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The neurodevelopmental hypothesis of schizophrenia suggests that, at least in part,
events occurring within the intrauterine or perinatal environment at critical times of brain
development underlies emergence of the psychosis observed during adulthood, and brain
pathologies that are hypothesized to be from birth. All potential risks stimulate activation of
the immune system, and are suggested to act in parallel with an underlying genetic liability,
such that an imperfect regulation of the genome mediates these prenatal or early postnatal
environmental effects. Epidemiologically based animal models looking at environment and
with genes have provided us with a wealth of knowledge in the understanding of the
pathophysiology of schizophrenia, and give us the best possibility for interventions and
treatments for schizophrenia.
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INTRODUCTION
Schizophrenia is a chronic, severely debilitating psychiatric dis-
order that affects ∼1% of the population worldwide (Saha et al.,
2005). A disease of early adulthood, schizophrenia is in general
diagnosed between the ages of 15 and 30, with men develop-
ing the disorder slightly earlier than women (Sham et al., 1994;
Hafner, 2003). Symptomology is characterized into several very
different subtypes: positive symptoms, including hallucinations,
delusions and paranoid thoughts (Andreasen et al., 1990); neg-
ative symptoms, such as avolition and anhedonia (Andreasen,
1982; Kirkpatrick et al., 2006); and cognitive deficits, that is poor
executive function and attention, and impaired working memory
(Heinrichs and Zakzanis, 1998).

The aetiology of schizophrenia is extremely complex and
poorly understood but is believed to result from a combina-
tion of environmental and genetic factors (Brown, 2011a). The
number of shared genes between a person with schizophre-
nia and a family member is strongly associated with a risk of
developing schizophrenia, however, no degree of shared genes
results in a certainty of developing the disorder (Mortensen
et al., 2010). As such there is a growing body of evidence
to suggest that environmental factors play a major role in
the aetiology of schizophrenia, many of these being perinatal
complications.

THE NEURODEVELOPMENTAL THEORY OF SCHIZOPHRENIA
While schizophrenic symptoms manifest in young adulthood,
the neurodevelopmental theory of schizophrenia suggests that
an insult during neurodevelopment produces long-term detri-
mental effects on the brain. Findings from epidemiological
studies provide evidence that perinatal factors including envi-
ronment, parental influence on the foetus during pregnancy
and obstetric complications contribute to the risk of developing
schizophrenia.

TIME AND PLACE OF BIRTH
Two major epidemiological notions for a neurodevelopmental
theory of schizophrenia are season of birth, and place of birth.
Seasonal birth rates of schizophrenics differ from those of the
general population with people born during winter or early
spring, where there is a greater predominance of infections such
as colds and influenza, having an increased risk of developing
schizophrenia (Bradbury and Miller, 1985; Torrey et al., 1997).

Urbanicity, compared to being raised in a rural area, also gives
rise to a greater risk of schizophrenia (Marcelis et al., 1999a;
March et al., 2008) with the increase in susceptibility found
before, rather than around, the time of illness onset (Marcelis
et al., 1999b). Indeed individuals moving to a higher degree
of urbanization during upbringing show an increased risk of
schizophrenia (Pedersen and Mortensen, 2006), while moving
rurally decreases the risk, suggesting that repeated exposures to
candidate risk factors such as infection and exposure to toxins
while either in the womb, or during development confer a greater
risk toward psychosis (Pedersen and Mortensen, 2001). An alter-
native hypothesis is the influence of “cognitive social capital”; that
is aspects of mutual trust, bonding and safety exert a develop-
mental stress-related impact on the mental health of the children
growing up in these urban environments (Krabbendam and van
Os, 2005). Indeed the role of nutrition could also influence here.
Both of these factors are discussed below.

PRENATAL EXPOSURE TO INFECTION
Research on prenatal infection and the aetiology of schizophre-
nia has been extensively reviewed by Brown (2006, 2011a,b),
and Brown and Derkits (2010). Epidemiological and birth
cohort studies show that infection is a credible environ-
mental risk factor for schizophrenia with foetal exposure to
viral or parasitic agents increasing one’s susceptibility to the
disorder.
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Much of the evidence pertaining to within-womb infection
and schizophrenia is from influenza studies. An initial study
reporting an increased risk of schizophrenia in individuals that
had been in the second trimester of development during the
1957 influenza pandemic (Mednick et al., 1988) was confirmed
by others (O’Callaghan et al., 1991; Kunugi et al., 1995; McGrath
and Castle, 1995), although a recent publication studies did not
demonstrate an increased risk of schizophrenia among children
exposed during any trimester or month of prenatal life of this
epidemic (Selten et al., 2010). Alternatively, other influenza epi-
demics do support the maternal influenza hypothesis (Barr et al.,
1990; Sham et al., 1992); with a further study, this time with birth
cohort data, demonstrating that maternal influenza during the
first half of pregnancy is found to be associated with an increase in
susceptibility of the foetus to develop schizophrenia, in this case,
a three-fold influence (Brown et al., 2004a).

Viral susceptibility is also demonstrated with maternal expo-
sure to herpes simplex type 2 virus where elevated maternal IgG
antibody to HSV-2 was measured in offspring who later devel-
oped psychotic disorders, including schizophrenia (Buka et al.,
2001a). Further susceptibility exists with rubella, such that chil-
dren born to mothers with clinical rubella were shown to have a
10- to 20-fold increased risk in developing schizophrenia (Brown
et al., 2001). In addition, the parasite Toxoplasma gondii was asso-
ciated with a 2 1/2-fold increase in risk of schizophrenia (Brown
et al., 2005), confirmed by a later study (Mortensen et al., 2007b),
and is also suggested as a risk factor for early-onset schizophrenia
(Mortensen et al., 2007a).

MATERNAL STRESS AND NUTRITION INFLUENCES
It is well known that maternal stress in pregnancy has long-
term neurodevelopmental effects on the infant. The onset of
schizophrenia has been associated with exposure of the preg-
nant mother to loss of the husband (Huttunen and Niskanen,
1978), undesired pregnancy (Myhrman et al., 1996), and threat
and occurrence of war (Meijer, 1985; van Os and Selten, 1998).
Elevated rates of schizophrenia are also related to maternal
depression during pregnancy (Jones et al., 1998).

A role of prenatal malnutrition in schizophrenia has been
demonstrated through ecological data collected from times of
famine. Investigators of the Dutch Hunger Winter demonstrated
a relationship between nutritional deprivation and schizophre-
nia (Susser et al., 1996). Further studies from China replicated
these findings (St Clair et al., 2005; Xu et al., 2009). Obviously
at times of famine there is also high stress so the implication
that food scarcity is an absolute risk factor for schizophrenia
should be treated with some caution. However, there is evidence
that some micronutrient deficiencies including low homocysteine
(Brown et al., 2007) and vitamin D (McGrath, 1999) increase
the incidence of schizophrenia. When we consider these risks,
a recognized consequence is growth retardation of the foetus.
Low birth weight and smaller head circumference are indeed
predictors of schizophrenia (Cannon et al., 2002a).

PATERNAL AGE
Increasingly it is becoming evident that paternal age is a strong
and significant predictor of schizophrenia diagnosis. Relative risk

of schizophrenia reaches three times normal levels in offspring
of men aged 50 years or more, independent of the mother’s age
(Malaspina et al., 2001). Conversely a significant increase in risk
of schizophrenia in the offspring of younger fathers (less than 25
years of age) has been found, which could also be associated with
an increased risk in males but not females (Miller et al., 2011).

OBSTETRIC COMPLICATIONS
Complications of pregnancy and delivery show clear susceptibil-
ity for schizophrenia (Cannon et al., 2002a; Clarke et al., 2006),
with individuals with schizophrenia more likely to have expe-
rienced hypoxia at birth (Geddes et al., 1999; Zornberg et al.,
2000; Dalman et al., 2001). To add to this, foetal hypoxia is
associated with greater structural brain abnormalities among
schizophrenic patients, namely reduced gray matter and ven-
tricular enlargement (Cannon et al., 2002b), compared to their
non-schizophrenic siblings, with these anatomical anomalies pos-
sibly influenced, in part, by schizophrenia susceptibility genes
(Van Erp et al., 2002).

GENE-ENVIRONMENT COLLABORATION
While the environmental evidence pertaining to schizophrenia
risk is strong, these environmental factors are deemed rarely suf-
ficient to cause schizophrenia independently. It is suggested that
they act in parallel with an underlying genetic liability, such that
an imperfect regulation of the genome mediates these prenatal or
early postnatal environmental effects (Maric and Svrakic, 2012).
Researchers have identified a number of genetic variants that pre-
dispose the brain to developing schizophrenia, with vulnerability
in DISC1 and NRG1 the best replicated in association with a
developmental hypothesis.

Disrupted in schizophrenia 1 (DISC1) (Millar et al., 2000)
is one of the most promising candidate genes for schizophre-
nia and other psychoses (Ishizuka et al., 2006). Many biological
studies have indicated a role for DISC1 in early neurodevelop-
ment and synaptic regulation, elegantly reviewed by Brandon
and Sawa (2011). DISC1 regulates neuronal migration (Kamiya
et al., 2005) and progenitor cell proliferation (Mao et al., 2009)
in the developing cortex; and plays an important role in synapse
formation and maintenance (Hayashi-Takagi et al., 2010). In a
number of recent studies interactions between maternal infec-
tion and DISC1 have been demonstrated. In DISC1 genetic mice,
maternal inflammation by Poly I:C caused deficits in object
recognition and fear memories in adult offspring in DISC1 phe-
notype, but not wild type mice (Ibi et al., 2010; Nagai et al.,
2011). These behavioral deficits were associated with decreased
enlargement of ventricles, reduced volumes of the amygdala
and periaqueductal gray matter, and decreased number of den-
dritic spines in the hippocampus (Abazyan et al., 2010); and a
more pronounced release of IL-6, suggesting this may be impor-
tant in the pathophysiology of this interaction (Lipina et al.,
2013).

Neuregulin-1 (NRG1) is another candidate gene for
schizophrenia (Stefansson et al., 2002). Expressed at central
nervous system synapses, NRG-1 regulates various neurodevel-
opmental processes, including neuronal migration, myelination,
synaptic plasticity, and neurotransmitter function (Mei and
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Xiong, 2008). A study investigating a population of carriers of the
NRG1 (valine to leucine) mutation has observed increased cir-
culating proinflammatory cytokines, including IL-6, TNF-α, and
IL-1b suggesting a role of this mutation in immune dysregulation
in schizophrenia (Marballi et al., 2010).

POTENTIAL MECHANISMS
The suggested causes pertaining to the neurodevelopmental the-
ory of schizophrenia are widespread. What is recognized is that all
potential risks stimulate activation of the immune system.

CYTOKINES
Cytokines are immunomodulatory proteins with many biological
actions. Expression of cytokines in the brain points to mul-
tiple roles in physiological processes, including brain develop-
ment (Deverman and Patterson, 2009). Cytokine alterations in
schizophrenia have been comprehensively investigated in adult
schizophrenic patients, with IL-1, 2, 6, 8, 10, and 12 all been
observed to increase in schizophrenia, along with TNFα, TGF-β1,
and IFNγ (Gaughran, 2002; Drzyzga et al., 2006; Anderson et al.,
2013).

When we consider perinatal influence, elevated plasma lev-
els of IL-8 in mothers in their second half of pregnancy were
shown to indicate an increased risk of schizophrenia in the foe-
tus (Brown et al., 2004b). Moreover, maternal levels of TNF-α
were significantly elevated among individuals with schizophre-
nia, with evidence of increasing odds of psychosis in relation to
higher cytokine levels (Buka et al., 2001b). These researchers also
demonstrated a significant association between increased levels of
maternal serum IgG and IgM class immunoglobulins, both gen-
erated in response to infection, at delivery and the subsequent
development of psychosis in offspring (Buka et al., 2001a).

MICROGLIA
The action of proinflammatory cytokines are medicated by
microglia. Microglia, resident immune defenders of the central
nervous system play important roles in the development and pro-
tection of neural cells. However, they can contribute to injury
under pathological conditions as activated (Sternberg, 2006).
While there is no direct evidence for microglia changes as a risk
factor for schizophrenia, there are some reports of abnormal
activation of microglia in post-mortem studies of schizophrenic
brains (Bayer et al., 1999; Radewicz et al., 2000) which was local-
ized to the hippocampus in an imaging study using a marker of
activated microglia cells (Doorduin et al., 2009).

KYNURENINE
Activated microglia release a large number of inflammatory
mediators thus sustaining neuroinflammation and neurotoxic-
ity. The kynurenine pathway, the main pathway for tryptophan
metabolism, is one of the major regulators of the immune
response and may also be implicated in the inflammatory
response in schizophrenia (Erhardt et al., 2007). Elevated levels
of kynurenine have been reported in prefrontal cortex and cere-
brospinal fluid of schizophrenic patients (Erhardt et al., 2001;
Schwarcz et al., 2001; Nilsson et al., 2005), though at this stage
no measures exist for those at-risk individuals.

In rodent studies, administration of kynurenine to mothers
(GD15 to PD21) produced, in the offspring, reduced hippocam-
pal glutamate levels and impaired avoidance spatial memory
and attentional set-shifting, suggesting that increases in brain
kynurenic acid during a vulnerable period in brain development
may play a significant role in the pathophysiology of schizophre-
nia (Pocivavsek et al., 2012; Alexander et al., 2013). In a model of
social isolation rearing, a neurodevelopmental animal model of
schizophrenia (Fone and Porkess, 2008), plasma tryptophan and
kynurenine are significantly elevated, while kynurenic acid is sig-
nificantly decreased, suggesting a decrease in the neuroprotective,
and an increase in the neurodegenerative, directed components of
the pathway (Moller et al., 2012).

IMMUNE STIMULATION TO BRAIN PATHOLOGY
The effects of these risk factors suggest that a variety of inflam-
matory mechanisms disrupt the expected normal development
of the brain (depending on the insult this is of course at differ-
ent time periods, and thus different neuronal populations could
be affected); the consequence being a cascade of events produc-
ing behavioral abnormalities in the patient that lay dormant until
long after the insult. As such there is no direct evidence of a foetal
or perinatal brain tissue injury, but indirect pathology at both an
anatomical and neurochemical level.

ANATOMY
A consistent finding in schizophrenia is dilation of the lateral
ventricles (Wright et al., 2000), which is observed from onset
of the disorder (Fannon et al., 2000). Moreover, patients have
significantly less whole brain volume (Andreasen et al., 1994),
again observed at the first evidence of symptomatology (Steen
et al., 2006) which can be attributed to a reduction in gray matter
(Rasser et al., 2010). Gross brain abnormalities have been iden-
tified consistently since the onset of imaging technology, with
deficits observed in regions including medial temporal lobe struc-
tures, such as the amygdala, hippocampus, and parahippocampal
gyrus, and neocortical temporal lobe regions; prefrontal cortex,
and indeed the whole frontal lobe; as well as parietal lobe, cere-
bellum, thalamus, basal ganglia and corpus callosum [for review
see Shenton et al. (2001); Shepherd et al. (2012)]. With such dif-
fuse pathology it is proposed that connectivity reductions exist
across the brain, which is suggestive of a global connectivity
deficit in the brains of schizophrenic patients (Fornito et al.,
2012).

Research on individuals at high risk to develop schizophrenia
have demonstrated anatomically to have also shown gray matter
deficits with the volume or cortical thickness of frontal cor-
tex, temporal cortex, and amygdala–hippocampal limbic system
regions altered (Jung et al., 2010). In addition, white matter, in
terms of fiber integrity, is aberrant in these individuals (Karlsgodt
et al., 2009; Bloemen et al., 2010).

At a cellular level, disruptions in neuronal cytoarchitecture
have been observed in the brains of schizophrenia patients.
Within the hippocampus, pyramidal neuron loss (Falkai and
Bogerts, 1986; Jeste and Lohr, 1989) and pyramidal neuron dis-
array (Kovelman and Scheibel, 1984; Arnold, 2000) are observed,
suggesting a dysfunction of neuronal migration in the embryonic
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period; while in the prefrontal cortex an increased neuronal den-
sity is observed in dorsolateral prefrontal cortex (Selemon et al.,
1995), perhaps attributable to the trend for cortical gray matter
to be thinner in schizophrenic brains (Kumari et al., 2008) and
thus the neurons more densely packed. The principal subcortical
input to dorsolateral prefrontal cortex is the mediodorsal nucleus
of the thalamus, and reductions in neuron numbers in this region
is also observed in schizophrenia (Popken et al., 2000).

Ultrastructural changes in neurons in schizophrenia have also
been identified with decreased neuron size in limbic and temporal
regions (Benes et al., 1991; Zaidel et al., 1997); abnormal dendritic
spine densities in the cortex (Garey et al., 1998; Glantz and Lewis,
2000); and altered cortical cytoarchitecture (Arnold et al., 1991),
perhaps in part due to abnormal synaptic pruning (Feinberg,
1982). Molecular changes related to synaptic function are con-
sistently reduced with reports of decreased levels of pre-synaptic
proteins such as synaptophysin and growth-associated protein-
43 in both the prefrontal cortex and hippocampus (Glantz and
Lewis, 1997; Eastwood and Harrison, 1998).

PRODROMAL OBSERVATIONS
Substantial evidence has demonstrated that at least a proportion
of schizophrenia patients displayed subtle neuromotor, intellec-
tual, social, or behavioral abnormalities well before the onset
of psychosis. A higher rate of neuromuscular abnormalities,
including less advanced motor skills, and involuntary move-
ments and posturing of the upper limbs have been observed
in pre-schizophrenia children when compared to their healthy
siblings and age-matched children (Jones et al., 1994; Walker
et al., 1994; Schiffman et al., 2004). Delayed language devel-
opment is also observed in children at risk with more speech
problems reported in the developing adolescent than non-at-risk
peers (Jones et al., 1994). Moreover, the literature suggests that
individuals who develop schizophrenia present poorer cognitive
abilities in childhood than those who never develop schizophre-
nia. During childhood, individuals who subsequently developed
schizophrenia, were reported to have a lower IQ (Woodberry
et al., 2008) and worse academic performance (Jones et al., 1994;
Fuller et al., 2002). Indeed with respect to school adjustment,
children at risk of psychosis had significantly poorer adjustment
than comparison adolescents (Dworkin et al., 1994; Shapiro et al.,
2006) suggesting that a poor start to education may be in part a
cause.

Impairments in social development in pre-schizophrenic chil-
dren and adolescents have been noted in a variety of stud-
ies. Features of social withdrawal, anxiety and anhedonia in
those individuals with elevated schizophrenia-spectrum person-
ality disorder is often observed (Gruzelier and Kaiser, 1996;
Blanchard et al., 2011). At risk and first episode patients sig-
nificantly differ from normal subjects on measures of social
functioning in the domains of peer, family, work, and school
relationships (Ballon et al., 2007). From school age, poorer over-
all social competence are reported including poorer peer rela-
tionships (Dworkin et al., 1994), which may be attributed to
immaturity and unpopularity with peers (Hans et al., 2000).
Indeed, odd speech and impulsivity that was associated with
late maturation was observed in female at-risk individuals

(Gruzelier and Kaiser, 1996), as well as a decreased interest
in extracurricular activities such as hobbies (Dworkin et al.,
1994).

MATERNAL INFECTION ANIMAL MODELS OF
SCHIZOPHRENIA
To explore the mechanisms by which early activation of the
immune system might foster schizophrenia, researchers have
turned to animal models in which the mother’s immune sys-
tem is activated by exposure to infectious agents that trigger the
same kind of immune response as a bacterial or viral infection
does and the brain and behavioral consequences of the prenatal
immunological manipulation are then compared in the result-
ing offspring relative to offspring born to vehicle-treated control
mothers (Patterson, 2009; Boksa, 2010; Meyer and Feldon, 2010).

LPS
Systemic administration of the bacterial cell wall component
from Gram negative bacteria lipopolysaccharide (LPS) during
pregnancy in the rodent is a widely accepted model of bacte-
rial infection, which activates the immune response including
cytokine production, inflammation, and fever (Boksa, 2010).
In behavior pertaining to schizophrenia, this model exhibits
impairments in prepulse inhibition (Borrell et al., 2002) and
working memory (Coyle et al., 2009), along with an increase
in amphetamine-stimulated locomotor activity (Fortier et al.,
2004a). Morphologically, LPS offspring demonstrate prefrontal
and hippocampal pathology with reduced dendritic numbers,
arbors and length, and abnormal excitation (Borrell et al., 2002;
Lowe et al., 2008; Baharnoori et al., 2009; Cui et al., 2009). These
studies have extended to administering LPS at early times of
brain development. LPS administered on postnatal day 7 and 9
impaired object recognition memory in adulthood, and reduced
expression of parvalbumin-immunoreactive GABAergic neurons
in the hippocampus (Jenkins et al., 2009).

POLY(I:C)
The inflammatory agent poly(I:C) (polyriboinosinic-
polyribocytidilic acid), a synthetic analog of double-stranded
RNA, stimulates the production and release of many pro-
inflammatory cytokines (Fortier et al., 2004b). In the rodent
prenatal poly(I:C) model, pregnant dams are exposed to polyI:C,
with the resulting offspring displaying a multitude of behav-
ioral, cognitive and pharmacological dysfunctions, dependant
on the time of exposure (Meyer and Feldon, 2010). In brief,
impairments in prepulse and latent inhibition, working memory
and social behavior are observed, along with hyperactivity and
psychostimulant sensitization in the offspring of polyI:C infected
mothers (Shi et al., 2003; Zuckerman et al., 2003; Ozawa et al.,
2006; Meyer et al., 2008b; Wolff and Bilkey, 2008). Concurrent
neuronal deficits are also detected with reduced Purkinje cell
density in the cerebellum (Shi et al., 2009), delayed myelination
in the hippocampus (Makinodan et al., 2008), depleted corti-
coneurogenesis (Bitanihirwe et al., 2010; Feldon et al., 2010)
and a reduction in GABAergic, glutamatergic, serotonergic, and
dopaminergic markers (Nyffeler et al., 2006; Ozawa et al., 2006;
Meyer et al., 2008a; Winter et al., 2009).
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POLY(I:C) AND DISC1
A study that begins to grapple with the gene-environment col-
laboration of the neurodevelopmental theory of schizophrenia
used treatment of poly(I:C) at gestation day 9, middle/end of the
first trimester of human pregnancy, to mhDISC1 (mutant human
disrupted-in-schizophrenia 1) mice. Researchers demonstrated
that prenatal interaction of immune activation with mhDISC1
produced elevated anxiety, increased immobility in the forced
swim test, and abnormal social behavior along with decreased
corticosterone levels, suggesting an impaired stress response. In
the hippocampus, treatment with poly I:C significantly increased
levels of serotonin in the hippocampus of mhDISC1 mice, while
decreasing serotonin turnover and reducing spine density on the
dendrites of granule cells of the dentate gyrus (Abazyan et al.,
2010).

PRENATAL STRESS
As discussed earlier, maternal stress in pregnancy increases the
risk for onset of schizophrenia. Several groups have shown alter-
ation in the neuroinflammatory response in rodent models of
prenatal stress. Pups from restrained pregnant rat mothers at
adulthood show increased activity of the cellular immune sys-
tem, demonstrated by increased levels of CD8+ T cells and
natural killer cells in the blood, and an exacerbated release of
interferon-γ after mitogen stimulation (Vanbesien-Mailliot et al.,
2007). In further studies with restrained pregnant mice mothers,
offspring showed increased interleukin 1β and tumor necro-
sis factor-α levels in the hippocampus, increased interleukin
1β -immunoreactive microglial cells and increased activated
microglia. In addition, systemic administration of LPS induced
a significant increase in levels of inflammatory markers in the
hippocampus of prenatally stressed mice but not of non-stressed
animals (Diz-Chaves et al., 2012, 2013).

ROLE OF ANTIPSYCHOTICS
Antipsychotic drugs are used to treat psychosis in schizophrenia
but they have also been connected with normalization of some
immune parameters in some animal models of schizophrenia. For
example, chronic administration of chlorpromazine or clozapine
reduced the attentional deficit observed in prenatal LPS-treated
rats, while also normalizing enhanced levels of IL-1b, IL-2, and
TNF-α in the offspring of LPS-treated mothers (Basta-Kaim et al.,
2012). In other studies, aripiprazole ameliorated the impact of
prenatal immune activation on offspring of poly I:C-treated dams

in the amphetamine-sensitization locomotor model (Richtand
et al., 2012), while paliperidone and risperidone normalized pre-
frontal cortical basal extracellular glutamate in the offspring of
poly I:C treated mothers (Roenker et al., 2011).

CONCLUSIONS
Epidemiological studies have demonstrated that prenatal expo-
sure to infection or some kind of early traumatic event plays
a role in the aetiology of schizophrenia. As these perinatal
events are broad and their effect not comprehensive, the role
of genetics must be considered—a gene-environment inter-
action; or perhaps particular genes producing a predisposi-
tion to an augmented effect of an environmental exposure.
Epidemiology-based animal models investigating maternal expo-
sure have given important insights in relation to the aeti-
ology and pathophysiology of schizophrenia. Further animal
studies linking candidate genes with environmental expo-
sures will be indispensable in testing the hypothesis of
causality in human epidemiological associations of gene and
environment.

Further, what is clear is that while schizophrenic symptoms
manifest in young adulthood, there is prodromal intellectual and
behavioral abnormalities present in at least a population of sus-
ceptible children which we believe is due to indirect pathology at
both an anatomical and neurochemical level that is evident from
early childhood. Using animal models to understand what impact
the environment has on brain pathology and behavior as the ani-
mal ages may elucidate the on-going debate of what is happening
when.

We also must accept that schizophrenia is a disorder with dif-
ferent manifestations of the symptomatology in different patients,
perhaps suggesting that differentiating types of schizophrenia
based on clinical symptoms will help to determine different
causes. From the elegant animal studies by Meyer and colleagues
we know that the timing of the prenatal/perinatal environmen-
tal manipulation induces different phenotypes in neurodevelop-
mental animal models. As such particular environmental factors
may have differential effects on neurodevelopmental processes
depending on the stage of brain development, thus leading to
different behavioral pathologies in adulthood.

The use of epidemiological-based animal neurodevelopmental
models that reflect actual environmental insults offer the great-
est promise in answering the what, why, and when questions of
schizophrenia.
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