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Symbiosis involves responses that maintain the plant host and symbiotic partner’s genetic
program; yet these cues are far from elucidated. Here we describe the effects of
lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus)
and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses
suggest that both species shared common pathways that were altered in response to this
application under replete, sterile conditions.These included genes involved in symbiosis, as
well as transcriptional and metabolic responses related to enhanced starch accumulation
and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization
with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato).
It enhanced nodule number but not nodule formation in lotus; while leading to enhanced
hyphae initiation and delayed arbuscule maturation in tomato.
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INTRODUCTION
As photosynthetic organisms, plants are a major conduit of
reduced or fixed carbon to the soil. Soil microbiota are recipients
of the majority of this carbon that enters the roots and is respon-
sible for releasing factors that liberate the fixed carbon from the
roots. One of the ways to achieve this may be by manipulating the
expression of sugar efflux transporters (Chen et al., 2010); while
other mechanisms may also involve interference in endogenous
hormone metabolism leading to enhanced root proliferation (De
Salamone et al., 2001; Bottini et al., 2004; Uppalapati et al., 2005;
Remans et al., 2008) or microbial mineral solubilization (reviewed
in Bloemberg and Lugtenberg, 2001). These result in better plant

growth, increased photosynthesis, and more fixed carbon being
translocated to the roots and the rhizosphere. Numerous plant
growth promoting rhizobacteria (PGPR) and other microbes have
been isolated from the rhizosphere and some of the mechanisms
by which they manipulate plants are known (reviewed in Lugten-
berg and Kamilova, 2009). However, there is much to learn in this
field of research not only about the range of microorganisms that
manipulate plants, but also about the precise mechanisms they
employ.

Rhizobia are soil bacteria that are best known for their ability
to form a nitrogen-fixing endosymbiosis with legumes. How-
ever, they can be found in the rhizosphere of many species,
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including non-legumes. The rhizosphere is also laden with fun-
gal partners that form symbiotic relationships with plant roots
and aid in phosphate uptake through highly effective mecha-
nisms (Bucher, 2007). In fungal-plant interactions, plant roots
constitutively exude strigolactones leading to enhanced hyphal
branching and stimulation of fungal mitochondrial metabolism
(Besserer et al., 2006, 2008). Strigolactone production is further
stimulated upon phosphate deficiency leading to events facilitating
arbuscular mycorrhiza (AM) colonization (Akiyama et al., 2005;
López-Ráez et al., 2008; Balzergue et al., 2011). In an analogous
manner, flavonoids exuded by the host plants are perceived by rhi-
zobacteria that produce lipochitin-oligosaccharide (Nod) factors
as recognition signals during symbiotic nitrogen fixation. These
Nod signals are perceived via the Nod-factor receptors (the LysM-
type serine/threonine receptor kinases, NRF1 and NRF5) in the
root hair epidermis and trigger downstream responses including
Ca2+ fluxes and spiking, leading to the initiation of nodulation
(Madsen et al., 2010, and references therein). While the molecular
mechanism(s) leading to colonization in both symbiotic systems
is being unraveled, the complete picture remains largely fragmen-
tary. It is, however, clear that after initial rhizobacterial (by Nod
factors) or mycorrhizal (by Myc factors; Maillet et al., 2011) per-
ception, both nodulation and mycorrhization share a common
symbiotic pathway (CSP; Parniske, 2008) which includes genetic
components such as leucine-rich repeat receptor kinases (e.g.,
SYMRK that perceives both mycorrhizal and rhizobacterial signals;
Endre et al., 2002; Stracke et al., 2002), plastidial cation chan-
nels (Castor and Pollux ; Ané et al., 2004; Imaizumi-Anraku et al.,
2005; Charpentier et al., 2008), nucleoporins (Nup85 and Nup133;
Kanamori et al., 2006; Saito et al., 2007), calcium calmodulin-
dependent protein kinases (CCaMK ; Levy et al., 2004; Tirichine
et al., 2006) and the nuclear localized coiled-coil domain protein
product (CYCLOPS; Yano et al., 2008) that facilitate a transcrip-
tional response in the host nucleus (Kosuta et al., 2008; Parniske,
2008). While genetic interference in the CSP components are indis-
pensable for infected nodulation (Madsen et al., 2010), mutants
deficient in symbiont perception (nrf1 and nrf5) are still able to
form nodules (although with a lower frequency) due to an epider-
mal mode of transfection (Madsen et al., 2010), suggesting that
the CSP operates autonomously or through multiple indepen-
dent pathways. In addition, the extent and interaction between
the components of the CSP remains unknown.

While several transcriptional regulators, including transcrip-
tion factors (Smit et al., 2005; Heckmann et al., 2006) and miRNA
molecules (Devers et al., 2011, and references therein) have been
identified to play a role during the post-perception phase, post-
transcriptional regulation (apart from Nod and Myc factor signal
perception) has not been addressed. Several chemical signals have
been suggested to play a role during symbiosis; yet their identity
and specific roles have not been identified to date. Furthermore,
plant metabolic perturbations that are evident during this phase
of symbiosis include altered primary carbohydrate metabolism
(including enhanced photosynthesis, respiration, and starch accu-
mulation) and structural re-organization (of especially cell wall
components; reviewed in Reinhardt, 2007), yet the identity of reg-
ulators of these processes during symbiosis are lacking. The Nod
factor [Nod Bj V (C(18:1)), MeFuc] (LCO) has been previously

shown to interact with a chemical called lumichrome (LC; Khan
et al., 2008). Lumichrome (7,8-dimethylalloxazine) is presumed
to be a light-sensitive breakdown product of riboflavin; how-
ever, enzymatic conversion has been measured in Pseudomonas
(Yanagita and Foster, 1956), M. loti and Sinorhizobium meliloti
(van der Merwe and Lloyd, unpublished data). While the cor-
responding genes and proteins responsible for LC biosynthesis
still remain to be identified, the loss of symbiotic effective-
ness in auxotrophic riboflavin mutants in Rhizobium trifolii has
been observed (Pankhurst et al., 1974). Furthermore, while both
riboflavin and lumichrome exudation are significantly influenced
by salinity, pH, and temperature, concentrations measured from
bacterial isolate typically range between 0.1 and 15 nM (Kanu and
Dakora, 2009). Interestingly, the simultaneous application of LCO
and LC lead to enhanced photosynthetic rates in corn and soy-
bean plants (Khan et al., 2008). LC application also stimulates
root respiration in alfalfa plants and it has been suggested that
LC enhances PEP carboxylase activity and CO2 evolution from
roots to increase plant growth (Phillips et al., 1999). The lack of
a clear physiological response in the range of crop species inves-
tigated thus far (Phillips et al., 1999); however, implies either that
LC function is not conserved across all genera or that these effects
might rather be related to secondary effects associated with LC.
Assessing the mobilization and accumulation properties of LC in
the xylem sap of cowpea plants further revealed that the translo-
cation of LC only occurs when inoculated in combination with
Bradyrhizobium (Matiru and Dakora, 2005), suggesting that LC
could participate as a ligand during symbiosis.

In order to examine this further, we investigated the physiolog-
ical, molecular, and biochemical responses of the model legume
Lotus japonicus and the non-legume model Solanum lycopersicum
upon LC treatment. We show that LC treatment alone was able to
elicit shared overlapping transcriptional and post-transcriptional
responses related to enhanced starch and ethylene metabolism in
both species. Furthermore, genetic factors involved in symbiosis
were also altered; pertaining not only to elements belonging to
the CSP but also individual components related to nodulation
or AM colonization, although the experiments were conducted
upon nutrient sufficient and sterile (aseptic) conditions. Lastly, in
order to more directly assess the role of LC in symbiosis, lotus and
tomato plants were subjected to nitrogen and phosphate starvation
conditions, respectively, and the degree and dynamics of colo-
nization by rhizobacteria and fungi assessed. LC pre-treatment
could increase nodule number, as well as accelerate the rate of
hyphal infection thread formation. Taken together, the data sug-
gests that LC plays a more direct role in symbiotic relationships
than previously thought, presumably acting downstream of Nod
or Myc factor signal perception and leading to altered symbiotic
organogenesis.

MATERIALS AND METHODS
PLANT MATERIAL AND GROWTH CONDITIONS
Lotus japonicus B-129 (cv. Gifu) and Solanum lycopersicum (cv.
Moneymaker) seeds were surface-sterilized and grown in steril-
ized vermiculite in a 16/8 h day/night regime at 25˚C and fer-
tilized every second day with half-strength Hoagland solution
(Sigma Aldrich Co., St Louis, MO, USA; supplemented with
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1 mM NH4NO3 for replete conditions) with or without 5 nM LC
(CAS 1086-80-2)1; applied either through direct root drenching
(Phillips et al., 1999) and/or mist foliar (Khan et al., 2008) applica-
tions (final amount of 250 pmol per application). For the ethylene
inhibitor studies, 10 μM AgNO3 was applied weekly in parallel to
the LC treatments described above. Plant material was harvested
after 5 weeks and either flash frozen, homogenized in liquid nitro-
gen and stored at −80˚C for biochemical analyses or dried at 65˚C
for 2 days for dry matter determination. For nodulation and myc-
orrhization experiments, 5-week-old lotus and tomato plants were
subjected to nitrogen- or phosphate-limited conditions, respec-
tively. For this purpose, lotus plants were inoculated with M.
loti (strain MAFF 303099) and watered occasionally with B&D
medium (Broughton and Dilworth, 1971). For fungal coloniza-
tion, phosphate-starved plants were supplemented with Biocult G
granules (consisting of a clay pellet containing G. intraradices and
G. mossea spores)2, and watered with modified Hoagland solution
containing 1 μM KH2PO4. Roots were assessed weekly for nodule
organogenesis and mycorrhiza colonization, respectively.

PHOTOSYNTHETIC PARAMETERS
Gas exchange parameters were measured on 5-week-old plants
using a LI-6400XT Portable Photosynthesis System (LiCor Inc,
Lincoln, NE, USA). The whole shoot (in a specialized LiCor 6400-
05 Conifer Chamber) and third mature leaf (average of individual
leaflets) were measured for lotus and tomato, respectively. Data
were recorded after the leaf acclimated to the desired conditions
of light intensity (1400 μmol m–2 s–1), temperature (25˚C) and
CO2 concentration (850 μmol mol−1), and measurements made
midday under ambient humidity.

RADIOLABEL ACTIVITY MEASUREMENTS
Fresh root pieces (500 mg) from 5-week-old plants were washed
in 10 mM MES-KOH buffer (pH 6.5) and incubated for 3 h in
10 mM MES-KOH buffer (pH 6.5) containing 1 μCi of unilabeled
[14C] glucose (specific activity of 8.11 MBq mmol–1). The 14CO2

liberated and label fractionations were quantified as previously
described (van der Merwe et al., 2010).

BACTERIAL COLONY FORMING UNITS AND FUNGAL COLONIZATION
MONITORING
Bacterial cultures were monitored as described in Weisskopf et al.
(2005). For the fungal growth measurements, rhizospheric and
mulched roots were grown for 14 days in minimal M media
(Bécard and Fortin, 1988), and hyphae growth monitored.

For microscopic analysis of mycorrhization in tomato roots,
samples were cleared in 10% (w/v) KOH, acidified in 2% (v/v) HCl
and stained with 0.05% (w/v) acid fuchsin in a 1:1:1 (v/v/v) glyc-
erine:water:lactic acid solution, and assessed via Trouvelot et al.
(1986). Root tips from control and lumichrome-treated roots were
also stained with Lugol solution for visualization of starch gran-
ules. All images were observed with a motorized light microscope
(Leica DM 1000) and images captured by LAS EZ (v1.5.0) software.

1www.sigma.com
2www.biocult.co.za

RNA ISOLATION AND TRANSCRIPT ANALYSIS
Total RNA was isolated according to the CTAB method of
White et al. (2008). RNA cleanup and cDNA synthesis was con-
ducted using SuperScript III Reverse Transcriptase (Invitrogen
Co., Carlsbad, CA, USA) according to the manufacturer.

Probe labeling, chip hybridization and scanning for lotus roots
were performed using the Affymetrix GeneChip® Lotus Genome
Array (Affymetrix, Santa Clara, CA, USA) as previously described
(Benedito et al., 2008). Microarray analysis for tomato roots was
conducted as described by van der Merwe et al. (2009) on the
TOM1 array (Alba et al., 2004). Three biological replicates were
hybridized independently in each treatment. All array data has
been deposited in ArrayExpress.3

Semi-quantitative RT PCR on EIN3 expression was performed
on AgNO3 treated root cDNA using standard protocols with
primer combinations of 5′-CCCAAATTGGTTTGCCTAAA-3′
(Lj_AK339680.1_FW)and 5′-CTGGGCTGAGAAAGGTTTTG-3′
(Lj_AK339680.1_REV), and 5′-CACCTTTGTCCTCAGGTGGT-
3′ (Sl_BT013783.1_FW) and 5′-TCTTGCTTCGTCACGTCATC-
3′ (Sl_BT013783.1_REV) for EIN3 targets in lotus and
tomato, respectively, and 5′-GTGTTTTGCTTCCGCCGTT-
3′ (PP2A_FW) and 5′-CCAAATCTTGCTCCCTCATCTG-3′
(PP2A_REV),5′-CGGAGAGGGAGCCTGAGAA-3′ (Sl18S rRNA_
FW) and 5′-CCCGTGTTAGGATTGGGTAATTT-3′ (Sl18S rRNA_
REV) encoding for serine-threonine protein phosphatase 2A and
18S ribosomal RNA subunit for house-keeping genes of lotus and
tomato, respectively.

STATISTICAL METHODS AND ARRAY PROCESSING
For comparative analyses microarray data were normalized via
robust multichip averaging (RMA; Irizarry et al., 2003) and sig-
nificant differences were corrected for false discovery rate (FDR)
according to Benjamini and Hochberg (1995) in R (Gentleman
et al., 2004). In order to test the validity of comparative analy-
ses, the EST sequences spotted on the TOM1 microarray of the
significantly expressed tomato transcripts were evaluated via the
blast algorithm (Altschul et al., 1990) to those of the lotus genome.
For all the significantly expressed transcripts from tomato at least
one of the probe sequences corresponded to a significant hit to
the lotus genome. However, due to fragmentary gene ontology
information, both lotus and tomato arrays were re-assigned to
match Arabidopsis putative annotations (Kanz et al., 2005; Quevil-
lon et al., 2005), based on sequence similarity to the Arabidopsis
genome. For MAPMAN analysis, mapping files adapted for lotus
(Sanchez et al., 2008) and tomato (Urbanczyk-Wochniak et al.,
2006) were visualized with a P filter <0.05 after duplicate array IDs
were manually removed from the lotus results file obtained from
R. Lastly, lotus and tomato mapping were utilized for PAGEMAN
visualization of over-representation of functional gene categories
using the Fisher’s exact test (P < 0.05; Usadel et al., 2006).

ETHYLENE BIOSYNTHETIC ENZYME ACTIVITIES
Proteins for ethylene biosynthetic enzymes were extracted accord-
ing to Nakatsuka et al. (1997). ACC synthase and ACC oxidase

3http://www.ebi.ac.uk/cgi-bin/microarray/magetab.cgi
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activity was measured as described by Nakatsuka et al. (1997),
malonyl-ACC transferase as outlined by Su et al. (1985) with mod-
ifications described by Guo et al. (1993), with the addition of 10 μg
protein for all reactions (see ACC and ethylene determinations for
further details on ethylene measurements).

CRUDE AND PLASTIDIAL PROTEIN PREPARATIONS FOR
GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH)
ACTIVITY MEASUREMENTS
Non-phosphorylating NAD-dependent glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) protein extraction and activity determi-
nation was done according to Kelly and Gibbs (1973).

Crude and plastidial-enriched protein extractions for NAD(P)-
dependent GAPDH enzyme activity measurements were con-
ducted exactly as described by Muñoz-Bertomeu et al. (2009),
with the exception that the assay reaction was scaled down to a
volume of 200 μl and the reaction initiated with 10 μg total pro-
tein for each enzyme activity determination. All reactions were
determined with and without 20 mM sodium arsenate.

All protein concentrations were measured according to Brad-
ford (1976), using bovine serum albumin (BSA) as a standard.

PHYTOHORMONE PROFILING
ACC was extracted, chemically converted to ethylene and mea-
sured as described by Lizada and Yang (1979), with modifications
specified in Tucker et al. (2010). Ethylene levels were measured
exactly as described in Tucker et al. (2010).

Auxin, cytokinin, jasmonic acid, salicylic acid, and abscisic acid
levels were extracted and profiled according to Björklund et al.
(2007) and Schmelz et al. (2003), respectively. Quantification was
done by means of linear calibration curves of authentic standards.

SOLUBLE SUGAR AND STARCH MEASUREMENTS
Starch and soluble sugars were extracted according to Müller-
Röber et al. (1992), soluble sugars quantified as specified by
Müller-Röber et al. (1992), and starch as described by Smith and
Zeeman (2006).

PRIMARY METABOLITE EXTRACTION AND PROFILING
Primary metabolites were extracted and analyzed as described by
Roessner et al. (2000) optimized for lotus and tomato accord-
ing to Desbrosses et al. (2005) and Roessner-Tunali et al. (2003),
respectively. Gas chromatography coupled to electron impact
ionization/time-of-flight mass spectrometry (GC EI TOF-MS)
analysis was performed using an Agilent 6890N24 gas chromato-
graph splitless injection connected to a Pegasus III time-of-flight
mass spectrometer (LECO), ran, and evaluated according to Erban
et al. (2007) using TagFinder 4.0 software (Luedemann et al., 2008)
and the Golm metabolome database (Kopka et al., 2005; Schauer
et al., 2005).

STATISTICAL ANALYSIS
Unless otherwise specified, statistical analyses were performed
using Student’s t -test embedded in the Microsoft Excel soft-
ware (Microsoft, Seattle). Only the return of a P value <0.05
was designated significant. Analysis of variance (ANOVA) fol-
lowed by Fisher’s least significant difference test was con-
ducted in R 2.10.0 software (R Development Core Team, 2009),

and the return of a P value <0.05 was designated signifi-
cant.

RESULTS
BIOMASS ACCUMULATION AND PHYSIOLOGICAL ASSESSMENT IN
LUMICHROME-TREATED LOTUS AND TOMATO PLANTS
In order to investigate the role of LC on plant performance, the
compound was applied every second day to lotus and tomato
plants (final concentration 5 nM) grown in vermiculite under full
nutrient supplementation. Analyses of 5-week-old plant material
(for representative photographs see Figures A1A,B in Appen-
dix) showed that the shoot dry mass of lotus plants increased
upon root drenching, foliar, and a combination of foliar and root
drenching application (Figure 1A). In contrast, in tomato, only the
shoot biomass was increased upon the two types of foliar applica-
tion (Figure 1A). Assessing the root biomass, it was evident that
upon all three application modes (root drenching, foliar misting,
and the combination of these treatments) a significant increase
was observed in both lotus and tomato (Figure 1B). Concern-
ing root architectural differences, it was further observed that the
foliar (and the combination) applications led to enhanced lateral
root proliferation which was not observed in the root drenching
application (Figures A1A,B in Appendix).

Next, we evaluated photosynthetic performance and respira-
tory efficiency. This indicated that root drenching with LC resulted
in no significant difference in the photosynthetic performance of
lotus but led to enhanced CO2 assimilation in the tomato leaves
(Figure 1C). Furthermore, the foliar applications of this com-
pound did not alter the photosynthetic rates of the respective plant
species (Figure 1C). A significant decrease in respiration rate was
observed for the lotus roots upon root drenching (but not with
the foliar applications) whilst this was not observed in the tomato
roots (Figure 1D). In contrast, upon foliar application of LC to
the tomato foliage an increase in root respiration was observed
(Figure 1D).

EVALUATION OF GENE EXPRESSION PROFILES OF LOTUS AND TOMATO
ROOTS UPON LUMICHROME TREATMENTS
To further investigate these responses, microarray analyses were
conducted on lumichrome-treated and control roots. Statis-
tical analyses showed that 656 and 1643 genes were signifi-
cantly up- and down-regulated, respectively, between control
and treated lotus roots. In contrast, 229 and 136 genes were
up- and down-regulated respectively, in tomato. In a next step
Fisher’s exact test for gene functional over-representation (Usadel
et al., 2006) was performed on the data sets, and indicated sig-
nificant shifts in gene classes associated with primary carbon
metabolism including starch and organic acids (only in lotus
roots; Figure 2). Furthermore, flavonoid metabolism also seems
to be significantly affected in the lotus roots while numerous
genes involved in the biosynthesis of various phytohormones
were also functionally overrepresented (Figure 2). This was not
observed in the tomato metabolism. Lastly, genes involved in mito-
chondrial or plastidial protein translation were also positively
affected in both lotus and tomato, while receptor kinase signal-
ing categories were generally down-regulated within both species
(Figure 2).
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FIGURE 1 | Physiological assessment lumichrome treatment on lotus

and tomato plants. Biomass accumulation of (A) shoot and (B) root
organs of 5-week-old lotus (black bar) and tomato (gray bar), as well as (C)

net CO2 assimilation rate and (D) root respiration as radiolabeled carbon
dioxide evolution were also measured in plants grown in a 16-h

photoperiod. The values are the mean ± SE (n = 5). The data was analyzed
using one way ANOVA followed by Fisher’s least significant difference,
bars that do not share letters are significantly different (P < 0.05) from
each other. The results were confirmed in at least four independent
experimental trials.

The data was visualized next on a metabolic overview path-
way and genes showing no significant change were filtered out.
MAPMAN bins for Calvin cycle genes were significantly increased
in both lotus and tomato, while major carbohydrate metabolism
appears to be largely reduced in lotus and enhanced in tomato
roots (Figure A2 in Appendix). In addition, lotus roots had sig-
nificant decreases in gene classes belonging to cell wall, lipid, and
secondary metabolism, including flavonoid and phenylpropanoid
metabolism (Figure A2A in Appendix). In order to visualize this
in the context of genes associated with the symbiotic process, sig-
nificantly altered genes related to either nodulation (for lotus) or
mycorrhiza colonization (for tomato) were further illustrated in
a graphical overview of symbiosis (Figure 3). This reiterated the
number of significant transcript changes associated with either
nodulation (Figure 3A) or mycorrhiza colonization (Figure 3B)
upon LC treatment compared with the untreated control.

On the individual gene expression level several other sim-
ilarities were further apparent (Table 1). In order to apply a
more stringent criteria for random noise that may be present
in the data set, as well as gain more confidence in the identities
of the probe set annotations, both lotus and tomato IDs were
compared to Arabidopsis homolog candidates, and only those
significant genes (adj. P < 0.05) filtered out that were: (i) con-
currently altered in both plant species, as well as (ii) shared a
significant similarity to an Arabidopsis homolog (Table 1; for
full list of significantly altered genes corresponding to probe IDs,
Table S1 in Supplementary Material).Both lotus and tomato roots
had reduced transcripts levels involved in ethylene metabolism

(ethylene response factor/elements, ACC oxidase and a putative
two-component response regulator; Table 1). Similarly, several
transcription factors associated with ethylene signal transduction
were down-regulated, including those that share similarity with
Arabidopsis orthologs belonging to proteins predicted to con-
tain an ethylene-responsive element, including an AP2/EREBP
transcription factor (At4g34410) and a C2H2 zinc finger protein
(At2g37430; Table 1). Furthermore, genes involved in primary
carbon metabolism, namely glyceraldehyde 3-phosphate dehydro-
genase (GAPDH; two plastidial isoforms, namely At1g12900 and
At1g42970), glucosyltransferases (At3g15350 and At3g22250) and
nuclear-encoded subunits of plastidial gene products (At5g38430,
At1g67090, At5g38430, At2g30570, and At1g67090) were also
affected upon treatment (Table 1).

Interestingly, this comparative analysis also allowed for
the simultaneous identification of a nucleoporin (similar to
At1g10390), plastidial cyclic ion channel (similar to At5g53130)
and phosphate transporter (similar to At1g20860, AtPht1;8) in
response to lumichrome in lotus and tomato roots (Table 1). The
expression of all of these genes were reduced compared to the
untreated controls (Table 1).

EVALUATION OF ETHYLENE METABOLISM AND OTHER CLASSICAL
PHYTOHORMONES IN RELATION TO LUMICHROME PROMOTED
GROWTH STIMULATION
Due to the number of ethylene-associated genes affected by LC
treatment, the biosynthesis and signal transduction of this gaseous
hormone were further evaluated. Analysis of the ACC levels were
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FIGURE 2 | Comparison of significant overrepresented functional

gene categories (and sub-categories) of lumichrome-treated lotus

and tomato roots determined by PAGEMAN. The values are
representative of the log2 transformed values of three individual
hybridizations, statistically analyzed via robust multichip averaging (RMA)

in R, and classed according to the MAPMAN classifications (Thimm
et al., 2004; Usadel et al., 2005) and over-representation classification
assessed via Wilcoxon rank sum test (P < 0.05; Usadel et al., 2006). Red
indicates a decrease whereas blue indicates an increase (see color
scale).

significantly enhanced in both lotus and tomato roots upon LC
treatment (Figure 4A); however, C2H4 levels were only enhanced
in the lotus treated roots (Figure 4B). This is surprising since it
is assumed that ACC synthase (responsible for ACC biosynthe-
sis) is one of the key regulatory enzymes in ethylene synthesis.
In light of this, the corresponding biosynthetic enzymatic activ-
ities were also determined (Figures 4C–F). This further revealed
enhanced ACC synthase activity in the lotus plants (which exhib-
ited enhanced C2H4 levels; Figure 4B) but a significant decrease
in the catalytic activity in tomato roots under the conditions
measured (Figure 4C). Furthermore, ACC oxidase activity was
unaltered in tomato roots, whereas the activity was undetectable
in LC-treated lotus roots (Figure 4D). As an alternative, steady
state levels of ACC can also be maintained via conjugation reac-
tions. In this regard, measurement of malonyl-ACC transferase
indicated a significant reduction in its activity in both lotus and
tomato roots (Figure 4E). In order to evaluate whether C2H4

levels could partially modulate the increased root biomass pre-
viously observed (Figure 1B), ethylene signal transduction was
further inhibited by application of silver ions (by monitoring the
expression of the EIN3 target downstream of the ethylene recep-
tor CTR1; Figures A1I,J in Appendix; Rodriguez et al., 1999). This
still resulted in enhanced biomass accumulation in the respective

organs affected in Figures 1A,B following lumichrome treatment
(see Figures A1G,H in Appendix).

In addition to the evaluation of C2H4, other phytohormone
levels were also evaluated in the control and treated roots of both
lotus and tomato. This revealed little alteration in absolute lev-
els of the stress hormone ABA, SA, and JA, with only the former
enhanced in the lotus root drenching treatment (Figures 4F–H).
Furthermore, indole-3-acetic acid (IAA) levels were also enhanced
in the lotus roots (Figure 4I). In contrast, gibberellin A3 (GA3)
levels were consistently decreased in both lotus and tomato
roots (Figure 4J). Cytokinin levels (dihydrozeatin and trans-
zeatin) remained invariable in both the lotus and tomato roots
(Figures 4K,L).

INVESTIGATING KEY ASPECTS IN PRIMARY METABOLISM FOLLOWING
LUMICHROME TREATMENT IN LOTUS AND TOMATO ROOTS
Due to the fact that there were few overlapping changes between
lotus and tomato roots in ethylene and other phytohormones
that could explain the observed biomass, our attention turned to
investigating primary carbon metabolism. Incubating root pieces
with [U-14C] glucose indicated that, while lotus roots had signif-
icantly reduced label uptake and incorporation in most fractions
analyzed (Figures 5A–G); both lotus and tomato roots had a
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FIGURE 3 | Filtered gene responses (P < 0.05) of a MAPMAN

overview of genes associated with symbiotic processes of

lumichrome-treated (A) lotus and (B) tomato roots. The values are
representative of the log2 transformed values of three individual
hybridizations, statistically analyzed via robust multichip averaging

(RMA) in R, and classed according to the MAPMAN classifications
(Thimm et al., 2004; Usadel et al., 2005) adapted for lotus (Sanchez
et al., 2008) and tomato (Urbanczyk-Wochniak et al., 2006),
respectively. Red indicates a decrease whereas blue indicates an
increase (see color scale).

significant increase in radiolabel partitioned to the starch frac-
tion (Figure 5H). This was also further reflected in the amounts
of starch and soluble sugars measured. Starch levels were increased
between 25 and 30% in lotus- and tomato-treated roots (Table 2).
The tomato roots were also characterized by increased glucose
levels following LC treatment (Table 2). Lugol staining of the root
tips of lotus and tomato further indicated that LC did not lead to
a change in the distribution of starch within the lotus; however,
perhaps surprisingly, less starch was observed in the tomato root
tip, suggesting that, LC further led to a change from indeterminate
to determinate root growth in tomato roots (Figures A1C–F in
Appendix).

GC MS based metabolite profiling further reflected the radiola-
bel data; it indicated that lotus treated roots had major reductions
in organic acids (malate, fumarate, and succinate) and amino

acids (Lys, Asp, GABA, β-Ala, Thr, Ser, Pro, Gly, Iso, and Val;
Figure A3A in Appendix). In addition, benzoate and myo-inositol
levels were significantly increased upon LC treatment in the lotus
roots (Figure A3A in Appendix). In contrast, the primary metabo-
lites from lumichrome-treated tomato roots remained largely
unaltered from the untreated controls, with the exception of a
significant increase in Gln and decrease in galactonate-1,4-lactone
levels (Figure A3B in Appendix).

Due to the apparent switch in metabolism differentiating
between major carbohydrate and downstream glycolytic path-
ways, as well as the gene expression changes of glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) upon LC treat-
ment (Table 1), activities of this protein was also mea-
sured (Table 3). This indicated firstly that the major cytosolic
non-phosphorylating NAD-dependent activity was significantly
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Table 1 | Orthologous gene comparisons between 5-week-old lumichrome-treated lotus (L. japonicus) and tomato (S. lycopersicum) roots.

L. japonicus S. lycopersicum AGI code A. thaliana functional annotation

Array ID logFC Adj. P -value Array ID logFC Adj. P -value

PHYTOHORMONE METABOLISM

chr5.CM0052.19_at −1.89 0.031 4.1.18.1 −2.64 0.011 At5g64750 ABA repressor 1

chr6.CM0114.20_at −3.44 0.016 At1g28360 Ethylene response factor12 (ERF12)

chr5.CM0909.73_at −6.22 0.007 At5g61590 Ethylene-responsive element binding factor-like

chr4.CM0288.8_at −2.38 0.064 6.1.16.2 −3.72 0.02 At1g05010 1-Aminocyclopropane-1-carboxylate oxidase

chr3.TM1367.15_at 2.64 0.019 5.1.3.12 1.92 0.04 At2g41310 Putative two-component response regulator 3 protein

chr5.CM0335.12_at −4.31 0.017 8.4.19.1 −3.11 0.04 At1g20510 4-Coumarate:CoA ligase (OPCL1)

TRANSCRIPTION FACTOR (-LIKE)

chr2.CM0132.7_at 4.85 0.021 2.3.10.17 5.81 0.007 At4g37730 bZip transcription factor 7(AtbZip7)

chr4.CM0227.6_at −9.95 0.028 2.1.19.2 −3.11 0.03 At4g34410 AP2 domain-containing transcription factor

chr5.CM0311.11_at 2.26 0.013 4.4.14.11 4.55 0.04 At1g31050 AtbHLH111

Ljwgs_064987.2_at −6.02 0.001 7.3.19.10 −2.41 0.04 At4g27280 Ca2 + binding EF hand family protein

chr3.TM1463.16_at 1.77 0.018 5.4.2.3 1.87 0.03 At5g54630 Zinc finger related protein

Ljwgs_020980.2_at −8.48 0.03 8.4.20.16 −8.97 0.04 At2g37430 Putative C2H2-type zinc finger protein

CARBOHYDRATE METABOLISM

chr1.CM0222.6_at 3.83 0.008 8.4.10.12 4.56 0.04 At1g12900 Glyceraldehyde 3-phosphate dehydrogenase A (GAPA-2)

chr1.CM0113.81_at 3.26 0.011 At1g42970 Glyceraldehyde 3-phosphate dehydrogenase (GAPB)

Ljwgs_054325.1_at −3.77 0.0004 8.2.19.12 −1.7 0.05 At3g15350 Glycosyltransferase family 14

chr2.CM0102.62_at −5.62 0.007 5.4.19.4 −2.7 0.02 At3g22250 UDP-glucoronosyl/-glucosyl transferase

Ljwgs_031056.1_at 1.96 0.021 2.2.7.6 4.94 0.009 At5g38430 RuBisCO small subunit 1b

chr2.TM1655.9_at 4.98 0.001 8.3.12.20 2.17 0.04 At1g67090 RuBisCO like protein, small subunit

Ljwgs_031056.1_at 1.96 0.021 At5g38430 RuBisCO small chain 1b precursor

chr5.TM1574.11_at 3.51 0.002 8.1.9.9 9.65 0.02 At2g30570 Photosystem II reaction center 6.1KD protein

chr2.TM1655.9_at 4.98 0.001 5.4.7.9 7.08 0.05 At1g67090 RuBisCO like protein, small subunit

Ljwgs_057808.1_at 1.71 0.012 4.2.10.10 7.18 0.04 At5g54190 NADPH:protochlorophyllide oxidoreductase A (PORA)

FATTY ACID METABOLISM

chr3.CM0135.11_at 1.81 0.029 2.4.15.7 2.76 0.01 At2g05990 Enoyl-ACP reductase (ENR1)

MISCELLANEOUS

TM0802.5_at 3.84 0.015 6.2.1.16 3.98 0.008 At5g65360 Histone H3

chr5.TM0431.19_at −2.13 0.014 8.2.17.12 −2.56 0.05 At1g10390 Nucleoporin family

chr5.TM0431.19_at −2.13 0.014 7.1.19.6 −3.27 0.02 At1g10390 Nucleoporin family

Ljwgs_042055.1_at −11.2 0.027 8.4.17.18 −2.87 0.04 At1g43710 Histidine decarboxylase, embryo defective 1075

chr1.TM0811.11_at −3.71 0.056 6.1.19.5 −5.64 0.02 At4g02380 Senescence associated gene 12 (SAG12)

chr1.CM0104.34_at −5.99 0.007 8.1.16.1 −4.43 0.03 At5g18270 NAM (no apical meristem)-like protein

chr1.CM0349.17_at −11.4 0.023 5.1.13.1 −4.01 0.01 At1g14560 Mitochondrial carrier like protein

Ljwgs_018600.1_at −2.09 0.049 At1g20860 Putative inorganic phosphate transporter protein

Ljwgs_020324.1_at −3.21 0.03 7.2.19.14 −2.81 0.03 At5g53130 Cyclic nucleotide-regulated ion channel

chr1.TM1573.13.1_at −2.98 0.021 8.3.19.13 −4.03 0.02 At3g24550 ATP binding protein kinase, AtPERK1

UNKNOWN

chr3.CM0142.58_at −3.49 0.049 8.1.20.1 −6.95 0.003 At3g15810 Unknown protein

chr3.CM0142.58_at −3.49 0.049 8.2.17.16 −3.55 0.004 At3g15810 Unknown protein

chr1.CM0181.3_s_at 1.85 0.005 5.1.4.16 4.97 0.02 At1g21680 Unknown protein

chr2.CM0608.80_at −2.6 0.038 1.2.17.11 −5.29 0.03 At1g27100 Unknown protein

Ljwgs_054723.1_at −2.44 0.032 7.1.19.9 −2.05 0.04 At3g26580 Unknown protein

Values are represented as log2 fold changes (logFC) of gene expressions normalized to control roots of three independent hybridizations and the P value adjusted

(adj. P value) to correct for the probability of false positives using the FDR correction (Benjamini and Hochberg, 1995; P value <0.05 was deemed significant). Gene

annotations was based on probe oligosequence similarity to the Arabidopsis genome, and represented by the Arabidopsis genome initiative (AGI) code.
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FIGURE 4 | Ethylene biosynthesis and phytohormone levels upon

lumichrome treatment in lotus and tomato. (A)

1-Aminocyclopropane-1-carboxylic acid (ACC) and (B) ethylene (C2H4)
concentrations in roots of 5-week-old lotus (black bar) and tomato (gray
bar). Correspondingly, (C) ACC synthase, (D) ACC oxidase, (E) and
malonyl-ACC transferase maximal catalytic activity upon root drenching.

(F–L) Absolute levels of abscisic acid (ABA), jasmonic acid (JA), salicylic
acid (SA), indole 3-acetic acid (IAA), gibberellic acid A3 (GA3), dihydrozeatin
(dhZ) and zeatin (Z). The values are the mean ± SE (n = 6). The data was
analyzed using one way ANOVA followed by Fisher’s least significant
difference, bars that do not share letters are significantly different
(P < 0.05) from each other. nd, not detected.
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FIGURE 5 | Redistribution of radiolabel in lotus (black bar) and tomato

(gray bar) root metabolic fractions following lumichrome treatment and

incubation with 2 mM [U-14C] glucose. (A) Total label uptake, (B) total label
metabolized and label distribution to (C) the acid fraction, (D) basic fraction,
(E) cell wall fraction, as well as (F) neutral fraction was determined after a 3-h

incubation period. Label distribution toward the (G) sucrose and (H) starch
pools. The values are expressed as a percentage of the total radiolabel
metabolized and are the mean ± SE (n = 6). The data was analyzed using one
way ANOVA followed by Fisher’s least significant difference, bars that do not
share letters are significantly different (P < 0.05) from each other.
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Table 2 | Effect of 5 nM lumichrome root application on soluble sugar and starch content of 5-week-old lotus and tomato roots.

L. japonicus S. lycopersicum

Control Root application Control Root application

Glucose 322.46 ± 20.02 284.39 ± 20.40 279.78 ± 10.76 411.97 ± 16.96

Fructose 49.44 ± 8.17 54.48 ± 4.08 71.59 ± 3.62 83.38 ± 4.59

Sucrose 18.03 ± 0.83 17.92 ± 3.86 76.99 ± 16.96 75.41 ± 9.12

ΣSoluble sugars (hexose equivalents) 407.97 ± 38.58 370.03 ± 26.45 505.36 ± 24.28 646.17 ± 30.16

Starch 17.76 ± 6.63 25.11 ± 0.81 26.47 ± 0.76 35.19 ± 0.67

Data is representative of the mean ± SE on six individual plants per line. Values in bold type were determined by Student’s t-test to be significantly different (P < 0.05)

from the untreated control. Values are presented as μmol g−1 FW, with the exception of starch in milligram glucose equivalents per gram FW.

decreased upon LC treatment in lotus roots but not those of
tomato (Table 3). However, plastidial enrichments and determi-
nation of phosphorylating NADP-dependent GAPDH activity was
significantly increased in the crude and plastidial-enriched frac-
tions of tomato roots, which was not reflected in the corresponding
lotus roots (Table 3).

COLONIZATION IN LUMICHROME-PRIMED LOTUS AND TOMATO ROOTS
In order to ensure that these effects were truly related to changes
in aseptic endogenous plant metabolism, serial dilutions of root-
associated and bacterial colony forming units (CFU) from the
sterilized growth media were determined and this indicated that
the CFU count in LC treatments were invariant, and negligible,
from the control (data not shown). In addition, clearing and stain-
ing of lotus and tomato roots did not indicate any obvious signs
of the presence of microorganisms.

Having determined this, plants were further subjected to nitro-
gen and phosphate starvation conditions, respectively, and inocu-
lated with M. loti and a mixture of G. intraradices and G. mossea
to determine whether lumichrome pre-treatment had a notice-
able effect on symbiotic efficiency. This indicated an increase in
nodule number but no noticeable difference in the timing of nod-
ule formation during early colonization in lotus (Figures 6A–E).
In contrast, in tomato roots an acceleration in infection thread
formation caused an increase in myorrhizal frequency and inten-
sity at 28 days after inoculation (dai; Figures 6F,G). However, the
LC pre-treated roots formed less arbuscules per root fragment
(%a ∼ 0.1%) and total root system (%A ∼ 0.003%) compared to
the control at 58 dai (Figures 6H,I).

DISCUSSION
Modulation of growth and development through chemical stimu-
lation has aided in understanding fundamental processes in plants
(Kaschani and van der Hoorn, 2007). In this study the appli-
cation of LC has been assessed in order to assess a role during
symbiosis. We demonstrated that an application of LC at a con-
centration of 5 nM led to a significant enhancement of biomass
in both lotus and tomato plants (Figure 1). Previous studies
have similarly shown that LC promotes seedling growth at low
concentrations whereas the application of higher doses (range
between 10 and 50 nM) elicits less pronounced results (Phillips
et al., 1999; Matiru and Dakora, 2005). Furthermore, based on the
over-representation analysis of functional gene classes (Figure 2);

as well as assessing carbon partitioning and steady state metabolite
levels, it was apparent that LC led to a significant increase in starch
levels and associated label distribution in both species (Table 2;
Figure 5H; Figure A3 in Appendix). Lotus japonicus TILLING
mutants deficient in starch biosynthetic and degradation enzymes
show no observable differences in nodulation efficiency or devel-
opment (Vriet et al., 2010), suggesting that starch are not required
for organogenesis. Rather, as has been observed for tomato roots
treated with fungal spore exudates, a transient increase in starch
levels could be acting as a carbon overflow mechanism resulting
from sugar efflux in the absence of a fungal partner (Gutjahr et al.,
2009); thus acting as a marker in sensing the sugar status of the
symbiotic host. In agreement, roots that have been pre-treated
with LC showed altered colonization properties with either rhi-
zobacteria or mycorrhizae (Figure 6). The observation that the
application of LC, in the absence of microorganisms, led to starch
accumulation in lotus and tomato roots, strongly suggests that
LC act as a modulator of carbon fluxes within the symbiotic
plant cell. In agreement with this, in lotus roots LC application
led to a significant reduction in glycolytic and respiratory flux,
as observed for a reduction in root respiration (Figure 1) and
overall metabolic performance (Figure 5; Figure A3 in Appen-
dix). Furthermore, LC also led to a significant reduction in the
activity of the non-phosphorylating cytosolic isoform of GAPDH
(Table 3). Higher plants contain four distinct isoforms of GAPDH;
two cytosolic and two plastidial, and all four are expressed in
varying (but low) levels in roots. The cytosolic, phosphorylat-
ing, NAD-dependent GAPDH (GAPC; constituting the majority
of GAPDH activity) catalyzes the interconversion of glyceralde-
hyde 3-phosphate (G3P) to 1,3 bisphosphoglycerate, utilizing
NAD+ and inorganic P (Pi). The cytosolic non-phosphorylating
NADP-dependent isoform, on the other hand, catalyzes the oxi-
dation of G3P to 3-phosphoglycerate (NP-GAPDH), bypassing
an ATP-generation step in glycolysis. NP-GAPDH has also been
postulated to supply NAPDH during gluconeogenesis (Kelly and
Gibbs, 1973). In heterotrophic metabolism, perturbations in total
GAPC activity does not lead to major phenotypical alterations
although sucrose levels and other glycolytic metabolites are sig-
nificantly affected (Hajirezaei et al., 2006). More recently GAPC
has been shown to be involved in novel regulatory roles, essen-
tial for ATP supply and fertility in Arabidopsis (Rius et al., 2008).
During lotus LC treatment, altered NP-GAPDH activity led to
a significant shift in carbohydrate and organic acid metabolism.
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Table 3 | Specific GAPDH activity in lotus and tomato roots upon lumichrome treatment assayed under non-phosphorylating and

phosphorylating conditions.

Fraction L. japonicus S. lycopersicum

Control Root application Control Root application

Non-phosphorylating GAPDH 19.72 ± 1.20 14.24 ± 0.71 4.26 ± 0.29 3.67 ± 0.14

Phosphorylating NADP-GAPDH Crude 1.39 ± 0.33 0.59 ± 0.18 0.85 ± 0.07 1.43 ± 0.35

Plastid 0.16 ± 0.07 0.42 ± 0.17 0.21 ± 0.03 0.86 ± 0.25

Supernatant 1.52 ± 0.08 1.08 ± 0.23 0.96 ± 0.24 1.89 ± 0.42

Phosphorylating NAD-GAPDH Crude 9.62 ± 1.79 10.35 ± 1.23 24.87 ± 1.69 42.39 ± 4.03

Plastid 0.97 ± 0.01 2.23 ± 0.73 1.56 ± 0.39 4.32 ± 0.57

Supernatant 11.63 ± 1.08 9.25 ± 1.67 15.83 ± 1.97 29.44 ± 8.09

Under phosphorylating conditions, enzyme activity of crude extracts, plastid fractions and resultant supernatant fractions were assayed from root material.The values

are the mean ± SE (n = 6) and values in bold type were determined by Student’s t-test to be significantly different (P < 0.05) from the respective untreated control. Non-

phosphorylating and phosphorylating NADP-dependent enzyme activity is presented in nmol NAD(H/P) min−1 mg−1 protein, while phosphorylating NAD-dependent

GAPDH values are expressed in μmol NAD min−1 mg−1 protein.

Similarly, it has been shown that Arabidopsis double mutants in the
plastidial NAD-dependent GAPDH isoforms, gapcp1/gapcp2 dras-
tically affects sugar and amino acid balances leading to enhanced
starch accumulation (Muñoz-Bertomeu et al., 2009). Upon LC
treatment, tomato roots had increased plastidial GAPDH tran-
script and enhanced plastidial NAD-dependent enzyme activity
(Tables 1 and 3); however, with the exception of increases in starch
and soluble sugars only minor changes in amino acid metabolism
were observed (Figure 5), suggesting that a less severe pertur-
bation was experienced. One plausible explanation for this is that
enhanced photosynthesis (Figure 1C) and enhanced glucose levels
(Table 2) in the tomato root drenching treatment leads to altered
sink-source partitioning and thereby improving root metabolism.

Apart from altered primary carbon metabolism, LC treatments
also led to alterations in ethylene (C2H4) responses (Table 1;
Figure 4). C2H4 is a potent phytohormone that regulates diverse
developmental processes, including fruit ripening, senescence,
biotic and abiotic stress responses, root hair development, and
abscission (for review, Kendrick and Chang, 2008; Zhu and Guo,
2008). Although the mechanism is not completely understood,
enhanced ethylene and ACC levels inhibit nodulation in certain
legumes (including L. japonicus; Penmetsa and Cook, 1997; Nukui
et al., 2000) whilst having no effect on others (Lee and LaRue,
1992; Schmidt et al., 1999). Furthermore, lotus plants expressing
the etr1-1 mutant allele from Arabidopsis, one of the dominant
ethylene receptors, exhibita hyper-nodulation phenotype (Lohar
et al., 2009). During fungal colonization, ethylene has also been
implicated in modulating arbuscule development, although via
alterations in ABA metabolism (Martín-Rodríguez et al., 2011).
However, under nutrient replete LC additions, only lotus roots
increased ethylene evolution rates, while that of tomato remained
invariable from the control (Figure 3). In addition, in both species
ACC levels increased significantly (Figure 3). One plausible rea-
son for this difference is that the two species in question differ
in the post-transcriptional regulation of ethylene biosynthetic
enzymes, which was confirmed by the maximal catalytic activities
of the respective biosynthetic proteins (Figure 3). In both lotus
and tomato roots the ACC-conjugating enzyme activity was also

down-regulated which could explain the increase in ACC levels
(Figure 3). While the reason for this remains unclear, we specu-
late that the interaction between LC and C2H4 metabolism was a
result of a transient redox mimicry (as observed during symbio-
sis), and independent from the biomass accumulation observed
(Figure 1). In agreement with this, LC-treated roots treated with
silver ions showed that the dry weight of the lotus and tomato roots
was still significantly increased compared with the control; how-
ever, this treatment resulted in a significant decrease in biomass
in general, suggesting that C2H4 metabolism is not the primary
cause for the increase in biomass (Figure A1 in Appendix). In
further support, LC applied to the foliar organs also enhanced
biomass (Figure 1), suggesting that the effects of LC are per-
tinent throughout carbon partitioning in both autotrophic and
heterotrophic metabolism. C2H4 is known to interact with several
other phytohormones, including auxin (Stepanova et al., 2005,
2007), brassinosteroids (De Grauwe et al., 2005) and gibberellins
(Achard et al., 2003; Vandenbussche et al., 2007). Absolute phy-
tohormone levels showed little consistent responses in lotus and
tomato roots; the exception to this was the reciprocal relationship
between ACC and GA3 levels in both species (Figure 3). Dur-
ing symbiosis, exogenous gibberellin applications to the hyper-
nodulated calcium calmodulin-dependent protein kinase mutant
(ccamk) reduce nodulation significantly (Maekawa et al., 2009),
while the overexpression of SLEEPY1, a positive regulator of GA
signaling, also results in a reduction in nodule number in lotus
(Maekawa et al., 2009). Our data further suggest that GA might
play a role during mycorrhization; the molecular targets of which
still remain to be identified. In addition, it is also likely that alter-
ations in C2H4 metabolism could lead to an alteration in auxin
distribution (which would not be reflected in the absolute lev-
els) and could explain some of the variance. It would be useful to
study the spatial accumulation pattern of several phytohormones
during symbiosis and compare these with LC treatment in future.
Furthermore, it has been recently proposed that ACC, the pre-
cursor of C2H4, might act as a unique signaling molecule with
roles independent from C2H4 (Tsuchisaka et al., 2009; Tsang et al.,
2011). While molecular evidence regarding this are still lacking, it
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FIGURE 6 | Colonization parameters of pre-treated lumichrome roots

of lotus and tomato. (A) Untreated control and (B) lumichrome
pre-treated lotus roots following 18 days post-infection (dpi) with M. loti.
Little arrow heads indicate the presence of nodules. Close-up of (C)

control and (D) pre-treated nodules from lotus 18 dpi. (E) Time-course
(58 days) of nodule development in lotus following pre-treatment with
lumichrome (white circle) or without (black circle). (F–I) Mycorrhization
parameters of (F) frequency of mycorrhiza In the root system (%F ), (G)

intensity of mycorrhizal colonization in the root system (%M ), (H)

arbuscule abundance in mycorrhizal parts of root fragments (%a) and (I)

arbuscule abundance in the root system (%A) of tomato root controls
(black bar) and pre-treated with lumichrome (gray bar) at 28 and 58 days
after inoculation with Glomus spp. The values are the average ± SE for four
independent replicates [of 15 root fragments each, (F–I)] and an asterisk
indicates a value that was determined by Student’s t -test (P < 0.05) to be
significantly different from the control. nd, not detected.

suggests that LC and ACC could interact in a similar phytohor-
mone cascade, and this pathway and its significance remains to be
elucidated in future.

Lastly, upon LC application several transcripts associated with
early phase symbiosis were repressed in both species (Table 1).
Furthermore, an enhancement in nodule number or the timing
of hyphal initiation, respectively (Figure 6), as well as an alter-
ation in primary carbon, ethylene and gibberellin metabolism in
the absence of colonization partners was observed in the lotus-
and tomato-treated roots. These modulations involve both sym-
biotic dependent processes, as well as general increases in primary
carbon metabolism. However, the exact molecular partner(s) LC
interacts with to initiate this cascade of events still needs to be
elucidated. In addition, it is not clear whether LC is essential for
symbiosis or rather just alters the plant’s response toward sym-
biosis. It is also apparent that other downstream regulators of

the symbiosis pathway need to be activated during AM coloniza-
tion, making the use of LC an extremely useful tool in order
to study these in future. In the context of the defined symbio-
sis, future elucidation and characterization of LC biosynthetic
mutants and transgenic lines would greatly aid in addressing these
questions.

In conclusion, lumichrome-associated responses include a
reconfiguration in primary carbon and phythormone metabolism
suggesting that it participates in aspects of symbiosis and general
plant growth. Lotus japonicus showed a significant improvement in
biomass and nodule number pre-treated with this compound. In
contrast, while the timing of hyphae initiation during early post-
infection phases was increased upon application in S. lycopersicum,
this also led to a reduction in arbuscule maturation. While the
mechanism for this discrepancy remains unclear at present, future
work elucidating the similarities and differences in genetic factors
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involved in nodulation and mycorrhization events, respectively,
will shed light on the protein targets affected by lumichrome, and
its downstream effects, during symbiosis.
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APPENDIX

FIGURE A1 | Physiological assessment of lumichrome treatment on lotus

and tomato plants. Phenotypes of control, 5 nM lumichrome root-drenched,
foliar, and a combination of root and foliar applications (from left to right) of
(A) lotus plants and (B) tomato shoots (top) and roots (bottom) grown under a
16-h photoperiod. Lugol staining of mature lateral root tips of (C) control and
(D) lumichrome-treated lotus roots, and (E) control and (F) lumichrome-treated
tomato roots. (G) Shoot and (H) root dry mass was recorded upon a weekly
10 μM AgNO3 treatment in parallel with untreated controls (see Figure 1) for

lotus (black bar) and tomato (gray bar). Semi-quantitative RT PCR of EIN3
targets of (I) lotus and (J) tomato roots after silver ion inhibition for water
control (1) untreated control (2), Ag+ untreated control (3), LC-treated (4), and
Ag+ LC-treated (5) roots (from left to right). Bottom panel represents PP2A
and 18S rRNA expression for lotus and tomato, respectively. The values are
the mean ± SE (n = 6). The data was analyzed using one way ANOVA followed
by Fisher’s least significant difference and bars that do not share letters are
significantly different (P < 0.05) from each other.
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FIGURE A2 | Filtered gene responses (P < 0.05) of a MAPMAN

overview of heterotrophic metabolism of lumichrome-treated

(A) lotus and (B) tomato roots. The values are representative of
the log2 transformed values of three individual hybridizations,
statistically analyzed via robust multichip averaging (RMA) in R, and

classed according to the MAPMAN classifications (Thimm et al.,
2004; Usadel et al., 2005) adapted for lotus (Sanchez et al., 2008)
and tomato (Urbanczyk-Wochniak et al., 2006), respectively. Red
indicates a decrease whereas blue indicates an increase [see color
scale in (B)].
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FIGURE A3 | Relative primary metabolite levels of (A) lotus and (B)

tomato roots treated with 5 nM lumichrome. Data are normalized with
respect to mean response calculated for the respective untreated control (to
allow statistical assessment in the same way; indicated by vertical striped

line). The values are the average ± SE (SE for control indicated with diagonal
striped boxes) reported for five independent replicates and an asterisk
indicates a value that was determined by Student’s t-test (P < 0.05) to be
significantly different from the respective untreated control.
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