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There is a recent increase in the use of multivariate analysis and pattern classification
in prediction and real-time feedback of brain states from functional imaging signals
and mapping of spatio-temporal patterns of brain activity. Here we present MANAS,
a generalized software toolbox for performing online and offline classification of fMRI
signals. MANAS has been developed using MATLAB, LIBSVM, and SVMlight packages to
achieve a cross-platform environment. MANAS is targeted for neuroscience investigations
and brain rehabilitation applications, based on neurofeedback and brain-computer interface
(BCI) paradigms. MANAS provides two different approaches for real-time classification:
subject dependent and subject independent classification. In this article, we present
the methodology of real-time subject dependent and subject independent pattern
classification of fMRI signals; the MANAS software architecture and subsystems; and
finally demonstrate the use of the system with experimental results.
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INTRODUCTION
PATTERN CLASSIFICATION AND RATIONALE BEHIND CHOOSING SVM
Prediction of brain states from functional imaging consti-
tutes a major scope of neuroscience with applications ranging
from neuro-rehabilitation, brain-computer interfacing, neuro-
feedback in understanding brain function during cognition, per-
ception, and detection of deception (Haynes and Rees, 2006).
Recent studies in pattern classification of functional magnetic
resonance imaging (fMRI) signals have suggested the need for
multivariate pattern classification. A major argument in favor of
multivariate pattern classification is that perceptual, cognitive,
and emotional processes generally recruit a distributed network
of brain regions rather than a single location. However, univariate
statistical parametric mapping, traditionally used in functional
imaging, compares activation levels at each voxel between a task
state and a baseline state, or another task state, in order to
determine whether the voxel is involved in a particular task or
not. This approach does not take into account the interaction
between multiple brain regions in a task. On the other hand,
multivariate methods consider activation levels at multiple dis-
tributed voxels, to identify regions that are involved in distinct
tasks. Furthermore, multivariate methods allow for trial-by-trial
decoding of the task condition the brain is involved in, enabling
a number of novel approaches to real-time brain state prediction
and feedback.

A number of methodological studies have applied pattern clas-
sification to analyze fMRI signals offline with a view to map
the pattern of a variety of tasks involved in cognitive, percep-
tual, motor, and emotion processes (LaConte et al., 2003, 2005;
Shaw et al., 2003; Strother et al., 2004; Martinez-Ramon et al.,
2006). LaConte et al. (2003) examined the classification of block-
design fMRI data using linear discriminant analysis (LDA) and
Support Vector Machines (SVM) in contrast to canonical variates
analysis (CVA). Mourao-Miranda et al. (2006) compared SVM
and the Fisher linear discriminant (FLD) classifier and demon-
strated that SVM outperforms FLD in prediction accuracy as
well as in robustness of the spatial maps obtained. SVM has
also been shown to have certain advantages in the classification
of fMRI signals in comparison to other methods such as LDA
(LaConte et al., 2005) and multilayer neural networks. SVM is
less sensitive to preprocessing (LaConte et al., 2005), is better
capable of handling large data size (Haynes and Rees, 2006), and
most importantly produces unique optimal solutions (Collobert
et al., 2006). Although SVM model training is computationally
intensive, current availability of faster, yet cheaper processors
compensate for this drawback (LaConte et al., 2007).

LaConte et al. (2007) reported the first real-time fMRI system
with multivariate classification for decoding motor imagery and
demonstrated the classifier’s ability to decode other forms of cog-
nitive and emotional states. Later, Sitaram et al. (2011) developed
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a robust method, based on effect mapping (Lee et al., 2010), for
real-time prediction and feedback of multiple brain states, and
demonstrated its power in online classification of emotional brain
states and control of brain activity by feedback training.

Massive On-line Analysis (MOA) (Bifet et al., 2010) and
Shogun (Sonnenburg et al., 2010) are two toolboxes available for
performing real-time classification of fMRI data. These toolboxes
provide a wide range of dimensionality reduction algorithms and
provide feedback to the subject based on virtual reality. These
toolboxes have a limitation to integrate with Matlab in order to
use classification data for providing feedback to subjects that can
increase the flexibility in designing the experiment. Motivated by
the emerging interest and rapid developments in the multivariate
classification of brain states for varied applications, and limita-
tion of these toolboxes, we have developed an integrated toolbox
for offline and online classification and feedback of multiple brain
states from fMRI signals. Furthermore, we have also introduced a
novel approach, hitherto unreported, to classifying brain states
of new participants whose brain signals have never been used to
train the SVM classifier, in a method called Subject-independent
Classification (SIC).

WHY IS SUBJECT-INDEPENDENT CLASSIFICATION NECESSARY?
A major limitation of the current methods in the field of real-
time fMRI is the lack of a suitable implementation of real-time
SIC of brain states. Existing methods are suited for specific par-
ticipants due to the fact that SVM classifiers are pre-trained on
subject-specific data before being applied to the same participants
for neuro-feedback or BCI training. However, such an approach
has three major disadvantages:

(1) Collecting data for classifier training for each subject is time
consuming and requires the subject’s involvement.

(2) In neuro-rehabilitation applications with patients, it is
improper to build a classifier on patient’s abnormal brain
activity, as feedback-based reinforcement of such abnor-
mal brain states may further deteriorate the condition of
the patient. What might be more appropriate would be
to administer feedback training in patients from a classi-
fier constructed from healthy subject’s fMRI signals while
performing the task that is being trained.

(3) Subject data for training might not always be available, as in
case of lie-detection and other security applications.

Thus, it becomes essential to develop a subject-independent clas-
sifier that could be applied to the new subjects’ data without
prior classifier training, and in addition, could be adapted to
the idiosyncrasies of every individual’s brain size, shape, and
activation pattern.

Such a subject-independent classifier could then be used in
clinical rehabilitation where patients with brain abnormalities
pertaining to motor, cognitive or emotional processing could
be retrained to achieve normal level of functioning by provid-
ing feedback from a real-time pattern classifier that is trained
on healthy subjects. By repeated training and contingent reward
from the classifier, patients could perhaps learn to mimic the

brain activation of healthy individuals in order to ameliorate their
problem.

WHAT ARE THE OTHER BENEFITS OF THE TOOLBOX?
An essential technical improvisation is required in realizing a
subject-independent real-time classifier that will be to implement
a mechanism of normalizing the functional images to a standard
space [such as the Montreal Neurological Institute (MNI) stan-
dard space] in real-time so that inter-subject variations in brain
size, shape, and activations can be ameliorated. To our knowl-
edge, this is the first real-time classification toolbox that provides
such functionality. In our previous studies, we demonstrated
an online subject-dependent classifier for multi-class brain state
classification and feedback (Sitaram et al., 2011). The present
toolbox intends to integrate these different approaches and pro-
vide graphical user interfaces (GUI) for subject-dependent and
subject-independent classification.

The design of the toolbox is such that it is not limited only
to specific use-cases. Speaking at a broader level, the toolbox is
meant to be used for any type of brain state multivariate clas-
sification, be it two-class or multi-class, online or offline, and
subject-independent or dependent classification approaches.

In this paper first, we outline the design object for toolbox.
Following this, we will discuss the reasons for the development
of the various features of this toolbox, and the theory behind
SVM classification by using effect mapping method (Lee et al.,
2010) both for online and offline analysis. We will then outline
the hypothesis and the result of the different data set, which are
analyzed using this toolbox. We will conclude by describing the
limitations and future directions of this toolbox.

SOFTWARE ARCHITECTURE
ORGANIZATION OF THE TOOLBOX
As mentioned earlier, the main motivation for creating the tool-
box was to provide a simple user interface to perform real-time
multivariate analysis of fMRI signals for use in clinical rehabil-
itation as well as in neuroscience research. This may necessitate
conducting analysis on the previously recorded data. Such a
requirement has also been taken into consideration while design-
ing the toolbox. The toolbox is aimed at achieving the following
objectives:

(1) To provide flexibility to perform both online and offline
classification.

(2) To be applicable for subject-independent analysis and
subject-dependent analysis.

(3) To act as a single toolbox for performing all steps including
pre-processing, training, classification, and feedback.

(4) To enable multi-class classification of fMRI signals.
(5) To perform real-time pre-processing of fMRI images, such

as realignment, co-registration, segmentation and normal-
ization, for use in classification of brain states or brain
mapping.

The toolbox works on the MATLAB 6.5 (The Mathworks, Natick,
MA) software package, and uses code segments from Statistical
Parametric Mapping (SPM2, University College London) for
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fMRI preprocessing and normalization, and LibSVM (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/) or SVMLight (Joachims
et al., 1999) for SVM classification algorithms.

SUBSYSTEMS
The toolbox comprises of four sub-systems. These subsystems are
an integral part of any experiment or use-case, be it online or
offline, subject-independent or dependent, feedback or without
feedback. However, the implementation of each of these sub-
systems differs for each of the above use-cases, which will be
described below.

Image acquisition
Because the toolbox is meant for both online and offline pur-
poses, it needs to be generalized for different fMRI pulse
sequences and scanner parameters. The fMRI images can be
provided to the toolbox either directly from the scanner for
online classification, or from a storage media for offline classifi-
cation. The toolbox takes around 0.7–1.2 s to completely process
a whole functional brain image, starting from image acquisition,
pre-processing, and ending with classification. Given this compu-
tational time requirement for classification, the current version
is best used for real-time classification and feedback when TR
over 1 s.

The input files can either be raw images (either directly from
the scanner or from a storage media) or preprocessed “swr”
(smoothed, normalized, and realigned) images. Only raw scans
need to be preprocessed.

Pre-processing
This is the first step toward analysis of the brain signals. It involves
reading the DICOM files, converting them into Analyze format
which is understood by the SPM2-based preprocessing scripts
used in this toolbox, removing the noise in the acquired images,
realigning them with each other, normalizing them (if required,
as in the case of subject-independent analysis) to a standard
space, and finally smoothing them. The images obtained after the
pre-processing steps are then ready for analysis.

OFFLINE SUBJECT-DEPENDENT AND SUBJECT-INDEPENDENT
CLASSIFICATION
The pre-processing steps involved in these analyses are presented
in the form of a flowchart (Figure 1). First, the stored DICOM
formatted (.dcm) images are converted to ANALYZE format
resulting in two files in.img and.hdr format for each.dcm file.
These two files store the actual data and the header information,
respectively. To correct the head motion related artifacts, these
raw fMRI images need to be realigned with respect to a repre-
sentative scan (which, in most cases, is the first scan of the first
session). The realignment subsystem discussed earlier is used for
estimating the realignment parameters of the individual fMRI
scan, which are stored in their individual.mat files. To estimate
the transformation (normalization) parameters, a reference brain
image needs to be co-registered with the template. However, func-
tional images are not suitable for this purpose because of their low
spatial resolution. High-resolution T1 weighted structural images
are used for estimating the normalization parameters. The mean
functional fMRI image, which is created after the realignment

FIGURE 1 | Pre-processing steps on the structural and functional

images for the offline subject-independent and dependent classifier.

First, re-alignment of the functional images is performed by considering the
first functional image as the template. Next, co-registration is performed
using the structural image and the mean functional image which is, created
after the realignment of functional images. Following the segmentation of
the structural image, normalization of the functional images is performed
using the normalized parameters calculated in the previous step. Finally,
functional images are smoothed using a Gaussian kernel.

step, is then co-registered with the structural scan. During this
co-registration process, the structural image is modified to best
fit the mean (representative) fMRI image. It is easier to modify
one structural image than modifying several functional images.
The modified structural image is then segmented using the prior
tissue probability maps. The spatial normalization parameters are
estimated and stored in a.mat file.

Given that fMRI images are realigned to the mean functional
image, which is in turn co-registered with a structural image
whose normalization parameters are known, we can apply the
matrix chain rule to normalize the fMRI images. This involves
a multiplication of the fMRI realignment parameters and the
normalization parameters found upon segmentation. The raw
fMRI images are finally re-sliced using these parameters found
upon the multiplication process. There are two advantages in
adopting this method of combining the realignment param-
eters and normalization parameters into a single matrix: the
re-slicing operation is executed only once. Had the normaliza-
tion parameters been applied over the fMRI images (if they were
previously re-sliced using the realignment parameters), there
could have been a possibility for new artifacts to be introduced
into the data.
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The overall process is significantly faster. Re-slicing is a time
consuming task. Instead of two re-slicing operations, now only
one is required. This is of great importance in real-time fMRI
analysis as discussed in the following sections.

From the previous operations, we get normalized and
realigned fMRI images. A Gaussian smoothing kernel is applied
over these images to get smoothed and normalized realigned
fMRI images (whose files are named with the prefix swr).

PRE-PROCESSING FOR ONLINE SUBJECT-DEPENDENT
CLASSIFICATION
In this real-time fMRI classification scenario, scan-by-scan pro-
cessing is performed as opposed to bulk session processing that is
seen in offline classification. For real-time applications, the chal-
lenge lies in completing the entire pre-processing and the classifi-
cation before the arrival of the next fMRI image of the brain (for
the next repetition time, TR).

The method adopted for preprocessing in this case is realign-
ment and smoothing and the scans are processed one-by-one. The
process has been explained in the above flowchart (see Figure 2).

Pre-processing for online subject-independent classification
To our knowledge, MANAS is the first toolbox that supports real-
time (online) SIC. Unlike the online subject-dependent scenario,
this involves much more complex processing and a completely
different approach.

FIGURE 2 | Flowchart for pre-processing the functional images for

online subject-dependent classifier. (1) DICOM images are converted to
the ANALYZE format. (2) Transformation matrix for realignment is then
calculated. (3) Re-slicing is performed using the matrix calculated in the
previous step. (4) Smoothing of the data is performed.

fMRI scans are to be normalized to a standard space (MNI)
using a template of a structural image corresponding to the MNI
space. This implies that there should be one structural session
before the actual functional session. Co-registration with the
structural image is a very time-consuming step, which is not fea-
sible to be performed in real-time. Hence, a dummy functional
session is carried out before the actual functional imaging session.
The normalization parameters are found from the co-registration
of the structural image with the mean functional image of the
dummy functional session. Next, when the actual functional ses-
sion is carried out, its fMRI scans are realigned with respect
to the mean functional image of the pseudo functional imag-
ing session. As a result, each scan acquired during the functional
imaging session gets normalized with the standard template. This
has been explained pictorially in Figure 3. Finally, the normal-
ized realigned functional images are smoothed using a Gaussian
FWHM kernel.

Feature selection and SVM training
Once the fMRI images have been processed to remove the artifacts
and the preprocessing steps are completed, features are extracted
and used either for training the classifier or for classifying new
images. The feature selection sub-system prepares the fMRI scans
for classifier training by extracting the features from them.

FIGURE 3 | Pre-processing steps for online subject-independent

classification. (1) Structural scan and dummy functional scan are acquired.
Dummy functional provides us with the mean functional image for
co-registration. (2) After the co-registration of mean functional image and
structural image, segmentation of the structural image is done to calculate
normalization parameters. (3) Functional data, pertaining to the task, is
converted into analyze format, followed by realignment, normalization using
the parameters previously calculated, and finally smoothing is performed.
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Feature selection is a procedure where informative features
from the brain signals are extracted, as an input to the classi-
fier to improve the classifier performance. We performed feature
selection in two steps as shown in Figure 4:

(1) A first-pass intensity thresholding, and
(2) A second-pass voxel selection using effect mapping (Lee et al.,

2010).

For the first-pass intensity thresholding, an image of the brain,
called intensity threshold mask, is created by removing voxels
below a certain BOLD intensity value in a mean image of all the
brain scans. An interactive UI allows the experimenter to choose
the intensity threshold using a track bar.

For the second-pass feature selection, the training data com-
prises of only those voxels that pass the intensity threshold
mask. However, to correct for the variability of the BOLD sig-
nal and to convert it to a signal of zero mean and unit variance,
Z-normalization was performed across all the time-course signals
at each voxel.

The normalized BOLD values of intensity threshold voxels
were used to create input vectors for training SVMs and subse-
quently to generate an effect Map.

An effect map is a map of effect values (EVs) (Lee et al., 2010)
which estimates the effect of the BOLD activation at each voxel

FIGURE 4 | Two step feature selection mechanism for the online

subject-dependent analysis. Step 1: Intensity based thresholding which
removes voxels which do not belong to brain, and Step 2: SVM training and
effect map generation which selects the voxels involved in the tasks
performed by the subject.

on the classifier output by first computing the mutual informa-
tion (MI) between the voxel and the output, and then multiplying
it with the weight value of the voxel as estimated by SVM. MI
is derived from relative entropy or the Kullback–Leibler diver-
gence, which is defined as the amount of information that one
random variable contains about another random variable (Cover
and Thomas, 1991). Hence, the EV Ek of a voxel k is defined as:

Ek = WkI
(
Xk; y

)
, k = 1, . . . , M

Where I(xk; y) is the MI between the voxel and the output, y is
the SVM output after excluding the sign function, wk and xk are
weight value and activation at voxel k, respectively. To reduce the
variability of EVs dependence on the BOLD signal, normalized
values are used for generating the effect maps. Normalization of
Ek was applied as follows:

IEk = sgn (Ek) log(1 + std(|E|)), k = 1, . . . , M

where sgn(.) is a signum function, and std(|E|) is standard devia-
tion across all the brain voxels.

A threshold can be applied to an effect map at a suitable level
based on visual inspection by the experimenter and the resulting
map can be used as a brain mask. Finally, an SVM classifier model
is then retrained based on the features extracted using this brain
mask. This classifier model and the brain mask are stored and
later used for classification of the brain states from new subjects
or new sessions of experiments.

In the case of real-time subject-dependentclassification, the
training data can be collected from the subject before per-
forming the classification session. Such a real-time subject-
dependentclassifier was demonstrated in (Sitaram et al., 2011).
However, in the case of SIC, the classifier model should be trained
on a sufficiently large database of at least 12 subjects’ data which
can serve as the representative data-set for the whole population.
Data from this representative data-set should be first normalized
and brought to a standard space before it can be used for training
a classifier for SIC.

We implemented this sub-system by building around the
C-language implementation of the core engine from SVM-Light
(Joachims et al., 1999).

SVM CLASSIFICATION
The brain mask obtained by the two-pass feature selection pro-
cess is applied to the functional images arriving at each time
point (TR), to reduce the data dimension and to choose the
most important and informative voxels for classification. This is
achieved by SVM to classify the fMRI scans using the weights
learnt during the training session.

To classify an individual scan of fMRI data, brain voxels
(selected using the brain mask) from each fMRI image can be
composed as an input vector xj. SVM determines a scalar class
label Yi (Yi = sgn(yi = wTxi + b) = ±1, i = 1, . . . , N, where N
is the number of input vectors, T is the transpose of a vector, b is
a constant value, sgn(.) is a signum function).

When the input vectors xi and the designed labels Yi
L are taken

from the training data set, the weight vector w of SVM is obtained
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by minimizing objective function L of Equation 5 with constraints
Equations 6 and 7,

L = 1

2
wtw + C

n∑
i = 0

ξi,

with Yi
L

(
WTXi + b

)
≥ 1 − ξi, and ξi ≥ 0

Slack variable ξ is introduced to describe a non-separable case,
i.e., data that cannot be separated without classification error,
and C denotes the weighting on the slack variable, i.e., the extent
to which misclassification is allowed. A value of C = 1 was used
in our implementation because of the following reasons. In gen-
eral, model selection to determine the C value is hard to perform
in the context of real-time classification due to limitations of
time available for SVM training. What is important is that real-
time, online classification should work robustly in the majority
of participants and sessions. In many previous fMRI classification
studies (LaConte et al., 2005, 2007; Mourao-Miranda et al., 2006;
Haynes et al., 2007; Soon et al., 2008), C = 1 was successfully
used. Furthermore, (LaConte et al., 2005) showed that prediction
accuracy does not vary a lot with the selection of C.

Ideally, SVM output Yi should be centered about zero, so
that when the output is greater than zero the classification is
assigned to one brain state, and when it is less than zero it
is assigned to the other state. However, due to participants’
head movements and other systemic changes, a gradual drift in
the classifier output can be expected (LaConte et al., 2007). To
remove this bias during online classification in a block design

experiment, we subtracted the mean of the SVM outputs during
the rest condition block from each SVM output during the active
condition block.

The classifier output after the correction of the classifier drift
may be used to provide a feedback signal to the subject. A visual
feedback such as a graphical thermometer will be used to indicate
the correctness of the classification in terms of the bar chang-
ing in positive and negative direction. Any other form of visual
feedback can also be used by the experimenter. Such a feed-
back mechanism is the main requirement of neurorehabilitation
program.

Modularity is the key feature that has been kept in mind
while developing the toolbox. This is important to pro-
vide options to the researchers to experiment according to
their own requirements. The design of the toolbox is inher-
ently modular. The presented toolbox leverages this power of
modular design to provide not only real-time (online) subject-
independent analysis, but also other permutations and combi-
nations of online, offline, subject-independent and dependent
analysis. However, the process flow in each of these is not the
same. Figure 5 shows the software architecture and the various
modules used.

GRAPHICAL USER INTERFACE (GUI)
GUI FOR THE OFFLINE CLASSIFIER
The GUI consists of three main columns namely “Data
Preparation,” “Single subject analysis,” and “Group analysis” as
shown in Figure 6. The flow of analysis starts with the prepa-
ration of data, followed by the setting of parameters of the

FIGURE 5 | Overview of software architecture for various modules. The schematic shows the possible options of analysis that can be done with the help of
this toolbox. The sequence in which different steps are performed in order to execute specific modules is illustrated by corresponding symbols.
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FIGURE 6 | Graphical User Interface for the offline subject-dependent classification and analysis. It consists of three main columns namely “Data
Preparation,” “Single Subject Analysis,” and “Group Analysis”.

classifier, and finally ending the classification process, either at
the single subject or at group level analysis. In the data prepa-
ration step, feature vector, and labelset are prepared accord-
ing to the experimental paradigm. Information regarding the
experiment, including, participant name, number of scans of
the protocol, initial file name of the scans, the brain mask
to be applied to the data and the paradigm which includes
the protocol timings are entered at different fields in the col-
umn. Once this is prepared, the parameters of the classifier,
such as, kernel and slack variables, number of cross validations
and classifier labels is entered in the fields under the Single
Subject Analysis column. Once all the data are provided, the
classifier can be trained. Effect maps pertaining to the classifica-
tion will be computed and displayed after the classifier training
is completed. Similar to single subject analysis, group analy-
sis is performed by preparing group data using “PrepareGData”
button.

GUI FOR THE ONLINE CLASSIFIER
The GUI, shown in Figure 7, is divided into four main sec-
tions. The top most section is a menu bar that contains buttons
to perform basic functions, such as, reset, save, and load the
configuration files, and exit the toolbox. General experiment
settings, such as, input and output directories, providing the
paradigm file, loading the classifier model, loading the feedback
directory, are entered under the column “Experiment set-up”.
The column “Session Information” captures subject and session
specific information such as subject ID, subject number, session

type, session number, and session length. The session length
information should be in accordance with the paradigm speci-
fied earlier. If the files are read from a storage media, the Subject
Name should be same as the Patient_ID prefixed in the file name.
This toolbox provides for four types of sessions under the drop-
down menu “Session Name”: Functional Localization, Structural
Session, Dummy Functional Session, and Classification Session.
A menu space is allocated for advanced users and developers,
who are interested in customizing their own study, including,
classification with or without normalization, providing pre-
processed fMRI signals for classification, reading input files
from a storage media instead of the scanner in real-time, and
so forth.

Visualization tools
The toolbox provides an interactive selection of threshold for gen-
erating intensity based and EV based brain masks. The intensity
or EV for each voxel for all the slices corresponding to a scan are
color-coded and displayed onto a new window. A track bar is pro-
vided to select the threshold by moving the pointer. When the
experimenter is satisfied with the threshold value, he can save it
as a mask for future use. Saved mask can be loaded later through
the “Load” button. The track bar and the effect map are shown
here in Figures 8, 9.

DEMONSTRATION OF THE APPLICATION OF THE TOOLBOX
Below are three studies, conducted in our lab that is expected to
demonstrate the various applications of this toolbox.
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FIGURE 7 | Graphical User Interface (GUI) for the online subject-independent and subject-dependent classification. The GUI is divided into three
different sections namely “Experimental setup,” “Session information,” and “Advance User and Developers”.

FIGURE 8 | The wizard shown above is used to create brain mask to

reduce the dimensionality of the data. Two kinds of mask can be
created: one represent all voxels in the brain and the other mask
corresponds to the voxels belonging to the eyes.

OFFLINE CLASSIFICATION OF BRAIN STATES OF MOVEMENT
This was the first experiment to apply the MANAS toolbox to
demonstrate the classification of brain states corresponding left or
right hand movements. The average classification accuracy for a

group of nine healthy subjects for left and right hand movements
was over 90% (95.8 ± 1.2%). Our results showed that it is pos-
sible to classify brain states with high accuracy with this toolbox.
Figure 9 shows the effect map of the left and right hand move-
ments, adopted from our previous publication of these results
(Lee et al., 2010).

REAL-TIME SUBJECT-DEPENDENT CLASSIFICATION OF EMOTIONAL
BRAIN STATES
In another study done in our lab, Sitaram et al. (2011) used
the MANAS toolbox to show that an online SVM can recog-
nize two discrete emotional states, such as, happiness and disgust
from fMRI signals in healthy individuals instructed to recall
emotionally salient episodes from their lives (Figures 10A,B).
We reported the first application of real-time head motion cor-
rection, spatial smoothing, and feature selection based on a
new method called effect mapping. The classifier also showed
robust prediction rates in decoding three discrete emotional
states (happiness, disgust, and sadness) in an extended group
of participants. Multivariate brain mapping performed using the
effect mapping method, available as part of the toolbox, shows
greater involvement of the prefrontal cortex in the emotions
(Figure 11).
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FIGURE 9 | Sample effect map for a participant performing motor imagery of left and right hands. Blue clusters depict brain areas related to the right
hand execution. Similarly, red clusters show brain areas activated during the left hand execution. [Adapted from Lee et al. (2010)].

FIGURE 10 | (A) Classification accuracy for multi-class emotion data (happy,
sad, disgust) with feedback or without feedback (The chance level is 33%)
(B) Performance of adaptive classifier in participants demonstrating
increase in classification accuracy when the classifier was adaptively
re-trained by combining previous training dataset with data from every new
feedback training run. [Adapted from Sitaram et al. (2011)].

REAL-TIME SUBJECT-INDEPENDENT CLASSIFICATION OF EMOTIONAL
BRAIN STATES
Preliminary experiments on healthy human volunteers in our lab
(Rana et al., 2012) have indicated the possibility that a subject-
independent classifier, built on data from a group of volunteers,
can be used for real-time classification and feedback of emotions
of a new participant, performing alternating blocks of happy and
disgust mental imagery (Figure 12). Multiple runs of feedback
training of a volunteer on such a classifier showed increasing clas-
sification accuracy, indicating that the subject gradually learned
to produce brain states similar to those of the healthy group.
These pilot data suggest that such a system might help patients
to correct maladaptive brain states by neuro-feedback training.
Ongoing studies in our lab would need to confirm these findings.

DISCUSSION
SOFTWARE FEATURES
What can the toolbox do?
The toolbox has been able to meet all the design objectives and
has provided a simple interface for classification of brain states
using fMRI signals. Incorporating the concept of modularity in
the software design has been the key factor that has expanded the
ambit of its use and made it flexible for application in a variety of
scenarios.

Given that the toolbox is mainly targeted for use by researchers
and experimenters, it is expected that they will apply this tool for
different experiment by creating new classifier models and test its
performance in decoding brain states. For this, we have provided
an input field through which the user of this toolbox can choose
a new model. Moreover, the toolbox can be used for both two-
class classification as well as multi-class classification, for example
as illustrated in Sitaram et al. (2011) for real-time decoding of
emotional imagery.

The toolbox provides for many customization options. A user
who is just interested in checking the classifier accuracy with-
out simulating over the whole experiment can straight away
provide the pre-processed (smoothed, normalized, realigned)
images as input to the classifier. The experimental paradigm
can be altered according to the requirement of the experiment,
which opens the scope of the toolbox for various applica-
tions such as decoding motor imagery, deciphering emotional
states of the brain, neuro-rehabilitation, lie detection, and
so forth.

The toolbox provides an interactive user interface for selecting
directories, visualizing (Intensity maps, effect maps, and results),
saving the data and results. The configuration, i.e., the values
of the fields in the GUI can also be saved, and later loaded,
with a simple “Load” button. A track bar is provided to eas-
ily set the threshold in Intensity maps and effect maps. The
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FIGURE 11 | Effect maps generated from single-subject whole brain

SVM classification showing discriminating voxels for: (A) happy vs.
disgust classification (B) happy vs. sad classification and (C) disgust vs. sad
classification [Reproduced with permission from Neuroimage -(Sitaram
et al., 2011)].

feedback, besides being shown to the subject, is also visible to the
experimenter for reference.

The time taken per functional scan for completing the full
process starting from image acquisition, preprocessing and clas-
sification is around 1 s for a typical personal computer (the
actual time varies depending on the hardware limitations and
the session size). It shows that real-time preprocessing (including
normalization) and classification is indeed realizable under usual
conditions.

FUTURE DIRECTIONS OR THE LIMITATIONS OF THE TOOLBOX
However, many functionalities and features are open for
future improvement. For example, in the current toolbox, a
“paradigm.m” file is required to be provided for specifying the
paradigm of the experiment being conducted. A user interface
can instead make the task much easier and faster. The results
and the messages are currently being displayed on the MATLAB
command. A display panel on the main GUI will be much more
convenient to the user.

FIGURE 12 | Subject-independent Classifier (SIC): classification

accuracies of subjects performing happy and disgust imagery guided

by the feedback calculated from a model, which was built on 12

subjects data, across four feedback runs. The chance level is 50% (Rana
et al., 2012).

The major application of the toolbox is to use SIC in neuro-
rehabilitation. In order to implementing it, we have to normal-
ize the functional images, but in case of neurological patients
with lesions, at this point in time, it is challenging to perform
this normalization in an automatic mode. Instead, we propose
that normalization be performed offline with another tool or
expertise meant for this purpose, and only import the Affine
Transformation Matrix into our toolbox toward performing
online SIC.

Currently this toolbox has been developed based on the SPM2
software that reads files only in ANALYZE format (∗.hdr and
∗.img). Support for other file formats like NIFTI will be done in
the future releases of the toolbox. Currently, this toolbox requires
MATLAB version 6.5 SPM2 and is not supported on the higher
versions of MATLAB. However, as classifier training is done using
the SVM-Light library (Joachims et al., 1999), the training mod-
ule needs to be run on MATLAB version 7.1 or higher. Because of
these compatibility issues, the classifier cannot be trained using
the GUI alone. It only prepares the data for the training and the
actual training happens on a separate MATLAB instance having
version 7.1 or above. In the future, by making this toolbox com-
patible with SPM8, we would be integrating the training module
with the rest of the GUI so that the classifier can be trained by a
single click.

Due to the limited resources, the authors would not be able
to distribute this toolbox in a webpage. However, interested users
can acquire the toolbox by sending a request to the authors.
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