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Suboptimal availability of water and nutrients is a primary limitation to plant growth in
terrestrial ecosystems. The acquisition of soil resources by plant roots is therefore an
important component of plant fitness and agricultural productivity. Plant root systems
comprise a set of phenes, or traits, that interact. Phenes are the units of the plant
phenotype, and phene states represent the variation in form and function a particular phene
may take. Root phenes can be classified as affecting resource acquisition or utilization,
influencing acquisition through exploration or exploitation, and in being metabolically
influential or neutral. These classifications determine how one phene will interact with
another phene, whether through foraging mechanisms or metabolic economics. Phenes
that influence one another through foraging mechanisms are likely to operate within a
phene module, a group of interacting phenes, that may be co-selected. Examples of
root phene interactions discussed are: (1) root hair length × root hair density, (2) lateral
branching × root cortical aerenchyma (RCA), (3) adventitious root number × adventitious
root respiration and basal root growth angle (BRGA), (4) nodal root number × RCA,
and (5) BRGA × root hair length and density. Progress in the study of phenes and
phene interactions will be facilitated by employing simulation modeling and near-isophenic
lines that allow the study of specific phenes and phene combinations within a common
phenotypic background. Developing a robust understanding of the phenome at the
organismal level will require new lines of inquiry into how phenotypic integration influences
plant function in diverse environments. A better understanding of how root phenes interact
to affect soil resource acquisition will be an important tool in the breeding of crops with
superior stress tolerance and reduced dependence on intensive use of inputs.
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INTRODUCTION
Global food security is a serious challenge (Funk and Brown,2009),
with approximately 870 million people experiencing chronic
undernourishment (FAO et al., 2012). In much of the develop-
ing world, use of nitrogen (N) and phosphorus (P) fertilizers
is relatively low, leading to substantial reductions in crop yields
(FAO, 2008). In developed nations intensive use of fertilizers is
associated with greater crop yields (Roberts, 2009). However, crop
plants in these agricultural systems take up only a portion of the
applied nitrogen fertilizer (Goulding, 2000), and the remainder
pollutes water and the atmosphere (Jenkinson, 2001). Further-
more, phosphorus fertilizers are a non-renewable resource, and
global production of phosphorus is expected to peak around the
year 2033 (Cordell et al., 2009). Increasing crop acquisition of both
nitrogen and phosphorus is therefore a desirable goal for both sub-
sistence and commercial agriculture. Belowground properties of
natural ecosystems are also receiving attention because of their
influence on important processes including carbon sequestration
(Eissenstat et al., 2000) and community structure (Craine et al.,
2002).

Root architecture, the spatial arrangement of a root system,
has been shown to be important in agricultural systems (Lynch,
1995; Ho and Lynch, 2004; Hirel et al., 2007) and natural sys-
tems (Mahall and Callaway, 1992; Comas and Eissenstat, 2009)

for nutrient acquisition, plant interactions, and nutrient cycling.
Understanding the contribution of specific root traits, or phenes,
to root system function is critical for crop improvement because
it allows identification of traits that contribute desired functions
(Kell, 2011; Lynch and Brown, 2012). High-throughput root phe-
notyping is an important tool in this context as it permits the
profiling of the extent, magnitude, and distribution of root traits
in crop germplasm, and because phenotyping is limiting progress
in crop breeding (Furbank and Tester, 2011). Advances in high-
throughput phenotyping of roots (Grift et al., 2011; Trachsel et al.,
2011; Zhu et al., 2011) will enable focused efforts to improve crop
nutrient acquisition by selection for root ideotypes and to under-
stand the influence of inter-and-intraspecific root system variation
on community structure and ecosystem function.

Ideotype, or trait-based, breeding was proposed by Donald
(1968) as a way to combine traits that would each contribute
to increased yield. He identified a flaw in “deficit elimination”
or “selection for yield” approaches in that they do not seek to
answer how increased yield is created (Donald, 1962). Instead,
he proposed studying traits in isolation to understand how they
contribute to yield then combining such yield improving traits
through traditional breeding. Crop breeding programs com-
monly combine traits, especially in the pyramiding of traits
associated with disease resistance (Shen et al., 2001; Singh et al.,
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2001; Steele et al., 2006). This approach has contributed sub-
stantially to yield gains in several crops, including maize, wheat,
and common bean (Mock and Pearce, 1975; Kelly and Adams,
1987; Reynolds et al., 1994; McClean et al., 2011). The trait-
based approach inherent in the concept of ideotype breeding
forced researchers to not only consider traits of interest in iso-
lation, but also to consider relationships among traits. This is
illustrated by the work of Rasmusson (1987), demonstrating that
compensation among plant organs can lead to tradeoffs, such as
increasing head numbers being associated with fewer, smaller ker-
nels in barley. The integration of traits determines how the whole
plant functions and remains an underutilized aspect of ideotype
breeding.

A body of work on phenotypic integration in the field of evo-
lutionary biology and ecology has also considered some aspects
of the relationships among traits (Murren, 2002; Pigliucci, 2003).
In this context phenotypic integration has been defined as the
“pattern of functional, developmental, and/or genetic correlation
(however measured) among different traits in a given organism”
(Pigliucci, 2003). In plants, this area of research originated with
the work of Berg (1960) who identified clusters of correlated traits.
Strong correlations between traits could imply shared functions,
with correlations among traits possibly maintained by stabiliz-
ing selection. In some cases researchers have focused on how
groups of correlated traits affect plant function in specific ecolog-
ical contexts (Lechowicz and Pierre, 1988). Economic spectrums
that relate traits by their costs and functions have been identified
in leaves (Wright et al., 2004), and proposed for roots, though evi-
dence for a root economic spectrum remains inconclusive (Chen
et al., 2013). In this research, phenotypic diversity within species
or populations has typically been viewed as noise rather than
as an important response to heterogeneous and unpredictable
environments, competition, and phenotypic plasticity. Both eco-
logical and agricultural research have converged upon concepts
of integration through genetic, physiological, and developmental
correlation (Grafius, 1978), though researchers in both areas seem
to be largely unaware of the other.

Trait “stacking” in genetically modified crops (GMCs) is
another form of ideotype breeding and trait integration. Traits
of interest here are usually of the “deficit elimination” type, such
as reducing susceptibility to insects or herbicides. First-generation
stacks included Bt toxin-producing and glycophosphate-resistant
GMCs that were introduced in 1998 (James, 2000). In order
to decrease the selection for Bt toxin resistance in agricultural
insect pests, 2nd-generation stacks combine several modes of
actions for the same trait, which also reduces requirements for
non-GMC refuge areas (Que et al., 2010). Stacking technolo-
gies have rapidly developed to higher numbers of combined
traits, such as the nine foreign proteins combined in Smart-
StaxTM (Marra et al., 2010). Gene stacking does lead to trait
interactions in that most GM traits enhance growth in some
situations, and combining modes of action decreases the abil-
ity of pests to adapt. Trait synergisms have been considered
by biotechnology companies (Then, 2011), but only in terms
of multiple modes of action for pest control, similar to the
pyramiding of genes for disease resistance through introgression
breeding.

Traditional plant breeding has attempted to combine traits
that are helpful in isolation, and transgenic crops have also
made progress in the stacking of particular traits. Ecologists have
observed correlations among traits and between traits and plant
function. However, our understanding of non-additive trait inter-
actions is limited, and this is particularly true in root biology.
Here we propose a theoretical framework for evaluating root sys-
tem phenes and their functional interactions in the context of
soil resource acquisition. We will show that the combining of
traits does not always lead to a simple accumulation of additive
effects, so plant biologists and breeders must take into account
trait synergisms.

THEORETICAL FRAMEWORK
WHAT IS A PHENE?
“Phene” was used as early as 1925 in animal genetics to describe
phenotypic traits under genetic control (Serebrovsky, 1925), and
has been used extensively in European and Russian agricultural
literature (e.g., Gustafsson et al., 1977). Phene can be defined
concisely: phene is to phenotype as gene is to genotype (Lynch,
2011; Pieruschka and Poorter, 2012). Just as genes have variants
called alleles, phenes have variants we will refer to as phene states
(phene is to trait as phene state is to attribute). The particular
combination of states for all phenes constitutes the phenotype
of an individual organism. We will use phenome as the totality
of all possible phene states of a taxon, i.e., phenotypic potential
(Figure 1). Alternative more generic terms such as traits, charac-
ters, and attributes have been used with ambiguity that can lead to
confusion (Violle et al., 2007), such as by referring to properties at
several levels of biological organization or by using trait to refer
to either phenes or phene states. Lynch and Brown (2012) pro-
posed that the most useful and meaningful phenes are elementary
and unique at their level of biological organization (e.g., organ,
tissue, cell). For example, an elementary root architectural phene

FIGURE 1 | Studying the characteristics of phenotypes of different

individuals allows us to identify phenes and their existent states. The
phenome is the total possible phenotypic potential of a taxon, including all
possible phene states. The phenotypes presented here do not represent all
possible phenotypes of this phenome.
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FIGURE 2 | Phenes and their interactions influence plant functions such

as nutrient acquisition, utilization, and carbon economy. In turn, these
functions affect agricultural performance measures such as shoot biomass
and nutrient content. Ultimately, all these lead to yield (or fitness). Yield is far

removed from base functions, which themselves can be multi-tiered and
reciprocating. The original diagram was made by Arnold (1983) and reworked
for plant ecology by Violle et al. (2007). Here we present it for a phene-centric
view in agriculture.

should not be the product or aggregation of other more basic
architectural phenes. The genetic and developmental processes
giving rise to phenes should be unique, i.e., a phene is elemen-
tal because it has a unique developmental pathway. Some phenes
may be under single gene control, and have phene states that are
discrete. Many phenes are probably quantitative traits resulting
from the interaction of many genes and the environment, and will
show a continuous distribution of phene states. Many measure-
ments of plant phenotypes are aggregates of multiple elemental
phenes. For example, rooting depth has been shown to be influ-
enced by separate phenes, such as root growth angle (Trachsel et al.,
2013) and aerenchyma (Zhu et al., 2010a). Such plant character-
istics may be referred to as phene aggregates. Plant measurements
similar to yield, plant mass, or nutrient content will not be referred
to as phenes or as phene aggregates. Rather, they are functional
responses dependent on the state of many components of the plant
phenotype.

Phene states make up phenotypes, which are individual mani-
festations of the phenome of a species. The root phenes of interest
to us here have functional utility for resource acquisition (Lynch,
2011), and are components of root architecture, morphology,
anatomy, or physiology. In turn, these functions influence agri-
cultural performance such as biomass and yield, or plant fitness
in natural systems (Figure 2), sensu Arnold (1983) and Violle
et al. (2007). Functional utility can be assessed by comparing the
functional responses of different phene states. For example, it has
been shown that plants with longer root hairs acquire more phos-
phorus than plants with shorter root hairs or none at all (Bates
and Lynch, 2000; Yan et al., 2004; Zhu et al., 2010b). The compar-
ison of the phosphorus acquisition responses of these two root
hair phene states demonstrates that the root hair length phene
is important for P acquisition, with longer root hairs leading to
greater P acquisition. A phene-function response curve shows the
influence of a single continually varying phene on a plant function
(Figure 3).

FIGURE 3 | A phene-function response curve shows the influence

of a single continually varying phene on a plant functional response.

A phene may have a linear effect on the response (A), asymptote (B), or
have an optimum at middle states (C).

ROOT PHENE CLASSIFICATION
Root phenes classified by function, foraging strategy, and metabolic
influence
Phenes can be classified in numerous ways. A mechanistic
classification of root phenes can be made on the basis of whether
they primarily affect resource acquisition or resource utilization.
Phenes that affect soil resource acquisition generally affect the
coincidence of root foraging and soil resource availability in time
and space. Phenes that affect resource utilization influence how
efficiently resources are used for plant functions including growth,
further resource acquisition, and reproduction. Phenes that affect
resource acquisition can be further classified based on forag-
ing strategy. Foraging strategies exist along a continuum from
phenes that influence soil exploration to those that influence soil
exploitation. Exploration phenes influence the spatial and tem-
poral exploration of soil domains by roots and root symbionts.
Exploitation of soil resources describes how thoroughly resources
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are acquired within a given soil domain, i.e., with no further soil
exploration. Fitter proposed a measurement of acquisition effi-
ciency to be the quotient of soil volume depleted to total root
system volume (Fitter et al., 1991). This volume depends on the
mobility of nutrients. Phosphorus depletion zones are only a few
millimeters in diameter, while those for nitrate may be 10–100
times larger due to the 1000-fold difference between phosphate
and nitrate in effective diffusion coefficients (Barber, 1984). A
phene state can increase exploration for an immobile resource by
entering new soil domains, while also increasing the exploitation
of a domain for a more mobile resource by increasing the intensity
of its acquisition (Figure 4). The differences in mobility between
mobile and immobile nutrients give rise to the root system deple-
tion zone and root surface depletion zones (lighter gray vs. dark
gray in Figure 4), respectively (Bray, 1954). The growth angle of
axial roots (e.g., nodal roots in maize, basal roots in common
bean) influences the relative exploration of shallow and deep soil
domains. Topsoil foraging has been shown to be important for
phosphorus acquisition in both maize and common bean (Lynch
and Brown, 2008), while deep soil foraging has been proposed to be
important for the acquisition of water and nitrate (Lynch, 2013).
Exploitation phenes affect the rate of nutrient uptake by increas-
ing root density (number or length of roots in a volume) through
greater numbers of axial roots, lateral branching, or root hairs
and rhizosphere modification, for example. Rhizosphere modifi-
cation includes decreasing the pH by releasing protons, organic
acids, and by exudation of enzymes that release phosphorus from
organic compounds (Lambers et al., 2006). Mycorrhizal symbioses
can affect both exploration and exploitation, depending on the
spatial scale and resource. Mycorrhizal fungi increase soil explo-
ration by the growth of their hyphae, and exchange phosphorus
for carbon with their host plant (Harley, 1989). Resource acquisi-
tion phenes not only differ in foraging strategies but in how they
influence plant metabolism, and effects on metabolism are the
mechanism for utilization phenes.

The functional utility of root phenes for soil resource
acquisition is strongly influenced by rhizoeconomics (Lynch and

Ho, 2005; Lynch, 2007a), i.e., their relative costs and benefits. One
of the major costs of roots is their metabolic demand. Several
economic currencies can be used to estimate cost/benefit rela-
tionships, such as carbon, nitrogen, and phosphorus (Lynch and
Rodriguez, 1994; Lynch and Beebe, 1995). Metabolic costs can
be partitioned into construction and maintenance costs (Chapin
et al., 1987). Root construction costs are generally strongly influ-
enced by root volume which is proportional to length and
diameter, so phenes which determine these (e.g., elongation rate,
branching, number of roots formed, and root diameters) will
influence construction costs. Roots, like all plant tissues, require
not only carbon, but also mineral nutrients for construction and
maintenance. Phenes have been identified that alter root metabolic
demand. “Root etiolation,” or decreasing diameter in order to
increase length, has been proposed as an adaptive trait for nutrient
acquisition (Lynch and Brown, 2008), with empirical support pro-
vided in maize (Zhu and Lynch, 2004). Root cortical aerenchyma
(RCA) converts living cortical tissue to air space via programmed
cell death. This lowers the respiration of root segments (Fan et al.,
2003), and has the additional benefit of mobilizing nutrients for
other uses (Postma and Lynch, 2010). An economic classification
of root phenes is based on how they influence metabolism. Table 1
presents a number of root phenes and their classification according
to these three schemes (acquisition vs. utilization, exploration vs.
exploitation, and metabolic influence vs. no metabolic influence).

Not all root measurements are root phenes
An array of root measurements are commonly made in both
agricultural and natural systems that do not meet the definition
of an elemental phene. Rather, most of these root measurements
represent phene aggregates that are influenced by the states of
several root phenes (Table 2). Others, such as total root length,
are functional responses that are influenced by states of phenes
through their influence on soil resource acquisition and even-
tual photosynthate allocation to the root system. Unexplained
variation in these measurements may be resolved by more thor-
ough documentation of constituent root architectural, anatomical,

FIGURE 4 | (A) Black lines depict a simplified root system with a
lateral root on each side of a tap root. The left side has 4 second order
laterals, while the right side has 8 second order laterals. The darkest gray
area around roots depicts the depletion zone of immobile resources
(like P), while the medium gray depicts the depletion zone of mobile
resources (like N), and the lightest gray represents very mobile

resources (like water). (B) Efficiency is shown by the quotient of the area
(pixel counts) of a respective resource’s depletion zone divided by the area of
the roots for each half of the root system with sparse or dense second order
laterals. Dense laterals increase the efficiency for an immobile resource, but
decrease efficiency for mobile resources. Differences would be inflated if
areas were converted to volumes.
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Table 1 | Classification of root phenes.

Root phene Mechanism Foraging Economy

Axial root growth

angle

Acquisition Exploration Neutral

Root growth rate Acquisition Exploration Influencing

Number of axial roots Acquisition Exploration

Exploitation

Influencing

Lateral root

branching

Acquisition Exploitation (N)

Exploration (P)

Influencing

Root hair density Acquisition Exploitation (P) Neutral

Root hair length Acquisition Exploitation (P) Neutral

Rhizosphere

modification

Acquisition Exploitation (P) Influencing

Aerenchyma Utilization Influencing

Root etiolation Utilization Influencing

Classification of a particular root phene begins by determining its mechanism
affecting resource uses, acquisition or utilization. Resource acquisition phenes
are classified based on their foraging strategy, exploration or exploitation for a
particular resource, with nitrogen (N) representing mobile and phosphorus (P)
representing immobile resources. All root phenes are classified by whether they
influence metabolic economy or are neutral.

and physiological phenes. These measurements may often be
referred to as traits, which highlights the difference between
the common usage of “trait” and the biological definition of
“phene”.

HOW DO PHENES INTERACT?
Functional response interactions
The utility of a phene can be assessed by comparing the functional
responses of varying states of the phene. Similarly, the interac-
tion of two phenes can be assessed by combining at least two
phenes states of two different phenes and measuring the functional
response of each combination. In such a situation, the null hypoth-
esis is that the functional response of two phene states from two
different phenes will be additive. The particular phene state com-
bination is synergetic when the functional response exceeds the
sum of the responses of the phene states in isolation. Antagonistic
interactions occur when the functional response of phene states
in combination is worse than that expected from the sum of their
responses in isolation. We can describe the mechanistic basis of the
interaction based on the classifications of the component phenes.
A phene-function response landscape graphically demonstrates
how the simultaneous changes of two or more phenes affect a
function (Figure 5).

Foraging strategy interactions
Phenes interact through their effects on foraging when the mech-
anism through which one phene affects foraging directly interacts
with the mechanism of another phene affecting foraging. For
example, axial roots with shallow growth angles will increase the
exploration of soil with greater amounts of phosphorus, while
increased root hairs will increase the exploitation of the explored

soil. The combined states of shallow growth angles and increased
root hairs may have a synergetic interaction beyond what would be
expected based on their additive effects on phosphorus acquisition
(see Case Study 2).

Economic interactions
The economic interaction of two phenes is mediated by the
metabolic budget of the plant. Two metabolism influencing
phenes will exhibit tradeoffs when occupying more metaboli-
cally demanding states. These tradeoffs are expected between root
classes, or even between number and length within a class (Walk
et al., 2006; Rubio and Lynch, 2007). Building more of one type
of root will necessarily limit the metabolic resources available
for building other types, or decrease the resources available for
elongation of existing roots. However, feedbacks between nutrient
acquisition and increased photosynthesis that allow further root
growth are possible. Conversely, a metabolically neutral phene
will have no economic interaction with a metabolism influencing
phene.

Phene modules
Combinations of specific phene states may be more likely to
be found together in individuals of a taxon when they act as
a functional module through foraging and economic interac-
tions. Modules are aggregates of components that are related,
such as in the context of molecular pathways (Hartwell et al.,
1999), architectural modules such as leaves, flowers, and roots,
and even entire plants as modules in an ecosystem (Prusinkiewicz,
2004). One useful definition for module in the context of
phene interactions is a group of phenes that behave synergis-
tically. In roots, such functional module components probably
belong to the same parent root class, similar to the “modu-
lar unit” suggested by Pregitzer et al. (2002) as lateral branches
of tree roots consisting of several orders of the finest roots.
In crops such as common bean and maize, these modules are
initiated from and include the major axes, i.e., basal roots in
bean, nodal roots in maize. Foraging interactions are more
likely to occur in modules composed of phenes that are close
together because their likelihood of coinciding with a soil resource
increases.

Environmental interactions
It is well known that the abiotic and biotic environments can affect
the phene states of an organism through the phenomenon of phe-
notypic plasticity (West-Eberhard, 1989; Callaway et al., 2003).
For example, roots have been observed to proliferate in patches
of nutrients (Drew and Saker, 1975; Granato and Raper, 1989),
change rooting angle (Bonser et al., 1996), change root hair density
(Ma et al.,2001a), and alter axial elongation and lateral root density
in response to phosphorus availability (Borch et al., 1999). Root
phenotypic plasticity constitutes one type of phene–environment
interaction. Another type is based on tradeoffs and synergies that
may exist between root phenes and particular soil resources, i.e.,
phene × environment × functional response interactions. For
example, in low phosphorus soils, phenotypes with shallow root
growth angles perform better than phenotypes with steep root
growth angles, but in high phosphorus conditions both perform
equally well. Steep-angled phenotypes are better at acquiring water
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Table 2 | Relation of root measurements to root phenes.

Root measurement Definition Influential phenes Reference

Total root length The cumulative length of an entire plant root system (m)

that is partially a functional response.

Axial root length, number of axial roots,

lateral branching, lateral length

Zhu et al. (2006),

Brun et al. (2010)

Root length density The cumulative length of roots per some volume, often

from soil cores or monoliths (m cm−3) that is a phene

aggregate dependent on the states of constituent

phenes.

Axial root length, number of axial roots,

lateral branching, lateral length

Ho et al. (2005),

Miguel et al. (2013)

Specific root length The root length per unit mass (m g−1) that is a phene

aggregate dependent on the states of constituent

phenes.

Xylem area, phloem area, number of

cortical cells, cortical cell size,

aerenchyma area, secondary

development

Fan et al. (2003),

Jaramillo et al. (2013)

Root tissue density The mass of roots per unit root volume (g cm−3) that is a

phene aggregate dependent on the states of constituent

phenes.

Xylem area, phloem area, number of

cortical cells, aerenchyma area,

secondary development

Fan et al. (2003),

Jaramillo et al. (2013)

Rooting depth The deepest depth at which roots from a plant are

observed (m). Alternatively, the depth at which 95% of

root length is at or above may be used. Both are phene

aggregates dependent on the states of constituent

phenes, and will be influenced by total root length.

Axial root angles, axial root length,

number of axial roots, lateral branching,

lateral length

Ho et al. (2005),

Miguel et al. (2013)

Root respiration The rate of CO2productiondue to root metabolism (mmol

CO2 m−1 root s−1) that is a phene aggregate dependent

on the states of influencing phenes and their

contributions to total root segment respiration.

Number of cortical cells, cortical cell

size, aerenchyma area, N content,

secondary development

Fan et al. (2003), Zhu

et al. (2010a),

Jaramillo et al. (2013)

Root longevity The length of time between the formation and loss of a

root (s) that is a functional response dependent on root

defenses and stress physiology.

Phenolic concentrations, lignin

concentration, number of cortical cells,

cortical cell size, aerenchyma area

Eissenstat et al. (2000)

Topological index

and fractal

dimension

Ratios of different measures summarizing the complexity

of a network (unitless) that are phene aggregates

dependent on the states of constituent phenes.

Axial root length, number of axial roots,

lateral branching, lateral length

Fitter and Stickland

(1992),

Walk et al. (2004)

Many common measures of root system and individual root properties are examples of phene aggregates that are influenced by several more elemental root phenes,
and some are partially functional responses dependent on plant performance.These root measures are defined and the phenes that influence the measure are listed.
Here, lateral branching includes the branching of successive orders of laterals, i.e., including laterals of axial roots, laterals of laterals, etc.

during terminal drought (Ho et al., 2005), so there is an architec-
tural tradeoff for root growth angle for acquiring resources at
different depths in the soil. When both phosphorus stress and
terminal drought occur together, shallow-rooted phenotypes per-
formed better because early P uptake allowed the growth of more
extensive root systems that then conferred greater tolerance to
the terminal drought. Phene × phene × environment interac-
tions are more complicated than single phene × environment
interactions, but must be studied in order to understand how
plants cope with multiple stresses, and how suites of traits
influence fitness.

Interplant interactions
Root competition among plants of different species plays an
important role in shaping plant communities (Schenk, 2006) and
in the performance of interspecific polycultures in agriculture

(Wilson, 1988; Postma and Lynch, 2012). Competition is expected
to be greater for mobile nutrients than relatively immobile nutri-
ents (Postma and Lynch, 2012; Wilberts et al., 2013). Little is
known about how specific root traits affect competition and
facilitation, but there are a few examples. Arabidopsis wildtypes
with root hairs were shown to have a competitive advantage
over root hairless rhd2 mutants in low phosphorus media (Bates
and Lynch, 2001). Similarly, Arabidopsis wildtypes out-competed
axr4 mutants with decreased numbers of lateral roots in low
phosphorus, but not in low nitrogen (Fitter et al., 2002). Archi-
tectural multilines of common bean composed of equal portions
of plants with shallow and steep basal root angles had Land Equiv-
alent Ratios greater than unity (Henry et al., 2010), which means
more area must be planted of the monocultures in order to achieve
the same levels of yield as the multilines. This implies a competitive
release of the dominant shallow-rooted plants when grown with
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FIGURE 5 | Panel (A) shows the functional response landscape of two
phenes that have linear effects in isolation. Panel (B) shows one phene with a
linear effect and one with a central optimum. Panel (C) shows two phenes

with optimums at middle phene states. Synergisms are shown by responses
greater than the additive, while antagonistic effects are shown as being less
than the additive.

steep-rooted plants in low phosphorus soils. Common beans were
shown to alter root architecture in the presence of neighboring
plants due to localized phosphorus depletion (Nord et al., 2011).
Clearly, understanding phenes requires an understanding of how
phenes will react to other phenes, the environment, and other
plants.

Phene integration
Foraging, economic, environmental, and interplant interactions of
phenes create an integrated phenotype. The integrated phenotype
is more than simply a collection of isolated traits, but rather is
a suite of interacting phenes that affect plant functions. These
interactions cannot simply be assumed to be additive and will
depend on the environmental context. Phene integration occurs
at all levels of phenotypic organization, from cells, to modules, to
the whole plant.

Phenes may interact via resource partitioning and signaling,
even between roots and shoots. Typically, shoots provide pho-
tosynthates to the roots, while roots supply soil resources to the

shoot. Thornley (1972) developed a mathematical model with
two pools, shoot and roots, and two substrates, carbon and nitro-
gen, which are supplied by the shoot and roots, respectively. This
simple source–sink model demonstrated that plants should bal-
ance shoot and root activity and invest in the organs that produce
the most limiting resource, and continues to guide whole plant
modeling. Empirical work demonstrates that aboveground and
belowground organs communicate their internal and environ-
mental status to each other in order to integrate plant function
in dynamic environments. For example, root ABA signals induce
stomatal closure in leaves which decreases transpiration (Davies
and Zhang, 1991). The plant shoot is partially responsible for
perceiving the internal nitrogen status and uses reduced nitrogen
compounds and auxin to signal roots to form lateral roots (Ruffel
et al., 2011). Interestingly, roots can also influence shoot branch-
ing through auxin signaling (Bennett et al., 2006), which might
suggest root perception of the soil environment informs the reg-
ulation of shoot growth. These interactions suggest that another
form of phene interaction may be information exchange, which
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may apply within the root system as well. The global leaf economic
spectrum demonstrates that leaves from a variety of species repre-
senting diverse functional groups are constrained by development
and natural selection to fall along a single spectrum for a vari-
ety of traits (Wright et al., 2004). A direct interaction between a
shoot phene such as leaf morphology and an RSA phene like lateral
branching is unlikely. Rather, the shoot and root organs integrate
information processing and metabolism, and balance production
of photosynthates with acquisition of soil resources (Figure 6).

Hypotheses regarding the integration of root phenes
We propose the following hypotheses regarding the integration of
root phenes:

(1) Functional synergisms will occur among foraging phenes
that act within a module including the axial root and its
subordinate roots.

FIGURE 6 | A maize seedling is depicted. Seminal roots (blue) and
primary root (green) emerge from the seed. One whorl of nodal roots (red)
is shown emerging from belowground stem tissue. The nodal roots on the
left have steep growth angles, while those on the right are shallow. The
shallow nodal roots on the right also have dense laterals, while the steep
nodal roots on the left have sparse laterals. In the context of phosphorus
acquisition from the epipedon, shallow nodal roots with many laterals will
have a synergistic interaction because they are acting within the same
module. Though the seminal roots on the left have many laterals they will
not interact synergistically for foraging with nodal root traits because they
are in a different root class module. The whole plant is integrated by
reciprocal signaling between shoot and roots and by balancing the
production of photosynthates with soil resource acquisition.

(2) Functional synergism will increase as the number of positively
acting phene states combined is increased.

(3) Metabolic tradeoffs will limit synergism created by com-
bining foraging phene states that demand more metabolic
resources, except when alleviated by phenes in states that
relieve metabolic constraints.

(4) Synergisms will be more likely to occur when com-
bining metabolically neutral phenes in positively acting
states.

(5) The large diversity of root system phenotypes, i.e., the
particular combination of phene states of an individ-
ual, is partially explained by the interactions of phenes
within plants, between plants, and between phenes and the
environment.

CASE STUDIES
Research on phene interactions is nascent, and this is especially
true in the case of roots. Much of the evidence for root phene
integration comes from research with SimRoot, a functional–
structural plant model focusing on root system architecture and
nutrient acquisition (Lynch et al., 1997; Postma and Lynch, 2010),
though we will also discuss empirical evidence and experimental
approaches for studying phene interactions.

ROOT HAIR LENGTH × ROOT HAIR DENSITY
Root hairs are subcellular extensions of root epidermal cells that
are particularly important for the acquisition of immobile nutri-
ents such as phosphorus. Root hairs can vary in density (i.e.,
number of root hairs per unit root surface area) and in length.
Diversity for both of these traits is evident in several species includ-
ing common bean, soybean, and maize (Wang et al., 2004; Yan
et al., 2004; Zhu et al., 2005a). SimRoot was employed to test inter-
actions among root hair length, root hair density, proximity of
root hair appearance to the apical meristem, and the spatial pat-
terning of hair-bearing cells (trichoblasts) and non-hair-bearing
cells (atrichoblasts) in Arabidopsis (Ma et al., 2001b). The syn-
ergetic effect of increased root hair length and density (RHLD)
phene states was 272% greater than their expected additive effects.
Root hair formation nearer the root tip increases P acquisition,
while number of files had positive effects when more numerous.
All positive phene states were compared to their expected additive
function response in two-way, three-way, and four-way combina-
tions. On average, synergetic effects increased with the number
of positive interactions: two-way, 168%; three-way, 232%; and
four-way, 371% greater than additive effects (new calculations
from original data). Changing RHLD in Arabidopsis had no direct
effect on root respiration (Bates and Lynch, 2000). We hypothesize
that metabolically neutral phenes will have the greatest synergisms
because of the lack of economic tradeoffs. As this example shows,
the magnitude of phene synergisms may increase with the number
of positively interacting phene states (Hypothesis 2).

LATERAL BRANCHING × ROOT CORTICAL AERENCHYMA
Variation for lateral root length and density has been observed
in both the primary root and nodal roots of maize (Zhu et al.,
2005b; Trachsel et al., 2011). Greater lateral root length and den-
sity would permit greater soil exploration, and so would improve
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acquisition of soil resources. However, increased lateral branch-
ing has high metabolic demand, and due to competing sinks it
could influence the growth of other root classes. This trade-off
could be alleviated by decreasing metabolic demand in other ways.
SimRoot was used to test the hypotheses that increased lateral
root branching would increase N and P acquisition and that this
phene would be affected by the formation of aerenchyma (Postma
and Lynch, 2011). At the lowest level of nitrogen, there was a
42% reduction in shoot dry weight compared to the expected
additive effects of increasing lateral root branching and forming
aerenchyma, which constitutes a functional antagonism. How-
ever, at the intermediate level of nitrogen a synergetic interaction
220% greater than the expected additive effects was observed.
In the low phosphorus condition, the synergetic interaction was
33% greater than the expected additive effects. This broad range
of interaction demonstrates the importance of environmental
context.

ADVENTITIOUS ROOT NUMBER × ADVENTITIOUS ROOT RESPIRATION
AND BASAL ROOT GROWTH ANGLE
Adventitious roots emerge from the hypocotyl in common bean
(Phaselous vulgaris) and have less construction and maintenance
costs than basal roots (Miller et al., 2003). Adventitious roots
emerge in the topsoil and typically have extremely shallow growth
angles, so they were hypothesized to be an adaptive trait for top-
soil foraging. Basal roots are the principal axial roots in common
bean, and a shallow growth angle for basal roots has been shown
to be important for topsoil foraging (Bonser et al., 1996; Liao et al.,
2004; Ho et al., 2005; Henry et al., 2010). Adventitious roots were
found to have a range of respiration rates from the same as tap
roots, to 400% greater than tap roots (Bouma et al., 1997; Walk
et al., 2006). Because phosphorus has low soil mobility, it accu-
mulates in the topsoil from the deposition of senesced plant tissue
(Anderson, 1988). Both functional response and economic inter-
actions were expected between adventitious root number (ARN)
and adventitious root respiration (ARR), and between ARN and
basal root growth angle (BRGA), which was tested in SimRoot
(Walk et al., 2006). Increasing ARN greatly increased phosphorus
acquisition when ARR was the same as tap root respiration, and
marginally benefited phosphorus acquisition when ARR was two
times tap root respiration. When ARR was four times greater than
tap root respiration, there was a negative relation between increas-
ing ARN and phosphorus acquisition. At the highest level of ARR,
not enough metabolic resources were available for the construction
of root length adequate for phosphorus acquisition. This shows a
functional response antagonism between greater states of ARN
and ARR that is mediated through an economic interaction. ARN
was also expected to interact with BRGA. However, only addi-
tive effects were observed between greater ARN and more shallow
BRGA, which suggests adventitious roots and basal roots function
as independent modules (Hypothesis 1).

NODAL ROOT NUMBER × ROOT CORTICAL AERENCHYMA
Unpublished results from SimRoot show interaction between RCA
and number of nodal roots in maize (Figure 7). Across a range of
N and P availability, root length and total biomass were strongly
affected by nodal root number. RCA had little to no effect on

biomass or root length when there were fewer than optimal crown
roots, but increased root length and biomass with optimal or
greater than optimal numbers of nodal roots, especially with
suboptimal N or P. Because optimal nodal root number differed
between N deficient and P deficient conditions, the range of nodal
root numbers where RCA increased biomass depended on the
environment. At medium levels of nitrogen and phosphorus, the
synergetic effects of greater numbers of crown roots and RCA
were 31.6% and 132% greater than the expected additive effects,
respectively.

BASAL ROOT GROWTH ANGLE × ROOT HAIR LENGTH AND
DENSITY
In common bean, BRGA is a soil exploration phene and was
hypothesized to influence the utility of the root hair phene, which
affects exploitation, by determining the placement of root hairs
in the soil profile. A field study was conducted in Mozambique,
comparing three recombinant inbred lines (RILs) for each of four
phenotypes representing all combinations of shallow and deep
BRGA and low and high RHLD; Miguel, 2012). In low P soil, shal-
low BRGA increased shoot growth by 57.7%, and greater RHLD
increased shoot growth by 89.3% (Figure 8). Shoot mass of the
combined positive states (shallow angle and greater RHLD) was
298% greater than the base line (steep angle and lower RHLD),
which is twice the expected additive effect. Root hairs along with
the basal roots or basal root laterals on which they form constitute
a functional module which gives rise to high levels of synergism
(Hypotheses 1 and 4).

EVIDENCE FOR ROOT PHENE FUNCTION AND INTERACTION IN
NATURAL DOMAINS
Variation in root phenes has been observed among wild species
along with correlation between phenes, such as between specific
root length and lateral branching (Comas and Eissenstat, 2009).
Differences in rooting depth among grassland species has been
proposed as one contribution to the relationship between biodi-
versity and ecosystem productivity by allowing plants to exploit
particular soil niches (Fargione and Tilman, 2005). As noted
above, rooting depth is a phene aggregate influenced by root-
ing angle, number, and total metabolic allocation to the root
system, so diversity for rooting depth among species influenc-
ing productivity represents phene × phene × species interactions.
A suite of functional traits associated with acquiring nitrogen in
nitrogen-limited grassland plants was proposed which included
high carbon:nitrogen tissue, slow metabolic rates, and large root
length (Craine et al., 2002). McCormack et al. (2012) found rela-
tionships across 12 tree species among root morphology, root
chemistry, root lifespan, and whole plant traits, though in another
study no clear relationship between root traits such as root diam-
eter and nitrogen concentration was identified (Chen et al., 2013).
These studies in natural systems demonstrate a growing awareness
of the identification of a root economic spectrum that would be a
useful tool for understanding variation in root systems. However,
to our knowledge, examples are lacking demonstrating the inter-
actions of specific root phenes for specific functions in natural
systems. Most studies rely on interspecific diversity to create root
phene variation, which confounds specific phenes with many other
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FIGURE 7 | Phene integration of root cortical aerenchyma (RCA) and crown root (CR) number was studied in maize using SimRoot across a range

of nitrogen (N) and phosphorus (P) levels. These simulation results demonstrate linear, asymptotic, and optimum single phene responses and their
interactions.

FIGURE 8 | Long root hairs and shallow basal root angles interact

synergistically on phosphorus acquisition in the field (created from

Miguel, 2012).

covarying factors. Below, we will discuss general approaches to
study root phenes and root phene integration that can be extended
to any study system.

GAPS IDENTIFIED BY COMPARING KNOWN INTERACTIONS TO
POSSIBLE INTERACTIONS
These case studies demonstrate progress in understanding root
phene integration. Most of the studies have been conducted with
simulation modeling so must be confirmed empirically, but the
work of Miguel (2012) with basal root angle and root hairs is a
notable exception where root phene state synergisms were demon-
strated in agricultural fields. There are no examples of interactions
where resource acquisition phenes affecting metabolic economy,
such as axial root number and lateral branching, have been simul-
taneously manipulated, though Walk et al. (2006) showed an
interaction between ARN and respiration mediated through archi-
tectural tradeoffs with lateral roots of basal and tap roots. Foraging
phenes that influence metabolism may have only additive, or even
antagonistic, interactions because of tradeoffs in metabolic econ-
omy (Hypothesis 3). Further work is also needed to understand
how phenes integrate within and between functional modules.

APPROACHES FOR STUDYING PHENE INTEGRATION
Many studies analyzing plant traits have relied on comparisons
between species for phene state variation and in natural environ-
mental gradients for differences in abiotic conditions. However,
such comparisons are confounded by the multitude of differences
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that exist among species and environments. The use of structured
genetic populations that vary for specific phenes but share a com-
mon genetic background, evaluated in environments in which
specific stresses are imposed, is a more powerful approach when
possible (Lynch, 2011). This strategy has the advantage of allow-
ing the comparison of different phene states within a common
genetic and phenotypic background, which is especially important
given our lack of understanding of phene integration. Populations
of RILs have been used both for genetic mapping and for near-
isophenic comparisons in common bean and maize (Yan et al.,
2004; Ho et al., 2005; Zhu et al., 2005a,b; Ochoa et al., 2006; Zhu
et al., 2006; Henry et al., 2010). Near-isophenic lines refer to lines
that differ primarily in the state of a single phene, or at least
a small number of phenes. Populations of near-isophenic lines
may also contain plants with combinations of phene states that
allow the study of phene integration. Single gene mutants may
not always be useful for studies of phenes because many phenes
of interest are controlled by several QTL or genes (Lynch, 2011).
While biparental RIL populations are useful for these phenotypic
contrasts, their limited diversity (descending from two parents)
may not allow the measurement of the breadth of the root phe-
nome. Diversity panels representing broader variation in crops
are now being used to probe the breadth of the root phenome.
High-throughput phenotyping must increase in extent and inten-
sity (Houle et al., 2010). Extensive phenotyping is accomplished
through the sampling of larger numbers of plants of greater diver-
sity. Intensive phenotyping is the measurement of more traits
for each sample. Extensive and intensive phenotyping are ben-
efitting from the application of remote sensing, image analysis,
and robotics (Fiorani and Schurr, 2013), including with roots
(Galkovskyi et al., 2012). Intensity will be further increased by
the inclusion of function-valued traits, or phenes that are best
described as mathematic functions rather than single values (King-
solver et al., 2001). Both extensive and intensive phenotyping
will contribute to plant phenomics and the study of root phene
integration.

Plant phenomics is generating vast amounts of data, and
increases in the extent and intensity of phenotyping will accel-
erate the pace of data collection. The creation and use of data
repositories by teams of scientists is imperative. In order for this
data to be useful, it must include metadata (higher level infor-
mation that describes the data and its context). Metadata has
the benefits of increasing data longevity and recycling by the
creator and others (Michener, 2006). Metadata for functional–
structural phenomics must include ontologies for identifying
plant structures and research context (Ilic et al., 2007; Madin
et al., 2008). Root functional phenomics should include ontologies
for roots that represent their phylogeny, genetics, and develop-
ment (Zobel, 2011), but also their function. Root phenomics
will not mature without thorough documentation and sharing
of data, especially due to the significant financial costs of root
phenotyping.

Rasmusson (1987) proposed developing a “germplasm bank
of ideotype traits” where breeders would agree to cooperate to
introgress phenes of interest into elite genetic backgrounds. Diver-
sity in crop species traits is often found in landraces or other
unimproved varieties (Bayuelo-Jiménez et al., 2011). Recently,

Burton et al. (2013a,b) reported substantial variation among RILs,
maize landraces and teosintes for both root architectural and root
anatomical phenes that could be of use in maize breeding. How-
ever, these unimproved genetic backgrounds act as barriers to the
inclusion of phenes that comprise a desired ideotype for breed-
ing programs. A collaborative network of plant physiologists and
breeders working to identify and understand phenes useful for
crop performance would benefit from germplasm banks contain-
ing phene states in common genetic backgrounds. In order for
researchers and breeders to be able to choose appropriate material
for their programs, integration of phenomic and germplasm bank
databases will be required. Greater collections of such plant mate-
rial and relevant genetic resources are available for crop species
than for wild plants, but model systems such as Arabidopsis and
Populus may act as bridges for the induction of similar studies in
other wild species.

Functional–structural plant modeling is an invaluable tool for
the study of root phene integration. SimRoot will continue to be of
great utility in this endeavor, as will other root simulations such as
RootMap (Diggle, 1988; Dunbabin, 2007) and R-SWMS (Javaux
et al., 2008). Simulations allow the exploration of trait function
beyond what is possible in greenhouse and field studies. Genetic
and physiological constraints may make it difficult or impossi-
ble to study some phene state combinations, but they can still
be modeled. Simulations also allow many different climates, soil
types, and nutrient levels to be studied. While only contrasting and
extreme phene states may be combined factorially for study in the
field or greenhouse due to space and labor limitations, modeling
allows a greater phenotypic range and phene combinations to be
studied. In an iterative fashion, simulations help focus empirical
experimentation on the most interesting phenes and phene inter-
actions, while data from empirical studies parameterize and refine
root models (Wullschleger et al., 1994). A recent review of three-
dimensional root models highlights the various models’ strengths
and weaknesses, and proposes how to advance the field by encour-
aging wider adoption of root models and by making models more
realistic through the inclusion of more explicit plant regulatory
networks and soil microorganisms (Dunbabin et al., 2013). Sim-
ulations should be integrated with phenomic databases to predict
functional implications of phenotypic variation, just as models of
predicted gene function and subcellular protein targeting augment
genomic databases.

FUTURE PROSPECTS
The understanding of phenotypic integration requires research
comparing multiple states of single phenes in isolation and in
combination, generating phene-function landscapes for multi-
ple environments. Understanding the interaction of phenes is
particularly important because there may be emergent proper-
ties that cannot be predicted from their function in a single
phenotypic background. The phenome is the interface of the
genome and the environment. Phenes and phenotypes arise
through plant development under genetic control as influenced by
the environment, so genetic information is useful in understand-
ing phenotypic variation. At the same time, we need to know how
phenes influence plant function in specific environments, which
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will require the collaboration of plant biologists, soil scientists,
and climatologists. Many phenes will not be under single gene
control, so the use of single gene mutants for phene studies may
limit inquiry to the presence or absence of a particular phene, but
we also need to know how variation in phene states contributes to
different aspects of plant function. The use of emerging technolo-
gies in plant genetics, such as RNA interference, may allow more
complex developmental manipulation through changes in expres-
sion levels of several genes that could possibly give rise to ranges
of phene states in common genetic and phenotypic backgrounds
(Katoch and Thakur, 2013).

Phenes are properties of the organism that have been neglected
in the genomic era. The organism is the fundamental biological
unit of organization for studies of phenes and phene interaction.
It is surprising how little research focuses on organisms per se, in
contrast to the organism being treated primarily as a tool to under-
stand genes or ecosystems. Organisms are the entities on which
natural and artificial selection act, which genes influence, and of
which ecosystems are composed (Lewontin, 1970). The variation
in phenes embodied within a taxon cannot simply be averaged to
generate an ideal individual because this variation has functional
and evolutionary importance. Progress in understanding the plant
genome is stunning, and currently far outstrips our understanding
of the plant phenome, despite the fact that the plant phenome is
at least as complex as the genome and arguably more important
for human welfare.

The study of phenes is hindered by the lack of relevant concep-
tual frameworks. Here we have discussed phenes in the traditional
context as building blocks of an organism’s phenotype. In some
cases it may not be clear whether a phene is truly elemental, as
it may be influenced by other traits at lower levels of organi-
zation. For example, basal root number in common bean was
found to be influenced by basal root whorl number (Miguel, 2012).
However, the discovery of even more elemental phenes is a use-
ful outcome of applying the phene perspective. The ambiguity
of the phene might be necessary for it to be applied in diverse
fields and research programs, but the science of the phenome,
phenes and phene interactions will be aided by the development
of more precise and informative theoretical frameworks. A bet-
ter understanding of integrated phenotypes would have benefits

for other fields of biology and agriculture, such as how natural
selection has led to the diversity of forms observed within and
among species, and how improved crop varieties can be designed
and developed. Trait-based, or ideotype, breeding is an important
avenue for crop improvement, and has been shown to be more
efficient than yield-based selection in some situations (Annic-
chiarico and Pecetti, 1998). Yield and metrics closely associated
with yield, such as number of grains, may obscure the advantages
of phene states that happen to be in otherwise poor backgrounds.
Genetic and developmental pathways may overlap among quanti-
tative traits such as root phenes, so genetic associations with yield
or other functional responses are also of limited use. Phene utility
should be measured in the field, and for specific environmental
stresses, because the advantages of some phene states may only
reveal themselves when resources are limiting. Understanding the
functional utility of specific root phenes and their interactions
requires the employment of near-isophenic plant material in the
field and simulation modeling. The opportunities created by the
ability to understand the fitness landscape of integrated ideotypes
will eventually lead to greater understanding of ecosystem struc-
ture and function, and to superior crop lines bred for specific
agricultural contexts.

Alleviation of world hunger despite a burgeoning human popu-
lation, continually degrading natural resources, and global climate
change is a primary human challenge for the 21st century. New
crop lines with superior soil resource acquisition will be a valuable
tool to that end (Lynch, 2007b; Lynch and Brown, 2012). In natu-
ral systems, understanding how root phenes influence community
structure and ecosystem function will inform policies to manage
anthropogenic effects on the climate and environment. Clarifica-
tion and refinement of phene integration theory, simulation and
field studies of phenes and phene interactions, and the distribu-
tion of results and plant materials are all essential for the success
of this unprecedented opportunity to deploy phenes to provide
solutions for pressing world problems.
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