et al., 2005), which 
captures the action potential onset dynamics like, 
e.g., in the exponential integrate-and-fire model 
(Fourcaud-Trocmé et al., 2003), leads to qualita-
tively similar results. We imagine a population of 
such neurons receiving stationary input for a long 
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uncorrelated synaptic afferents through stochastic 
resonance. Whether neurons in the cortex are in 
the right regime to employ the fast response to 
transfer and process information depends on its 
relative contribution to the total response prob-
ability. Recently, the response probability has been 
quantified experimentally in vivo (London et al., 
2010). The observed slight quadratic dependence 
on the impulse amplitude indicates a noticeable 
contribution of the fast non-linear component. Its 
relative contribution can be estimated experimen-
tally by intracellularly recording the membrane 
potential distribution and the size of a postsynap-
tic potential and applying the methods presented 
in our work. The total response is approximated 
by the expression P sr

s
R I

m

m
( ) = ∂

∂
t n0  with the slope 

∂n
0
/∂I of the firing rate curve for stationary cur-

rent injection, the membrane resistance R
m
, the 

membrane time constant t
m
 and the amplitude of 

a postsynaptic potential s. The ability of a neuron 
to perform non-linear operations on fast activ-
ity transients may enable neural networks to 
perform non-trivial computations (Herz et  al., 
2006), such as performing categorization tasks 
with high memory capacity (Poirazi and Mel, 
2001). Also Hebbian synaptic plasticity mecha-
nisms (Hebb, 1949) like spike timing dependent 
plasticity (Morrison et al., 2008) are sensitive to 
the correlation between afferent activity and the 
outgoing action potentials of a neuron. This cor-
relation has so far been approximated by the lin-
ear response kernel (Kempter et al., 1999; Helias 
et al., 2008; Morrison et al., 2008; Gilson et al., 
2009a,b,c,d). Synaptic plasticity typically reacts 
most sensitively to pairs of afferent and efferent 
spikes that are closely locked in time, as facilitated 
by the fast response. Its non-linear dependence 
on the synaptic efficacy in turn may give rise to 
multiple stable fixed points of the synaptic weight 
promoting pattern formation in plastic recurrent 
networks. The results covered in this review may 
render some of the effects his outlined above more 
accessible for analytical treatments.

7 Methods
7.1 Stationary solution of perfect integrator 
with excitation
The membrane potential V of the perfect inte-
grator (Tuckwell, 1988) evolves according to the 
stochastic differential equation dV

dt i iw t t= ∑ −d( ), 
where t

i
 are random time points of synaptic 

impulses generated by a Poisson process with rate 
l. If V reaches the threshold V

u
 the neuron emits 

an action potential. After the threshold crossing, 
the voltage is reset to V ← V − (V

u
 − V

r
). This 

reset preserves the overshoot above threshold 
and places the system above the reset value by 

the software implementation; the discretization 
of time. Furthermore, the new theory predicts a 
fast response of the model neuron to time vary-
ing signals (see Section 3) observed in the grid 
constrained simulations. As a rapid response has 
also been observed experimentally this raises the 
question whether the theoretical result is an arti-
fact of time discretization or an inherent property 
of the integrate-and-fire model. Fortunately, in 
the mean time the technology became available 
to efficiently simulate integrate-and-fire type neu-
ron models in continuous time (Morrison et al., 
2007; Hanuschkin et al., 2010). Thus we repeated 
our earlier simulations using the new technology 
and established that the rapid response persists. 
Motivated by the observation we extended the 
theory for finite synaptic impulses to the case of 
continuous time. The theoretical description of 
the response properties and the stationary spike 
rate are in good agreement with the simulation 
results. As the continuous time implementation 
is an exact computer representation of the model, 
the theory delivers the true spike rate of the model, 
bounded only by the order of the approximation 
used in the derivation. The spike rate is generally 
slightly higher than in grid constrained simula-
tions but still lower than predicted by the theory 
of Siegert (1951). The latter results are published 
as Helias et  al. (2010a) and constitute the first 
neuroscientific discovery employing the capabil-
ity of the simulation software NEST (Gewaltig 
and Diesmann, 2007; Hanuschkin et al., 2010) to 
simulate spike interaction in continuous time.

6.3 Future directions
The generic feature of a fast component of the 
neuronal response reviewed in the present work 
has implications for the emergence and propaga-
tion of synchronized activity in neural networks. 
For example in auditory cortex, the firing of neu-
rons has been shown to be driven by simultaneous 
activation of several of their synaptic afferents 
(DeWeese and Zador, 2006). Synchronized activ-
ity, as it occurs, e.g., in primary sensory cortex 
(Poulet and Petersen, 2008), easily drives a neu-
ron beyond the range of validity of the linear 
response. The convex increase of firing prob-
ability generic to leaky integrate-and-fire model 
neurons (Goedeke and Diesmann, 2008) is of 
advantage to obtain output spikes closely locked 
to the input, thus propagating the spike timing 
information. But even for small synaptic impulses 
does the fast component contribute to the trans-
mission of synchronous activity by groups of neu-
rons (Tetzlaff et al., 2003; De la Rocha et al., 2007; 
Renart et al., 2010; Rosenbaum and Josic, 2011). 
This is promoted by the presence of noise from 
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The normalization 1 = n
0 
∫ q(V)dV yields the 

same firing rate n
0
 = lw/(V

u
 − V

r
) as in the case of 

Gaussian white noise in agreement with intuition, 
because (V

u
 − V

r
)/w input impulses are needed 

to cause an output spike. The illustrations in 
Figures 2A–C use w = 3 mV, V

r
 = 0, V

u
 = 15 mV, 

and l = 200(1/s).

7.2 Instantaneous and time dependent 
response
The probability P

inst.
(s) that a neuron in the 

population instantaneously emits an action 
potential in response to a single synaptic input 
of postsynaptic amplitude s equals the probability 
mass P s p V dV

V s

V
inst.( ) ( )= ∫ −u

u  crossing the threshold. 
In the case of Gaussian white noise, with p(V) 
from (2) we obtain

	

P s
V V
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This expression grows quadratically like 
P sinst s V V

s
wr.( )�1 0

1 2

> −u
 for small synaptic amplitudes 

s. In the case of finite synaptic jumps with (3) 
we obtain

	
P s

s

V Vs

r

inst.( ) ,=
−>1 0

u

	 (5)

growing linear in the amplitude s. A linear approx-
imation of the integral response can be obtained 
from the slope of the equilibrium rate with respect 
to m as P s t dt s s V Vo rint.( ) ( ) /( ).= ∫ − = = −∞ ∂

∂0 ν n n
m u  

For positive s this expression equals the inte-
gral instantaneous response (5) so the complete 
response is instantaneous in this case. For s < 0 we 
only consider the special case of a synaptic inhibi-
tory pulse with the same magnitude s = −w as the 
excitatory background pulses. Now the density 
is shifted away from threshold by w and the fir-
ing rate drops to 0. The density reaches threshold 
again if at least one excitatory pulse has arrived, 
which occurs within time t with probability 
P

k≥1
 = 1− e−lt. Given this event, the hazard rate of 

the neuron is lw/(V
u
 − V

r
), so the time depend-

ent response is

	
n

ll

u

( ) ( ) .t e
w

V Vt
t

r

= −
−>

−1 1 0 	 (6)

The density following the inhibitory event is 
a superposition of the shifted density and the 
equilibrium density with the relative weight-
ing given by the probabilities 1 − P

k≥1
 and P

k≥1
, 

respectively.

this amount. We consider a population of equiva-
lent neurons and assume a uniformly distributed 
membrane voltage between V

r
 and V

u
 initially. In 

what follows we apply the formalism outlined 
in Helias et  al. (2010a). The detailed calcula-
tions with intermediate steps can be found in 
a separate note (Helias et al., 2010b). The first 
and second infinitesimal moments (Ricciardi 
et al., 1999) of the diffusion approximation are 
A w

def

1 = =l m and A w
def

2
2= =l σ2 , respectively. The 

model in diffusion limit hence obeys the sto-
chastic differential equation dV/dt = m + sj(t), 
with a zero mean Gaussian white noise j, 〈j(t)
j(t + s)〉

t
 = d(s). The probability flux operator is 

S V= − ∂
∂m s2

2 , which, after normalization of the 
stationary probability density p(V) by the as yet 
unknown flux n

0
 as q V p V

o
( ) ( )= 1

n  yields the sta-
tionary Fokker–Planck equation

Sq V V V Vr
( ) .= < <1

u 	
(1)

Here 1
expr.

 equals 1 if expr. is true, and 0 else. The 
homogeneous solution is q V eh( ) ∝ 2 2m sV/  and the 
particular solution which vanishes at V = V

u
 for 

V < V
r
 < V

u
 follows by variation of constants as 

q V ep
V V( ) .( )/= −( )−1 21

2

m

m su

We first consider the case of Gaussian white 
noise input of mean m and variance s. A finite 
probability flux in this case requires continuity at 
the threshold, implying q(V

u
) = 0. Thus we obtain 

the full solution continuous at reset (Abbott and 
van Vreeswijk, 1993)
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,

	
� (2)
where we used m/s2  =  1/w and the firing rate 
n

0
 = lw/(V

u
 − V

r
) is determined by the normali-

zation 1 = n
0 
∫ q(V)dV. We next take into account 

the finite amplitude of the synaptic jumps to 
obtain a modified boundary condition (Helias 
et al., 2010a) at the threshold. For V

r
 < V < V

u
 the 

n-th derivative of the solution of (1) fulfills the 
recurrence relation q(n) = c

n
 + d

n
q, with d

n
 = (2m/

s2)n and cn
n= − −2 2 1

2 2s

m

s
( ) , for n  ≥  1 and c

0
  =  0, 

d
0
 = 1. Applying eq. (8) of Helias et al. (2010a), 

summing up to n ≤ 2, determines the boundary 
value q(V

u
) = m−1. In the case of finite jumps, the 

region below reset will never be entered, hence 
q(V) = 0 for V < V

r
. For the solution to fulfill the 

boundary value at threshold the homogeneous 
solution q V eh

V V( ) ( )/= − −
m

m su1 2 2

needs to be added 
to the particular solution q

p
, so the complete 

stationary density is
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The illustrations use V
r
  =  0, V

u
  =  15  mV, 

m
0
 = 5.0 mV/s in Figures 4C,D and in addition 
s = 5.5, 11, 16.5 mV for the {blue, green, red} 
curves in Figure 4B.
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