AUTHOR=Glautier Steven TITLE=Revisiting the learning curve (once again) JOURNAL=Frontiers in Psychology VOLUME=4 YEAR=2013 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.00982 DOI=10.3389/fpsyg.2013.00982 ISSN=1664-1078 ABSTRACT=

The vast majority of published work in the field of associative learning seeks to test the adequacy of various theoretical accounts of the learning process using average data. Of course, averaging hides important information, but individual departures from the average are usually designated “error” and largely ignored. However, from the perspective of an individual differences approach, this error is the data of interest; and when associative models are applied to individual learning curves the error is substantial. To some extent individual differences can be reasonably understood in terms of parametric variations of the underlying model. Unfortunately, in many cases, the data cannot be accomodated in this way and the applicability of the underlying model can be called into question. Indeed several authors have proposed alternatives to associative models because of the poor fits between data and associative model. In the current paper a novel associative approach to the analysis of individual learning curves is presented. The Memory Environment Cue Array Model (MECAM) is described and applied to two human predictive learning datasets. The MECAM is predicated on the assumption that participants do not parse the trial sequences to which they are exposed into independent episodes as is often assumed when learning curves are modeled. Instead, the MECAM assumes that learning and responding on a trial may also be influenced by the events of the previous trial. Incorporating non-local information the MECAM produced better approximations to individual learning curves than did the Rescorla–Wagner Model (RWM) suggesting that further exploration of the approach is warranted.