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INTRODUCTION
I am grateful to all the commentators for their friendly, chal-
lenging, and illuminating reactions to my foray into the world
of probabilistic prediction machines. When I first drafted the
target paper, I had no idea it would grow into a huge 2-year
project, spawning more than 50 responses spread across two
major journals. Nor could I predict how much I would need
to learn (and sometimes unlearn) to even begin to approach
these issues.

Reading and re-reading the many responses, I was struck
by how many times my best response consisted—to a first
approximation—in exploring the possible impact of a key mecha-
nism that (see especially the comments by Kiverstein and Reitveld)
was insufficiently stressed in my original treatment. That mech-
anism was the “precision-weighting” of prediction error. This
provides a powerful means of inducing all manner of context
effects, and may even hold the key to the orchestration of multiple
different regions (and strategies) within the brain. Such precision-
weighting amounts to altering the gain on select populations
of prediction error units. This enables the flexible balancing of
top-down and bottom-up influence, as described in the original
paper. But it also provides a means of altering the flow of influ-
ence between different neural areas, hence flexibly reconfiguring
patterns of effective connectivity. This, I shall argue, delivers a
multi-purpose architecture in which response becomes just about
maximally context-sensitive.

Another major shortfall of the original treatment was my
failure to address the relations between rich, model-based pre-
diction, and the superficially messy multitude of other ele-
ments underpinning cognitive and adaptive success. Here too,
precision-based modulations of effective connectivity may prove
important.

In what follows, I try to remedy both these shortcom-
ings while responding to many (though by no means all)

of the issues raised by the commentaries1. Biological agents
emerge as pro-active survival-enabled prediction machines. These
are prediction machines equipped with multiple ecologi-
cally sound routes to effective adaptive response, forever
in the business of predicting their own unfolding sensory
arrays. Within these machines patterns of effective neural
(and extra-neural) connectivity are constantly in flux, in
ways that both determine and are determined by their own
actions, their affective and interoceptive states, and long-term
goals.

PRECISION, PLANNING, AND AGENCY
Several commentators (Boccignone and Cordeschi; Schilling and
Rohlfing; Pezzulo; Conci Zellin, and Müller; Brown and Brüne;
Brigard: Basso) noted the need to accommodate forms of planning
and offline reasoning that go far beyond the simple program-
ming of here-and-now motor action2, and that sometimes seem
to require something like the offline exploration of multiple pos-
sibilities. Here, the canny manipulation of precision-weighted
prediction error may play a large role. A good trick (beautifully
displayed in the comments from Pezzulo) is to re-use elements of
the generative model that is used to produce our own actions to

1But see also the Author’s Reply appearing after the target paper in Behavioral
and Brain Sciences, where many additional issues are discussed.
2Both Conci et al. and Brigard are especially concerned with effects span-
ning multiple temporal scales. Brigard offers a compelling sketch of how
to integrate memory into a probabilistic prediction-based framework and I
fully agree that there is an illuminating potential “fit” hereabouts. Such a fit
depends crucially upon context effects working at multiple temporal scales, as
also highlighted in the useful suggestions by Conci et al. Brigard also raises the
issue of agent-based vs. sub-personal frequency judgments. This bears on the
more general question of the genesis and nature of the agentive perspective
itself, and identifies an important area requiring both conceptual clarification
and further empirical research.
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run simulations that allow us to explore possible courses of future
action.

Thus, take some animal that commands a rich and power-
ful generative model enabling it to predict the sensory signal
across many temporal and spatial scales. Such an animal seems
well-placed to use that model “off-line” (see e.g., Grush, 1995,
2004; Clark and Grush, 1999) so as to imagine possible future
unfoldings and select an action accordingly. But within the
Predictive Processing (PP) framework, the deep intimacy of
perception and action (see the original text) breeds a striking
problem. For according to PP, thinking of a certain trajectory of
arm motion (to take a very simple example) is the way to bring
that trajectory about!

The solution (Friston et al., 2011) may lie in the canny deploy-
ment of precision-weighting. The proposal is that the brain, in
order to simulate future unfoldings, must mute the weighting
on select aspects of the proprioceptive prediction error signal.
Suppose this is done while simultaneously entering a high-
level neural state whose rough-and-ready folk-psychological gloss
might be something like “I reach for the cup.” Motor action, on
the PP account, is entrained by proprioceptive expectations and
cannot here ensue. But all the other intertwined elements in the
generative model remain poised to act in the usual way. The result
should be a “mental simulation” of the reach and hence an appre-
ciation of its most likely consequences. Such mental simulations
provide an appealing way of smoothing the path from basic forms
of embodied response to abilities of planning, deliberation, and
“off-line reflection”—see Barsalou (1999, 2009); Grush (2004);
Pezzulo (2008); Pezzulo et al. (2013)—see also Hesslow (2002);
Colder (2011). They may also shed light (see the remarks by
de Ridder, Verplaetse, and Vanneste) on the complex issues con-
cerning the experience of free will. Agents that can, for example,
simulate multiple motoric unfoldings are well-placed to feel that
any one of those could become actual “at will.”

In simulation, as Brown and Brüne, and Schilling and Rohlfing,
nicely suggest, we may also re-use the knowledge that drives our
own motor responses as a means of simulating and understand-
ing the actions of other agents. Within the PP framework, this
could come about in much the same way as any other form of
“offline simulation.” Thus, given some cues that inform me that
I am watching another agent, the precision-weighting (the gain)
on proprioceptive prediction error relative to those aspects of the
observed scene should again be muted3. With the gain on propri-
oceptive prediction error turned down, we are free to deploy the
generative model geared to the production of our own actions as

3The suggestion here is not that our somatosensory areas themselves are
rendered inactive during action observation. Indeed, there is considerable evi-
dence [reviewed in Keysers et al. (2010)] that such areas are indeed active
during passive viewing. Rather, it is that the forward flowing influence of (the
relevant aspects of) proprioceptive prediction error now becomes muted, ren-
dering such error unable to impact higher levels of somatosensory processing.
Just such a pattern (of lower-level activity combined with higher level inactiv-
ity) was found—as Friston et al. (2011), (p. 156) point out—by Keysers et al.
(2010). I use the word “muted” advisedly, having spoken (in an earlier ver-
sion) of setting such weights at or close to 0. But full zero settings, as Shimon
Edleman (pers. communication) usefully notes, can have dramatic conse-
quences within finely balanced dynamical systems, giving rise to significant
computational challenges.

a means of predicting and understanding the actions of others.
Under such conditions, the complex interdependencies between
other aspects of the generative model (those relating high-level
aims and intentions to proximal goals and to the shape of the
unfolding movements) remain active, allowing prediction error
minimization across the cortical hierarchy to settle on a best
overall guess concerning the intentions “behind” 4 the observed
behavior.

The upshot is that: “We can use the same generative model, under
action or observation, by selectively attending to visual or propri-
oceptive information (depending upon whether visual movement
is caused by ourselves or others)” Friston et al. (2011) (p. 156).

By contrast, when engaged in self-generated action, the precision-
weighting on the relevant proprioceptive error must be set high.
When proprioceptive prediction error is highly weighted yet suit-
ably resolved by a stack of top-down predictions (some of which
reflect our goals and intentions), we feel that we are the agents
of our own actions. Core aspects of the much-discussed “sense
of agency”5 (see the comments by White and Shergill and by
Kumar and Srinivasan) seem to depend upon this, and mistakes
in both the generation of prediction errors and the assignment
of precision-weighting to such errors are increasingly though to
underlie many illusions of action and control [as nicely displayed
in the comments from White and Shergill, and see, for example,
Fletcher and Frith (2009); Friston (2012); Ford and Mathalon
(2012)].

Kumar and Srinivasan suggest a “hierarchical event control”
framework (see Jordan, 2003) as a possible means of implement-
ing related ideas, but one that supports a more dynamic and fluid
account of the experience of agentive control. The key idea, if I
understand them correctly, is to allow the experience of agency to
“attach” to different control loops according to an agent’s exper-
tise, local goals, and the changing effects of context. This would
determine whether we feel in control of the car, or the gear-
box, or our legs and hands, and so on. This image of a “shifting
sense of agentive control” seems right, and it raises the question
of exactly how salient control loops are selected and highlighted
in ongoing experience. From within PP the answer, I suspect,
must again involve to the weightings given to prediction error
responses occurring in various places within the processing hier-
archy: weightings that must shift and alter in ways that reflect our
goals, expertise, and the context of action. I return to this issue in
the next section.

To sum up, the neural representations that underlie our own
intentional motor actions, those that underlie our simulations of
possible future actions, and those that are active when we model
the motor behavior of other agents may be substantially over-
lapping. Clear differences in functionality are here traced not to

4It may be worth noting that the intentions of other agents are no more hid-
den, on these accounts, than any other aspects of the scene before us. I infer
your intentions in the same way, and using the same broad apparatus, as I
infer that there is, in front of me, a yellow coffee cup on a wooden table.
5There is large and complex literature on this topic – see de Vignemont and
Fourneret (2004) for a useful review, and some important fine-tuning of the
basic notion. See also Hohwy (2007); Friston et al. (2012b).
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the core representations but to the estimations of precision that
nuance their effects, reflecting the different contexts in play. If this
is true, then:

“the brain does not represent intended motor acts or the percep-
tual consequences of those acts separately; the constructs repre-
sented in the brain are both intentional and perceptual [having]
both sensory and motor correlates” Friston et al. (2011) (p. 156).

Such representations are essentially amodal, high-level associative
complexes linking goals and intentions to sensory consequences.
Those states have differing constellations of modality-specific
implications (some proprioceptive, some visual, etc.) according
to the context in which they occur: implications that are imple-
mented by varying the precision-weighting of different aspects of
the prediction error signal.

Systems like these combine a real sensorimotor grip on dealing
with their worlds with the emergence of higher-level abstrac-
tions that (crucially) develop in tandem with that grip. This is
because learning here yields representational forms, at higher
processing levels, that allow the system to predict the regulari-
ties that are governing the neural patterns (themselves responding
to energetic stimulations at the sensory peripheries) present at
the lower levels. What emerges are “grounded abstractions” (for
this general notion, see Barsalou, 2003; Pezzulo et al., 2013)
that may open the door to more compositional and strategic
operations, such as solving novel motor problems, mimicking
the observed behavior of other agents, engaging in goal-directed
planning, and pre-testing behaviors in offline imagery (For per-
suasive suggestions concerning the more complex forms of “cog-
nitive control” that some of these require, see the comments from
Pezzulo).

This whole emerging complex of ideas concerning action
production, action understanding, and the capacity to simulate
future events has been studied, in microcosm, using a variety
of simulations. Weber et al. (2006) describe a hybrid genera-
tive/predictive model of motor cortex that provides just this kind
of duplex functionality. In this work, a generative model that
enables a robot to perform actions doubles as a simulator enabling
it to predict possible chains of perception and action. This simu-
lation capacity is then used to enable a simple but challenging
behavior in which the robot must dock at a table in a way that
enables it to grasp a visually detected object.

Related ideas are pursued by Tani et al. (2004), and by Tani
(2007). Tani and colleagues describe a set of robotic experi-
ments using “recurrent neural networks with parametric biases”
(RNNPBs): a class of networks that implement prediction-based
hierarchical learning. The guiding idea, again shared with PP,
is that prediction-based hierarchical learning here solves a cru-
cial problem. It allows a system to combine a real sensorimotor
grip on dealing with its world with the emergence of higher-level
abstractions that (crucially) develop in tandem with that grip.
This is because learning yields grounded abstractions: represen-
tational forms, at higher processing levels, that allow the system
to predict the regularities that are governing the neural patterns
(themselves responding to energetic stimulations at the sensory
peripheries) present at the lower levels.

Such grounded abstractions do not float free of their roots
in embodied action. Instead, they constitute what might be
thought of as a kind of “dynamical programming language” for
those interactions: a language in which, for example, “continu-
ous sensory-motor sequences are automatically segmented into
a set of reusable behavior primitives” (Tani, 2007, p. 2). Tani
et al. (2004) show that robots equipped (as a result of learning-
driven self-organization) with such primitives are able to deploy
them so as to imitate the observed behavior of another. This set
of studies is further extended in Ogata et al. (2009), who tackle
the important problem of viewpoint-translation using an RNNPB
simulation in which one robot views and then imitates the object-
manipulation behavior of another agent, applying a set of learnt
transformations to its own self-model. In this experiment in
“cognitive developmental robotics”:

“The other individual is regarded as a dynamic object that can
be predicted by projecting/translating a self-model” Ogata et al.
(2009) p. 4148.

Such demonstrations, though restricted in scope, are reveal-
ing. The emergence of “reusable behavior primitives” shows
that features such as compositionality, re-usability, and re-
combinability (features long associated with the more brittle
symbol-structures of classical Artificial Intelligence) can arise
quite naturally as a result of prediction-driven hierarchical learn-
ing. Combined with the development of viewpoint conversion
capacities, this illustrates the way multi-level self-based predic-
tions may come to be exploited in a much wider range of
cases. Perhaps most importantly of all, however, the experiments
show that multi-level prediction-based learning results in re-
combinable, re-useable “abstractions” of a rather special kind:
abstractions that remain richly grounded in the sensorimotor
dynamics (and more broadly, in the past experience) of the agent,
sharing in “the same metric space of physical dynamical systems”
(Tani, 2007, p. 2).

SCULPTING EFFECTIVE CONNECTIVITY
The shifting sense of agentive control described by Kumar and
Srinivasan is important and phenomenally real. It may be related,
I suspect, to another important precision-dependent effect. This
is the effect of sculpting patterns of effective connectivity within the
brain.

“Effective connectivity” (Aertsen et al., 1987; Friston, 1995—
see also Horwitz, 2003; Sporns, 2010) names “the influence one
neural system exerts over another” (Friston, 1995, p. 57). It is to
be distinguished from both structural and functional connectiv-
ity. “Structural connectivity” names the gross pattern of physical
linkages (the web of fibers and synapses) that—perhaps working
in concert with more diffuse “volume signaling” mechanisms (see
e.g., Philippides et al., 2000)—allow neurons to interact across
space and time. “Functional connectivity” describes observed pat-
terns of temporal correlation between neural events. The closely
related notion of “effective connectivity” then aims to reflect
short-term patterns of causal influence between neural events,
thus taking us beyond simple observations of undirected—and
sometimes uninformative—correlation. One quite useful way to
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think about the relation between functional and effective connec-
tivity is to conceive of:

“the [electrophysiological] notion of effective connectivity . . .
as the experiment and time-dependent, simplest possible circuit
diagram that would replicate the observed timing relationships
between the recorded neurons” (Aertsen and Preißl, 1991, quoted
in Friston, 1995), p. 58.

Functional and effective connectivity patterns alter rapidly as
we perform our cognitive tasks, with changes occurring within
hundreds of milliseconds. Structural change, by contrast, is a
slower process since it is, in effect, reconfiguring the reconfig-
urable network itself (by altering the underlying communicative
skeleton that supports other, more rapid, forms of momentary
reconfiguration).

Within the PP framework, the control of effective connectiv-
ity is achieved by the manipulation of the precision-weighting
assigned to specific prediction errors. The primary effect of this
is to systematically vary the relative influence of different neural
populations by increasing the gain (“volume”) on selected error
units. This offers a promising means of implementing fluid and
flexible forms of large-scale gating6 among cortical populations.
To see this, we need only note (once again) that very low-precision
prediction errors will have little or no influence upon ongoing
processing, and will fail to recruit or nuance higher-level repre-
sentations. Altering the distribution of precision-weightings thus
amounts, in effect, to altering the “simplest circuit diagram”
(Aertsen and Preißl, 1991) for current processing. Our shifting
sense of agentive control, it might be speculated, tracks (when all
is working correctly) changes in these simplest circuit diagrams—
see also the comments from Kumar and Srinivasan. This suggests
a crucial departure (see the comments from Boccignone and
Cordeschi) from the image of a simple, fixed, hierarchical orga-
nization in the brain. Insofar as patterns of effective connectivity
can be rebuilt “on the fly,” we do not confront a simple fixed hier-
archy so much as a flexible, reconfigurable flow. Such flows are
defined over an underlying bi-directional hierarchical organiza-
tion. But we are here exploring territory hugely distant from the
classical vision of a static, serial, feed-forward hierarchy.

The neural mechanisms of attention, PP suggests, are thus
identical with the neural mechanisms that alter patterns of effec-
tive connectivity. This is an intuitive result (see also Van Essen
et al., 1994), especially if we consider that the specific means by
which such alterations may be effected are many, and that their
detailed functional implications may vary in different parts of
the brain. Possible implementing mechanisms for the precision-
weighting of prediction error (which, in PP, amounts to the

6Neural gating hypotheses come in many forms, including the postulation
of special populations of information-routing “control neurons” (Van Essen
et al., 1994), the canny use of reentrant processing (Edelman and Mountcastle,
1978; Edelman, 1987) and the development of “convergence zones” (Damasio
and Damasio, 1994). The latter are essentially hubs in which many feedback
and feedforward loops converge, and which are thus able to “direct the simul-
taneous activation of anatomically separate regions” (Damasio and Damasio,
1994 p. 65). Within the PP framework, gating is achieved by the manipulation
of the precision-weighting assigned to specific prediction errors.

control of post-synaptic gain) include the action of various
“modulatory neurotransmitters” such as dopamine, serotonin,
acetylcholine, and noradrenalin (Friston, 2009). Frequencies of
oscillation (for an excellent window onto the complexities here-
abouts, see the comments by Yordanova, Kolev, and Kirov) must
also play a major role—see Engel et al. (2001); Hipp et al. (2011).
These mechanisms also interact, since [to take just one example,
from Feldman and Friston (2010)] gamma oscillations respond
to acetylcholine. Thus, while the notion of sculpting patterns of
effective connectivity by means of “precision-weighted prediction
error” is simple enough, the mechanisms that implement such
effects may be multiple and complex, and they may interact in
important but as yet under-appreciated ways.

Support for this general idea (the idea of prediction-error-
based reconfiguring of large-scale patterns of effective connec-
tivity) was recently provided by an fMRI study analysed using
non-linear Dynamical Causal Modeling (Friston et al., 2003). In
this study (den Ouden et al., 2010) specific prediction error sig-
nals in one (striatal) neural area modified the coupling between
other (visual and motor) areas. Failures of prediction (caused by
changing contingencies within the experimental setting) system-
atically altered the strength of the visuomotor coupling in a way
that was “gated by the degree of prediction error encoded by the
putamen” (den Ouden et al., 2010, p. 3217). This is an important
result, demonstrating that:

“trial-by-trial prediction error responses in a specific region mod-
ulate the coupling among other regions” den Ouden et al. (2010),
p. 3217

Here, the amount of striatal prediction error delicately con-
trols the strength (efficacy) of the visuomotor connection. The
context-varying interplay between visual and motor regions is
thus orchestrated by striatally computed prediction error (this is
in line, I think, with the comments on the importance of the stria-
tum by Bernacer and Murillo and may offer another angle upon
some of Spurrett’s helpful suggestions concerning the roles for
prediction error computations elsewhere in the brain).

All this yields a picture of neural dynamics that is (as rightly
demanded in the probing commentary from Kiverstein and
Rietveld) just about maximally sensitive, at multiple time-scales,
both to varying task-demands and to the estimated reliability
(or otherwise) of specific bodies of top-down expectation and
bottom-up sensory input. Information about tasks, about our
own interoceptive and emotional states (see the comments by
Moore, by Bernacer and Murillo, and by Roesch, Nasuto, and
Bishop) and about local context thus recruit not just a set of pre-
dictions but (crucially) a set of predictions that include precision-
expectations. Such expectations enable an inner organization that
is dynamically self-reconfiguring in ways that respond to tasks,
background state, background knowledge, and current environ-
mental affordances.

Downwards-flowing influence here has a major modulatory
impact on the selectivity of lower-level response, so that activ-
ity that (in one context) correlates with one external state of
affairs may (in another context) become tuned so as to respond
to something different (for some examples, see Friston and Price,
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2001). The brain thus construed is “labile” and comprises “an
ensemble of functionally specialized areas that are coupled in a
nonlinear fashion by effective connections” (Friston and Price,
2001, p. 277). Neural representations here become “a function of,
and dependent upon, input from distal cortical areas” (Friston
and Price, 2001, p. 280). This is a potent source of flexibil-
ity since the flow of input from such areas is itself subject to
rapid restructuring by prediction error signals elsewhere in the
brain.

When all these features combine, the result is an architec-
ture in which there are distinct components but whose constantly
shifting dynamics are [to borrow a phrase from Spivey (2007)—
and see also Anderson et al. (2012)] “interaction dominated.”
The highly negotiable flows of influence thus constructed are
themselves action-responsive, leading to various forms of “circu-
lar causation” linking perception and action (see below) so the
space of dynamical possibilities is further enriched by all manner
of bodily and worldly tricks for structuring our own inputs and
restructuring problem spaces.

MULTIPLE NEURAL STRATEGIES
The tools are now on the table to begin to address a major issue
that arose in different ways in many of the commentaries (see
especially the comments by Huebner; McBride; Calvo, Symons,
and Martin; Moore; Nanay; and Sheredos). This is the issue of
multiple neural (and perhaps extra-neural—see below) mech-
anisms and strategies contributing to adaptive and cognitive
success. Here too, the PP story benefits from the delicate use of
precision-weighting as a means of altering patterns of effective
connectivity.

It is common, for example, to distinguish between what are
sometimes called (see e.g., Doya et al., 2002; Dayan and Daw,
2008; Dayan, 2012) “model-based” and “model-free” approaches
to choice and decision-making. Model-based strategies rely, as the
name suggests, on a model of the domain that includes informa-
tion about how various states (worldly situations) are connected,
thus allowing a kind of principled estimation (given some cost
function) of the value of a putative action. Such approaches
involve the acquisition and the (computationally challenging)
deployment of fairly rich bodies of information concerning the
structure of the task-domain. Model-free strategies, by contrast,
“learn action values directly, by trial and error, without build-
ing an explicit model of the environment, and thus retain no
explicit estimate of the probabilities that govern state transi-
tions” (Gläscher et al., 2010, p. 585). Such approaches implement
“policies” that associate actions directly with rewards, and that
typically exploit simple cues and regularities while nonetheless
delivering fluent, often rapid, response.

Model-free learning has been associated with a “habitual” sys-
tem for the automatic control of choice and action, whose neural
underpinnings include the midbrain dopamine system and its
projections to the striatum, while model-based learning has been
more closely associated with the action of cortical (parietal and
frontal) regions (see Gläscher et al., 2010). Learning in these
systems has been thought to be driven by different forms of pre-
diction error signal—affectively-salient “reward prediction error”
(see e.g., Montague et al., 1996; Schultz et al., 1997; Hollerman

and Schultz, 1998) for the model-free case, and more affectively
neutral “state prediction error” for the model-based case. These
relatively crude distinctions are, however, now giving way to a
much more integrated story (see e.g., Daw et al., 2011; Gershman
and Daw, 2012) as we shall later see.

PP itself is, as several commentators noted, a claim concern-
ing a fundamental model-based strategy 7 that may be at work
throughout motor and sensory cortex. That strategy involves the
use of ongoing attempts at self-prediction to drive the devel-
opment (on-the-hoof) of a rich, multi-layer generative model
capturing interacting hidden causes spanning multiple spatial and
temporal scales. That same generative model, we have seen, may
then be used in perception, action-production, and for the sim-
ulation of action (our own, or that of other agents). How, then,
should we conceive the relations between this story and the large
literature on model-free learning and reward prediction error?

Given that the brain is always active, and that we encounter
new scenes with rich contextualizing expectations already in play,
the use of a rich, cortically-represented generative model is per-
fectly consistent with the production of rapid, “cheap” (i.e.,
involving relatively few processing steps) responses. That means
there can be no direct inference from speedy, fluent, response to
the claim that some model-free strategy is in play. Despite this,
we need not (and should not) suppose that all our responses
and cognitive operations depend on inferences grounded in a
rich, cortically-represented (probabilistic) internal world model.
Instead, we may often rely on quick-and-dirty strategies such as
the deployment of “cached” (in effect pre-computed—see Daw
et al., 2005) solutions. Such solutions need not be seen as sidestep-
ping the cortical generative model so much as productively alter-
ing the conditions for its deployment. Action itself may often play
such a role, as when we shift our gaze so as to enable a simpler cue
to control a complex action. Action-recruiting loops like these are
thus mandated by the generative model itself. But their effect is
to alter the problem space so as to allow simple, rapidly processed
cues to deliver apt world-engaging actions [such, in microcosm,
seems to me to be the nature of much human (and non-human)
expertise].

This opens up an interesting possibility. For an under-
appreciated role for precision-expectations (one directly conse-
quent upon the role of precision-weighting in sculpting effective
connectivity) may be to arbitrate between the use of different
neural strategies. Precision assignments reflect uncertainty, and
provide (as we saw) a general tool for the context-sensitive manip-
ulation of patterns of effective connectivity. If we suppose (over-
simplistically—see below) that there exist multiple, competing
neural resources capable of addressing some current problem
(say, the need to decide on a course of action), there needs to
be some mechanism that arbitrates between them. With this in
mind, Daw et al. (2005) describe a broadly Bayesian “principle
of arbitration” whereby estimations of the relative uncertainty
associated with distinct “neural controllers” (e.g., “model-based”
vs. “model-free” controllers) allows the most accurate controller,

7The “model-based/model-free” distinction, as Friston (pers. communica-
tion) notes, is not really relevant to his larger “free energy minimization”
account, which fluidly covers both cases.
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in the current circumstances, to determine action and choice.
Within the PP framework this would be implemented using
the mechanisms of precision-estimation and precision-weighting
described earlier. Each resource would compute a course of
action, but only the most reliable resource (the one associated
with the least uncertainty when deployed in the current context)
would get to determine high-precision prediction errors of the
kind needed to drive action and choice. In other words, a kind of
meta-model (one rich in precision expectations) would be used
to determine and deploy whatever kind of strategy is best in the
current situation.

This broad notion has much to recommend it. It pro-
vides hints of one way to begin to erode the worry (as
pressed, from various directions, in the comments by Blokpoel,
Kwisthout, and van Rooij: Huebner; Spurrett; Sheredos; Calvo,
Symons, and Martin; McBride; and Nanay) that PP over-
emphasizes a computationally expensive, sometimes intractable,
representation-heavy strategy over other (quicker, dirtier, per-
haps striatally computed) ones that more directly associate
actions and rewards. Perhaps we deploy multiple strategies
in ways adjudicated by a kind of Bayesian meta-model. This
also helps to address the worry that the PP account sees the
main task of brains as representing the world, rather than as
selecting actions. On the contrary, PP puts action in the driv-
ing seat since it is only by means of action that the predic-
tion error associated with a current perceptual state can be
reduced.

The “model-based/model-free” distinction is intuitive, and
resonates (for better or worse) with old dichotomies between
habit and reason, and between emotion and analytic evalua-
tion. But (whatever we make of that) the image of underlying,
computationally distinct, parallel, neural sub-systems may not
stand the test of time. A recent fMRI study (Daw et al., 2011)
suggests that rather than thinking in terms of distinct model-
based and model-free learning systems, we may need to posit a
“more integrated computational architecture” (Daw et al., 2011,
p. 1204) in which the different brain areas most commonly
associated with model-based and model-free learning (the pre-
frontal cortex and the dorsolateral striatum, respectively) each
trade in both model-free and model-based modes of evalua-
tions and do so “in proportions matching those that determine
choice behavior” (Daw et al., 2011, p. 1209)8. In particular, they
found that:

“even the signal most associated with model-free RL [reinforce-
ment learning], the striatal RPE [reward prediction error], reflects
both types of valuation, combined in a way that matches their
observed contributions to choice behavior” Daw et al. (2011),
p. 1210.

8This makes functional sense since model-free schemes may rely upon model-
based schemes to teach them how to respond. This results in a hierarchical
embedding of the (shallow) model-free responses in a (deeper) model-based
hierarchy (a hierarchical generative model). Model-based schemes are also
necessarily context-sensitive, unlike model-free or habitual schemes that—
once in place—are context bound. In such cases inferential machinery iden-
tifies the appropriate contexts in which to deploy the model-free (“habitual”)
schemes.

Such results demand a thorough reworking of the standard
decision-theoretic model that posits distinct representations of
utility and probability. In its place we will find something more
nuanced: an integrated architecture in which:

“Perception, action, and utility are ensnared in a tangled skein
[involving] a richer ensemble of dynamical interactions between
perceptual and motivational systems” Gershman and Daw (2012),
p. 308.

Top-down information, Daw et al. (2011) suggest, might here
control the way different strategies are combined in differing
contexts for action and choice. Within such an architecture, pre-
cision estimations must play a major role in enabling the kinds of
metacontrol needed to negotiate the tangled skein.

Reflection upon strategies of rational (Bayesian) metacontrol
will be essential, I suspect, if we are to determine how best to
combine the PP model with neuroeconomic work on reward, as
stressed by Spurrett and by Huebner. At that point, the rather large
question whether cost functions can indeed be fully absorbed into
prior beliefs about our future exchanges with the world should
also become easier to resolve9.

LANGUAGE AND THE SOCIAL SPIRAL
Blokpoel, Kwisthout, and Van Rooij dispute the claim that PP
implements a tractable form of Bayesian inference. The most that
might be claimed, they argue, is that the inference is tractable (and
Bayesian) so long as the structure of the model is constrained,
exhibiting only what they describe as an “intermediate” level
of causal complexity. The basic point that Blokpoel et al. make
must be conceded. There is no guarantee that the approxima-
tions required to make the PP strategy computationally tractable
will always be available. For basic perception, apt (probably quite
generic) constraints may be present courtesy of evolution, just as
Blokpoel et al suggest. The puzzle really bites with higher—level
forms of thought and reasoning10.

How do we humans manage to negotiate so many apparently
hugely complex cognitive domains? I think the answer must lie
in the canny re-use of the fruits of basic sensorimotor learn-
ing, and the iterated interactions of language and culture. We
marinate human brains in a succession of artificially structured
environments that constrain the causal models that the brain
must learn, building gradually and incrementally upon our basic
sensorimotor grip on reality.

We saw (section Sculpting Effective Connectivity) how we
might re-purpose our own basic world models so as to under-
stand others, and to simulate future unfoldings. This provides
one way of scaffolding a representational trajectory through
an otherwise dauntingly large space. Add to this the iterated
interactions of language and culture. Such interactions allow
us (both individually and as a species) to repeatedly recode

9For the full absorption model, see Friston et al. (2012c), and for some worries
about that model, see Gershman and Daw (2012) pp. 304–306.
10The example they give is understanding others (i.e., Theory of Mind). Some
of the resources available to address this case are discussed in section Precision,
Planning, and Agency above.
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complex problems so as to address them in new, lower dimen-
sional forms (see Clark and Thornton, 1997; Clark, 1998, 2008).
In this vein, Lupyan nicely depicts some of the benefits of
“language-augmented prediction,” pointing to the role of lan-
guage as a tool for cueing top-down predictions, and (especially)
as a device for efficient category cueing. Language, Lupyan’s
experimental work shows, interacts deeply with perception,
and does so in many ways that go far beyond the immediate
effects of simple self-directed rehearsal (as when we rehearse
a verbal formula for tying our shoelaces). Words in the envi-
ronment act as powerful category cues, and as such help cre-
ate the external scaffoldings necessary for many of our social,
legal, and commercial institutions. Language (once mastered)
also provides a cheap and flexible means for self-cueing, and
this may be important for “programming” the kinds of simu-
lations required to explore, and keep properly distinct, future
options. Such language-based self-cueing would also recruit
precision expectations, hence providing a cheap, easily agent-
available, means of altering our own patterns of effective neural
connectivity.

Culture (cultural practices, and the larger settings of schools,
institutions, etc.) adds further layers of empowering complex-
ity. Acting in concert with the multiple effects of linguistic
encoding, such settings determine new regimes of statistical bom-
bardment that install generative models whose reach and scope
regularly exceed the reach and scope of those that came before.
The upshot is that the goalposts for human prediction-based
learning are constantly moving. Our cultural and linguaform
resources thus complement (as Newsome convincingly argues)
but need not replicate the benefits of neural prediction-based
learning.

Language also provides, as Dennett (1991) famously notes,
an expressive tool that enables us to depict our own mental
states as more fully determinate than perhaps they actually are.
I thus found myself I full agreement with Madary’s interesting
comments, and would only add that his idea of “indetermi-
nate implicit anticipations” in perceptual experience might be
augmented by the idea (Spivey, 2007) that our underlying neu-
ral states may not follow a sequence of attractors, settling first
into one then another, so much as repeatedly approach them,
spinning-off both linguistic and non-linguistic actions (each of
which can make our mental states seem more determinate and
unequivocal than they really are) along the way. All this fits nicely
with the dynamical image of a meta-stable neural economy char-
acterized by so-called “heteroclinic cycles”—see Friston et al.
(2012a).

Our capacities to use language as a tool for self-manipulation
may also increase the appearance (as noted by Brigard) of a
deep disconnect between agent-level cognition and its proba-
bilistic underpinnings. For language may act, within the larger
probabilistic economy, as a kind of double-edged sword. On the
one hand, language provides expressive resources enabling us
to generate compact models of the world: models that include
many layers of causal structure, capturing events, and processes
at time-scales beyond the reach of non-linguistic creatures (and
enabling, I suspect, many of the high-level planning capaci-
ties neatly described by Basso). On the other hand, language

allows us to artificially prime our own responses in ways that
often (see e.g., Kahneman, 2011) lead us astray, even in cases
where the right answers are (if only the questions are posed in
the right way) actually well within our reach. It may thus be
this potent capacity for cheap, linguistically-mediated re-coding,
priming, and self-priming that best explains both the power
of and depth of human world model, and the many failures
of conscious 11 reasoning highlighted by Perruchet and Poulin-
Charronat. The idiosyncrasies of linguistically-inflected cognition
may also bear on Huebner’s challenge concerning the origins of
radical social change. The key issue there is not reward, it seems
to me, but what might be described as “knowing engagement
with own models of the world.” This notion [Dennett (2000)
calls it “florid representing”] requires our own world-models to
become objects of our thought, not just the means by which
thought occurs. Language, I have argued (Clark, 1998), seems
well-placed to aid such a process, since it makes inspectable
public objects (written and spoken sentences) out of our own
cognizings.

The effects of our massive exposure to the forms and struc-
tures of public language are likely to be extensive. In par-
ticular, I would speculate that language provides a power-
ful means of driving what Annette Karmiloff-Smith (1990—
see also Clark and Karmiloff-Smith, 1993) calls “represen-
tational re-description”: the process whereby early, successful
representational forms become repeatedly re-coded, in ways
that support the integration of multiple bodies of knowledge
and yield more powerful generalizations. Exactly how public
linguaform encodings interact with the kinds of probabilis-
tic knowledge representation posited by PP remains largely
unknown, and constitutes an important target for future
research.

BACTERIA, OIL DROPS, AND US
Sheredos notes that many key features of the PP account seem
to apply to bacteria too. Roesch et al. note that even an oil
drop can “solve” a maze puzzle courtesy of basic forms of
structural coupling, and ask whether similar (i.e., “cheap” and
“representation-lean”) strategies might not play a large role in
linking embodied agents to their environments. McBride draws
our attention to the role of fundamental, core processes of
homeostatic regulation. Moore notes the importance of moti-
vated, affectively-loaded routes to rapid situational response.
Calvo et al. note the crucial role of morphology in enabling
fluid world-engaging action. In different ways, each of these picks
out elements and strategies that play crucial roles in securing
adaptive success. It was never my intention to downplay these
roles (and many of them are pursued in my own work: see

11It strikes me as unlikely, despite the interesting comments by Perruchet and
Poulin-Charronat, that the bulk of our internal representational activity is
conscious. But an overall winning hypothesis (in perception, the multi-scale
understanding that best predicts the sensory data) is thereby poised to exert a
special grip on subsequent processing. This may provide for a (limited) form
of ‘downward causation’ in which our conscious experiences (assuming these
line up with the overall winning hypotheses) play a special functional role in
the unfolding of future thoughts and actions.
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Clark, 1997, 2008). Ignoring them threatens, as Nanay suggests,
to over-intellectualize12 large swathes of adaptive response in both
human and non-human animals. Adaptive success must indeed
depend on complex admixtures of strategies including the canny
use of bodily form and various “representation-lean” ploys.

Within that complex adaptive nexus, however, the kind of
multi-level probabilistic prediction machinery described by PP
plays (I claim) a doubly special role. First, it is plausibly only cour-
tesy of that machinery that we are able to experience a structured
external world (a world built of nested interacting distal causes)

12I do not think, however, that the basic use of top-down probabilistic expec-
tations should in general be treated (as a few commentators seemed to
suppose) as an implausibly intellectualist route to adaptive response. Instead,
the ability to process incoming information in ways determined by the online
extraction of statistical patterns seems pervasive, and its use in recurrent
processing may represent a fundamental biological strategy for dealing with
limited information, uncertainty, and a changing world.

at all. The bacteria, if this is right, responds to its world but it
does not truly know it. Second, that same machinery may be used
to arbitrate between the use of various available strategies, includ-
ing some that are “model-free.” Such strategies may not require
segregated neural representations, but may be better treated as
differing modes within a more integrated architecture. Either
way, the use (when ecologically apt) of simple cues and quick-
and-dirty heuristics is not just compatible with prediction-based
probabilistic processing: it may also be actively controlled by it.
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