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Norway spruce has a wide natural distribution range, harboring substantial physiological 
and genetic variation. There are three altitudinal ecotypes described in this species. Each 
ecotype has been shaped by natural selection and retains morphological and physiological 
characteristics. Foliar spectral reflectance is readily used in evaluating the physiological 
status of crops and forest ecosystems. However, underlying genetics of foliar spectral 
reflectance and pigment content in forest trees has rarely been investigated. We assessed 
the reflectance in a clonal bank comprising three ecotypes in two dates covering different 
vegetation season conditions. Significant seasonal differences in spectral reflectance 
among Norway spruce ecotypes were manifested in a wide-ranging reflectance spectrum. 
We estimated significant heritable variation and uncovered phenotypic and genetic 
correlations among growth and physiological traits through bivariate linear models utilizing 
spatial corrections. We confirmed the relative importance of the red edge within the context 
of the study site’s ecotypic variation. When interpreting these findings, growth traits such 
as height, diameter, crown length, and crown height allowed us to estimate variable 
correlations across the reflectance spectrum, peaking in most cases in wavelengths 
connected to water content in plant tissues. Finally, significant differences among ecotypes 
in reflectance and other correlated traits were detected.

Keywords: Norway spruce [Picea abies (L.) H. Karst], hyperspectral reflectance, chlorophyll, ecotypes genetic 
variation, genetic correlation, broad-sense heritability

INTRODUCTION

Norway spruce (Picea abies L. Karst) is one of Europe’s most dominant tree species of forest 
ecosystems. It is the most common coniferous tree species of European forests and has a 
wide nature range from the French Alps (5°E) to the Ural Mountains (155°E; Oleksyn et  al., 
1998). The altitudinal range is also very wide: Norway spruce original occurrence stretches 
from the sea level 0–2,300 m in the Italian Alps (Jansson et  al., 2013). In recent years, the 
climate has changed rapidly, impacting the microclimate in forests and the water regime in 
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general. The average annual temperature also has risen slightly 
(Karlsson et  al., 1997; Wallin et  al., 2002). It is well known 
that Norway spruce is relatively sensitive, especially to nutrient 
deficiencies and soil water content. Thus, it is not surprising 
that recent years’ observations show drought stress impacts 
on P. abies (Ditmarová et  al., 2010). Some consequences of 
climate change, such as increased temperature and acute drought 
events, cause a global problem with bark beetles in forests. 
Bark beetles are the most devastating biotic agents in many 
forest ecosystems (Anderegg et al., 2015). The higher frequency 
of dry summers and warmer temperatures is an important 
predisposing factor triggering beetles’ outbreaks and affecting 
population dynamics (Jactel et  al., 2012; Weed et  al., 2013; 
Hart et  al., 2014).

Picea abies is a polymorphic tree species, and its taxonomic 
variation is a highly discussed topic (Tutin et  al., 1964). There 
are two main taxonomic types: P. abies var.abies—European 
spruce and Picea abies var.obovata—Siberian spruce. These two 
types have significant genetic similarities, suggesting that they 
belong to the same species (Krutovskii and Bergmann, 1995). 
Morgenstern (1996) described three morphological forms 
(ecotypes) of Norway spruce. These forms are low-elevation 
(naturally growing in areas up to 500 m), medium-elevation, 
and high-elevation (above 1,100 m a.s.l.). The most significant 
difference lies in the crown morphology. Low-elevation 
(acuminata) has a wide crown with long branches, while high-
elevation (obovata) has a narrow crown with short branches 
pointing down. Genetic differences among the putative ecotypes 
were recently confirmed by Korecký et  al. (2021). There are 
emerging pieces of evidence that some physiological traits also 
differ among the ecotypes, Tomášková et  al. (2021) found that 
parameters describing structural indicators of PSII in the 
thylakoid membrane (calculated from the OJIP test) distinguished 
obovata ecotype. Androsiuk et  al. (2013) and Farjon and Filer 
(2013) also reported specific adaptations for the given geographic 
area, climatic area, and forest vegetation zone for each ecotypic 
form. Almost every investigated trait is closely connected to 
local conditions. Norway spruce is relatively sensitive to drought 
stress, and this stress is related to adaptations to climate changes 
(Van der Maaten-Theunissen et  al., 2013). High variation in 
drought stress within Norway spruce populations across 
vegetation zones was previously reported (Trujillo-Moya et  al., 
2018). Recently, a significant variation among Norway spruce 
ecotypes was found in dehydrin gene expression (Čepl et  al., 
2020). The most notable difference between acuminata and 
obovata ecotype was found in specific dehydrin PaCAP1 
expression. PaDhn4,5 and PaDhn6 dehydrins genes strongly 
correlate with a climatic variable such as temperature 
and precipitation.

In general, water deficit is an essential source of abiotic 
stress with complex effects on plants, including many 
physiological and biochemical responses, leading to inhibited 
growth or even mortality (Farooq et  al., 2009; Harb et  al., 
2010). The seedlings experiments with Norway spruce showed 
a significant decrease in total chlorophyll concentration during 
advanced stages of dehydration (Ditmarová et al., 2010). These 
results demonstrate that the drought response of P. abies causes 

many biochemical changes, and the shifts in selected compounds’ 
content can be used as an indicator for water stress (Ditmarová 
et  al., 2010). Degradation and content of chlorophylls and 
proline levels could be  used as biomarkers for an early 
assessment of water stress of Norway spruce. Specific populations 
are more sensitive to water stress, which indicates some 
tolerance to osmotic stress during seed germination (Schiop 
et  al., 2017). All photosynthetic pigments, mostly carotenoids, 
play some role in drought tolerance (including oxidative damage 
caused by water deficit). Thus, increased carotenoid content 
is an important indicator of water stress tolerance (Jaleel 
et  al., 2009).

Hyperspectral reflectance of foliage or canopy reveals 
information connected to its biochemical composition, water 
content, and structure and thus to plants’ health status (Campbell 
et  al., 2004; Kokaly et  al., 2009; Ustin et  al., 2009). This 
valuable information, often hidden from human eyes, has been 
utilized in many research fields in past decades (Goetz, 2009; 
Masaitis et  al., 2013). Reflectance features in the visible (VIS) 
part of the electromagnetic spectrum are primarily determined 
by photosynthetic pigments’ content (Gates et  al., 1965). The 
VIS spectral region is most usually used to evaluate leaf and 
canopy phenology (Junker and Ensminger, 2016; Yang et  al., 
2016) and physiological status (Carter, 1993; Mišurec et  al., 
2012; Einzmann et al., 2021). The sharp increase in reflectance 
around 700 nm due to the strong chlorophyll absorption band 
centered around 680 nm coupled with a scattering of near-
infrared wavelengths within the leaf is known as “the red 
edge” (Curran et  al., 1990; Gitelson et  al., 1996). The red 
edge (RE) spectral region is also often used for vegetation 
stress detection. The inflection point of the reflectance curve 
within the red edge may shift to lower wavelengths due to 
a decrease of chlorophyll content in leaves or needles (Rock 
et  al., 1988; Curran et  al., 1990). The environmental stress 
factors causing this so-called blue shift of inflection point 
could be  various: worsening of the tree physiological status 
due to air pollution (Campbell et  al., 2004), decreased tree 
vitality after artificial ring-barking (girdling), and bark beetle 
infestation (Einzmann et  al., 2021) and many others (viral 
infection, trace metal accumulation; Rathod et al., 2018; Golhani 
et  al., 2019). One crucial question is whether the reflectance 
in this biologically important spectral region exhibits a similar 
shift across the studied ecotypes and if this shift can also 
be  observed across the vegetation season. The position of the 
red edge inflection point is sensitive to environmental factors, 
but it may also be  genetically conditioned. Heritable variation 
in the red edge was described within the Scots pine population 
by Čepl et  al. (2018). The reflectance in the near-infrared 
spectral region provides information about leaf structure at 
the leaf level (Gates et  al., 1965; Slaton et  al., 2001) and the 
water content at leaf and canopy level (Kokaly et  al., 2009). 
Vegetation indices (VIs) are various spectral transformations 
that reduce raw multivariate spectral data to single index values 
(Jiang et  al., 2018; Verrelst et  al., 2019). Plenty of VIs was 
defined1 for leaf and canopy reflectance level. According to 

1 https://www.indexdatabase.de/
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the reflectance wavelengths they are computed from, the VIs 
may be  used for retrieval of several leaf traits—usually 
chlorophylls (Croft et  al., 2014; Neuwirthová et  al., 2021), 
anthocyanins (Gitelson et  al., 2009), nitrogen (Berger et  al., 
2020), lignin (Serrano et  al., 2002), and water content (Hunt 
and Rock, 1989; Peñuelas et  al., 1993). Regarding population 
variability in hyperspectral reflectance (Cavender-Bares et  al., 
2016), showed that multivariate spectral information could 
distinguish populations of the same species more accurately 
than individual leaf functional traits.

Our study investigates the differences in the shoot 
hyperspectral reflectance among three Norway spruce ecotypes 
and how this variation manifests in a wide-ranging reflectance 
spectrum. We  hypothesized that shoot spectral signal would 
reflect ecotypes’ adaptation to the local environment of origin 
and thus allow us to distinguish the ecotypes even after 
acclimation to conditions of the common-garden experiment. 
We  used the well-established vegetation indices not as simple 
predictors of given biophysical traits but as a trait that can 
be genetically determined. Traditionally, the spectral vegetation 
indices are constructed or pre-selected due to specific absorption 
features of biochemical compounds or structural traits connected 
to a stress reaction or health status. With this in mind, we chose 
heritable vegetation indices from the original candidate set 
contained within the R package hsdar (Lehnert et  al., 2019). 
The heritable indices subsequently entered the bivariate analysis, 
which allowed us to estimate genetic correlations with other 
traits of interest. We estimated phenotypic and genetic correlations 
among growth and physiological traits to verify their complex 
relationship through bivariate models and spatial analysis. 
Subsequently, we examined phenotypic and genetic correlations 
of the established reflectance indices with growth traits and 
photosynthetic pigment content. In connection with the aims 
mentioned above, we  confirmed the relative importance of 
the red edge within the context of the study site’s ecotypic 
variation. We observed that the phenotypic/genetic correlations 
vary across the reflectance spectrum, peaking mostly in 
wavelengths related to chlorophyll and water content in plant  
tissues.

MATERIALS AND METHODS

Plant Material
This experiment comprises a unique clonal Norway spruce 
common-garden experiment established in the Czechia (N 
49°56.37′, E 14°20.96′) in 1970. Vegetatively propagated material 
used for this experiment originates from several Czech Norway 
spruce populations. Grafted trees were planted as clonal rows. 
This trial is unique because it represents all the morphotypes 
of Norway spruce, which occur in this country. These 
morphological forms (putative ecotypes) retain some characteristic 
features, which correspond to their altitudinal origin. Genotypes 
of the low-elevation form (acuminata) originated from the 
altitude 360 m a.s.l., medium-elevation altitude form (europaea) 
from the altitude 770–775 m a.s.l, and the high-elevation form 
(obovata) from the altitude 1,145–1,175 m a.s.l. The exact 

geographical origin of the sampled ecotypes (grafting locations) 
is shown in Supplementary Figure  1.

Trial Description
This experimental trial is situated in low relief of 320–340 m a.s.l. 
It was established in 1970 (Šindelář, 1975). Bedrock constitutes 
clayey Algonkian phyllite slates with variously thick loess and 
sloping clay overlaps. The soils can be characterized as medium-
deep cambisols in strongly skeletal bases, in places with signs 
of reduction processes. The upper horizons are clayey, the 
lower horizons heavier, silty clay. There is a lack of loess cover 
in areas, and the soils are generally richer in the skeleton 
(particles >2 mm). The average tree height on the plot (2020) 
was 20.6 m; sd = 2.95 m, and the average DBH was 33.1 cm; 
sd = 7.7 cm.

Sampling
One branch (30 cm) per tree was sampled with telescopic pruning 
poles. We  targeted needles from the crown’s southern exposure, 
5–8 m above ground, corresponding to the transition or shaded 
crown part. Shoot samples were collected from 86 (87 in August) 
trees in two periods. The first one was realized on May 25th, 
2020, and the second sampling was on August 18th, 2020. In 
May, the current year’s needles were not yet fully developed; 
therefore, the previous-year needles were collected for reflectance 
analysis. In August, the current year needles were already mature. 
However, in some trees, the terminal buds remained dormant, 
and thus the mixed sample of current and previous-year needles 
was taken for reflectance measurement and pigment analyses. 
The sampling procedure consisted of a random selection of 
replicated clones from three represented ecotypes, ensuring that 
we  covered different microsites within the trial. All sampled 
trees retained their morphological characteristics (ecotypic 
appearance) correspondingly to their altitudinal origin. These 
two periods were chosen concerning actual climatic conditions, 
especially the measure of water stress of trees. The experimental 
layout and the highlighted sampled trees are shown in 
Supplementary Figure  1. In addition, we  measured standard 
growth parameters such as tree height (m) and diameter in 
breast height (DBH; cm). Subsequently, we measured the bottom 
height of the vital crown (HC) and the overall length of the 
crown (LC) for each tree.

Climatic Data
Climatic data for this study were obtained from the nearest 
meteorological station (Praha- Libuš). Ten kilometers from the 
test site. We reported the climatic data 14 days before sampling. 
Before the first sampling, the mean daily temperature was 
12.4°C, and before the second sampling 22.6°C. Mean daily 
precipitation was almost the same at both times. Before the 
first measurement −409.  mm/day and before the second 
measurement −483.  mm/day. However, it must be  noted that 
it was raining almost all day on the second sampling day. 
The long-term mean of precipitation in this area around Cukrák 
is 587 mm, and the mean annual temperature is 8,6°C (observed 
between the years 1980 and 2016).
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Reflectance Measurement
Spectral reflectance information was obtained from needles as 
a bidirectional reflectance factor (BRF). Reflectance was measured 
between 350 and 2,500 nm by spectroradiometer ASD FieldSpec 
4, which was attached to the contact probe (ASD Plant Probe) 
with the circular field of view of 133 m2 (d = 11 mm; Schaepman-
Strub et  al., 2006; Čepl et  al., 2018). Spectral reflectance was 
normalized against a 99% Spectralon white reference panel to 
produce BRF for each measurement. The scan average on the 
FieldSpec was set to 15 to avoid foliage overheating, and the 
integration time was set to 136 ms (Eitel et  al., 2006). From 
each sampled branch (by single tree), several (8–12) shoots 
with the needles still attached were placed in a Petri dish 
coated with a spectrally black coating (NEXTEL Velvet-Coating 
811-21) with low reflectance, and it was scanned five times. 
The black surface was set on the samples’ background to 
eliminate background spectral noise from the surrounding 
environment. From these measurements, the median for each 
wavelength was calculated. Reflectance indices were computed 
using the R package hsdar (Lehnert et  al., 2019). The reported 
indices were pre-selected based on their information value 
and the predicted heritability and calculated using the R package 
hsdar (Lehnert et  al., 2019).

Pigment Content Assessment
Needles were cut and inserted along with grinding balls into 
2 ml tubes. The samples were freeze-dried by liquid nitrogen 
and ground for 5 min at 30 Hz in a Mixer Mill MM400 (Retsch 
technology, Haan, Germany). Freeze–drying and grinding were 
repeated till the material was powdery. Twenty five milligrams 
of the powder was weighed into a 2 ml microcentrifuge tube 
(Eppendorf, Hamburg, Germany), and 1 ml 80% (v/v) acetone 
and I  mg of MgCO3 were added. The samples were vortexed 
for 30–60 s and then centrifuged (Eppendorf 5424R, Hamburg, 
Germany) at 13,500 rpm for 10 min. Acetone to 10 ml was added 
to the supernatant. The absorbance was measured at 646, 663, 
and 470 nm using a spectrophotometer (Hach Lange DR6000 
UV–VIS, Dusseldorf, Germany). The pigment concentration in 
extracts was calculated according to Lichtenthaler (1987) equations 
and related to needle dry mass. As mentioned above, the pigment 
content was assessed only in the August sampling.

Statistical Analysis
For statistical analysis, native functions of the R software version 
3.5.0 (R Core Team, 2022) and the library ASReml for R 
version 4 (Butler et al., 2017) were used. A univariate linear 
mixed model was fitted to evaluate all traits of interest with 
the following terms:

 y X X Zc ex y= + + + +1 1 1mm bb bb

where y corresponds to the data vector; μ is the overall mean 
effect; βx and βx are fixed effects associated with orthogonal 
polynomials of second-order; c is the clonal effect, with 

c ~ MVN(0, σ2
cIc); e is the random vector of errors, with 

e ~ MVN(0, R). The letters 1, X, and Z designate a vector of 
ones and incidence matrices for associated fixed effects and 
random effects, and Ic is an identity matrix of order c. R is 
a matrix of variance–covariance of errors for each field position. 
Two forms of R matrix were evaluated, one considering 
independent errors, i.e., R = σ2In and another based on a separable 
first-order autoregressive process (AR1) in rows and columns, 
for which the R matrix is R = Ã2 [AR1(pcol) ⊗ AR1(prow)]; where 
Ã
2  are the residual variance, and AR1(pcol) and AR1(prow) 

represent a first-order autoregressive correlation matrix. Several 
models were fitted, considering independent or autoregressive 
errors and with or without polynomial functions. The best 
model was selected based on likelihood ratio tests (LRT) and 
approximated F-tests (Isik et  al., 2017).

Broad-sense heritability (H2) was estimated for each response 
variable based on the following formula: H2 = σ2

c/(σ2
c + σ2), where 

σ2
c is the genetic variation attributed to represented clones; 

approximated standard errors were obtained using the 
Delta method.

We ran an extended bivariate model to estimate the additive 
correlation between particular traits based on stacking both 
traits. The model formulae used was:

 y X t X t X t Z tc Z u ex y= + + + + +1 1 2 1 2bb bb

where y corresponds to the data vector of stacked response; 
t is the fixed effect of trait; tβx and tβx are fixed effects of 
polynomials of second-order nested within trait; tc is the clonal 
effect nested within trait, with tc ~ MVN(0, Gc ⊗ Ic); u is the 
random vector of experimental units (trees), with u ~ MVN(0, 
σ2

uIu); e is the random vector of errors, with e ~ MVN(0, R), 
where R is a block diagonal matrix with a separable first-order 
autoregressive process as described earlier for each of the traits. 
Also, Gc is a 2 × 2 variance–covariance matrix with clonal 
variances on the diagonal and a genetic covariance between 
traits on the off-diagonal (i.e., unstructured). The random effect 
u allows for specifying correlation between observations (i.e., 
across traits) that belong to the same tree.

RESULTS

Reflectance in the Two Different Sampling 
Periods
There were significant differences (value of p < 0.05) in mean 
reflectance between the two samplings in May and August 
despite its restriction to several distinct regions, with major 
differences between 700 and 1,300 nm (NIR plateau). The biggest 
difference (nearly 5%) was found around 1,050 nm (Figure  1). 
There were wide regions of wavelengths, at which the reflectance 
in both respective months significantly differed based on the 
pairwise t-test. Regions with value of p < 0.05: 350–415, 667–668, 
720–1,421, 1,604–1,657, 1,844–1,867, and 1,888–1,909. The 
biggest difference in reflectance was recorded between 720 and 
1,421 nm, encompassing the NIR part of the spectra.
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Differences in Reflectance, Pigments, and 
Growth Traits Between Ecotypes
As verified by multiple comparisons (LSD: least square differences), 
there were significant (value of p < 0.05) differences among 
ecotypes in reflectance, although this was mostly restricted to 
specific parts of the spectrum. Differences were generally more 
pronounced within the second sampling period in August. 
However, the pairwise differences between ecotypes are month-
specific (Figures 2, 3). To further illustrate the variation among 
ecotypes, we  calculated the mean reflectance for each in May 
and August (Figure  4). The common differences between 
medium-elevation and high-elevation ecotypes occurred in the 
reflectance measured in both months. These pairwise differences 
were situated mostly within the VIS and RE spectral regions: 
green region (aka green bump) and red-edge in May (Figure 2); 
and blue and red region in August (Figure  3). Comparing 
spectral regions distinguishing medium-elevation and high-
elevation ecotypes, the ranges of significant difference shifted 
towards lower wavelengths in August, In May, we  found a 
significant difference in reflectance between the low-elevation 
and high-elevation ecotypes of Norway spruce, particularly 
between wavelength 600 and 700, including the red edge 
(Figure 2). In August, the differences between medium-elevation 
and high-elevation ecotypes were still present, however, in shorter 
wavelengths than in May (Figure  3). The low-elevation and 
high-elevation ecotypes did not show significant differences in 

reflectance in August. During the August sampling, we recorded 
a strongly significant difference between medium-elevation and 
low-elevation ecotypes in reflectance across the NIR and shortwave 
infrared (SWIR) spectrum (1,150–2,500 nm).

The descriptive statistics for all studied parameters (including 
photosynthetic pigments and growth traits) are summarized 
in Table 1. The pairwise differences between ecotypes concerning 
all studied parameters are summarized in Table  2. We  found 
a significant difference in ecotypes (medium vs. low-elevation) 
in all three pigments. It should be  emphasized that the 
photosynthetic pigments were extracted only within the August 
sampling. Thus, the pairwise differences in pigment content 
are relevant only concerning the reflectance acquired in August. 
The ecotypes were also significantly different in total height 
and DBH. In this case, these significant differences were detected 
among both combinations with the high-elevation origin. The 
significant differences in pairwise combinations, manifested by 
the lowest value of ps, were in the crown length. In HC, 
medium elevation vs. high elevation was exactly on the verge 
of a significant difference (value of p = 0.055).

Phenotypic Correlations Between 
Hyperspectral Reflectance, Pigment 
Content, and Growth
We found significant phenotypic correlations between spectral 
reflectance and all three extracted photosynthetic pigments 

FIGURE 1 | Seasonal difference in hyperspectral reflectance.
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FIGURE 4 | Mean reflectance for each ecotype in May and August.

(Figure 5). All three photosynthetic pigments exhibited relatively 
strong correlations with spectral reflectance, especially around 
500, 700, and above 1,300 nm. Generally, the correlation appeared 
to be  strongly negative within the green part of the spectrum, 
shifting to strong positive correlation values beyond 1,300 nm. 
The two charts within Figure  6 depict the correlation between 
reflectance, the trees’ total height, and the crown height. 
Correlation with HC is more visible as the significant regions 
stretch across a wider spectrum, especially above 1,300 nm. 
Further, there was also a prominent position of the green 
range and far-red region in the vicinity of the red edge.

Phenotypic Correlations Between the 
Heritable Hyperspectral Indices, 
Photosynthetic Pigments, and Measured 
Growth Traits
In the present study, we  used commonly used vegetation indices 
with a different purpose than usual. Our intention was not to 
use VIs as predictors of needle biophysical traits, but simply as 
heritable traits derived from hyperspectral reflectance. Therefore, 
we  selected indices showing the highest estimated heritability 
(tested by LRT). Later, we  studied the phenotypic correlations 
among those heritable indices, growth parameters, and 
photosynthetic pigments (Table 3). All reflectance indices (except 
TCARI2 against carotenoid content) exhibited significant (positive 

FIGURE 2 | Differences among ecotypes in hyperspectral reflectance 
recorded in May.

FIGURE 3 | Differences among ecotypes in hyperspectral reflectance 
recorded in August.
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or negative) phenotypic correlations with all three pigments 
content. However, the R2 for linear relationships between heritable 
indices and photosynthetic pigments are rather low (the highest 
R2 = 0.59 and 0.511 were found for chlorophylls and DWSI4 and 
GI, respectively). Overall height, the height of the crown, and 
the LC exhibited either much lower or zero correlations with 
the reflectance indices.

Genetic Correlations Among Growth 
Traits: Pigments and Reflectance
Further, we  report the genetic correlations based on complex 
mixed linear models. This approach enabled us to reveal the 
intricate patterns of genetic correlation (based on clonal 
attributes) among various traits. We did not find any significant 
genetic correlations among spectra and growth on the material 
sampled in May (also, photosynthetic pigments were not 
extracted in May sampling). Contrastingly, significant genetic 
correlations were found among many observed parameters 
in the August sampling date (Table  4). As expected, genetic 
correlations are generally high when co-dependent growth 
traits are being observed. This was also confirmed in our 
experiment. Similarly, photosynthetic pigments show maximum 
genetic correlations among each other. A similar pattern could 
be seen concerning phenotypic correlations (results not shown). TA
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TABLE 2 | Differences among ecotypes in pigment content and growth.

Differences in ecotypes

Ecotypes
Medium vs. 

low
Medium vs. 

high
Low vs.  

high

CAR Diff. −0.083 −0.058 0.025

Std. diff. 0.042 0.056 0.058
t-value −1.988 −1.033 0.424
p 0.028* 0.155 0.337

Chl-a Diff. −0.514 −0.353 0.162
Std. diff. 0.257 0.347 0.360
t-value −1.999 −1.016 0.449
p 0.0273* 0.159 0.328

Chl-b Diff. −0.169 −0.147 0.022
Std. diff. 0.099 0.132 0.138
t-value −1.716 −1.108 0.165
p 0.048* 0.138 0.435

H Diff. −0.225 3.664 3.890
Std. diff. 0.760 1.053 1.268
t-value −0.297 3.4800 3.069
p 0.384 0.000*** 0.001**

DBH Diff. 1.289 6.486 5.197
Std. diff. 1.725 2.312 2.812
t-value 0.747 2.805 1.848
p 0.228 0.003** 0.033 *

HC Diff. −0.192 −0.950 −0.758
Std. diff. 0.391 0.592 0.694
t-value −0.490 −1.604 −1.092
p 0.312 0.055 0.138

LC Diff. 0.049 5.155 5.106
Std. diff. 0.588 0.904 1.055
t-value 0.083 5.705 4.838
p 0.467 0.000*** 0.000***

Reported values based on multiple range tests.  
Number of asterisks corresponds to significance levels.
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In Table  3, the genetic correlation between all available 
measured parameters can be  observed. The strongest positive 
correlations exhibit the photosynthetic pigments across their 
pairwise comparison. Growth parameters show strong positive 
correlations, especially between DBH, total height, and crown 
length. Interestingly, all three pigments were relatively (but 
not significantly according to rigorous LRT) correlated to 
the crown’s length (0.58–0.78), with the highest value between 
carotenoids and LC.

We did not estimate any significant genetic correlations 
between hyperspectral data, height, and DBH. Genetic correlation 
of the length of a crown (LC) with reflectance is significant 
in a relatively wide range of the spectrum, especially within 
the region 1,360–1,900 nm (minimum value of 0.89 with SE 
0.23) and in the region 2,050–2,420 nm (min 0.931 with SE 
0.2287) a strong positive correlation was recorded. Genetic 

correlation in the crown (HC) height with reflectance is 
comparatively less abundant across the spectra than the crown’s 
length (LC). Interesting is the visible correlation peak occurring 
between 600 and 700 nm in the vicinity of the red edge. These 
correlations are highlighted in Figure  7.

In contrast to growth traits, we  found significant genetic 
correlations between the raw spectral data and all photosynthetic 
pigments (Figure  8). Like the phenotypic relations depicted 
earlier, the visible differences among individual pigments are 
rather marginal. Correlations of chlorophyll a with reflectance 
are significant mainly within the NIR and SWIR. There are 
substantial correlations in 1,360–1,800 and 2,050–2,240 nm. 
Along the green-light region from 500 to 600 nm, the contrasting 
strong negative correlations below −0.900 occur, following the 
similar pattern observed in the above-illustrated phenotypic 
correlations. Correlations between chlorophyll b and reflectance 
are negative again in the visible parts of the spectrum and 
positive in the far regions. Carotenoids do correlate with 
reflectance in an almost identical pattern as chlorophyll b. 
We  found strong negative correlations (below −0.880) in the 
region 507–518. In 1315–1885 and 2,060–2,320 nm, we  found 
other significant ranges.

Genetic Correlations Among Growth 
Traits: Pigments and Reflectance Indices
Traditionally, the spectral information has rendered indices 
pre-selected due to their specific properties connected to stress 

FIGURE 5 | Phenotypic correlations among hyperspectral reflectance and 
individual photosynthetic pigments content; reported values based on 
Pearson’s correlation coefficients.

FIGURE 6 | Phenotypic correlations among hyperspectral reflectance and 
selected growth parameters; reported values based on Pearson’s correlation 
coefficients.
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relation or health status determining capacity. With this in 
mind, we  chose those indices from the original candidate set 
contained within the R package hsdar (Lehnert et  al., 2019) 
that were heritable for the subsequent bivariate analysis, which 
allowed us to estimate genetic correlations with other traits 
of interest. This selected subset is listed in Table 5. The highest 
heritability values were recorded in SR3. In this case, almost 
50% of these indices’ variation is controlled by genetics (attributed 
to clonal variation) in our experimental plot. The relatively 
high standard error values can be attributed to the small sample 
size used in this study.TA
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FIGURE 7 | Genetic correlations among hyperspectral reflectance and 
selected growth parameters.

TABLE 4 | Estimated genetic correlations among photosynthetic pigments 
content and growth traits.

Trait Trait Genetic correlation SE

Height DBH 0.999 B
Height Crown height 0.816 0.065
Height Crown length 0.998 B
DBH Crown height 0.367 0.114
DBH Crown length 0.998 B
Chl-a Car 0.998 B
Chl-a Chl-b 0.999 B
Car Chl-b 0.999 B
Chl-a Crown length 0.702 0.279
Chl-b Crown length 0.590 0.319
Car Crown length 0.787 0.237

B denotes the boundary effect of a model. Bold values passed the LRT test.
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To picture the complex relationships among various traits, 
further elaborated within genetic correlations, we  also present 
the estimated heritability in all measured traits (Table  5). 
Finally, genetic correlations between multiple reflectance indices 
and other recorded parameters were calculated in the bivariate 
models (Table  6). There are relatively high values of genetic 
correlations with photosynthetic pigments. The highest genetic 
correlation (0.99) was found between chlorophyll b, chlorophyll 
a, and the CRI2 index. CRI2 is also highly correlated with 
chlorophyll b (0.97).

In contrast to phenotypic correlations among indices and 
growth, strong negative genetic correlations were found between 
LC and DWSI4 and GI (−0.95). On the other hand, CRI2 
correlated strongly positively with the LC parameter. Lastly, 
TCARI2 exhibits a strong positive genetic correlation with an 
HC parameter.

DISCUSSION

Seasonal Variation in Hyperspectral 
Reflectance
It is known that hyperspectral reflectance mirrors the actual 
conditions in forest stands, and these specific differences are 
temporal and spatial. We  detected a significant difference 
between the shoot reflectance in May and August in the spectral 
range from 700 to 1,300 nm.

The mean reflectance curve in both periods has an almost 
identical shape except for the region between 700 and 1,300 nm. 
The biggest difference was detected around 1,050 nm. The NIR 
region responds to many structural parameters in plant tissue 
(Rock et  al., 1994; Slaton et  al., 2001; Sánchez et  al., 2012). 
This detectable difference in NIR may occur since we  sampled 
mostly previous year’s needles in May, whereas we  measured 
the current needles during the August sampling. In other words, 
the higher NIR reflectance from August samples may reflect 
the different structural parameters of current-years vs. previous-
season needles. A similar trend in reflectance decrease with 
needle aging was reported for Norway spruce (Hovi et  al., 
2017; Lhotáková et  al., 2021). The apparent inconsistency in 
the age of needle samples was since some trees did not produce 
new shoots in the 2020 season in the reach of our sampling 
device (up to 8 meters above ground). However, the youngest 
available needles were supposed to be  the most physiologically 
active as reported for various conifers (Bernier et  al., 2001; 
Jensen et  al., 2015) and thus suitable for revealing differences 
in needle physiological (pigments) and optical traits among 
the studied ecotypes.

Needle water content also affects NIR reflectance: directly 
in water absorption bands centered around 970, 1,200, 1,450, 
and 1930 nm (some spectral intervals of significant differences 
among sampling dates correspond to these spectral regions); 
and indirectly due to decreasing cell turgor during dehydration 
(Peñuelas and Inoue, 1999), which could be  included in the 
structural effect mentioned above. Although we did not quantify 

FIGURE 8 | Genetic correlations among hyperspectral reflectance and 
individual photosynthetic pigments content.

TABLE 5 | Estimated heritability of reflectance indices, photosynthetic pigments, 
and growth traits.

Refl. Index/Pigment/
Growth

Heritability SE

CRI2 0.30 0.22
DWSI4 0.31 0.15
GI 0.32 0.15
GMI1 0.46 0.19
SR3 0.46 0.19
SR4 0.39 0.15
SR5 0.39 0.15
TCARI2 0.39 0.19
Chlorophyll a 0.31 0.14
Chlorophyll b 0.36 0.13
Carotenoids 0.29 0.11
LC 0.36 0.12
HC 0.41 0.07
Height 0.41 0.14
DBH 0.33 0.06
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water content in needles, we  suppose it is directly influenced 
by available soil moisture. Despite the higher average precipitation 
recorded in August (4.3 mm vs. 2.6 mm in May), available 
moisture was perhaps much lower in late summer. The mean 
temperature was noticeably higher in August (20.9°C) than in 
May (12.5°C). Thus, the higher temperatures led to increased 
evapotranspiration (the mean values may be  biased by the 
thunderstorm that preceded our August sampling). These specific 
circumstances may have indirectly affected needles’ spectral 
properties and contributed to differences in NIR reflectance 
between May and August.

Differences Among Ecotypes
The typical morphological features of respective ecotypes 
were retained in the studied common garden. We  assumed 
the adaptation to the original climatic conditions was 
genetically determined. These assumptions were supported 
by preliminary SNPs data cluster analysis (Čepl et al., 2020). 
Although there is no information about distinguishing Norway 
spruce ecotypes from spectral reflectance neither at canopy 
nor at needle level, we  expected these adaptations to 
be  reflected in variable hyperspectral reflectance of young 
shoots. We  based our hypothesis on previous findings in 
Quercus populations, which were more distinguishable by 
hyperspectral reflectance than individual functional leaf traits 
(Cavender-Bares et  al., 2016).

Recently, multivariate statistical approaches that work with 
continuous spectra are frequently used in laboratory and image 
spectroscopy (Deepak et al., 2019; Verrelst et al., 2019; Lhotáková 
et  al., 2021). We  also tested principal component analysis and 
random forest classification for distinguishing Norway spruce 
ecotypes in the present study. However, the results were not 
convincing (data not shown). High variability in reflectance 
spectra and broad spectral regions with high spectral similarity 
could fail to differentiate the ecotypes. Therefore, we  applied 
a pairwise comparison of individual wavelengths.

We recorded the significant differences among Norway spruce 
ecotypes in reflectance. However, they were mostly limited to 

specific and quite narrow regions of the spectra and depended 
on the sampling month. These reflectance differences among 
represented ecotypes were more frequent and pronounced in 
the second sampling period (in August). In May, the differences 
among two ecotype pairs (medium-elevation and high-elevation; 
low-elevation and high-elevation) were concentrated in the VIS 
part of the spectrum (green and red region) and partly red 
edge, which makes sense considering the accumulation of 
needle chlorophyll with aging. This process may not 
be  synchronized among the ecotypes, even though they grow 
in the same environment. We  can only hypothesize about this 
cause as we  did not sample needles for biochemical analyses 
in May. In the pairwise comparison between medium-elevation 
and high-elevation ecotypes, the ranges of significant difference 
shifted back towards the visible parts of spectra, corresponding 
to the putative red edge shift after a prolonged drought (Curran 
et al., 1990) caused by heatwaves. At the level of cell membrane 
stability, the high-elevation Norway spruce ecotype from Germany 
was less thermotolerant than its low-elevation counterpart (Valcu 
et  al., 2008); however, the relation of thermotolerance to 
reflectance spectra was not investigated.

Conversely, in August, the biggest differences were found 
between low-elevation and medium-elevation ecotypes covering 
the broad part of the NIR plateau and SWIR. We  attribute 
the differences in these spectral regions rather to low water 
content in medium-elevation ecotype (having the lower 
reflectance). The peak of heritable variation in the red edge 
described by Čepl et  al. (2018) is here further documented 
on a much broader scale of within-species genetic variation 
inherent to various origins.

Further, we  explored the potential differences among 
represented Norway spruce populations concerning 
photosynthetic pigments content and various growth traits. All 
photosynthetic pigments behaved equally, showing significantly 
lower contents in the medium-elevation ecotype than the 
low-land ecotype. Later the ecotypic variation within pigments 
emerged only in medium- vs. low-elevation comparison (in 
contradiction to spectral data), which can be  attributed to the 

TABLE 6 | Genetic correlations among the hyperspectral indices, photosynthetic pigments, and measured growth traits.

VI calcul. R760/R700 - 1 R550/R680 R554/R677 R750/R550 R700/R670 R675/R700

3*[(R750-R705)-
0.2*(R750-

R550)*(R750/R705)]

CRI2 (Gitelson 
et al., 2003)

DWSI4 (Apan 
et al., 2004)

GI (Smith et al., 
1995)

SR3 (Gitelson and 
Merzlyak, 1997)

SR4 (McMurtrey 
et al., 1994)

SR5 (Chappelle 
et al., 1992)

TCARI2 (Wu et al., 
2008)

DBH 0.189 (0.338) −0.083 (0.335) −0.084 (0.332) 0.134 (0.319) 0.145 (0.331) −0.262 (0.333) 0.182 (0.333)

h 0.292 (0.286) −0.255 (0.279) −0.248 (0.277) −0.068 (0.28) −0.020 (0.288) −0.022 (0.294) 0.318 (0.274)
hc −0.081 (0.310) −0.172 (0.289) −0.172 (0.286) −0.475 (0.242) −0.021 (0.290) 0.041 (0.295) 0.659 (0.224)
lc 0.720 (0.249) −0.954 (0.184) −0.946 (0.185) 0.461 (0.304) −0.720 (0.256) 0.668 (0.276) −0.155 (0.365)
Chl-a 0.916 (0.198) −0.999 (0.000)b −0.998 (0.000)b 0.747 (0.233) −0.999 (0.000)b 0.999 (0.000)b −0.631 (0.276)
Chl-b 0.967 (0.201) −0.999 (0.000)b −0.999 (0.000)b 0.844 (0.232) −0.999 (0.000)b 0.999 (0.000)b −0.746 (0.276)
Car 0.999 (0.000)b −0.999 (0.000)b −0.999 (0.000)b NA −0.999 (0.000)b 0.999 (0.000)b −0.519 (0.284)

The significant, further reported values are in bold; the SE in brackets; the upper index b denotes the boundary effect connected to the model convergence—these values are not 
fully reliable despite passing the LRT test.
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under-representation of the high-elevation source. We  could 
speculate that the trait is more sensitive to sample size within 
these multiple comparisons.

The ecotypes were also significantly different in total height 
and DBH. These significant differences were detected among 
both combinations with high-elevation origin. Morphologically, 
the high-elevation origin is unique, mirrored in any pairwise 
comparison highlighting the difference. The two significant 
differences across all pairwise combinations connected with 
very low value of ps were found in the LC parameter. This 
major difference could be  attributed to visible differences in 
crown morphology among respective ecotypes. These habitual 
characteristics were retained in the clonal trial and further 
contributed to other physiological differences. In HC, medium 
elevation vs. high elevation is exactly on the verge of a significant 
difference (value of p = 0.055). We  concluded that this growth 
trait is less informative about the recent increment and health 
status and does not contribute much to the observed ecotypic  
variation.

Our study showed several potentially adaptive traits that 
help characterize Norway spruce populations from cold mountain 
environments. It has been documented that populations 
originating from colder high-elevation sites often differed per 
unit change in altitude or mean annual temperature more 
than low elevation populations did (Oleksyn et  al., 1998).

We analyzed the ecotypic variation of Norway spruce elevation 
forms grown in natural conditions of a common-garden 
experiment (i.e., clone bank). This makes our findings unique, 
as methodically similar research is predominantly performed 
under controlled conditions in greenhouse or growth chambers 
(e.g., Eldhuset et  al., 2013; Sena et  al., 2018) while studies of 
Norway spruce grown under natural conditions are scarce (e.g., 
Yakovlev et  al., 2008). Tomášková et  al. (2021) hypothesized 
that the high elevation spruce ecotype would strive less compared 
to the medium and lowland one after a prolonged period of 
drought in 2018. The experiment confirmed high adaption 
potential for high-mountain spruce ecotype planted in low 
elevation based on variable chlorophyll a fluorescence (Tomášková 
et  al., 2021). Our results support the adaptation potential of 
high-elevation ecotype at the level of photosynthetic apparatus, 
as the contents of photosynthetic pigments were not significantly 
decreased compared to medium- and low-elevation ones. 
Similarly, the results of spectral analyses support the adaptation 
potential of high-elevation ecotype, as the differences in 
hyperspectral reflectance were restricted to specific parts of 
the spectrum, and the multivariate analyses failed to distinguish 
the ecotypes.

Correlations Between Hyperspectral 
Reflectance, Pigment Content, and 
Various Growth Parameters
We presented phenotypic correlations between photosynthetic 
pigments and reflectance in single wavelengths in the measured 
spectral range. Not surprisingly, chlorophylls and carotenoid 
content correlate mostly with VIS wavelengths, which correlate 
mostly with VIS wavelengths, determined by their molecular 

structure and specific absorption features (Ustin et  al., 2009). 
Similarly, Schlerf et  al. (2010) evaluated the information 
content of spectral reflectance (laboratory and airborne data) 
for the estimation of needle chlorophyll concentration in 
Norway spruce (Picea abies L. Karst.) needles. The wavebands 
selected in the regression models to estimate chlorophyll 
concentration were typically located in the red edge region 
and near the green reflectance peak. Even though pigments 
do not absorb NIR wavelengths, NIR reflectance is not 
uncommon to contribute to chlorophyll retrieval models 
(Lhotáková et  al., 2021).

All photosynthetic pigments show a substantial positive 
genetic correlation between 1,357–1,800 and 1,845–2,240 nm. 
Along the green-light region from 504 to 614 nm, the contrasting 
strong negative correlations below −0.91 occur, following the 
similar pattern observed in the above-illustrated phenotypic 
correlations. We  found strong negative correlations (below 
−0.88) in the regions 507–518 and 585–605 nm. In 1,313–1,884 
and 2,060–2,320 nm we found high positive genetic correlations. 
It seems that this inverted relationship across the spectra might 
be  a general pattern observable in various populations of 
different species. This phenomenon could be  attributed to the 
presumably positive relationship between water content and 
pigment content, as both are vital for the striving of the plants. 
The repeated drops along the reflectance curve are commonly 
attributed to water content.

In contrast to systematic studies focused on correlating 
and modeling pigments contents from leaf-level reflectance, 
the studies relating leaf reflectance to growth traits of forest 
trees are absent. In crop science, canopy reflectance is 
commonly used to estimate aboveground biomass or yield 
(Yang and Chen, 2004; Wang et  al., 2017). In forest science, 
the tree height and aboveground biomass are usually modeled 
from canopy level lidar data or lidar (Persson et  al., 2002), 
hyperspectral data fusion (Sankey et al., 2017), or UAV-borne 
image data with a very high spatial resolution (Tao et  al., 
2021). In contrast, we  tested the single wavelength shoot-
level reflectance correlation to all three growth traits such 
as DBH, tree height, crown height, and length. We  suppose 
that the relationships among shoot level reflectance and 
growth traits would be indirect, reflecting several physiological 
processes such as photosynthetic capacity, assimilate 
partitioning into growth, reproduction, and defense (Zhang 
et  al., 2015). However, from presented correlations between 
the shoot level reflectance and growth traits, the mechanisms 
behind could not be elucidated. Some of the selected spectral 
attributes were shown to have significant relationships with 
growth parameters in phenotypic and genetic correlations. 
Phenotypic correlation with HC is more visible as the 
significant regions stretched across a much wider range of 
the spectrum, especially beyond 1,300 nm. Phenotypic 
correlation between the HC and blue and red spectral regions 
could be  mediated by chlorophyll absorption in these 
wavelengths. Further, there is also a prominent position of 
the green range and far-red region in the vicinity of the 
red edge. Contrastingly, the height correlates against spectra 
only within NIR and SWIR.
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We did not find any genetic correlations between shoot 
hyperspectral reflectance and height with DBH. Genetic 
correlation of the LC with reflectance is significant in a relatively 
wide range of the spectrum, especially within the region 
1,363–1,901 nm (minimum value of 0.89 with SE 0.23) and 
in the region 1,989–2,438 nm (min 0.93 with SE 0.23) a strong 
positive correlation was recorded. Genetic correlation in the 
crown height (HC) with reflectance is comparatively less abundant 
across the spectra than the LC. There are significant ranges 
in 1,887–1,897, 1,995–2,057, and 2,322–2,397 nm. But more 
interesting is the visible correlation peak occurring between 
603 and 704 nm in the vicinity of the red edge. We can speculate 
that these relationships might share a similar background with 
pigment content genetic correlations. The water content (reflected 
in NIR and FAR) will likely be  positively correlated with the 
overall photosynthetic capacity of trees, which is further reflected 
in the LC.

Reflectance Indices: Their Heritability and 
Correlations With Growth and 
Physiological Traits
Spectral reflectance measurement provides a fast, 
non-destructive method for pigment and other leaf or canopy 
traits estimation (Sims and Gamon, 2002; Croft et  al., 2014). 
Many spectral indices have been developed (see Footnote 1). 
All three photosynthetic pigments show significant correlations 
against the selected reflectance indices in our study. 
We  deliberately chose those established indices, where 
we  estimated the heritable variation. It should be  stressed 
that this broad-sense heritability was based on clonal variation 
present in our trial. The heritability values presented here 
are slightly higher than previous experiments with a half-sib 
or full-sib genetic structure (Čepl et  al., 2016, 2018), which 
allowed the estimates of the narrow-sense heritability. The 
standard error (SE) values vary across the measured traits 
strongly connected to the sample size. We  can observe that 
growth traits tend to have lower SE (0.06–0.14) as they 
comprise the whole common garden. Highly heritable traits 
can benefit from multivariate analyses as genetic correlations 
can be  estimated to predict the effectiveness of indirect 
selections on one trait with the primary goal of improving 
a different trait (Isik et al., 2017). Genetic correlation estimates 
in population and evolutionary genetics are useful to 
understand how different traits are genetically related to 
fitness and how natural selection for higher fitness affects 
or is constrained by other traits (Isik et  al., 2017).

In the preselection of heritable reflectance indices, the majority 
are simple ratios. Only two out of seven indices are more 
complex (namely CRI2 and TCARI2). All reflectance indices 
(except TCARI2 vs. Carotenoids content) exhibit significant 
positive or negative phenotypic correlations with all three 
pigments content. A significant negative correlation was recorded 
in pigments with DWIS4 and GI reflectance indexes (<−0.70). 
Contrastingly, the highest positive correlation was found between 
pigments and the SR5 index (0.63). These values follow the 
correlations reported in previous studies (Datt, 1999; Solovchenko 

et  al., 2010; Hernández-Clemente et  al., 2012; Sonobe and 
Wang, 2017).

Overall, the highest genetic correlation (0.99) was found 
between Chlorophyll b, chlorophyll a, and the CRI2 index. 
CRI2 is also highly correlated with Chlorophyll b (0.97). We can 
conclude that the genetic correlations generally reach higher 
values but often exhibit higher SE due to their higher sensitivity 
to sample size.

In Norway spruce, the red edge position can indicate 
physiological conditions due to air pollution (Campbell et  al., 
2004). Moorthy et  al. (2008) investigated quantitative links 
among various Chlorophyll concentrations hyperspectral 
observations of Jack Pine (Pinus banksiana) in the forest health 
context. They concluded that chlorophyll content measurements 
are useful bioindicators of stand health conditions.

Our evaluation’s novelty lies in the reported phenotypic/
genetic correlations of reflectance indices against various growth 
parameters. This concept is more often seen in crop science, 
and our results may indicate the potential for forestry and 
tree improvement. It is more feasible to train and validate 
prediction models in highly uniform crop fields even across 
multiple sites. Rather heterogeneous conditions create an obstacle 
to further applications of these methods in forestry. We  see 
a clear potential for forest trees from the strong and significant 
genetic correlations we  estimated through the specific design 
utilizing clonal replications. In our study height, the height 
of the crown and the LC correlate rather poorly with the 
reflectance indices. CRI2 showed a low positive correlation 
against LC; TCARI2 exhibits a moderate positive phenotypic 
correlation with an HC.

In contrast, strong negative genetic correlations were found 
between LC and DWSI4 and GI (−0.95). Conversely, CRI2 
correlated strongly positively with the LC parameter. Lastly, 
TCARI2 exhibits a strong positive genetic correlation with an 
HC parameter. It seems that genetic correlations between spectral 
indices and various growth parameters possibly connected to 
pleiotropy reflect the actual productivity and health status much 
more precisely than the simple phenotypic correlations. It is 
questionable if this is given by the higher precision of spatial 
modeling, which takes the experimental design and 
microenvironment into account.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included 
in the article/Supplementary Material, further inquiries can 
be  directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JH and JS coordinated research activities. JS, JH, and JD 
collected material in the field. ZL, JD, and AK did laboratory 
work. JS, JH, SG, and JČ built statistical models. JS, JH, JČ, 
JK, SG, and ZL wrote the manuscript. All authors contributed 
to the article and approved the submitted version.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hejtmánek et al. The Reflectance of Norway Spruce Ecotypes

Frontiers in Plant Science | www.frontiersin.org 14 May 2022 | Volume 13 | Article 721064

FUNDING

This work was supported by the National Agency of Agriculture 
research, Czechia (NAZV) (grant number QK1910480); the project 
EXTEMIT-K: “Building up an excellent scientific team and its 
spatiotechnical background focused on mitigation of the impact 
of climatic changes to forests from the level of a gene to the level 
of a landscape at the FFWS CULS Prague,” (grant number CZ.0
2.1.01/0.0/0.0/15_003/0000433) financed by OP RDE; The Ministry 
of Education, Youth, and Sports program INTER-EXCELLENCE, 
subprogram INTER-ACTION (grant number LTAUSA19113).

ACKNOWLEDGMENTS

We thank Rastislav Jakuš (Czech University of Life Sciences 
Prague) for providing the data on growth parameters.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2022.721064/
full#supplementary-material

 

REFERENCES

Anderegg, W. R., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., 
et al. (2015). Tree mortality from drought, insects, and their interactions 
in a changing climate. New Phytol. 208, 674–683. doi: 10.1111/nph.13477

Androsiuk, P., Shimono, A., Westin, J., Lindgren, D., Fries, A., and Wang, X. R. 
(2013). Genetic status of Norway spruce (Picea abies) breeding populations 
for northern Sweden. Silvae Genet. 62, 127–136. doi: 10.1515/sg-2013-0017

Apan, A., Held, A., Phinn, S., and Markley, J. (2004). Detecting sugarcane 
'orange rust'disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote 
Sens. 25, 489–498. doi: 10.1080/01431160310001618031

Berger, K., Verrelst, J., Féret, J.-B., Wang, Z., Wocher, M., Strathmann, M., 
et al. (2020). Crop nitrogen monitoring: recent progress and principal 
developments in the context of imaging spectroscopy missions. Remote Sens. 
Environ. 242:111758. doi: 10.1016/j.rse.2020.111758

Bernier, P. Y., Raulier, F., Stenberg, P., and Ung, C.-H. (2001). Importance of 
needle age and shoot structure on canopy net photosynthesis of balsam fir 
(Abies balsamea): a spatially inexplicit modeling analysis. Tree Physiol. 21, 
815–830. doi: 10.1093/treephys/21.12-13.815

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., and Thompson, R. 
(2017). ASReml-R Reference Manual Version 4. Hemel Hempstead, UK: VSN 
International Ltd.

Campbell, P. E., Rock, B. N., Martin, M. E., Neefus, C. D., Irons, J. R., 
Middleton, E. M., et al. (2004). Detection of initial damage in Norway 
spruce canopies using hyperspectral airborne data. Int. J. Remote Sens. 25, 
5557–5584. doi: 10.1080/01431160410001726058

Carter, G. A. (1993). Responses of leaf spectral reflectance to plant stress. Am. 
J. Bot. 80, 239–243. doi: 10.1002/j.1537-2197.1993.tb13796.x

Cavender-Bares, J., Meireles, J. E., Couture, J. J., Kaproth, M. A., Kingdon, C. C., 
Singh, A., et al. (2016). Associations of leaf spectra with genetic and 
phylogenetic variation in oaks: prospects for remote detection of biodiversity. 
Remote Sens. 8:221. doi: 10.3390/rs8030221

Čepl, J., Holá, D., Stejskal, J., Korecký, J., Kočová, M., Lhotáková, Z., et al. 
(2016). Genetic variability and heritability of chlorophyll a fluorescence 
parameters in scots pine (Pinus sylvestris L.). Tree Physiol. 36, 883–895. 
doi: 10.1093/treephys/tpw028

Čepl, J., Stejskal, J., Korecký, J., Hejtmánek, J., Faltinová, Z., Lstibůrek, M., 
et al. (2020). The dehydrins gene expression differs across ecotypes in Norway 
spruce and relates to weather fluctuations. Sci. Rep. 10, 1–9. doi: 10.1038/
s41598-020-76900-x

Čepl, J., Stejskal, J., Lhotáková, Z., Holá, D., Korecký, J., Lstibůrek, M., et al. 
(2018). Heritable variation in needle spectral reflectance of scots pine (Pinus 
sylvestris L.) peaks in red edge. Remote Sens. Environ. 219, 89–98. doi: 
10.1016/j.rse.2018.10.001

Chappelle, E. W., Kim, M. S., and  McMurtrey, J. E. III (1992). Ratio analysis 
of reflectance spectra (RARS): an algorithm for the remote estimation of 
the concentrations of chlorophyll a, chlorophyll b, and carotenoids in 
soybean leaves. Remote Sens. Environ. 39, 239–247. doi: 10.1016/0034- 
4257(92)90089-3

Croft, H., Chen, J. M., and Zhang, Y. (2014). The applicability of empirical vegetation 
indices for determining leaf chlorophyll content over different leaf and canopy 
structures. Ecol. Complex. 17, 119–130. doi: 10.1016/j.ecocom.2013.11.005

Curran, P. J., Dungan, J. L., and Gholz, H. L. (1990). Exploring the relationship 
between reflectance red edge and chlorophyll content in slash pine. Tree 
Physiol. 7, 33–48. doi: 10.1093/treephys/7.1-2-3-4.33

Datt, B. (1999). A new reflectance index for remote sensing of chlorophyll 
content in higher plants: tests using eucalyptus leaves. J. Plant Physiol. 154, 
30–36. doi: 10.1016/S0176-1617(99)80314-9

Deepak, M., Keski-Saari, S., Fauch, L., Granlund, L., Oksanen, E., and Keinänen, M. 
(2019). Leaf canopy layers affect spectral reflectance in silver birch. Remote 
Sens. 11:2884. doi: 10.3390/rs11242884

Ditmarová, Ľ., Kurjak, D., Palmroth, S., Kmeť, J., and Střelcová, K. (2010). 
Physiological responses of Norway spruce (Picea abies) seedlings to drought 
stress. Tree Physiol. 30, 205–213. doi: 10.1093/treephys/tpp116

Einzmann, K., Atzberger, C., Pinnel, N., Glas, C., Böck, S., Seitz, R., et al. 
(2021). Early detection of spruce vitality loss with hyperspectral data: results 
of an experimental study in Bavaria, Germany. Remote Sens. Environ. 
266:112676. doi: 10.1016/j.rse.2021.112676

Eitel, J. U., Gessler, P. E., Smith, A. M., and Robberecht, R. (2006). Suitability 
of existing and novel spectral indices to remotely detect water stress in 
Populus spp. For. Ecol. Manag. 229, 170–182. doi: 10.1016/j.foreco.2006. 
03.027

Eldhuset, T. D., Nagy, N. E., Volařík, D., Børja, I., Gebauer, R., Yakovlev, I. A., 
et al. (2013). Drought affects tracheid structure, dehydrin expression, and 
above-and belowground growth in 5-year-old Norway spruce. Plant Soil 
366, 305–320. doi: 10.1007/s11104-012-1432-z

Farjon, A., and Filer, D. (2013). An Atlas of the World's Conifers: An Analysis 
of Their Distribution, Biogeography, Diversity and Conservation Status. Leiden, 
Netherlands: Brill.

Farooq, M., Wahid, A., Kobayashi, N., et al (2009). Plant drought stress: effects, 
mechanisms and management. Agron. Sustain. Dev. 29, 185–21. doi: 10.1051/
agro:2008021

Gates, D. M., Keegan, H. J., Schleter, J. C., and Weidner, V. R. (1965). Spectral 
properties of plants. Appl. Opt. 4, 11–20. doi: 10.1364/AO.4.000011

Gitelson, A. A., Chivkunova, O. B., and Merzlyak, M. N. (2009). Nondestructive 
estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. 
Bot. 96, 1861–1868. doi: 10.3732/ajb.0800395

Gitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between 
leaf chlorophyll content and spectral reflectance and algorithms for non-
destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 
160, 271–282. doi: 10.1078/0176-1617-00887

Gitelson, A. A., and Merzlyak, M. N. (1997). Remote estimation of chlorophyll 
content in higher plant leaves. Int. J. Remote Sens. 18, 2691–2697. doi: 
10.1080/014311697217558

Gitelson, A. A., Merzlyak, M. N., and Lichtenthaler, H. K. (1996). Detection 
of red edge position and chlorophyll content by reflectance measurements 
near 700  nm. J. Plant Physiol. 148, 501–508. doi: 10.1016/
S0176-1617(96)80285-9

Goetz, A. F. H. (2009). Three decades of hyperspectral remote sensing of the 
earth: a personal view. Remote Sens. Environ. 113, S5–S16. doi: 10.1016/j.
rse.2007.12.014

Golhani, K., Balasundram, S. K., Vadamalai, G., and Pradhan, B. (2019). Selection 
of a spectral index for detection of orange spotting disease in oil palm 
(Elaeis guineensis Jacq.) using red edge and neural network techniques. J. 
Indian Soc. Remote Sens. 47, 639–646. doi: 10.1007/s12524-018-0926-4

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/articles/10.3389/fpls.2022.721064/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.721064/full#supplementary-material
https://doi.org/10.1111/nph.13477
https://doi.org/10.1515/sg-2013-0017
https://doi.org/10.1080/01431160310001618031
https://doi.org/10.1016/j.rse.2020.111758
https://doi.org/10.1093/treephys/21.12-13.815
https://doi.org/10.1080/01431160410001726058
https://doi.org/10.1002/j.1537-2197.1993.tb13796.x
https://doi.org/10.3390/rs8030221
https://doi.org/10.1093/treephys/tpw028
https://doi.org/10.1038/s41598-020-76900-x
https://doi.org/10.1038/s41598-020-76900-x
https://doi.org/10.1016/j.rse.2018.10.001
https://doi.org/10.1016/0034-4257(92)90089-3
https://doi.org/10.1016/0034-4257(92)90089-3
https://doi.org/10.1016/j.ecocom.2013.11.005
https://doi.org/10.1093/treephys/7.1-2-3-4.33
https://doi.org/10.1016/S0176-1617(99)80314-9
https://doi.org/10.3390/rs11242884
https://doi.org/10.1093/treephys/tpp116
https://doi.org/10.1016/j.rse.2021.112676
https://doi.org/10.1016/j.foreco.2006.03.027
https://doi.org/10.1016/j.foreco.2006.03.027
https://doi.org/10.1007/s11104-012-1432-z
https://doi.org/10.1051/agro:2008021
https://doi.org/10.1051/agro:2008021
https://doi.org/10.1364/AO.4.000011
https://doi.org/10.3732/ajb.0800395
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.1080/014311697217558
https://doi.org/10.1016/S0176-1617(96)80285-9
https://doi.org/10.1016/S0176-1617(96)80285-9
https://doi.org/10.1016/j.rse.2007.12.014
https://doi.org/10.1016/j.rse.2007.12.014
https://doi.org/10.1007/s12524-018-0926-4


Hejtmánek et al. The Reflectance of Norway Spruce Ecotypes

Frontiers in Plant Science | www.frontiersin.org 15 May 2022 | Volume 13 | Article 721064

Harb, A., Krishnan, A., Ambavaram, M. M., and Pereira, A. (2010). Molecular 
and physiological analysis of drought stress in Arabidopsis reveals early 
responses leading to acclimation in plant growth. Plant Physiol. 154, 1254–1271. 
doi: 10.1104/pp.110.161752

Hart, S. J., Veblen, T. T., Eisenhart, K. S., Jarvis, D., and Kulakowski, D. (2014). 
Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across 
northwestern Colorado. Ecology 95, 930–939. doi: 10.1890/13-0230.1

Hernández-Clemente, R., Navarro-Cerrillo, R. M., and Zarco-Tejada, P. J. (2012). 
Carotenoid content estimation in a heterogeneous conifer forest using narrow-
band indices and PROSPECT+ DART simulations. Remote Sens. Environ. 
127, 298–315. doi: 10.1016/j.rse.2012.09.014

Hovi, A., Raitio, P., and Rautiainen, M. (2017). A spectral analysis of 25 boreal 
tree species. Silva Fenn. 51:7753. doi: 10.14214/sf.7753

Hunt, E. R., and Rock, B. N. (1989). Detection of changes in leaf water content 
using near- and middle-infrared reflectances. Remote Sens. Environ. 30, 
43–54. doi: 10.1016/0034-4257(89)90046-1

Isik, F., Holland, J., and Maltecca, C. (2017). Genetic Data Analysis for Plant 
and Animal Breeding (Vol. 400). Cham, Switzerland: Springer International  
Publishing.

Jactel, H., Petit, J., Desprez-Loustau, M. L., Delzon, S., Piou, D., Battisti, A., et al. 
(2012). Drought effects on damage by forest insects and pathogens: a meta-
analysis. Glob. Chang. Biol. 18, 267–276. doi: 10.1111/j.1365-2486.2011.02512.x

Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., 
Somasundaram, R., et al. (2009). Drought stress in plants: a review on 
morphological characteristics and pigments composition. Int. J. Agric. Biol. 
11, 100–105.

Jansson, G., Danusevičius, D., Grotehusman, H., Kowalczyk, J., Krajmerova, D., 
Skrøppa, T., et al. (2013). “Norway spruce (Picea abies (L.) H. Karst.),” in 
Forest Tree Breeding in Europe. ed. L. E. Paques (Dordrecht: Springer), 
123–176.

Jensen, A. M., Warren, J. M., Hanson, P. J., Childs, J., and Wullschleger, S. D. 
(2015). Needle age and season influence photosynthetic temperature response 
and total annual carbon uptake in mature Picea mariana trees. Ann. Bot. 
116, 821–832. doi: 10.1093/aob/mcv115

Jiang, J., Comar, A., Burger, P., Bancal, P., Weiss, M., and Baret, F. (2018). 
Estimation of leaf traits from reflectance measurements: comparison between 
methods based on vegetation indices and several versions of the PROSPECT 
model. Plant Methods 14, 1–16. doi: 10.1186/s13007-018-0291-x

Junker, L. V., and Ensminger, I. (2016). Relationship between leaf optical 
properties, chlorophyll fluorescence and pigment changes in senescing Acer 
saccharum leaves. Tree Physiol. 36, 694–711. doi: 10.1093/treephys/tpv148

Karlsson, P. E., Medin, E. L., Wallin, G., Selldén, G., and Skärby, L. (1997). 
Effects of ozone and drought stress on the physiology and growth of two 
clones of Norway spruce (Picea abies). New Phytol. 136, 265–275. doi: 
10.1046/j.1469-8137.1997.00735.x

Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E., and Wessman, C. A. 
(2009). Characterizing canopy biochemistry from imaging spectroscopy and 
its application to ecosystem studies. Remote Sens. Environ. 113, S78–S91. 
doi: 10.1016/j.rse.2008.10.018

Korecký, J., Čepl, J., Stejskal, J., Faltinová, Z., Dvořák, J., Lstibůrek, M., et al. 
(2021). Genetic diversity of Norway spruce ecotypes assessed by GBS-derived 
SNPs. Sci. Rep. 11, 1–12. doi: 10.1038/s41598-021-02545-z

Krutovskii, K. V., and Bergmann, F. (1995). Introgressive hybridization and 
phylogenetic relationships between Norway, Picea abies (L.) Karst., and 
Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 
74, 464–480. doi: 10.1038/hdy.1995.67

Lehnert, L. W., Meyer, H., Obermeier, W. A., Silva, B., Regeling, B., and Thies, B., 
et al. (2019). Hyperspectral Data Analysis in R: The hsdar Package. J. Stat. 
Softw. 89, 1–23. doi: 10.18637/jss.v089.i12

Lhotáková, Z., Kopačková-Strnadová, V., Oulehle, F., Homolová, L., 
Neuwirthová, E., Švik, M., et al. (2021). Foliage biophysical trait prediction 
from laboratory spectra in Norway spruce is more affected by needle age 
Than by site soil conditions. Remote Sens. 13:391. doi: 10.3390/rs13030391

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of 
photosynthetic biomembranes. Methods Enzymol. 148, 350–382. doi: 
10.1016/0076-6879(87)48036-1

Masaitis, G., Mozgeris, G., and Augustaitis, A. (2013). Spectral reflectance 
properties of healthy and stressed coniferous trees. Iforest 6, 30–36. doi: 
10.3832/ifor0709-006

McMurtrey, J. E., Chappelle, E. W., Kim, M. S., Meisinger, J. J., and Corp, L. A. 
(1994). Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) 
with actively induced fluorescence and passive reflectance measurements. 
Remote Sens. Environ. 47, 36–44. doi: 10.1016/0034-4257(94)90125-2

Mišurec, J., Kopačková, V., Lhotáková, Z., Hanuš, J., Weyermann, J., 
Entcheva-Campbell, P., et al. (2012). Utilization of hyperspectral image optical 
indices to assess the Norway spruce forest health status. J. Appl. Remote. 
Sens. 6, 063545–063551. doi: 10.1117/1.JRS.6.063545

Moorthy, I., Miller, J. R., and Noland, T. L. (2008). Estimating chlorophyll 
concentration in conifer needles with hyperspectral data: an assessment at 
the needle and canopy level. Remote Sens. Environ. 112, 2824–2838. doi: 
10.1016/j.rse.2008.01.013

Morgenstern, E. K. (1996). Geographic Variation in Forest Trees: Genetic Basis 
and Application of Knowledge in Silviculture. UBC Press: Vancouver, 109–115.

Neuwirthová, E., Kuusk, A., Lhotáková, Z., Kuusk, J., Albrechtová, J., and 
Hallik, L. (2021). Leaf age matters in remote sensing: taking ground truth 
for spectroscopic studies in hemiboreal deciduous trees with continuous 
leaf formation. Remote Sens. 13:1353. doi: 10.3390/rs13071353

Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Zytkowiak, R., Reich, P. B., and 
Karolewski, P. (1998). Growth and physiology of Picea abies populations 
from elevational transects: Common garden evidence for altitudinal ecotypes 
and cold adaptation. Funct. Ecol. 12, 573–590. doi: 10.1046/j.1365-2435. 
1998.00236.x

Peñuelas, J., Fillela, I., Biel, C., Serrano, L., and Savé, R. (1993). The reflectance 
at the 950–970  nm region as an indicator of plant water status. Int. J. 
Remote Sens. 14, 1887–1905. doi: 10.1080/01431169308954010

Peñuelas, J., and Inoue, Y. (1999). Reflectance indices indicative of changes in 
water and pigment contents of peanut and wheat leaves. Photosynthetica 
36, 355–360. doi: 10.1023/A:1007033503276

Persson, A., Holmgren, J., and Soderman, U. (2002). Detecting and measuring 
individual trees using an airborne laser scanner. Photogramm. Eng. Remote. 
Sens. 68, 925–932.

R Core Team (2022). A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. Available at: https://
www.R-project.org/

Rathod, P. H., Brackhage, C., Müller, I., Van der Meer, F. D., and Noomen, M. F. 
(2018). Assessing metal-induced changes in the visible and near-infrared 
spectral reflectance of leaves: a pot study with sunflower (Helianthus annuus 
L.). J. Indian Soc. Remote Sens. 46, 1925–1937. doi: 10.1007/s12524-018-0846-3

Rock, B. N., Hoshizaki, T., and Miller, J. R. (1988). Comparison of in situ 
and airborne spectral measurements of the blue shift associated with forest 
decline. Remote Sens. Environ. 24, 109–127. doi: 10.1016/0034-4257(88) 
90008-9

Rock, B. N., Williams, D. L., Moss, D. M., Lauten, G. N., and Kim, M. (1994). 
High-spectral resolution field and laboratory optical reflectance measurements 
of red spruce and eastern hemlock needles and branches. Remote Sens. 
Environ. 47, 176–189. doi: 10.1016/0034-4257(94)90154-6

Sánchez, M. T., De la Haba, M. J., Benítez-López, M., Fernández-Novales, J., 
Garrido-Varo, A., and Pérez-Marín, D. (2012). Non-destructive characterization 
and quality control of intact strawberries based on NIR spectral data. J. 
Food Eng. 110, 102–108. doi: 10.1016/j.jfoodeng.2011.12.003

Sankey, T., Donager, J., McVay, J., and Sankey, J. B. (2017). UAV lidar and 
hyperspectral fusion for forest monitoring in the southwestern USA. Remote 
Sens. Environ. 195, 30–43. doi: 10.1016/j.rse.2017.04.007

Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., and 
Martonchik, J. V. (2006). Reflectance quantities in optical remote sensing—
definitions and case studies. Remote Sens. Environ. 103, 27–42. doi: 10.1016/j.
rse.2006.03.002

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., and 
Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, 
of several Romanian Carpathian populations of Norway spruce (Picea abies 
L. Karst). Trees 31, 1479–1490. doi: 10.1007/s00468-017-1563-1

Schlerf, M., Atzberger, C., Hill, J., Buddenbaum, H., Werner, W., and Schüler, G. 
(2010). Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies 
L. Karst.) using imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 12, 
17–26. doi: 10.1016/j.jag.2009.08.006

Sena, C. M., Leandro, A., Azul, L., Seiça, R., and Perry, G. (2018). Vascular 
oxidative stress: impact and therapeutic approaches. Front. Physiol. 9:1668. 
doi: 10.3389/fphys.2018.01668

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1104/pp.110.161752
https://doi.org/10.1890/13-0230.1
https://doi.org/10.1016/j.rse.2012.09.014
https://doi.org/10.14214/sf.7753
https://doi.org/10.1016/0034-4257(89)90046-1
https://doi.org/10.1111/j.1365-2486.2011.02512.x
https://doi.org/10.1093/aob/mcv115
https://doi.org/10.1186/s13007-018-0291-x
https://doi.org/10.1093/treephys/tpv148
https://doi.org/10.1046/j.1469-8137.1997.00735.x
https://doi.org/10.1016/j.rse.2008.10.018
https://doi.org/10.1038/s41598-021-02545-z
https://doi.org/10.1038/hdy.1995.67
https://doi.org/10.18637/jss.v089.i12
https://doi.org/10.3390/rs13030391
https://doi.org/10.1016/0076-6879(87)48036-1
https://doi.org/10.3832/ifor0709-006
https://doi.org/10.1016/0034-4257(94)90125-2
https://doi.org/10.1117/1.JRS.6.063545
https://doi.org/10.1016/j.rse.2008.01.013
https://doi.org/10.3390/rs13071353
https://doi.org/10.1046/j.1365-2435.1998.00236.x
https://doi.org/10.1046/j.1365-2435.1998.00236.x
https://doi.org/10.1080/01431169308954010
https://doi.org/10.1023/A:1007033503276
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1007/s12524-018-0846-3
https://doi.org/10.1016/0034-4257(88)90008-9
https://doi.org/10.1016/0034-4257(88)90008-9
https://doi.org/10.1016/0034-4257(94)90154-6
https://doi.org/10.1016/j.jfoodeng.2011.12.003
https://doi.org/10.1016/j.rse.2017.04.007
https://doi.org/10.1016/j.rse.2006.03.002
https://doi.org/10.1016/j.rse.2006.03.002
https://doi.org/10.1007/s00468-017-1563-1
https://doi.org/10.1016/j.jag.2009.08.006
https://doi.org/10.3389/fphys.2018.01668


Hejtmánek et al. The Reflectance of Norway Spruce Ecotypes

Frontiers in Plant Science | www.frontiersin.org 16 May 2022 | Volume 13 | Article 721064

Serrano, L., Peñuelas, J., and Ustin, S. L. (2002). Remote sensing of nitrogen 
and lignin in Mediterranean vegetation from AVIRIS data: decomposing 
biochemical from structural signals. Remote Sens. Environ. 81, 355–364. doi: 
10.1016/S0034-4257(02)00011-1

Sims, D. A., and Gamon, J. A. (2002). Relationships between leaf pigment 
content and spectral reflectance across a wide range of species, leaf structures 
and developmental stages. Remote Sens. Environ. 81, 337–354. doi: 10.1016/
S0034-4257(02)00010-X

Šindelář, J. (1975). Klonové archivy smrku ztepilého Picea abies Karst. na PLO 
Zbraslav-Strnady – polesí Jíloviště. Jíloviště-Strnady. VÚLHM.

Slaton, M. R., Hunt, E. R., and Smith, W. K. (2001). Estimating near-infrared 
leaf reflectance from leaf structural characteristics. Am. J. Bot. 88, 278–284. 
doi: 10.2307/2657019

Smith, R. C. G., Adams, J., Stephens, D. J., and Hick, P. T. (1995). Forecasting 
wheat yield in a Mediterranean-type environment from the NOAA satellite. 
Aust. J. Agric. Res. 46, 113–125. doi: 10.1071/AR9950113

Solovchenko, A. E., Chivkunova, O. B., Gitelson, A. A., and Merzlyak, M. N. (2010). 
Non-destructive Estimation Pigment Content Ripening Quality and Damage in 
Apple Fruit With Spectral Reflectance in the Visible Range. Fresh Produce. 4.

Sonobe, R., and Wang, Q. (2017). Hyperspectral indices for quantifying leaf 
chlorophyll concentrations performed differently with different leaf types in 
deciduous forests. Eco. Inform. 37, 1–9. doi: 10.1016/j.ecoinf.2016.11.007

Tao, X., Li, Y., Yan, W., Wang, M., Tan, Z., Jiang, J., et al. (2021). Heritable 
variation in tree growth and needle vegetation indices of slash pine (Pinus 
elliottii) using unmanned aerial vehicles (UAVs). Ind. Crop. Prod. 173:114073. 
doi: 10.1016/j.indcrop.2021.114073

Tomášková, I., Pastierovič, F., Krejzková, A., Čepl, J., and Hradecký, J. (2021). 
Norway spruce ecotypes distinguished by chlorophyll a fluorescence kinetics. 
Acta Physiol. Plant. 43, 1–6. doi: 10.1007/s11738-020-03190-1

Trujillo-Moya, C., George, J. P., Fluch, S., Geburek, T., Grabner, M., 
Karanitsch-Ackerl, S., et al. (2018). Drought sensitivity of Norway spruce 
at the species' warmest fringe: quantitative and molecular analysis reveals 
high genetic variation among and within provenances. G3 8, 1225–1245. 
doi: 10.1534/g3.117.300524

Tutin, T. G., Heywood, V. H., Burges, N. A., and Valentine, D. H. (eds.) 
(1964). Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae). Vol. 4. 
Cambridge, UK: Cambridge University Press.

Ustin, S. L., Gitelson, A. A., Jacquemoud, S., Schaepman, M., Asner, G. P., 
Gamon, J. A., et al. (2009). Retrieval of foliar information about plant 
pigment systems from high resolution spectroscopy. Remote Sens. Environ. 
113, S67–S77. doi: 10.1016/j.rse.2008.10.019

Valcu, C.-M., Lalanne, C., Plomion, C., and Schlink, K. (2008). Heat induced 
changes in protein expression profiles of Norway spruce (Picea abies) ecotypes 
from different elevations. Proteomics 8, 4287–4302. doi: 10.1002/pmic.200700992

Van der Maaten-Theunissen, M., Kahle, H. P., and van der Maaten, E. (2013). 
Drought sensitivity of Norway spruce is higher than that of silver fir along 
an altitudinal gradient in southwestern Germany. Ann. For. Sci. 70, 185–193. 
doi: 10.1007/s13595-012-0241-0

Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-
P., Lewis, P., et al. (2019). Quantifying vegetation biophysical variables from 

imaging spectroscopy data: a review on retrieval methods. Surv. Geophys. 
40, 589–629. doi: 10.1007/s10712-018-9478-y

Wallin, G., Karlsson, P. E., Selldén, G., Ottosson, S., Medin, E. L., Pleijel, H., 
et al. (2002). Impact of four years exposure to different levels of ozone, 
phosphorus and drought on chlorophyll, mineral nutrients, and stem volume 
of Norway spruce, Picea abies. Physiol. Plant. 114, 192–206. doi: 10.1034/j.
1399-3054.2002.1140205.x

Wang, C., Feng, M., Yang, W., Ding, G., Xiao, L., Li, G., et al. (2017). Extraction 
of sensitive bands for monitoring the winter wheat (Triticum aestivum) 
growth status and yields based on the spectral reflectance. PLoS One 
12:e0167679. doi: 10.1371/journal.pone.0167679

Weed, A. S., Ayres, M. P., and Hicke, J. A. (2013). Consequences of climate 
change for biotic disturbances in north American forests. Ecol. Monogr. 83, 
441–470. doi: 10.1890/13-0160.1

Wu, C., Niu, Z., Tang, Q., and Huang, W. (2008). Estimating chlorophyll content 
from hyperspectral vegetation indices: modeling and validation. Agric. For. 
Meteorol. 148, 1230–1241. doi: 10.1016/j.agrformet.2008.03.005

Yakovlev, I. A., Asante, D. K., Fossdal, C. G., Partanen, J., Junttila, O., 
and Johnsen, Ø. (2008). Dehydrins expression related to timing of bud 
burst in Norway spruce. Planta 228, 459–472. doi: 10.1007/
s00425-008-0750-0

Yang, C. M., and Chen, R. K. (2004). Modeling rice growth with 
hyperspectral reflectance data. Crop Sci. 44, 1283–1290. doi: 10.2135/
cropsci2004.1283

Yang, X., Tang, J., Mustard, J. F., Wu, J., Zhao, K., Serbin, S., et al. (2016). 
Seasonal variability of multiple leaf traits captured by leaf spectroscopy at 
two temperate deciduous forests. Remote Sens. Environ. 179, 1–12. doi: 
10.1016/j.rse.2016.03.026

Zhang, Y., Zheng, L., Li, M., Deng, X., and Ji, R. (2015). Predicting apple 
sugar content based on spectral characteristics of apple tree leaf in different 
phenological phases. Comput. Electron. Agric. 112, 20–27. doi: 10.1016/j.
compag.2015.01.006

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2022 Hejtmánek, Stejskal, Čepl, Lhotáková, Korecký, Krejzková, Dvořák 
and Gezan. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner(s) 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1016/S0034-4257(02)00011-1
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.2307/2657019
https://doi.org/10.1071/AR9950113
https://doi.org/10.1016/j.ecoinf.2016.11.007
https://doi.org/10.1016/j.indcrop.2021.114073
https://doi.org/10.1007/s11738-020-03190-1
https://doi.org/10.1534/g3.117.300524
https://doi.org/10.1016/j.rse.2008.10.019
https://doi.org/10.1002/pmic.200700992
https://doi.org/10.1007/s13595-012-0241-0
https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1034/j.1399-3054.2002.1140205.x
https://doi.org/10.1034/j.1399-3054.2002.1140205.x
https://doi.org/10.1371/journal.pone.0167679
https://doi.org/10.1890/13-0160.1
https://doi.org/10.1016/j.agrformet.2008.03.005
https://doi.org/10.1007/s00425-008-0750-0
https://doi.org/10.1007/s00425-008-0750-0
https://doi.org/10.2135/cropsci2004.1283
https://doi.org/10.2135/cropsci2004.1283
https://doi.org/10.1016/j.rse.2016.03.026
https://doi.org/10.1016/j.compag.2015.01.006
https://doi.org/10.1016/j.compag.2015.01.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Revealing the Complex Relationship Among Hyperspectral Reflectance, Photosynthetic Pigments, and Growth in Norway Spruce Ecotypes
	Introduction
	Materials and Methods
	Plant Material
	Trial Description
	Sampling
	Climatic Data
	Reflectance Measurement
	Pigment Content Assessment
	Statistical Analysis

	Results
	Reflectance in the Two Different Sampling Periods
	Differences in Reflectance, Pigments, and Growth Traits Between Ecotypes
	Phenotypic Correlations Between Hyperspectral Reflectance, Pigment Content, and Growth
	Phenotypic Correlations Between the Heritable Hyperspectral Indices, Photosynthetic Pigments, and Measured Growth Traits
	Genetic Correlations Among Growth Traits: Pigments and Reflectance
	Genetic Correlations Among Growth Traits: Pigments and Reflectance Indices

	Discussion
	Seasonal Variation in Hyperspectral Reflectance
	Differences Among Ecotypes
	Correlations Between Hyperspectral Reflectance, Pigment Content, and Various Growth Parameters
	Reflectance Indices: Their Heritability and Correlations With Growth and Physiological Traits

	Data Availability Statement
	Author Contributions
	Funding

	 References

