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Data from previous neuroimaging studies exploring neural activity associated with
uncertainty suggest varying levels of activation associated with changing degrees of
uncertainty in neural regions that mediate choice behavior. The present study used a
novel task that parametrically controlled the amount of information hidden from the
subject; levels of uncertainty ranged from full ambiguity (no information about probability
of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero
ambiguity with full knowledge of the probability of winning). A parametric analysis
compared a linear model in which weighting increased as a function of level of ambiguity,
and an inverted-U quadratic models in which partial ambiguity conditions were weighted
most heavily. Overall we found that risk and all levels of ambiguity recruited a common
“fronto—parietal—striatal” network including regions within the dorsolateral prefrontal
cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these
regions and additional anterior and superior prefrontal regions for the quadratic function
which most heavily weighs trials with partial ambiguity. These results suggest that the
neural regions involved in decision processes do not merely track the absolute degree
ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal
regions may result from greater degree of difficulty in conditions of partial ambiguity: when
information regarding reward probabilities important for decision making is hidden or not
easily obtained the subject must engage in a search for tractable information. Additionally,
this study identified regions of activity related to the valuation of potential gains associated
with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal
striatum) and related to winning (including orbitofrontal cortex and ventral striatum).
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INTRODUCTION
Making decisions is an integral part of everyday life, yet, the
factors affecting our decisions are not fully known. One impor-
tant parameter of decision making is the degree of uncertainty
present in any given choice. Most theories of decision making
postulate that decision making involves two important func-
tions: valuation, in which the agent calculates the likely benefits
associated with each option, and choice, in which the expected
gains are modulated by other factors to determine the final
decision (Montague et al., 2006; Vlaev et al., 2011). Choices
can vary greatly in the level of information about the distri-
bution of potential outcomes available to the decision-making
agent. In some uncertain choices, such as gambling on the
outcome of a roulette game, probability can be easily deter-
mined from relative frequencies of likely, or past outcomes. In
other uncertain choices probabilities are based on incomplete
or missing information, such as in deciding whether to bring
an umbrella in case of rain. In economics, these two types of
uncertainty have been termed “risk” and “ambiguity” respec-
tively (Knight, 1921; Ellsberg, 1961), and have been dissoci-
ated behaviorally across numerous studies (Sanfey and Chang,
2008).

For this study, we used the term “uncertainty” as an umbrella
term to refer to situations where the outcome or probability is
not certain, which includes both risk and ambiguity. For exam-
ple, risk can be seen as knowable information readily available to
subjects regarding the probability of a desired outcome, yet the
outcome itself is certain (Knight, 1921). Alternately, ambiguity
can be defined as unknown information (that is either hidden
or not readily available to subjects) regarding the probability of
a favorable outcome (Knight, 1921; Camerer, 1995; Bach et al.,
2011).

Within the past decade, several studies made significant break-
throughs in understanding the neural mechanisms underlying
uncertainty processing in decision making tasks involving eco-
nomic (Hsu et al., 2005; Rustichini et al., 2005; Brand et al., 2006;
Huettel et al., 2006) and contextual (Hsu et al., 2005) uncertainty.
These studies found more activity for ambiguity than for risk in
the dorsolateral prefrontal cortex (DLPFC), parietal cortex, and
dorsal striatum. These regions are typically recruited across a vari-
ety of decision making tasks and we will refer to them as the
“fronto–parietal–striatal system.” In addition these studies found
activity in the insula thought to be related to the aversive nature
of ambiguity.
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More recently, there has been a movement away from limited,
categorical definitions of uncertainty (particularly ambiguity),
in which uncertainty is treated as an all-or-nothing variable.
Although that approach proved powerful in dissociating the neu-
ral substrates of ambiguity from risk, it precludes examination
of decision making in response to different degrees of ambiguity.
Individuals rarely experience real-life situations where informa-
tion regarding the probability of reward is an absolute unknown;
therefore, the question of how neural signals are modulated by
partial uncertainty is an important one.

Behavioral studies have previously explored decision making
under conditions of partial ambiguity in attempts to better under-
stand ambiguity aversion (Larson, 1980; Keren and Gerritsen,
1999). These studies defined ambiguity using the same defini-
tion that we use: as missing, yet potentially knowable, informa-
tion regarding the probability of a certain outcome (Camerer,
1995). Overall they found that “perceived informativeness,” or the
person’s beliefs about the availability of recoverable hidden infor-
mation, is a major component in determining the level of ambi-
guity in any given decision, regardless of the actual information
presented or hidden.

Recently, several neuroimaging studies of note have examined
neural responses in conditions of partial ambiguity. Levy et al.
(2010) found that subjective value signals in the prefrontal cor-
tex and striatum were influenced by both risk and ambiguity,
and activity in the orbitofrontal cortex (OFC) was influenced by
partial ambiguity. Bach et al. (2009) examined neural responses
to different levels of ambiguity within a choice-free condition-
ing task and found increased activation in the DLPFC for partial
ambiguity compared to no ambiguity (risk) and full ambigu-
ity (ignorance) conditions. They argued this frontal region was
involved in extracting relevant information from the learning
context, which is most necessary and helpful during intermediate
levels of ambiguity. In a follow-up study using an instrumental
avoidance learning task, Bach and colleagues (2011) continued
their examination of the effects of risk and ambiguity on neural
signals by modeling ambiguity as a continuous variable, via mea-
sures of entropy of reward probabilities, in which conditions of
partial ambiguity were associated with higher entropy. Bach et al.
(2011) again found activation along a frontal, parietal, and stri-
atal regions associated with partial ambiguity. More importantly,
Bach and colleagues (2011) found that the effects of partial ambi-
guity were not driven by second-order uncertainty (ambiguity)
alone.

The current study introduced a cognitive decision making
task that included multiple levels of ambiguity. Like Bach et al.
(2011), we focused primarily on ambiguity-related signals. In
our task, players chose to play either a lottery that varied in
the amount of uncertainty displayed or a constant (or reference)
lottery and experienced monetary gains and losses instead of
the instrumental avoidance with pain reinforcement task used
by Bach and colleagues (2011). Unlike Bach and colleagues
(2011), who manipulated ambiguity as a continuous function,
we relied on a graded measure of ambiguity. We examined 6 lev-
els of ambiguity, ranging from zero ambiguity (risk), through
4 levels of partial ambiguity, to full ambiguity (ignorance). By
controlling the amount of ambiguity presented to subjects, we

were able to similarly explore if incrementally increasing lev-
els of ambiguity elicit a similarly graded response in regions of
the brain previously identified as being sensitive to uncertainty
(Bach et al., 2009, 2011), such as the DLPFC, parietal cortex and
striatum.

We examined two hypothetical relationships between neu-
ral activity and ambiguity. The first hypothesis was that neural
activity would increase monotonically as ambiguity increased,
and is consistent with studies finding overall patterns of greater
activity during ambiguity than during risk (see Krain et al.,
2006). A second hypothesis was that there would be an inverted-
U relationship between degree of ambiguity and neural activ-
ity; this hypothesis was based on the findings of Bach and
colleagues (2009, 2011) that intermediate levels of uncertainty
elicited greater activation in fronto–parietal–striatal regions than
did conditions of no uncertainty and full uncertainty in a choice
free conditioning task. To examine both hypotheses, we modeled
ambiguity as both linearly increasing and inverted-U quadratic
functions.

We predicted that the inverted-U function would best account
for activity in fronto–parietal–striatal regions. Our rationale was
based on the theory put forward by Bach et al. (2009) that
intermediate levels of ambiguity lead to an increased search for
hidden but searchable information. Decisions on the basis of
complete information (as in risk), or very little information (as
in full ambiguity), can be made with minimal processing with-
out placing significant demands on cognitive control functions
within the DLPFC, and can be mediated by relatively posterior
motor regions of the frontal lobe. However, as decisions become
“harder” as in situations with intermediate ambiguity, anterior
regions of the DLPFC should be recruited to provide supplemen-
tal processing as the demands to extract contextual information
increase.

Besides examining the direct effects of partial ambiguity, we
explored how the brain tracks expected reward in various states
of uncertainty. We hypothesized that uncertainty would modulate
activity in neural regions associated with reward, and reward-
related activity would decrease as uncertainty increased. We
expected to find this pattern within OFC (Padoa-Schioppa and
Assad, 2006; Plassmann et al., 2007), dorsal striatum (Samejima
et al., 2005; Lau and Glimcher, 2008; Hsu et al., 2009), supe-
rior parietal cortex (Churchland et al., 2008; Wang, 2008), and
dorsomedial prefrontal cortex (Knutson et al., 2003; Xue et al.,
2009). Our design also allowed us to examine regions of activ-
ity associated with winning money. Broadly, we expected there
would be greater activity within regions associated with reward
representation for wins than losses. We were particularly inter-
ested in examining win related activity within the ventral striatum
and how that activity may be better reflected by a non-linear
increase in choice-related uncertainty. We predicted that overall
the ventral striatum would be more active for winning money
in comparison with losing money, but only for trials in which
value could be clearly tracked, like situations involving low or
high levels of uncertainty. Given this region’s sensitivity to devi-
ations from expectation, formally known as reward prediction
error (see Schultz, 2002), we also predicted increased activity in
the ventral striatum for unexpected wins (e.g., money won via
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the variable lottery) compared to expected wins (money won via
the safe lottery).

METHODS
PARTICIPANTS
Scanned participants included 14 healthy, right-handed young
adults (age range = 22–36, mean age = 26.8 years; 5 males,
9 females) recruited from the Colorado State University (Fort
Collins, CO) and University of Colorado, Denver (Aurora, CO)
communities. We set 22 years as the minimum age rather than
the more typical 18 based on studies showing that frontal lobe
development is not complete until the early 20 s (see Hedden and
Gabrieli, 2004). All participants were fluent speakers of English
and were screened for a history of neurological and psychi-
atric disorders, and contraindications to MRI (i.e., no metal-
lic implants, no claustrophobia, head size compatible with RF
coil). Participants were pre-screened for uncertainty preference
by using a shortened version of our task in a training session out-
side the scanner. We excluded potential participants who fell at
either extreme (Total of 6 not scanned): both those with strong
uncertainty preference (defined as choosing to play the vari-
able lottery 75% or more of the time) and those with strong
uncertainty aversion (defined as choosing to play the uncer-
tain lottery less than 20% of the time). The Colorado State
University institutional review board approved the experimen-
tal protocol, and written informed consent was obtained from all
subjects.

TASK
In this experiment, participants performed a two-alternative,
forced-choice task. The task required subjects to choose to play
one of two mixed lotteries: one variable lottery that was always
represented visually, and a constant (or reference) lottery that
subjects were informed about but which was not represented visu-
ally on the display. The construction of the stimuli was crucial so
that the variable lottery varied in the amount of information, or
ambiguity, it represented. First, each lottery circle (see Figure 1A)
was associated with an outcome (in this case, the amount of
money that could be either won or lost) presented in the cen-
ter of the circle. The probability of winning the specified amount
of money was represented on the outer edge of the circle, which
started at 0% in the 12 o’clock position and increased to 100% in
a clockwise direction. A “dial” was then used to indicate a specific
probability of winning the specified amount of money; however,
this dial was hidden from view by an occluder on partial and full
ambiguity trials. The size of the occlusion hiding the dial var-
ied in size to occlude 15, 33, 66, 80, or 100% of the lottery circle
(Figure 1B). The center of the occlusion was placed within ±10◦
of the actual winning probability. Our pilot data showed no differ-
ences between having the center of the occlusion relatively “fixed”
around the winning probability and dynamically changing the
position of the occlusion relative to the winning probability on
every trial.

Subjects were told that although they could not see the dial,
it was hidden somewhere inside the occlusion, which thereby
represented a range of probabilities. By occluding the actual prob-
ability of winning, the information needed to calculate expected

FIGURE 1 | Examples of the stimuli presented to subjects. (A) Risky
lottery (a0) showing a dial pointing to a specific probability of obtaining the
sum of money in the center of the circle, and should be interpreted as 50%
chance of winning $2.00. (B) Partially ambiguous lottery (a33). Subjects are
told that the dial is hidden within the green field, suggesting a range of
outcome probabilities.

value was incomplete, introducing ambiguity per the classical
economic definition. This manipulation allowed us to have trials
in which there was no ambiguity (risk) as well as trials in which
there was full ambiguity within the same task, as in Hsu et al.
(2005) and Huettel et al. (2006). More importantly, this allowed
us to more carefully manipulate ambiguity and examine behav-
ioral and neural responses to parametrically increasing levels of
uncertainty. One thing to note is that unlike Bach et al. (2009),
in which subjects did not know how the odds in that task were
constructed, due to their use of Pavlovian conditioning, subjects
in our task never experienced a condition of complete ambigu-
ity, which was referred to as ignorance by Bach et al. (2009).
That is, subjects were able to recover some information regard-
ing missing probabilities due the use of two-stage bets in our
task which allowed subjects to learn about the task and how
the lottery was constructed over time, rather than the complete
ambiguity that would result if they were presented with novel
stimuli.

Finally, the amount of money and probability of winning or
losing on the variable lottery was combined so that it varied in
terms of expected monetary gain in relation to the constant lot-
tery, which was 100% chance of winning $1.00. For this study,
we applied the basic idea behind expected value theory that states
value can be assigned to decisions by multiplying the outcome
probability with the amount of the potential pay out. We used
this simplified calculation approach to calculate expected gain for
each trial as the probability of winning multiplied by the poten-
tial pay out. This calculation provided a rough measure of how
“good” or “bad” a decision was in relation to the potential mon-
etary gain of the constant lottery. On certain trials, the variable
lottery was constructed in a manner where the expected gain of
the variable lottery was greater than the certain lottery, making
these trials ambiguity advantageous (A trials). These included:
33% chance of winning $5 and 50% chance of winning $3. On
specific trials, the certain lottery had a higher expected gain
than the variable lottery making these trials ambiguity disadvan-
tageous (D trials). These included: 20% chance of winning $3
and 33% chance of winning $2. Finally, some trials were set up
in a manner in which the expected gain of the variable lottery
matched the expected gain of the constant lottery (N trials). These
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included: 20% chance of winning $5, 33% chance of winning $3,
or 50% chance of winning $2. Including trials in which expected
gains were equal was a crucial part of this study, since they provide
a quick, simple and objective measure of uncertainty sensitivity
without explicitly modeling behavior. Equal numbers of each type
of trial were included: 1/3 trials A, 1/3 trials D and 1/3 trials N.
It is important to note that on trials in which subjects chose to
play the variable lottery but did not win, they lost the amount
of money indicated on this screen. We found in our pilot work
developing this task that inclusion of loss was essential for obtain-
ing a good distribution of choices within subjects. However, in
our instructions to the subjects, we asked them to adopt the strat-
egy of trying to win as much as possible. Our behavioral results
are consistent with subjects having adopted a gain maximiza-
tion strategy, rather than a loss avoidance strategy. If subjects had
adopted a loss avoidance strategy we would have expected that
they would have always chosen the safe reference lottery, even
on disadvantageous trials; in actuality, no subject adopted this
strategy.

Subjects were compensated at a base rate of $25 USD/hour.
Subjects were also given the opportunity to add to their total
pay based on performance. Before the scanning session, subjects
were asked to choose 12 numbers between 1 and 180 (the num-
ber of trials in the study, unbeknownst to the subject) and told
that certain trials would be chosen at random to be played for
real money. After the scan, subjects were informed that these
numbers corresponded to a specific trial number, and would
receive the cumulative sum of their winnings from these trials
as additional pay; subjects had the opportunity to win up to
$60 if the trials chosen were all $5 winning lotteries, or $0 if
none of the trials chosen resulted in wins. However, all subjects
received at least the minimum $25 base pay. This payment mech-
anism ensured that subjects treated every trial as if they would be
paid according to the outcome of that trial (Smith and Walker,
1993).

Design
For this task, subjects performed 180 trials, divided evenly into
3 scans (60 trials per scan). On each trial, the variable lottery
was presented for 5 s, during which participants were required to
make a response whether they chose to play the displayed lot-
tery, or if they wanted to play the certain (not shown) lottery.
Following the response, there was a short, 1.5 s window before
participants were given feedback as to the outcome of their choice
(either winning or losing $2, $3, or $5 dollars) for 1.5 s. After
feedback, a jittered inter-trial interval, ranging between 2 and 10 s
randomly sampled from a geometric distribution, was presented.
This experiment used a rapid event-related fMRI design. Trials
were arranged pseudo-randomly to control for any sequential
effects, and “null” jittered ITI provided a measure of baseline acti-
vation (Donaldson, 2004; Bandettini, 2007). In order to perform
effective connectivity analyses via Granger Causality Mapping
(which were subsequently dropped from this study), all timing
elements in this study summed up so that total trial length was
limited to multiples of the TR, (i.e., 2, 4 s, etc), so as to keep trial
onset synchronized with TR onset (Roebroeck et al., 2005). In
total, the task required ∼40 min of scanning time.

Visual stimuli were presented to participants using magnet-
compatible goggles (Resonance Technology Inc., Los Angeles,
CA). A computer running E-Prime experiment software
(Psychology Software Tools Inc., Pittsburg, PA) was used to
control stimulus presentation and interface with a magnet com-
patible response box. Head movement was minimized using a
custom-fitted head holder, consisting of polyurethane foam beads
inflated to tightly mold around the head and neck.

fMRI image acquisition
Images were obtained on a research-dedicated 3.0T whole-body
MRI scanner (GE Healthcare, Milwaukee, WI) located on the
campus of the University of Colorado Health.

Sciences Center, Aurora, CO. The scanner was equipped with
an 8-channel, high-resolution phased array head coil using GE’s
Array Spatial Sensitivity Encoding Technique (ASSET) software.
A trial scan of whole-brain EPI was acquired before the functional
scans. Functional images were reconstructed from 31 + 5 axial
oblique slices obtained using a T2∗-weighted, volume-selective
z-shim pulse sequence (TR = 2000 ms; TE = 26 ms; FA, 77◦;
FOV, 220-mm; 64 × 64 matrix; 4.0-mm slices; no inter-slice
gap) adapted from the EPI-Gradient-Echo sequence. The z-shim
pulse sequence was developed to address signal loss in neural
regions adjacent to air cavities, such as the OFC. This proto-
col acquires additional volumes with a compensation gradient
that are then combined with the original volume data to com-
pensate for regions of signal dropout. Recently, Du and col-
leagues developed a sequence that minimized signal dropout in
the OFC, in which the z-shim compensation is applied only to
volumes that show significant signal loss, thereby substantially
decreasing scanning time (Du et al., 2007). Echo-planar images
from the initial trial scan were used to determine the num-
ber and location of the z-shim slices in which the OFC showed
intermediate or severe SFG signal loss. Overall, five continu-
ous slice locations were typically sufficient to cover the regions
affected by the susceptibility artifacts. Anatomical images were
then collected using a T1-weighted SPGR sequence (minimal
TR; TE = 3.95 ms; TI = 950 ms; FA, 10◦; FOV, 220-mm; 256 ×
256 coronal matrix; 166 1.2-mm slices). This set of structural
images was used to verify proper slice selection and to deter-
mine the sites of functional activation. Finally, functional data
from the inferior cerebellum was not collected because it was
necessary to adjust slice acquisition angle and the field of view
(FOV) to obtain the best possible signal-to-noise ratio in the
frontal lobe.

fMRI image analysis
Before preprocessing, functional images with and without z-shim
compensation were combined using MatLab (The Mathworks,
Inc. Houston, TX) using a specially written z-shim toolbox. The
intensity in the composite images was multiplied by a factor of
1.33 to reduce signal discontinuity between image sets (Du et al.,
2007). Image analysis was performed using BrainVoyager QX
V1.10 and V2.4 (Brain Innovation, Maastricht, The Netherlands).
Functional data was first subjected to preprocessing, consist-
ing of (1) three dimensional motion correction using trilinear
interpolation, (2) slice scan time correction using cubic spline
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interpolation, (3) temporal data filtering with a high-pass filter of
3 cycles in the time course and (4) linear trend removal. Each sub-
ject’s high-resolution anatomical image was then normalized to
the (Talairach and Tournoux, 1998) brain template. The normal-
ization process consisted of two steps: an initial rigid body trans-
lation into the AC-PC plane, followed by an elastic deformation
into the standard space performed on 12 individual sub-volumes.
The resulting set of transformations was applied to the subject’s
functional image volumes to form volume time course repre-
sentations to be used in subsequent statistical analyses. Finally,
the volume time course representations were spatially smoothed
using a Gaussian kernel, full-width at half maximum (FWHM) of
4.0 mm.

In order to identify brain regions that showed significant signal
changes in response to a task demands, imaging data was ana-
lyzed using two main statistical methods. First, a whole brain
analysis was performed using the general linear model (GLM)
provided by BrainVoyager QX across the separate conditions.
Regressors were formed by modeling the trials associated with
each condition as epochs using a box-car function that were
then convolved with the standard hemodynamic response func-
tion implemented in BrainVoyager QX. For analysis, experimental
trials were broken into conditions on the basis of ambiguity
level of the variable lottery, yielding 6 conditions: 0% ambiguity
(a0), 15% ambiguity (a15), 33% ambiguity (a33), 66% ambi-
guity (a66), 80% ambiguity (a80) and 100% ambiguity (a100).
Each ambiguity condition was presented for 30 trials. Trials were
also separated into conditions based on the expected gain of
the variable lottery in comparison to the constant lottery, yield-
ing three conditions: ambiguity advantageous (Adv), ambiguity
disadvantageous (Disadv) and neutral trials. We further sepa-
rated our data based on whether or not subjects chose to play
the variable lottery (Uncert) or play the constant lottery (Cert)
yielding 6 possible conditions: Adv-Uncert, Adv-Cert, Neutral-
Uncert, Neutral-Cert, Disadv-Uncert, and Disadv-Cert. Finally,
we divided our data according to the outcome of the lottery
so that we could compare trials in which subjects won or lost
money, and then further subdivided the wins depending on the
type of lottery the money came from to compare expected and
unexpected wins.

Additionally, this study used parametrically weighted predic-
tors to model the effects of ambiguity within the GLM (Buchel
et al., 1998). Parametric weights were assigned to each ambigu-
ity condition and the resulting functions were convolved with
the canonical hemodynamic response function implemented in
BrainVoyager. In order to avoid the partial co-linearity between
the main and parametric predictors, the mean of the paramet-
ric weights was subtracted from each weight using BrainVoyager.
Using de-meaned weights ensured the correlation between
parameters was zero, as the predictors were orthogonal to the
main boxcar function. We then manually created a design matrix
containing both orthogonalized parametric time series so they
could be compared within a single GLM in BrainVoyager using
the BVQXtools v0.8 (Jochen Weber) toolbox for MatLab. The
different functions used to fit the data were based on various
levels of uncertainty. First, this study fit a linear function that
placed greater weight on higher levels of ambiguity, so that trials

with zero ambiguity were associated with a weight of 0 and
trials with full ambiguity were associated with a weight of 1.
Additionally, the study tested a quadratic “inverted U” function
that more strongly weighted intermediate levels of ambiguity.
Trials with zero and full ambiguity were assigned a weight of
0, whereas trials with 15% ambiguity were assigned a weight
of 0.5. Trials with 33 and 66% ambiguity were assigned a
weight of 0.9. Trials with 80% ambiguity were assigned a weight
of 0.6. A weight of 1 was not used, as it would correspond
to trials with 50% ambiguity not present in the study. This
type of weighting resulted in a second order function simi-
lar to the Shannon entropy function employed by Bach et al.
(2011).

This study controlled for multiple comparisons using the
cluster-size thresholding procedure developed by Forman et al.
(1995) extended to 3D maps, and implemented in the
BrainVoyager Cluster Threshold plug-in (Goebel et al., 2006).
An initial map was formed using an uncorrected p-value of p <

0.005. The minimum cluster size (based on an alpha level of 0.05)
was then set by MonteCarlo simulation using 1000 iterations,
simulating the stochastic process of image generation. Afterwards,
spatial correlations between neighboring voxels were calculated,
before voxel intensity thresholds were finally calculated and the
corrected map was formed and displayed.

RESULTS
BEHAVIORAL ANALYSIS
In order to quantify behavior as a function of uncertainty, choices
were defined in terms of the proportion of trials in which sub-
jects chose to play the variable lottery, rather than defining
behavior based on the outcome (as monetary gains or losses)
of each trial. First, we separated trials according to expected
gains, in order to determine whether or not subjects could, in
fact, determine a “good” lottery (advantageous trials in which
potential gain was greater than the constant lottery) from a
“bad” lottery (disadvantageous trials in which potential gain
was less than the constant lottery). A One-Way analysis of vari-
ance (ANOVA) with factors of expected gain (Advantageous,
Neutral and Disadvantageous) revealed a main effect of expected
gain [F(2, 39) = 15.56; p < 0.001]. As shown in Figure 2, post-
hoc tests using a Games-Howell correction revealed that subjects
chose to play the variable lottery when its potential gain was
greater than the constant lottery significantly more than when the
variable lottery was equal in potential gain to the constant lot-
tery (p < 0.05) or when the variable lottery’s potential gain was
lower compared to the safe lottery (p < 0.05). Additionally, sub-
jects decided to play the variable lottery significantly more often
when the variable lottery was equal in potential gain to the than
when it was lower in potential gain compared to the constant
lottery (p < 0.05).

We also separated trials according to the level of ambigu-
ity indicated in the variable lottery in order to determine the
effect of various levels of ambiguity on choice behavior. A One-
Way ANOVA with ambiguity level as a factor (0, 15, 33, 66,
80, 100%) revealed no significant differences in choice behavior
across the various different levels of ambiguity. A single sam-
ple t-test against 0.50 showed an overall effect of avoidance of
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all types of uncertainty, regardless of whether it was risk or full
ambiguity.

We then separated trials according to expected gain and
level of ambiguity. A 3 (expected gain) × 6 (ambiguity level)
repeated measures ANOVA showed a main effect of expected
gain [F(1.23, 15.92) = 48.82; p < 0.001] and a significant inter-
action of expected gain and level of ambiguity [F(4.18, 54.31) =
13.50; p < 0.001]. Maulchy’s test indicated that the assumption

FIGURE 2 | Behavioral data showing the proportion of ambiguous

lotteries chosen across levels of potential monetary gain. A,
Advantageous trials in which potential gain was greater than that of the
constant lottery. N, Neutral trials in which potential gain was equal to that of
the constant lottery. D, Disadvantageous trials in which potential gain was
less than that of the constant lottery Our data suggests that subjects
successfully distinguished “good” from “bad” lotteries using the expected
payout relative to the constant lottery for choice evaluation.

of sphericity had been violated for expected gain, ambiguity and
the expected gain by ambiguity interaction (chi-square = 12.03,
62.05, and 80.43 respectively), which required us to adjust degrees
of freedom using a Greenhouse–Geisser estimate of sphericity
(epsilon = 0.61, 0.41, and 0.42 respectively). Further analysis via
a one-way ANOVA with ambiguity as a factor for advantageous
trials revealed significant differences in responses associated with
different levels of ambiguity [F(5, 78) = 2.96; p = 0.02]. As shown
in Figure 3, post-hoc tests using a Bonferroni correction showed
that subjects chose the variable lottery significantly less in trials
with 100% ambiguity compared to trials with 30% (p = 0.01)
and 80% (p = 0.04) ambiguity. Similarly, a One-Way ANOVA for
disadvantageous trials using ambiguity as a factor also showed
significant differences in choice behavior [F(5, 78) = 6.43; p <

0.001]. Although Levene’s test indicated that variances were not
homogeneous for this group, both Welch and Brown-Forsythe
tests showed significant differences in responses across different
ambiguity levels. Post-hoc tests using a Games-Howell correc-
tion revealed that subjects chose the variable lottery significantly
more in trials with 100% ambiguity compared to trials with 0 or
15% ambiguity as shown in Figure 3A. No significant differences
were found for neutral trials when broken down by ambiguity
levels.

REACTION TIMES
We first separated trials according to expected gain according to
the same criteria used for the choice analyses. A repeated mea-
sures analysis of variance (ANOVA) with factors of expected gain
(Advantageous, Neutral and Disadvantageous) revealed no sig-
nificant differences in response times. Additionally, we separated
trials according to whether subjects chose to play the variable or
safe lottery, but found no significant differences in response time.
Finally, we separated trials according to the level of ambiguity

FIGURE 3 | Choice (A) and reaction time (B) as a function of level

of ambiguity. (A) Proportion of choices of the variable lottery as a
function of level of ambiguity and potential gain advantage over the
constant lottery. For trials in which it was advantageous to play the
variable lottery, subjects demonstrated increased ambiguity aversion
(lower probability of choosing the variable lottery) as ambiguity
increased. For trials in which it was disadvantageous to play the

variable lottery, subjects showed an increase in ambiguity preference
possibly caused by the difficulty of distinguishing “good” from “bad”
lotteries. For neutral trials, subjects showed ambiguity aversion for the
risky option across all levels of ambiguity. (B) Reaction times
separated by level of ambiguity show a significant difference between
low levels of ambiguity (0 and 15%) and intermediate levels of
ambiguity (33, 66, and 80%).
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indicated in the variable lottery in order to determine the effect of
various levels of ambiguity on choice behavior. A repeated mea-
sures ANOVA with ambiguity level as a factor (0, 15, 33, 66, 80,
100%) revealed a main effect of reaction times as a function of the
various different levels of ambiguity. [F(1, 5) = 7.58; p < 0.001].
As shown in Figure 5, post-hoc tests using a Bonferroni correc-
tion (p = 0.05) showed that subjects’ reaction times were faster
for trials with 0% ambiguity compared to trials 33, 66, and 80%
ambiguity. Reaction times were also significantly lower for tri-
als with 15% ambiguity compared to trials with 33, 66, and 80%
ambiguity.

COMPARISON BETWEEN CONDITIONS WITHIN THE WHOLE-BRAIN
ANALYSIS
Uncertain vs. certain choices
To examine the overall pattern of neural activity associated with
uncertainty, we combined all trials in which subjects chose to
play the variable lottery, regardless of outcome and contrasted
that against trials in which subjects chose to play the safe lottery
(Uncertain > Certain). Using this contrast, we observed increased
activity associated with uncertain choices, including tracking of
anticipated value, bilaterally in the fronto–parietal–striatal deci-
sion making network, specifically within the DLPFC and frontal
pole, parietal cortex in the intraparietal sulcus, and putamen.
Additionally, we observed increased activity in the insula. All
these regions have been associated with judgment under uncer-
tainty in previous studies (Brand et al., 2006) which may reflect
the increased cognitive demand of trying to compute anticipated

reward that is not necessary when choosing the safe lottery, as the
expected and experienced values are the same. There was higher
activity for certain choices in the OFC and ventral striatum as
shown in Table 1. Greater activity in both of these regions was not
surprising as these areas are associated with processing the value
of options, as expressed in the uncertain lottery in which the value
was not anticipated but known.

Ambiguity vs. risk
Next, we were interested in exploring differences in neural activity
associated with specific types of uncertainty, categorically defined
as risk or ambiguity in previous papers. First, we compared trials
with 100% ambiguity (a100 trials) against trials with 0% ambi-
guity (a0 trials) resulting in our a100 > a0 contrast that matched
the Huettel et al. (2006) ambiguity vs. risk contrast and the Bach
et al. (2009) ignorance vs. risk comparison. To increase statistical
power, we also expanded this contrast to include more trials at
either range of the uncertainty spectrum by comparing trials with
high levels of ambiguity (a80 + a100) to trials with low levels of
ambiguity (a0 + a15) resulting in our a100 + a80 > a0 + a15
contrast. Overall, the pattern we found in both the a100 > a0
and a100 + a80 > a0 + a15 contrasts were similar, but the lat-
ter contrast resulted in more robust and symmetrical patterns of
activity, likely due to the inclusion of a larger number of trials.
Of particular note, we observed increased activity associated with
high levels of ambiguity across the fronto–parietal–striatal net-
work, including the DLPFC, frontal pole, intraparietal sulcus,
putamen, and head of the caudate. The region of the DLPFC

Table 1 | Areas of activation associated with uncertainty.

Contrast Region of activation Number of voxels BA x y z

Uncertain > certain DLPFC–R 96 46 39 20 37

DMPFC–Bi 2256 8 2 19 50

Frontal eye fields–R 1027 6 39 7 48

Frontal pole–R 132 10 33 61 11

Inferior occipital cortex–R 58 19 46 −73 −24

Insula–L 65 13 −32 21 4

Insula–R 1312 13 34 20 5

Middle temporal gyrus–L 91 21 −60 −32 −6

Middle temporal gyrus–R 484 21 61 −31 −3

Occipital cortex–L 625 18 −14 −87 −19

Occipital cortex–R 156 18 14 −96 1

Occipitotemporal junction–R 67 37 51 −49 9

Posterior cingulate–L 391 33 4 −29 25

Putamen–L 56 – −27 2 −4

Superior parietal cortex–L 2195 7 −46 −57 44

Superior parietal Cortex–R 4417 7 33 −66 48

Supramarginal gyrus–R 271 39 47 −53 33

Certain> uncertain Cuneus–L 345 17 −9 −61 15

Superior temporal gyrus–R 52 38 47 9 −9

Ventral striatum–Bi 380 – −1 11 2

VMPFC–L 190 32 −3 42 −4

BA, Brodmann areas; x,y,z, Talairach coordinates (Talairach and Tournoux, 1998) of central voxel in activated cluster. Cluster size threshold based on uncorrected

voxelwise p < 0.005 and cluster size alpha < 0.05.
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recruited was in a region of middle frontal gyrus typically con-
sidered to be Brodman’s area 9/46v (Badre and D’Esposito, 2009).
Additionally, we observed increased activity bilaterally in the
hippocampus associated with risk. See Table 2 for a full list of acti-
vated regions, and Figure 4 for an illustration. In order to further
examine DLPFC recruitment as a function of increasing degrees
of ambiguity we plotted beta values across time within a func-
tionally defined Region of Interest (ROI) taken from our a100
+ a80 > a0 + a15 contrast, shown in Figure 4B. Overall there
was greater activity for both fully and partially ambiguous trials
compared to risk trials.

It is important to note that the 0% ambiguity or risk condition
presents a special case in that it can be considered a one-stage
gamble, as opposed to two, given that uncertainty is only asso-
ciated with the outcome. We therefore ran a series of analyses
examining levels of ambiguity while excluding this condition.
First, we compared trials with high ambiguity (a100) against tri-
als with low ambiguity (a15), to examine effects of uncertainty
in the absence of risk, and found similar patterns of activation
as seen in the contrasts that included risk (i.e., a100 > a0, and
a100 + a80 > a0 + a15 ) presented above. Mainly, we still see
increased activity in the DLPFC, frontal pole, parietal cortex and
putamen as reported in the contrasts that include risk as shown in
Table 2.

With the concerns of excluding the 0% ambiguity condition
due to a potential confound, we also compared trials with inter-
mediate amounts of partial ambiguity against trials with complete
ambiguity (a33+a66 > a100), which was analogous to Bach and
colleagues (2009, 2011) ambiguity vs. ignorance contrast. We
found small regions of increased activity in superior portion of
the DLPFC in the superior frontal gyrus and OFC associated
with partial ambiguity and greater activity in the superior parietal
cortex for complete ambiguity.

PARAMETRIC WHOLE-BRAIN ANALYSIS OF AMBIGUITY
Table 3 shows a complete list of activated regions associated with
each parametric model. Each parametric regressor is described
in the Methods, above. We first examined regions of activity
predicted by the quadratic inverted-U model that put a greater
emphasis on intermediate levels of ambiguity. We found areas of
increased activation bilaterally in regions of the fronto–parietal–
striatal decision making system including the DLPFC, frontal
pole, intraparietal sulcus and posterior parietal cortex, and puta-
men and caudate. The region of the DLPFC recruited include
parts of both the middle and superior frontal gyri typically
considered to be Brodman’s area 9/46v, and 9/46d (Badre and
D’Esposito, 2009). This pattern of results in the frontal cortex is
consistent with claims that activity associated with ambiguity pro-
cessing in the DLPFC is greatest when only intermediate levels of
ambiguity are weighted (Bach et al., 2009). We also found a region
of the OFC negatively related to the quadratic regressor, indicat-
ing overall higher activity for full risk and/or full ambiguity in
contrast with partial ambiguity.

We then examined the linear model in which ambiguity
increased in a linear fashion in order to explore if activity in any
regions was related to absolute magnitude of ambiguity. In this
analysis risk trials (trials with no ambiguity) had a zero weight,

whereas trials with complete ambiguity were given the maximum
weight of one (Figure 5, left column), intermediate trials were
weighted according to the percent of the dial obscured by the
occlusion. Overall regions recruited in this analysis were much
smaller, but included many of the same regions of the fronto–
parietal–striatal network that were sensitive to the quadratic func-
tion (Table 3, middle section). One small region of the OFC and
one region of the parahippocampal gyrus were negatively related
to the linear function, indicating less recruitment for higher levels
of ambiguity.

Finally, we directly compared both the “inverted-U” quadratic
model against the linear model. We found greater activity for
the quadratic model in relatively superior and anterior regions
of the DLPFC in the superior frontal gyrus (BA9/46d; Badre and
D’Esposito, 2009). In addition, there was greater medial parietal
and angular gyrus recruitment for the quadratic model than the
linear model. Alternately, regions of the superior parietal cortex
and anterior cingulate were more active for the linear model.

EXPECTED GAIN
We examined neural responses associated with relatively “good”
vs. “bad” decisions by grouping trials according to our interpre-
tation of expected gain. Here, we compared advantageous trials
in which the expected gain associated with the variable lottery
was greater than that of the safe, or constant, lottery against dis-
advantageous trials in which the expected gain of the variable
lottery was lower than that of the constant lottery (Adv > Disadv).
For advantageous trials we observed greater activation in some
regions of the fronto–parietal–striatal system, in particularly the
DLPFC and intraparietal sulcus. Additionally, there was bilateral
activity in the insula. Disadvantageous trials were associated with
increased activity in the left OFC.

Next, we compared advantageous and disadvantageous tri-
als accounting for type of lottery played, certain or uncertain.
For example, we compared trials in which subjects chose the
variable lottery over the constant lottery for only advantageous
trials (Uncertain Adv > Certain Adv). Based on this contrast, we
observed right lateralized activation throughout the DLPFC and
frontal pole, and OFC, as illustrated in Figure 6. Additionally, we
observed increased activation in the posterior cingulate and left
tail of the caudate. In contrast, the Certain Advantageous trials
led to greater activity than uncertain bilaterally in the motor cor-
tex, left hippocampus and right parahippocampal gyrus. Finally,
we examined disadvantageous trials in which subjects chose the
variable lottery over the constant lottery (Uncertain Disadv >

Certain Disadv). This led to a very different pattern of recruit-
ment than when advantageous trials were examined: there was
widespread activation throughout the bilateral anterior insula,
frontal poles, and intraparietal sulcus. See Table 4 for a complete
list of activated regions.

WINS vs. LOSSES
We examined the general pattern of activation associated with
either winning or losing money; however, one must take care
in interpreting results given that our analysis window included
both evaluation and reward/outcome events. Here, our main con-
trast compared trials in which subjects gained money, regardless
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Table 2 | Areas of activation associated with Ambiguity.

Contrast Region of activation Number of voxels BA x y z

a100 > a0 DLPFC-L 100 46 −45 20 37

Inferior temporal gyrus-L 395 20,21 −57 −29 −16

Lingual/fusiform gyrus-L 2242 19,37 −41 −53 −17

Middle temporal gyrus-L 176 21 −50 −25 −9

Occipital cortex-L 1318 17,18,19 −26 −77 −14

Occipital cortex-R 956 17,18 25 −68 −5

Post-central gyrus-R 1127 2,40 44 −19 23

Premotor cortex-Bi 444 6 0 −3 50

Putamen/caudate-R 495 – 21 14 5

Putamen-R 389 – 28 3 12

Superior parietal cortex-L 256 7 −18 −33 59

a100 + a80 > a0 + a15 Anterior cingulate gyrus-R 27 24 9 23 35

DLPFC-L 317 46 −45 17 37

DLPFC-R 495 9,46 34 21 47

Frontal pole-L 34 10 −26 51 24

Frontal pole-R 531 10 41 48 14

Inferior temporal gyrus-R 743 20,21 53 −25 −12

OFC 107 11 18 61 −2

IPS-L 92 39 −51 −50 27

IPS-R 294 39 27 −50 33

Posterior parietal cortex-L 333 7 −13 −77 36

Premotor cortex-R 78 6 51 9 26

Putamen/caudate/insula-L 1026 13 −26 2 8

Putamen/caudate/insula-R 3021 13 24 7 8

Superior parietal lobe-R 334 7 2 −80 35

a0 + a15> a100 + a80 Hippocampus-L 692 – −26 −30 −10

Hippocampus-R 98 – 27 −33 −4

Middle temporal gyrus-L 211 21 −52 1 −5

100 > 15 Anterior cingulate-R 60 23 8 −22 33

DLPFC-R 248 46 36 47 12

DLPFC-R 98 9,46 29 20 45

Frontal pole-L 99 10 −21 54 2

Frontal pole-L 52 10 −30 56 6

Middle temporal gyrus-L 61 21 −58 −14 3

Motor cortex-R 634 4 57 −16 12

Motor cortex-R 177 4 54 1 11

Parietal cortex-L 219 7 −65 −44 22

Putamen-R 164 – 28 0 10

Putamen-R 108 – 22 12 5

Superior parietal cortex-L 635 7 −15 −52 65

Superior parietal cortex-L 63 7 −13 −50 56

15 > 100 Hippocampus-R 126 – 35 −32 −3

Occipital cortex-R 333 18,19 8 −94 −5

Occipital cortex-R 58 18 29 −92 −9

VMPFC-L 145 47 −6 24 −9

33 + 66 > 100 Angular gyrus-R 92 39 56 −43 0

DLPFC-R 149 9 31 3 36

OFC-R 331 11 7 58 5

Parahippocampal gyrus-L 133 36 −32 −21 −30

(Continued)
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Table 2 | Continued

Contrast Region of activation Number of voxels BA x y z

Posterior cingulate-R 607 30 18 −51 25

Premotor-R 223 6 29 1 67

Superior frontal gyrus-L 115 9 −18 47 47

100 > 33 + 66 DMPFC-L 943 32 −8 36 13

Inferior temporal gyrus-R 66 21 61 −7 −28

Motor cortex-R 1249 4 −1 −12 52

Motor cortex-L 144 4 2 −22 63

Superior parietal cortex-R 263 7 5 −43 67

Superior parietal cortex-L 149 7 −20 −49 59

BA, Broadmans areas; x,y,z, Talairach coordinates (Talairach and Tournoux, 1998) of central voxel in activated cluster. Cluster size threshold based on uncorrected

voxelwise p < 0.005 and cluster size alpha <0.05.

FIGURE 4 | Comparison of BOLD responses associated with

ambiguous decisions (a85 and a100) compared to risky decisions

(a0 and a15). (A) Left and middle panels show bilateral putamen
activation. Right panel shows bilateral activation of the parietal lobe
within the intraparietal sulcus. (B) Bilateral activation in the DLPFC
and response to different levels of ambiguity. Functionally defined
ROIs in both left (x = −45, y = 17, z = 37) and right (x = 34, y = 21

z = 47) hemispheres of the DLPFC show a similar pattern of
activation; a greater response for trials with full ambiguity compared
to trials with no ambiguity, along with increased response to partially
ambiguous trials. Functional maps are overlaid on a T1-weighted
average of all 15 participants’ anatomicals. Cluster size threshold
based on uncorrected voxelwise p < 0.005 and cluster size alpha
< 0.05 as indicated in the methods section.

if they chose to play the uncertain or safe lottery, against tri-
als in which subjects lost money. We observed increased activity
for wins across frontal and striatal regions known to be sen-
sitive to reward, including the OFC, DMPFC, DLPFC, ventral

striatum, body of the caudate, medial temporal lobe, regions
of the medial parietal cortex including the posterior cingulate,
precuneus, and cuneus, as well as the left intraparietal sulcus.
Additionally, we found activity associated with losing money in
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Table 3 | Areas of activation resulting from parametric manipulation.

Model Region of activation Number of voxels BA x y z

Quadratic Body/tail of caudate-R 2588 – 17 −14 20

DLPFC-R 1744 9,46 46 24 34

DLPFC-R 1486 9 30 41 43

Frontal pole-R 164 10 9 60 3

Middle temporal gyrus-R 209 37 58 −56 −6

Parietal cortex-L 1194 39 −41 −45 33

Parietal cortex-R 9419 7,39,40 19 −64 36

Pre-central gyrus-L 1119 4 −27 −7 64

Pre-central gyrus-R 4440 4,6 29 0 54

Pre-central gyrus-R 183 4 15 −3 57

Premotor cortex-L 491 6 −32 1 33

Putamen-L 643 – −23 −1 17

Putamen-L 315 – −28 −4 2

Putamen-R 1882 – 27 −8 2

Superior parietal cortex-L 1398 7 −17 −71 55

VLPFC-R 256 45 40 30 8

Anterior cingulate gyrus-L 204 24 −5 33 21

OFC-L 467 24,32 −8 37 12

Linear DLPFC-L 246 46 −46 19 37

DLPFC-R 283 9,46 33 21 47

Inferior temporal gyrus-L 776 20,21 −58 −28 −16

Insula-L 230 13 −31 12 6

Parietal cortex-L 179 7 −13 −77 37

Precuneus-L 257 17,18,31 −25 −70 26

Putamen/insula-R 2271 13 24 11 11

Superior parietal cortex-L 174 40 −26 −53 44

OFC-L 33 11 −2 36 −10

Parahippocampal gyrus-L 216 36 −26 −31 −11

Quadratic>Linear Angular gyrus-R 60 39 45 −55 7

DLPFC-R 537 9,46 18 27 57

DLPFC-R 122 9 13 39 51

Middle temporal gyrus-R 95 21 53 −46 −1

Motor cortex-R 89 4 28 −2 64

Occipital cortex-R 122 17,18 20 −96 15

Posterior parietal cortex-R 937 7 16 −80 45

Posterior cingulate gyurs-L 83 23 −10 −27 33

Posterior cingulate gyurs-R 124 30 15 −53 25

VMPFC-R 360 11 5 55 3

Linear > Quadratic Anterior cingulate gyrus-L 150 24 −8 32 11

Motor cortex-L 95 4 −3 −10 56

Parahippocampal gyrus-L 173 36 −23 −33 −13

Superior parietal cortex-L 117 7 3 −42 63

BA, Brodmann areas; x,y,z, Talairach coordinates (Talairach and Tournoux, 1998) of central voxel in activated cluster. Cluster size threshold based on uncorrected

voxelwise p < 0.005 and cluster size alpha <0.05. Bold items indicate negative t-values.

the right insula, right frontal pole, and right superior parietal
cortex.

Next, we looked more closely at wins, and separated them
according to reward expectancy so that trials in which the
outcome was uncertain (unexpected wins) were contrasted

against trials in which the outcome was certain (expected wins).
This contrast revealed that unexpected wins recruited similar
regions to wins vs. losses overall, including intraparietal sulcus,
posterior cingulate, OFC, DLPFC and the frontal pole as listed
in Table 5. One salient difference was the strong recruitment
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FIGURE 5 | BOLD activity associated with parametric models. Left
column shows areas of activity associated with a linear parametric regressor
weighting trials by the proportion of ambiguity. Middle column shows areas
of activity associated with an “inverted U” quadratic function in that most
strongly weighted trials with intermediate levels of ambiguity. Right column
shows areas of activity associated with the inverted U model when the

contributions of the linear model are controlled for. Although we see activity
in the DLPFC associated with both the linear and quadratic models, the
inverted U model recruits additional superior and anterior regions as well as
posterior parietal cortex, suggesting that decisions associated with
intermediate levels of ambiguity require more cognitive processing
throughout the frontoparietal decision making network.

FIGURE 6 | BOLD responses showing interaction of potential gain and

uncertainty. Neural activity associated with subject’s choice of the
uncertain lottery over the certain lottery in situations where the uncertain
lottery was associated with a greater potential monetary gain than the
certain lottery based on the Uncertain Adv > Certain Adv contrast. Left
panel shows activity in the orbitofrontal cortex, DLPFC, frontal pole, insula
and parietal cortex; right shows bilateral activity in the orbitofrontal region.
Here we demonstrate how uncertainty continuously modulates activity in
regions previously implicated in only the valuation of stimuli/options.

of the putamen and bilateral insula for unexpected wins. The
only region more active for expected than unexpected wins
was the OFC. Because this task did not allow for a condition
in which the subjects were ever faced with a certain loss, we
did not look at differences between expected and unexpected
losses.

DISCUSSION
The present study demonstrated changes in regional brain acti-
vation as a function of varying levels of uncertainty. First, we
identified a set of brain regions that showed an increase in
activation in response to increased uncertainty compared to situ-
ations of low uncertainty. We demonstrated that both risk and
ambiguity modulate activation in a subset of regions gener-
ally activated by uncertain decision making: the DLPFC, pari-
etal cortex, striatum and anterior insula. More importantly, we
demonstrated that ambiguity processing in regions of the pre-
frontal cortex does not necessarily scale linearly with the level
of ambiguity, but rather the inherent difficulty of the deci-
sion. We found evidence to suggest that while activity in the
middle frontal gyrus region of the DLPFC is sufficient for the
successful processing of contextual information during uncer-
tain decision making, recruitment of superior and anterior
regions of the DLPFC is maximal during conditions of partial
ambiguity.

RISK vs. AMBIGUITY
We were interested in exploring whether ambiguity is a contin-
uously quantifiable variable representing uncertainty on action-
outcome associations separate from risk. We found a set of
activated regions across all levels of uncertainty, reinforcing the
idea that both risk and ambiguity recruit a shared network that
includes the DLPFC, striatum, intraparietal sulcus, and insula.
In addition we observed a similar pattern of greater activity for
ambiguity in the fronto–parietal–striatal system and the insula
when we compared various levels of ambiguity and excluded the
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risk condition. Smith et al. (2002) found distinct patterns of activ-
ity for risk and ambiguity: ambiguity modulated activity in the
OFC more than risk did, and recruited regions of the lateral pre-
frontal cortex that were not recruited for risk. Later studies did

not find as marked differences in activation patterns across the
brain for risk and ambiguity. Huettel and colleagues (2006) found
that risk and ambiguity share many of the same neural substrates
overall, but that regions of the prefrontal cortex, DLPFC (−41,

Table 4 | Areas of activation associated with expected gains.

Contrast Region of activation Number of voxels BA x y z

Adv. > Disadv. DLPFC-L 215 45 −47 16 17

Inferor temporal gyrus-L 171 21 −46 −67 −11

Insula-L 305 13 −36 20 6

Insula-R 768 13 37 21 4

Middle temporal gyrus-L 1772 21 −56 −42 3

Superior parietal cortex-L 2759 7 −34 −63 55

Superior parietal cortex-R 2350 7 36 −63 49

Supplementary motor area-L 371 6 −52 5 48

Supplementary motoro area-R 658 6 43 9 50

Disadv. > Adv. Fusiform gyrus-L 849 20 −31 −21 −22

Occipitoparietal fissure-L 218 31 −18 −59 22

VMPFC-L 935 32 −13 31 10

Uncertain disadv. > Certain disadv. Frontal pole-L 262 10 −32 57 11

Frontal pole-R 2561 10 41 54 14

Frontal pole-R 512 10 14 66 10

Insula-L 272 13 −27 21 −4

Insula-L 711 13 −42 14 6

Insula-R 2704 13 32 19 2

Occipital cortex-L 322 19 −38 −74 −14

SMA-R 484 6 15 13 62

SMA-R 372 6 4 3 67

Superior parietal-L 257 7 −30 −58 41

Superior parietal-L 253 7 −34 −62 53

Superior parietal-R 2336 7,40 26 −67 51

Uncertain adv. > Certain adv. DLPFC-R 302 9 40 12 50

DLPFC-R 525 9 24 18 59

DLPFC-R 228 9 23 34 56

DMPFC-R 501 8 3 35 42

Frontal pole-L 181 10 −26 68 2

Frontal pole-R 2521 10 34 59 21

Middle temporal gyrus-L 211 21 −58 −29 −5

Occipital lobe-R 220 18 25 −89 −13

Occipital-parietal junction-R 783 39 45 −59 32

OFC-L 386 11 −38 47 −2

OFC-R 1185 11 39 51 4

OFC-R 806 11 18 67 6

Posterior cingulate-Bi 1700 23 1 −28 32

Tail of caudate-L 232 – −19 −23 26

Certain adv. > Uncertain adv. Hippocampus-R 327 − 31 −10 −15

Parahippocampal gyrus-L 236 36 −29 −34 −18

Pre-central gyrus-L 422 4 −61 −24 26

Pre-central gyrus-R 399 4 54 −10 22

Superior parietal-L 607 2 −50 −31 53

BA, Brodmann areas; x,y,z, Talairach coordinates (Talairach and Tournoux, 1998) of central voxel in activated cluster. Cluster size threshold based on uncorrected

voxelwise p < 0.005 and cluster size alpha < 0.05.
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Table 5 | Areas of activation associated with winning money.

Contrast Region of activation Number of voxels BA x y z

Wins > Losses Angular gyrus-R 562 40 49 −33 25

Cuneus-R 166 19 10 −88 30

DLPFC-L 1921 46 −26 23 36

DMPFC-R 682 8 4 35 38

Frontal pole-L 354 10 −8 59 21

Fusiform gyrus-L 1343 37 −30 −48 −16

Hippocampus-R 1930 – 32 −11 −14

Insula-L 334 13 −39 −8 6

Occipital cortes-L 118 17 −26 −81 10

Occipital cortex-L 359 18 −6 −70 −7

Occipital cortex-R 3965 17,18,19 19 −56 −3

Occipital cortex-R 104 17 5 −88 3

Occipitoparietal junction-R 1453 22,39 44 −68 10

OFC-L 217 11 −28 38 −1

Parahippocampal gyrus-L 263 – −23 −15 −7

Parahippocampal gyrus-R 281 – 30 −29 −15

Post-central gyrus-R 168 1,2 62 −26 26

Posterior caudate-R 1558 – 22 −20 31

Posterior cingulate gyrus-R 1386 23,31 11 −37 47

Posterior cingulate/precuneus-L 5643 23,30,31 −15 −58 14

Pre-central gyrus-R 259 4 55 2 11

Superior parietal cortex-L 8150 2,7,40 −23 −36 51

Superior parietal cortex-R 402 7 16 −35 62

Superior temporal gyrus-L 3315 40,42 −56 −25 16

Superior temporal Gyrus-R 540 41,42 51 −18 9

Ventral striatum-Bi 1126 – 0 12 −1

VMPFC-L 182 32 −11 48 9

Losses > Wins Frontal eye fields-R 769 8 4 20 55

Frontal pole-R 6227 10 30 61 12

Inferior frontal gyrus-R 568 45 42 19 7

Middle temporal gyrus-R 417 21 58 −31 −2

Superior parietal cortex-R 2977 7,40 49 −62 42

Supplementary motor area-R 146 6 38 7 54

Unexpected wins > Expected wins DLPFC-L 968 9,46 −39 45 28

DLPFC-R 476 9 26 33 53

Frontal eye fields-R 1367 8 14 15 65

Frontal pole-R 1508 10 34 54 28

OFC-L 881 11 −34 47 4

Posterior caudate-L 2572 – −19 −18 21

Posterior cingulate gyrus-Bi 4131 23,31 −1 −29 28

Premotor cortex/DLPFC-R 4667 6,46 40 8 41

Premotor cortex-L 731 6 −47 6 52

Putamen/insula-L 850 13 −28 −3 −3

Putamen/insula-R 3032 13 30 14 4

Superior colliculi-Bi 340 – 0 −33 −2

Superior parietal cortex-Bi 8985 7,40 8 −64 44

Expected wins > Unexpected wins VMPFC-L 812 32 −4 30 −1

BA, Brodmann areas; x,y,z, Talairach coordinates (Talairach and Tournoux, 1998) of central voxel in activated cluster. Cluster size threshold based on uncorrected

voxelwise p < 0.005 and cluster size alpha < 0.05.
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18, 26) especially, were highly correlated with individual ambi-
guity preferences whereas regions of the posterior parietal cortex
and intraparietal sulcus were correlated with individual risk pref-
erences. In our study we did not examine individual differences
in risk preference, and in fact excluded potential subjects with
extreme ambiguity aversion or preference. Instead we examined
degree of partial ambiguity and found that the regions of DLPFC
and parietal lobe identified by Hsu et al. (2005) and Huettel et al.
(2006), showed increased activity for trials with partial ambigu-
ity throughout the fronto–parietal–striatal network. Thus, our
results add to these earlier studies by providing evidence that these
regions are active for various levels of uncertainty.

AMBIGUITY PROCESSING IN PFC
Through our parametric analyses, we observed increased activa-
tion in various regions associated with ambiguity processing. We
found overall higher activity in the DLPFC, intraparietal sulcus,
and dorsal striatum for both a linear increasing and inverted U-
shaped quadratic functions, but with greater recruitment by the
inverted U-shaped function, indicating that these regions were
particularly sensitive to partial ambiguity. Overall, these results
are consistent with increased activity in the DLPFC associated
with ambiguity processing reported previously across different
studies (Hsu et al., 2005; Rustichini et al., 2005; Huettel et al.,
2006; Levy et al., 2010). In addition, this pattern of results is sim-
ilar to that (with the exception of the DLPFC) found by Bach and
colleagues (2011) using a similar second-order function to model
uncertainty.

The increased activity in the DLPFC for intermediate ambi-
guity compared to situations with no ambiguity (risk) or full
ambiguity (ignorance) is consistent with the hypothesis that neu-
ral computational demands change as a function of the level of
ambiguity. The inverted-U pattern of activity may reflect not
just a search for information (context), but rather a search for
useful information which is greatest in trials that contain inter-
mediate levels of ambiguity, as suggested by Bach and colleagues
(2009). We extended Bach et al.’s (2009) findings by examining
more discrete levels of uncertainty, ranging from no ambigu-
ity to complete ambiguity, and by examining ambiguity within
a decision making context rather than in a passive conditioning
task. We propose that for risky decisions, one does not need to
search for context, as all necessary information regarding possi-
ble outcomes is readily available. Conversely, it may be difficult or
impossible to search for context during fully ambiguous decisions
because of the complete lack of information regarding possible
outcomes. It is only during situations involving partial ambi-
guity where it may be beneficial to devote additional cognitive
resources to contextual search, which can be done by evaluat-
ing what Huettel and colleagues (2006) call the “multiplicity of
all possible interpretations” for each option. This interpretation
of DLPFC function accounts for results in previous studies show-
ing activity in the posterior inferior frontal gyrus during outcome
prediction when contextual cues implied uncertainty across var-
ious tasks (Huettel et al., 2005; Li et al., 2006) as well as our
results.

In this light, it is interesting to note that activity in relatively
superior and anterior regions of the PFC was better represented

by our quadratic function in which partially ambiguous trials
were most strongly weighted. Anterior regions of the PFC were
also recruited for trials in which the advantageous choice was
uncertain, and for unexpected wins. One popular framework of
frontal lobe function suggests that the prefrontal cortex is orga-
nized in a hierarchical manner in which different regions support
various aspects of cognitive control (Koechlin and Summerfield,
2007; Badre and D’Esposito, 2009). In this framework, contextual
control (maintenance of task rules and structure) is associated
with posterior regions, whereas episodic control (maintenance
of information in a temporal domain) is associated with activ-
ity in more anterior regions. In other words, as task demands
increase or tasks become more complex, regions of the pre-
frontal cortex can be recruited in a posterior to anterior fash-
ion to provide the necessary neural processing. For example,
Koechlin and colleagues compared task cuing, which was pre-
sumed to be primarily contextual, and response cuing, which
was presumed to be primarily episodic (Koechlin et al., 2003).
Greater activation to the contextual task cuing was observed in
lateral prefrontal cortex regions anterior to regions of activity
shared in both tasks. Similarly, Brass and von Cramon (2004),
investigated regions of the PFC necessary for contextual process-
ing and found activation in the lateral parts of the prefrontal
cortex.

Our observed patterns of activation are consistent with trials
in which additional cognitive control is required, and is con-
sistent with emerging views of the frontopolar cortex (Koechlin
and Summerfield, 2007; Badre, 2008; Botvinick, 2008). As argued
above, the partial ambiguity trials benefit the most from recruit-
ment of additional cognitive processes, as also evidenced by the
observed increase in reaction times. Partial ambiguity requires
not only contextual control, thought to require DLPFC, as one
integrates various decision variables from the current stimulus,
but also episodic control, thought to require the frontal pole,
as one integrates outcomes and history of reward from pre-
vious trials in an attempt to make the best choice given the
limited amount of information available presented in the cur-
rent trial. Finally, this idea is supported by a recent finding by
Burke and colleagues (2013) showing that while risk and cogni-
tive effort are calculated separately in the brain, the frontal poles
are involved in linking effort and risk during decision making
(Burke et al., 2013). It is important to note that our parametric
results make only relative comparisons between the two mod-
els tested and may not provide a complete account of the nature
of processing in the discussed neural regions. In order to estab-
lish mechanistic roles for each neural region requires further
study.

AMBIGUITY, LOSS, AND THE INSULA
Our results are consistent with previous neuroimaging studies
that found that the anterior insula is recruited for decision mak-
ing under conditions of uncertainty, including both risk and
ambiguity (Paulus et al., 2003; Sanfey et al., 2003; Huettel et al.,
2005; Kuhnen and Knutson, 2005). We observed bilateral insula
activation when we collapsed trials across all levels of uncertainty
and compared trials in which subjects chose to play the variable
lottery vs. the constant lottery. This pattern of results matches that
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found by Paulus and colleagues (2003) who also found increased
activity in the anterior insula when subjects chose to place safe
bets as opposed to risky ones.

Insula activation occurs in a wide variety of task conditions.
There is, however, an emerging consensus that insula activation
is frequently associated with reactions to aversive stimuli or sit-
uations (Hester et al., 2010; Mohr et al., 2010), in particular
loss (Chua et al., 2009; Mohr et al., 2010) and learning from
punishment (Samanez-Larkin et al., 2008; Hester et al., 2010).
Our results show that the insula was recruited when subjects
chose the variable lottery on disadvantageous trials, and for unex-
pected wins. Finally, we found the insula was more active for
losses than for wins. These lines of evidence, as well as our pre-
vious observation that activity in the anterior insula is present
as uncertainty increases, suggests that activity in the anterior
insula may not reflect uncertainty processing or other similar
decision making variables. Rather, insular activation is modu-
lated by the potential of negative or adverse outcomes and is
consistent with the theory that insula activity reflects cognitive
and emotional processes linked to the anticipation of and expe-
rience of aversive situations (Chua et al., 1999; Sawamoto et al.,
2000; Ploghaus et al., 2001), such as not being able to predict
whether a future outcome will be rewarding or punishing, as
observed for unexpected wins, or being unable to recognize bad
decisions, as observed for variable lotteries with low potential
gain, or actually experiencing a loss (Elliott et al., 2000; Critchley
et al., 2002).

GAIN-RELATED PROCESSING IN THE FRONTAL CORTEX
Our data show that subjects were able to distinguish advanta-
geous lotteries from disadvantageous ones based on our simple
manipulation of expected gains and that choosing advanta-
geously was associated with activity in ventromedial prefrontal
cortex and the dorsal and ventral striatum. First, we observed
increased activity in dorsal portions of the medial prefrontal
cortex when subjects’ choices resulted in wins. The region of
the dorsal medial prefrontal cortex in which we report activ-
ity is thought to have similar value-related functions to those
observed in ventral regions of the striatum. Studies have shown
that the dorsal medial prefrontal cortex can track both receipt
of current reward as well as expected reward (Knutson et al.,
2001, 2003; Kuhnen and Knutson, 2005). Moreover, studies show
that activity in regions of the dorsal medial prefrontal cor-
tex is modulated by the level of expected value of the reward
(Knutson et al., 2005; Luk and Wallis, 2009). Activity in the dorsal
medial prefrontal cortex is also correlated with behavioral prefer-
ences, reflecting each individual’s valuation of different options
(McClure et al., 2004; Hare et al., 2009). Like the striatum, it
should be noted that recent studies have also reported overlap-
ping representations of both action and stimulus values in the
dorsal medial prefrontal cortex (Chib et al., 2009; Glascher et al.,
2009).

Although we observed increased activity in the OFC as a
result of receiving a reward, we did not observe the activity we
predicted would be associated with simple valuation in the com-
parison of all trials with high expected gains against trials with
low expected gains. As discussed previously, activity in the OFC

has been linked to the valuation of stimuli in decision mak-
ing contexts in both humans and primates (Padoa-Schioppa and
Assad, 2008; Padoa-Schioppa, 2009). Activity in neurons in the
OFC also reflects subjects’ willingness to pay to consume pre-
sented goods (Plassmann et al., 2007; FitzGerald et al., 2009)
as well as self-reported experiences of pleasantness (Plassmann
et al., 2008). Here, we found activation in the OFC when we sepa-
rated trials not solely according to expected gains, but rather by a
combination of potential gains and choice of the variable lottery
(uncertain) vs. the constant lottery (certain). First, we compared
trials in which the potential gain of the variable lottery was greater
than that of the constant lottery and found increased activity for
trials in which subjects chose to play the variable lottery over the
safe lottery. Additionally, we found OFC activity associated with
playing the variable lottery even when its potential gain was lower
than the constant lottery.

One factor to consider is that this task was not new to the sub-
jects at the time of the scanning session. It is possible that during
pre-training subjects developed general representations of what
an advantageous lottery was vs. a disadvantageous one based on
value and preference, and only had to refine these representa-
tions in the scanner. Activity in the OFC may rely on a process
of valuation that is more likely to occur when under states of
uncertainty, as subjects must constantly try determine preference
with only partial information regarding reward. This explanation
would account for why we did not observe OFC activity associ-
ated with playing the safe lottery, as the value of this option was
previously established.

ROLE OF THE STRIATUM
In addition to regions of the ventromedial frontal cortex, we
found regions of the ventral and dorsal striatum that were modu-
lated by expected gain and received reward. The ventral striatum
was more active for wins than losses, which is consistent with
this region playing a fundamental role in reward processing and
reward prediction error (Schultz et al., 1997; Bayer and Glimcher,
2005). In the reinforcement learning framework, dopamine activ-
ity signals reward prediction error in which a reward that is
better than expected will elicit a phasic burst of dopamine, a
fully expected reward elicits no activity, and a reward that is
worse than expected will produce a depression of dopaminergic
firing (Schultz, 2002). Most notably, we observed greater gain-
related activity in the ventral striatum when we compared trials
in which the win was unexpected (the outcome of playing a vari-
able lottery) or fully expected (the result of playing a certain
lottery).

We found increased activation in regions of the putamen and
posterior caudate nucleus for trials resulting in unexpected wins
and activity in the posterior caudate for wins overall. Studies in
non-human primates have suggested that neurons in these areas
are involved in linking reward and motor behavior (Kawagoe
et al., 1998; Lauwereyns et al., 2002; Ikeda and Hikosaka, 2003;
Kobayashi et al., 2007). Moreover, activity in regions of the
posterior caudate has been linked with successful learning of
probabilistic reward-outcome associations (Seger and Cincotta,
2005, 2006; Foerde et al., 2006; Nomura et al., 2007). This pattern
of basal ganglia recruitment is consistent with known patterns
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of corticostriatal interaction: the putamen is linked to primary
motor and somatosensory cortex, and motor planning areas such
as the premotor and supplementary motor cortices within the
motor loop, which is thought to facilitate the selection and execu-
tion of appropriate motor responses during learning (Alexander
et al., 1991; Lawrence et al., 1998; Haber et al., 2000, 2006;
Seger, 2008). The posterior caudate nucleus interacts with the
visual cortex in the occipital lobe, inferior temporal cortex, mid-
dle temporal cortex, and frontal eye fields of the frontal cortex
to form the visual loop. Throughout the course of learning, it
is believed that the visual loop helps relate various visual rep-
resentations of stimuli to potential actions and rewards (Seger,
2008). Both the motor and visual corticostriatal loops are active
during feedback-mediated learning tasks, such as categorization,
in which the correct visual representation of the stimulus and
the corresponding motor response must be selected to achieve
a goal (Seger and Cincotta, 2005; Foerde et al., 2006; Cincotta
and Seger, 2007). Therefore, it is believed that the visual and
motor corticostriatal loops are involved in the formation of
new stimulus-response associations, integrating new informa-
tion with previously learned information and appropriate motor
responses. Our results suggest that while subjects were making
choices within various lotteries, they were also attempting to learn
the most rewarding stimulus-response-outcome associations in a
probabilistic learning environment.

CONCLUSIONS
We identified different neural responses associated with linear
and quadratic “inverted-U” functions sensitive to level of ambi-
guity. These results provide support for proposed theories of
neural function under states of uncertainty that suggest ambigu-
ity processing in the fronto–parietal–striatal network is greater
at intermediate levels rather high levels. The graded coding of
uncertainty we reported may reflect a unified treatment of risk
and ambiguity as part of a general system evaluating uncertainty
mediated by the DLPFC which recruits different regions of the
prefrontal cortex as well as other valuation and learning sys-
tems according to the inherent difficulty of a decision. Finally,
we showed that learning and valuation processes are modulated
by expectancy and uncertainty; activity in regions related to the
valuation of stimuli or options increased in situations where the
decision making environment was uncertain
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