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In the past 2 decades latent variable modeling has become a standard tool in the
social sciences. In the same time period, traditional linear structural equation models
have been extended to include non-linear interaction and quadratic effects (e.g., Klein
and Moosbrugger, 2000), and multilevel modeling (Rabe-Hesketh et al., 2004). We
present a general non-linear multilevel structural equation mixture model (GNM-SEMM)
that combines recent semiparametric non-linear structural equation models (Kelava and
Nagengast, 2012; Kelava et al., 2014) with multilevel structural equation mixture models
(Muthén and Asparouhov, 2009) for clustered and non-normally distributed data. The
proposed approach allows for semiparametric relationships at the within and at the
between levels. We present examples from the educational science to illustrate different
submodels from the general framework.
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In the past 2 decades latent variable modeling has become a
standard tool in the social sciences. Linear structural equation
models have been extended to include non-linear interaction and
quadratic effects (for a review see Schumacker and Marcoulides,
1998; Algina and Moulder, 2001; Marsh et al., 2004, 2006), and
for the capability to model multilevel data structures (e.g., Rabe-
Hesketh et al., 2004; Muthén and Asparouhov, 2009). However,
a systematic combination of both non-linear structural equa-
tion modeling and multilevel modeling has not been imple-
mented in a more general framework. In this article, we present
a GNM-SEMM that combines recent semiparametric non-linear
structural equation models (Kelava and Nagengast, 2012; Kelava
et al., 2014) with multilevel structural equation mixture models
(Muthén and Asparouhov, 2009) for clustered and non-Gaussian
data. The proposed framework is capable of modeling non-linear
parametric and semiparametric relationships at the within and at
the between levels, and it allows non-normally distributed data to
be considered. We will provide an empirical example from edu-
cational sciences to illustrate the applicability of the proposed
framework. We will begin by providing an overview of current
approaches for estimating non-linear structural equation mod-
els and current frameworks for multilevel structural equation
(mixture) models.

1. NON-LINEAR STRUCTURAL EQUATION MODELS
Numerous parametric approaches for the estimation of non-
linear effects have been developed (for a review, see Schumacker
and Marcoulides, 1998; Algina and Moulder, 2001; Marsh et al.,
2004, 2006), including product indicator approaches (e.g., Kenny
and Judd, 1984; Bollen, 1995; Jaccard and Wan, 1995; Ping, 1995;
Jöreskog and Yang, 1996; Algina and Moulder, 2001; Marsh et al.,
2004, 2006; Little et al., 2006; Kelava and Brandt, 2009), dis-
tribution analytic approaches (Klein and Moosbrugger, 2000;

Klein and Muthén, 2007), Bayesian approaches (e.g., Arminger
and Muthén, 1998; Lee et al., 2007), and method of moments
based approaches (Wall and Amemiya, 2003; Mooijaart and
Bentler, 2010). Whereas most product indicator approaches have
been ad-hoc methods for the specification of non-linear interac-
tion effects and have thus suffered from requiring complicated
measurement models, recent distribution analytic and Bayesian
approaches have tried to overcome the need for non-linear mea-
surement models. Method-of-moments-based approaches (Wall
and Amemiya, 2003; Mooijaart and Bentler, 2010) and some indi-
cator approaches (Bollen, 1995; Jöreskog and Yang, 1996) have
been proposed as methods that do not rely as heavily on the
normality assumption of the latent variables as other approaches
(e.g., the distribution analytic approaches). The relaxation of dis-
tributional assumptions may lead to a reduction in the threat of
biased estimates for non-linear effects in situations in which data
are non-normally distributed, but for most of these approaches,
relaxing these assumptions is associated with a low power for
detecting the effects (Schermelleh-Engel et al., 1998; Brandt et al.,
2014).

A different approach for modeling non-linear relations
between latent variables is the use of semiparametric structural
equation mixture models (SEMM; Arminger and Stein, 1997;
Jedidi et al., 1997a,b; Dolan and van der Maas, 1998; Arminger
et al., 1999; Muthén, 2001; Bauer and Curran, 2004; Bauer,
2005; Pek et al., 2009, 2011). Finite mixtures of linear structural
equation models are used to approximate the unknown func-
tional form of the non-linear relationship of the latent variables1.

1In SEMM linear models are estimated within several latent classes. Non-
linear relationships between two variables are modeled by the parameter
estimates for the linear effects that change in size across the (finite number
of) latent classes.
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Furthermore, by assuming mixtures, the SEMM approach relaxes
the assumption of normally distributed latent variables and dis-
turbances necessary in conventional structural equation models.
Therefore, the SEMM approach is a flexible tool for predicting
latent dependent variables when data are not normal, and when
obtaining a strict parametric representation of the functional rela-
tion does not have the highest priority (for a discussion see Bauer,
2005). However, one drawback is that the linearity assumption of
latent relationships and the normality assumption of the latent
variables are relaxed simultaneously. This drawback can be man-
ifested in the problem that observed non-normality in the data
cannot be attributed to either non-normality of the latent vari-
ables or non-linearity between the latent variables. A way to
overcome this problem is the specification of non-linear struc-
tural equation mixture models (NSEMM; Kelava et al., 2014)
that allow distributional and linearity assumptions to be relaxed
separately for the latent variables and their relationships.

Although, the use of mixtures for modeling non-linear latent
variable relationships (e.g., Curran et al., 1996; Dolan and van der
Maas, 1998; Bauer and Curran, 2004; Bauer, 2005) or the non-
normality of latent variables in the context of non-linear struc-
tural equation models (Lubke and Muthén, 2005; Lee et al., 2008;
Yang and Dunson, 2010; Kelava and Nagengast, 2012; Brandt
et al., 2014; Kelava et al., 2014) have received increased attention
in recent years, systematic evaluations have been rare. As an addi-
tional limitation, all approaches presented so far have been strictly
limited to single-level models and have not accounted for nested
data structures.

2. MULTILEVEL STRUCTURAL EQUATION MODELING
Nested data structures have been addressed with multilevel mod-
els for relationships between manifest variables (for an intro-
duction see Snijders and Bosker, 1999; Hox, 2010). In the past
2 decades, researchers have proposed frameworks that are capa-
ble of modeling nested data structures in latent variable models
(e.g., Muthén, 1994; Rabe-Hesketh et al., 2004; Muthén and
Asparouhov, 2009). For example, these frameworks have included
models that account for random effects on the within-level, mul-
tilevel path analysis (Heck and Thomas, 2000), or multilevel
confirmatory factor analysis (Muthén, 1994). Furthermore, mix-
tures of distributions have been applied in latent growth curve
modeling (Muthén and Asparouhov, 2009).

So far, very limited psychometric developments have been pro-
posed in the context of non-linear multilevel structural equation
models that incorporate latent interaction effects. Leite and Zuo
(2011) presented a product-indicator-based approach that allows
for a specification of latent interactions on the between-level (e.g.,
at the school level). Their approach was a first attempt to extend
the product-indicator approach for non-linear interaction effects
in latent multilevel models. Products of between-level indicators
are used for the specification of a measurement model of the
between-level latent product variable.

Focusing more generally on within-person processes in
psychology (Molenaar, 2004; Molenaar and Campbell, 2009),
Nagengast et al. (2013) adapted the unconstrained product indi-
cator approach to account for latent interactions on the within-
level. In predicting homework motivation, they found support

for the latent interaction between homework expectancy and
homework value at the within-student level.

Despite these first successful adaptations, several problems that
are associated with single-level non-linear structural equation
modeling remain unsolved. First, the hitherto applied constrained
and unconstrained product-indicator approaches for multilevel
models are vulnerable to violations of distributional assumptions
(normal distributions are typically assumed; for a discussion see
Kelava et al., 2011). The specification of constrained and uncon-
strained product-indicator approaches strongly depends on the
distributions involved (Kelava and Brandt, 2009), and biased esti-
mates of the parameters and standard errors can be expected
when specification errors occur (Kelava et al., 2008) or distri-
butional assumptions are not met (Kelava and Nagengast, 2012).
Hence, product-indicator approaches that are extended for mul-
tilevel data structures are even more vulnerable because more
distributional assumptions on different levels have to be met.

Second, the proposed extensions of single-level non-linear
structural equation models specify a parametric non-linearity
(by involving products of latent variables). Recently, a strong
emphasis has been placed on the relaxation of this simple func-
tional relationship, including mixtures of latent variables that also
allow for non-normally distributed variables (e.g., Bauer, 2005;
Kelava et al., 2014). Therefore, on the one hand there is a need
for an optional specification of a semiparametric relationship of
the latent variables (at the within and between levels) to better
approximate the non-linear reality. On the other hand, there is a
need for an optional specification of mixtures that can account
for non-normality or heterogeneity across subpopulations.

Third, the application of single-level non-linear structural
equation modeling in substantive research has suffered from
too many approaches that use the same distributional assump-
tions (see paragraphs above) and too few simulation studies
that offer clear recommendations for the application of specific
approaches (for an overview, see Kelava et al., 2011). Approaches
that agree with regard to distributional assumptions may lead to
contradictory results; that is, some approaches might suggest sig-
nificant non-linear effects, whereas others might not. Substantive
researchers cannot solve this kind of problem by referring to
empirical data. Further information that is based on simulation
studies (for single-level non-linear models see e.g., Brandt et al.,
2014) is needed here.

In total, there is a need for a framework that incorporates sev-
eral special cases of multilevel modeling and that offers general as
well as specific solutions for both substantive and methodological
research in non-linear latent variable modeling. From a substan-
tive standpoint, non-linear hypotheses (e.g., interactions) can be
examined in more detail. From a methodological standpoint, the
framework will foster the comparison of different kinds of esti-
mators (e.g., MCMC, ML, or moment methods) in the context of
different distributions.

As a result of these considerations, in the next section, we
will present a general non-linear multilevel structural equation
mixture modeling (GNM-SEMM)framework that allows for the
separate relaxation of distributional and linearity assumptions of
the latent variables and their relationships on different levels of
a nested data structure. We will provide several theoretical and
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practical examples to illustrate what is possible within the frame-
work. In general, within this framework, it is possible to derive
specific submodels that include crucial parts of the model as well
as a combination of several aspects that have not been combined
before.

3. A GENERAL NON-LINEAR MULTILEVEL STRUCTURAL
EQUATION MIXTURE MODEL

In this section, we will present a GNM-SEMM framework that
allows for semiparametric latent non-linear effects on the within
and the between levels. The framework presented here is simi-
lar to the general multilevel mixture model and notation pre-
sented by Muthén and Asparouhov (2009). Whereas Muthén
and Asparouhov’s (2009) model focuses only on linear rela-
tionships, the GNM-SEMM framework accounts for non-linear
semiparametric relationships of the manifest and latent vari-
ables involved. This allows for a more precise modeling of latent
variable relationships at different data levels while relaxing the lin-
earity assumptions of standard latent multilevel frameworks (e.g.,
Rabe-Hesketh et al., 2004).

3.1. OBSERVED AND MIXTURE VARIABLES
3.1.1. Definition
Let yjik be the score of the j-th (j = 1, . . . , J) observed (indica-
tor) variable for individual i (i = 1, . . . ,Nk) in a cluster k (k =
1, . . . ,K). Note that the individual index i is cluster-specific. Its
range depends on the cluster size Nk (e.g., the number of pupils
in a given school k is denoted as Nk). Let zlk be the score of the
l-th (l = 1, . . . , L) observed (indicator) variable for cluster k. The
observed scores yjik and zlk could be realizations of dichotomous,
ordered categorical, continuous normally distributed, or count
variables.

Categorical (mixture) variables are used for the definition of
mixtures on the individual (within) and cluster (between) levels.
Let Cik be an within-level latent categorical variable for individual
i in cluster k, which takes values 1, . . . ,C∗

d . Let Dk be a between-
level latent categorical variable for cluster k, which takes values
1, . . . ,D∗. Note that the number of latent classes on the within-
level may be different across the latent classes on the between-
level.

Analogous to Rabe-Hesketh et al. (2004), Muthén (1984), and
Muthén and Asparouhov (2009), for observed dichotomous and
ordered categorical variables, the underlying normally distributed
latent variables y∗

jik and z∗
lk are defined such that for a set of thresh-

old parameters τjscd and τls′d, and categories s and s′, respectively,
the following equations hold for each subject i in cluster k:

yjik = s|Cik=c,Dk = d ↔ τjscd < y∗
jik < τj,s + 1,cd (1)

zlk = s′|Dk = d ↔ τls′d < z∗
lk < τl,s′ + 1,d, (2)

where the vertical bar ·|· indicates a “conditional on” state-
ment, and ↔ indicates an equivalence. For continuous nor-
mally distributed variables, y∗

jik = yjik and z∗
lk = zlk are assumed,

and for count variables, y∗
jik = log(λjik) and z∗

lk = log(λlk) hold,
where λjik and λlk are the expectations of the Poisson distribu-
tion. Additional assumptions regarding the mean and covariance

structure will be made in the following subsections, which will
specify the measurement and structural models on the within and
between levels.

3.1.2. Example
Suppose that pupils from several schools take part in a math test.
For a given pupil i from school k the score on a sub-task j from the
math test is given by yjik. In addition, for school k, there is a score
zlk that indicates the school’s social problems (e.g., the degree of
bullying reported by the principal). In Figure 1, two latent cate-
gorical variables Cik and Dk on the within-level (Level 1) and the
between-level (Level 2), respectively, are introduced. These vari-
ables may account for heterogeneity that occurs in the scores on
both levels. On Level 1, heterogeneity in the distribution of the
math test may occur due to additional private lessons in math
that some pupils received. On Level 2, heterogeneity may occur
in the distribution of the school’s social problems, for exam-
ple, due to the general (unobserved) socioeconomic status of the
neighborhood where the school is located. Furthermore, school
k might belong to an unobserved group of schools Dk = d that
explicitly prepared for the math test. This may then influence the
distribution of the math scores.

Figure 1 shows a diagram with the observed and mixture
variables. At this stage, there is no model that can explain the
relationship between the scores yjik and zlk and no measure-
ment model that can describe the realizations of the scores. The
mixtures are indicated by Cik and Dk.

3.2. LEVEL 1 – WITHIN LEVEL
3.2.1. Measurement model
3.2.1.1. Definition. Let y∗

ik be the J-dimensional vector for indi-
vidual i in cluster k that includes scores for all dependent observed
within variables. The measurement model is defined by a mixture
distribution model

y∗
ik|Cik = c,Dk = d = ν1kcd + �1kcdf1(η1ikcd) + K1kcdg1(x1ik) + ε1ikcd (3)

where ν1kcd is a J-dimensional vector of latent intercepts, �1kcd

is a J × m(f1) loading matrix. η1ikcd = (η11ikcd, . . . , η1ikmcd)′ is an
m-dimensional vector of variables including all latent exogenous
and endogenous variables. f1( · ) is a smooth polynomial function
mapping the m-dimensional variable vector η1ikcd to an m(f1)-
dimensional vector f1(η1ikcd). f1(η1ikcd) could be a vector that
includes product variables [e.g., (η11ikcd, η12ikcd, η11ikcdη12ikcd)′

FIGURE 1 | Observed variable scores yjik (within-level) and zlk

(between-level) as well as mixtures Cik (within-level) and Dk

(between-level).
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or (η11ikcd, (η11ikcd)2, η12ikcd, (η12ikcd)2)′] (e.g., Schumacker and
Marcoulides, 1998; Kelava et al., 2011) or splines (Freund and
Hoppe, 2007). K1kcd is a J × Q(g1) matrix with regression coeffi-
cients. x1ik is a Q-dimensional vector of all observed unexplained
(within) covariates that may have an additional influence on the
indicator variables y∗

ik. g1( · ) is a smooth polynomial function
mapping the Q-dimensional vector of covariates to a Q(g1)-
dimensional vector g1(x1ik), and ε1ikcd is a J-dimensional vector of
residual variables with a zero mean vector and covariance matrix
�1kcd.

For observed categorical variables yik, a normality assumption
for ε1ikcd is equivalent to a probit regression for yik on η1ikcd and
x1ik. Alternatively, for dichotomous variables yik, ε1ikcd can have
a logistic distribution, resulting in a logistic regression. For count
variables yik, the residual ε1ikcd is assumed to be zero. For nor-
mally distributed continuous variables yik, the residual variable
ε1ikcd is assumed to be normally distributed.

3.2.1.2. Example. Suppose that in the above-mentioned math
test example, data for two additional constructs (attitude toward
reading and the teaching strategies experienced by the student)
were collected with three items for each construct. The measure-
ment model [cp. Equation (3)] is illustrated in Figure 2, and
accordingly, it assumes two latent factors η11ikc (attitude toward
reading) and η12ikc (experienced teaching strategies). For didac-
tical purposes, all schools here belong to one class D = 1, so
that the index d can be omitted, and there is no between-level
model. Furthermore, heterogeneity is assumed on the within-
level such that each pupil i belongs to an unobserved class (mix-
ture) Cik = c. The example measurement model derived from the
framework above is a confirmatory factor mixture model that is
given by yik|Cik=c = ν1kc + �1kcη1ikc + ε1ikc. The heterogeneity,
which is implied by the mixture c, can be accounted for differ-
ently by the (statistical) model depending on the hypothesized
population model: First, a non-normal distribution of the latent
variables can be modeled as a mixture distribution. For exam-
ple, attitude toward reading might not be normally distributed.
A mixture distribution of η11ikc (with varying expectations and

FIGURE 2 | A measurement model for subject i for two latent variables

with a mixture distribution on the within-level (the between-level ith

not included in this example). The mixture distribution is symbolized by
the frame with dashed lines. It was assumed that all subjects belonged to
one latent class D = 1 on the between-level so that the index d could be
omitted.

covariance structure for each mixture component c) could rep-
resent the non-normality (see Kelava et al., 2014). Second, the
measurement model might be completely different for each
unobserved subgroup (with varying factor loadings etc.). For
example, some pupils might have poor reading skills, and hence,
do not understand the items well enough. As a consequence,
factor loadings in this subgroup may be lower (or residual vari-
ances may be larger) compared with other subgroups. and such
differences may lead in turn to an observed heterogeneity.

3.2.2. Structural model
The structural model for the latent variable vector η1ikcd is given
for each subject i in cluster k by

η1ik|Cik = c,Dk = d = αkcd + B1kcdF1(η1ikcd) + �1kcdG1(x1ik) + ζ 1ikcd(4)

where αkcd is an m-dimensional vector of intercepts, B1kcd is an
m × m(F1) loading matrix. F1( · ) is a smooth polynomial func-
tion mapping the m-dimensional vector of latent variables η1ikcd
to an m(F1)-dimensional vector F1(η1ikcd). �1kcd is an m × Q(G1)

matrix with regression coefficients. G1( · ) is a smooth polynomial
function mapping the Q-dimensional vector of covariates x1ik to
a Q(G1)-dimensional vector G1(x1ik). Note that for identification
purposes, vector G1(x1ik) has to be completely different from vec-
tor g1(x1ik). ζ 1ikcd is an m-dimensional vector of residual variables
with zero mean vector and covariance matrix�1kcd.

3.2.3. Mixture part
The model for the latent categorical variable Cik is a multinomial
logit model

Pr(Cik = c|Dk = d, x1 = x1ik) = exp(a1kcd+b′
1kcdh1(x1ik))∑

t exp(a1ktd+b′
1ktdh1(x1ik))

(5)

where a1kcd and b1kcd are regression coefficients, and h1( · ) is
again a smooth (e.g., polynomial) function.

3.2.3.1. Example. In the following illustrative example, the math
skills of pupil i from school k (η13ikc) are predicted by the atti-
tude toward reading (η11ikc) and by experienced teaching abilities
(η12ikc; see also the example above). All three constructs are mod-
eled as latent variables, which are measured with three indicator
variables each. In addition, we assume that math skills can be
predicted by gender, which is introduced into the model as an
observed covariate (x11ik). For simplicity, the model is restricted
to the within-level. Furthermore, it is assumed that there is unob-
served heterogeneity due to a latent class Cik. Membership in one
of the latent classes is predicted by a second observed covariate
x12ik (e.g., additional private math lessons). In contrast to an ordi-
nary linear approximation of the relationship between the latent
variables, the unknown and potentially curvilinear relationship
is approximated by a latent spline model. Figure 3 illustrates the
proposed model; the semiparametric spline model is indicated by
the snake-type arrow.

3.3. LEVEL 2 – BETWEEN (CLUSTER) LEVEL
The multilevel (between) part of the model is conceptual-
ized as follows. Each of the intercepts (ν1kcd,αkcd, a1kcd) and
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slopes or loading parameters (�1kcd,K1kcd,B1kcd,�1kcd, b1kcd)
in Equations (3), (4), and (5) can be either a fixed coef-
ficient or a random effect that varies across the observed
clusters k.

3.3.1. Structural model
Let η2kd be the U-dimensional vector of all such random
effect variables and any additional between-level latent exoge-
nous variables that explain these random effects and vary
across the clusters. Note that η2kd is different from η1ikcd which
is the individual-level latent variable vector. For a given cluster k,
the between-level structural model for η2kd is defined as

η2k|Dk = d = μd + B2dF2(η2kd) + �2dG2(x2k) + ζ 2kd (6)

where μd is a U-dimensional vector of intercepts, and B2d is a
U × U(F2) loading matrix. F2( · ) is a smooth polynomial func-
tion mapping the U-dimensional vector of variables η2kd to a
U(F2)-dimensional vector F2(η2kd). �2d is a U × V(G2) matrix
with regression coefficients. x2k is a V-dimensional vector of
all observed unexplained between-level covariates that may have
an additional influence on the variables in vector η2kd. Note
that x2k is different from x1ik. G2( · ) is a smooth polynomial
function mapping the V-dimensional vector of between-level
covariates x2k to a V(G2)-dimensional vector G2(x2k). ζ 2kd is a
U-dimensional vector of residual variables with a zero mean
vector and covariance matrix 
2d. μd, B2d, and �2d are fixed
parameters.

3.3.1.1. Example. Suppose that the model in Figure 3 is extended
to allow for multilevel effects on the between-level (Level 2). In
Figure 4 depicts a latent random intercept model that implies a
school-specific intercept (α3kd) for school k when the math skills
(η13ikd) of a given pupil i are examined. In order to approximate a

FIGURE 3 | Structural model for subject i in latent class Cik with a

nonlinear spline relationship between the latent variables (indicated

by the snake-type arrow). Note that this figure shows only a single-level
model; the index d is therefore omitted.

potentially non-normal distribution of the school-specific inter-
cepts or to reveal a certain heterogeneity in the latent intercepts
(i.e., average math skills), a latent mixture model with the latent
categorical variable Dk is applied. This mixture reflects Level-
2 heterogeneity that may stem from (unobserved) sources, for
example, certain school characteristics that influence the average
math skills in school k.

3.3.2. Measurement model
Let z∗

k be the L-dimensional vector for cluster k that includes
scores on all observed between-level variables that are indicators
of the latent variables in vector η2kd. For a given cluster k, the
measurement model is defined by

z∗
k |Dk = d = ν2d + �2df2(η2kd) + K2dg2(x2k) + ε2kd (7)

where ν2d is an L-dimensional vector of intercepts, �2d is an
L × U(f2) loading matrix. f2( · ) is a smooth polynomial func-
tion mapping the U-dimensional vector of variables η2kd to a
U(f2)-dimensional vector f2(η2kd). K2d is an L × V(g2) matrix
with regression coefficients. x2k is the V-dimensional vector of
all observed unexplained between-level covariates that may have
an additional influence on the indicator variables z∗

k . g2( · ) is a
smooth polynomial function mapping the V-dimensional vec-
tor of between-level covariates x2k to a V(g2)-dimensional vector
g2(x2k). Note that for identification purposes g2(x2k) has to be
completely different from G2(x2k). ε2kd is a L-dimensional vec-
tor of residual (mixture) variables with a zero mean vector and
covariance matrix �2d. ν2d, �2d, and K2d are fixed parameters.

FIGURE 4 | Structural model for subject i in cluster k with a nonlinear

spline relationship between the latent variables on the within-level

(indicated by the snake-type arrow) and a random intercept (α3kd ) that

is modeled as a mixture of normal distributions on the between-level.
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3.3.3. Mixture part
The model for the between-level categorical variable Dk is also a
multinomial logit regression

Pr(Dk = d|x2 = x2k) = exp(a2d+b′
2dh2(x2k))∑

t exp(a2t+b′
2t h2(x2k))

(8)

where a2d and b2d are regression coefficients, and h2( · ) is again a
smooth (e.g., polynomial) function.

3.3.3.1. Example. In this last example (see Figure 5, the ran-
dom intercept model in Figure 4 has been expanded by adding
two latent Level-2 predictor variables (η21kd and η22kd) that may
influence the average math-skill level, for example, structural
problems and social problems in school. Besides the linear effects
of the latent predictors, there is an interaction effect that models
the hypothesis that high scores on both between-level predictors

FIGURE 5 | Structural model for subject i in cluster k with a spline

relationship between the latent variables on the within-level

(indicated by the snake-type arrow), and a random intercept (α3kd )

that is predicted by an interaction model on the between-level. The
distribution of the between-level’s predictors is approximated by a mixture
of normal distributions. The latent categorical variable Dk is predicted by a
between-level covariate x21k .

may lead to a particularly low (or high) average math-skill level.
A potential heterogeneity of the latent predictors (e.g., a non-
normal distribution) is taken into account by introducing a latent
categorical variable Dk. In addition, a manifest predictor variable
x21k, for example, school size or school type (private or public), is
included in the model to predict the latent class probability of Dk

as described more generally in Equation (8).

3.4. SUMMARY
In the model described by Equations (3) to (8), the latent vari-
ables on Level 1 (η1ikcd, ε1ikcd, and ζ 1ikcd) and on Level 2 (η2kd,
ε2kd, and ζ 2kd) are conceptualized as variables stemming from
mixtures on level 1 and level 2, respectively. The possibility of
specifying within- and between-level mixture components is a
result of introducing the latent categorical variables Cik and Dk on
the individual and cluster levels, respectively. On the within-level,
unobserved latent classes may refer to different subpopulations
(within each cluster), for example, pupils with different socioe-
conomic backgrounds in a given school. On the between-level,
latent mixtures additionally allow for a specification of hetero-
geneity across/between observed clusters, for example, hetero-
geneity that is caused by certain characteristics of the schools.
Furthermore, due to the conceptualization of mixture variables,
a semiparametric modeling of non-normally distributed latent
variables is available (e.g., Yang and Dunson, 2010; Kelava and
Nagengast, 2012; Kelava et al., 2014), or a simple semiparametric
formulation of the latent relationships (e.g., Bauer, 2005) is possi-
ble. Finally, the implementation of general polynomial functions
F1( · ), f1( · ), G1( · ), and g1( · ) allows for a flexible inclusion of
different parametric or semiparametric relationships (e.g., inter-
action effects or splines; Hastie et al., 2009), which extends the
opportunities to model non-linear effects (e.g., Guo et al., 2012;
Song et al., 2013).

4. MODEL IDENTIFICATION
As in any other latent variable framework, within the GNM-
SEMM framework, the user must ensure that the specified model
is identified. In this section, we will summarize important aspects
that need to be considered even though model identification
is not straightforward (cf. San Martín et al., 2011; Song et al.,
2013). For the identification of the proposed model, four separate
aspects need to be taken into account. However, the actual identi-
fication of a specific model needs to be examined individually.

First, within each mixture component standard assumptions
for non-linear structural equation models need to be met. This
mainly implies that restrictions be placed on manifest scaling
variables or latent exogenous variables (e.g., a necessary condi-
tion for the identification is to set one factor loading for each
latent predictor variable or the latent predictors’ variance to one).
In addition, either the latent intercepts of the indicator variables
or the latent intercepts of the latent variables may be estimated
in a model. Note that when latent exogenous variables (e.g.,
η11ikcd, η12ikcd) are identified, their latent product terms (e.g.,
η11ikcdη12ikcd) do not need product indicators for identification
(cf. Klein and Moosbrugger, 2000).

Second, regarding the inclusion of polynomial functions for
the observed covariates, it is necessary that the vectors g1(x1ik)

Frontiers in Psychology | Quantitative Psychology and Measurement July 2014 | Volume 5 | Article 748 | 6

http://www.frontiersin.org/Quantitative Psychology and Measurement
http://www.frontiersin.org/Quantitative Psychology and Measurement
http://www.frontiersin.org/Quantitative Psychology and Measurement/archive


Kelava and Brandt GNM-SEMM

and G1(x1ik) on Level 1 and, respectively, the vectors g2(x2k) and
G2(x2k) on Level 2 are completely different from each other. For
example, a model including g1(x1ik) = G1(x1ik) = (x11ik, x2

11ik)′
would not be identified because x11ik would be a predictor in the
measurement and structural models [see Equations (3) and (4)].
In this case, two effects of x11ik would be estimated simultane-
ously on the right side of one regression equation, which would
not be identified. The same holds for the polynomial functions
of the latent variables. Again, f1(η1ikcd) and F1(η1ikcd) on Level
1 as well as f2(η2kd) and F2(η2kd) on Level 2 have to be unequal
[see Equations (7) and (6)]2. Otherwise, perfect collinearity would
be the result, meaning that the covariates and latent variables,
respectively, would have the same influence on the measure-
ment and the structural models. Their impacts would not be
separable. Furthermore, polynomial (semiparametric) functions
should not include constants. Otherwise, latent intercepts in the
measurement and structural models would not be identified.

Third, on the between (cluster) level the inclusion of latent
exogenous variables, which explain the variability in the ran-
dom coefficients, requires measurement models (see Figure 5).
The exogenous latent variables at Level 2 need to be identified
as well according to identification rules, which are the same as in
single-level structural equation models.

Fourth, additional assumptions concerning the latent classes
of the mixture components are required. For the identification of
the discrete latent variables, (a) the unconditional probabilities in
Equations (5) and (8) need to sum up to one. and (b), the ambi-
guity of mixture components due to the so-called label switching
problem makes it necessary to impose additional (artificial) con-
straints or relabeling strategies e.g., restrictions on the mean
structure or ordinality of mixture proportions (see Equations
15–19; Redner and Walker, 1984; Stephens, 2000; Kelava and
Nagengast, 2012).

Note that the identification of separate parts of a model (e.g.,
the measurement model and the structural model) does not auto-
matically imply that the whole model is identified. General nec-
essary and sufficient conditions to guarantee the identifiability of
a latent variable model are difficult to establish. Hence, we focus
primarily on the necessary identification conditions in this article.

5. MODEL ESTIMATION
Generally speaking, latent variable modeling offers a large
variety of methods for the estimation of specified models. The
choice of the best estimation method strongly depends on the
distributional assumptions of the observed and latent variables,
the given sample size, the type of specified model, potential
confounders, and many more aspects. Just to mention a few
large classes, these methods comprise maximum likelihood esti-
mators (e.g., Jöreskog, 1973; Rabe-Hesketh et al., 2005; Muthén
and Asparouhov, 2009), least squares methods (e.g., Joreskog
and Goldberger, 1972; Browne, 1974, 1984), and methods of
moments (e.g., Bentler, 1983), among others. For example, when
applying a maximum likelihood estimator, in the well-known EM
algorithm (Dempster et al., 1977), which treats latent variables as

2An exception is the special case in which the coefficient matrix B = 0: that is,
for confirmatory factor models.

missing data, the likelihood L of the observed indicator vector y
is given as:

L =
∏

k

∑
d

Pr(Dk = d)

∫
ψ2kd(η2kd)

∏
i(∑

c

Pr(Cik = c)

∫
f1ikcd(yik)ψ1ikcd(η1ikcd)dη1ikcd

)
dη2kd

(9)

where f1ikcd( · ), ψ1ikcd( · ), and ψ2kd( · ) are probability density
functions for the observed variables y, and the latent variables
η1ikcd and η2kd, respectively (cf. Muthén and Asparouhov, 2009).
Because the likelihood function L of the observed indicator vector
yik is not given in closed form in general, numerical integra-
tion can be utilized in the evaluation of the likelihood using
both adaptive and non-adaptive quadrature. As an alternative,
the likelihood could be directly optimized by applying a quasi-
Newton algorithm. Both approaches of estimating parameters are
very complex due to the non-linearity (for a discussion of latent
interaction effects, see Klein and Moosbrugger, 2000).

However, in recent years, the Bayesian framework has become
very popular in latent variable modeling (e.g., Lee et al., 2004; Lee,
2007; Lee et al., 2007; Song et al., 2009). The main reason is that
it provides flexible options for specifying and estimating mod-
els. Bayesian estimation methods and algorithms (e.g., Markov
Chain Monte Carlo: MCMC) can handle numerous complex
parametric, semiparametric, and non-parametric relationships
and distributions, for example, latent mixture distributions (e.g.,
Yang and Dunson, 2010; Kelava and Nagengast, 2012), non-linear
models (e.g., Lee et al., 2007; Guo et al., 2012; Song et al., 2013),
and multilevel structures (e.g., Fox and Glas, 2001; Song and Lee,
2004). Referring to the proposed GNM-SEMM framework with
its semiparametric functional forms and its capability of con-
sidering non-normally distributed variables, a Bayesian approach
seems to be a viable way to estimate models. In this sense, we will
provide general descriptions of the specifications of the variables’
distributions and the selection of prior distributions.

Parameter vectors are defined as follows: For the Level-1
parameters, let θM1kcd = (ν′

1kcd, vec(�1kcd)′, vec(K1kcd)′,
vec(�1kcd)′)′ for the measurement model, where vec( · ) vector-
izes all elements of a given matrix. For the structural model, let
θS1kcd = (α′

kcd, vec(B1kcd)′, vec(�1kcd)′, vec(
1kcd)′)′, and for the
mixture model part let θm1kcd = (a1kcd, b′

1kcd)′. Analogously, for
the Level-2 parameters, let θM2d = (ν′

2d, vec(�2d)′, vec(K2d)′,
vec(�2d)′)′ for the measurement model. For the structural
model, let θS2d = (μ′

d, vec(B2d)′, vec(�2d)′, vec(
2d)′)′, and
for the mixture model part let θm2d = (a2d, b′

2d)′. Finally, let
θM1, θS1, θm1, θM2, θS2, and θm2 be the vectors that include
all parameters from the defined model parts across all latent
classes c = 1, . . . ,C∗

d , d = 1, . . . ,D∗, and observed clusters
k = 1, . . . ,K.

5.1. SPECIFICATION OF THE VARIABLES’ DISTRIBUTION
5.1.1. Level 1
For the Bayesian analysis, the j = 1, . . . , J indicator variables on
Level 1 are specified as a cluster-specific mixture distribution. The
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single mixture is given as

y∗
ik|θM1,θS1,x1ik,Cik = c,Dk = d ∼ N(μy∗

(θM1kcd, θS1kcd, x1ik),�−1
1kcd)(10)

where μy∗
(θM1kcd, θS1kcd, x1ik) is the vector of conditional expec-

tations of y∗
ik, which are specified in Equation (3) and depend

on the parameter vectors θM1kcd and θS1kcd, and on the covari-
ate vector x1ik. �−1

1kcd is the precision matrix of the multivariate
normal distribution of the measurement error variables (i.e., the
inverse of the covariance matrix). The model implies a specific
mean vector and covariance matrix for subjects stemming from a
certain latent class c on Level 1 that is clustered in a latent class
d on Level 2, which in turn is given for an observed cluster k.
Within each cluster k, y∗

ik is a mixture of D∗ components, which
model heterogenity in the observed clusters. Further, within in
each mixture component d, y∗

ik is a mixture of C∗
d components,

which induce heterogenity on the individual level (C∗
d may change

across different latent classes on Level 2).
The latent variables η1ikcd on Level 1 are specified as

η1ik|θS1,x1ik,Cik = c,Dk = d ∼ N(μη1 (θS1kcd, x1ik),
−1
1kcd) (11)

with the vector μη1 (θS1kcd, x1ik) of conditional expectations for
η1ikcd that depend on the parameter vector θS1kcd and covariate
vector x1ik as specified in Equation (4) as well as in the precision
matrix 
−1

1kcd.

5.1.2. Level 2
Analogous to the specification of the variables’ distributions on
Level 1, the indicator vector z∗

k is modeled as

z∗
k |θM2,θS2,x2k,Dk = d ∼ N(μz∗

(θM2d, θS2d, x2k),�−1
2d ) (12)

with the vector μz∗
(θM2d, θS2d, x2d) of conditional expectations

for z∗
k as specified in Equation (7) and precision matrix �−1

2d .
The unconditional indicator vector z∗

k is composed of D∗ mixture
components. Finally, the distribution of the latent variable vector
η2kd, is given as

η2k|θS2,x2k,Dk = d ∼ N(μη2 (θS2d, x2k),
−1
2d ) (13)

with the vector of conditional expectations μη2 (θS2d, x2k) speci-
fied in Equation (6) and precision matrix 
−1

2d .

5.2. SPECIFICATION OF PRIOR DISTRIBUTIONS
For the prior specification, informative or non-informative priors
can be selected (Gelman et al., 2004). This selection is primarily
based on the availability of prior knowledge. Because the applica-
tion of non-informative priors may lead to suboptimal solutions
(e.g., Lee et al., 2007), it may be necessary to analyze parts of
the model (e.g., a confirmatory factor analysis for the Level-2
predictors) to obtain information about the parameters. Here, a
very general description of the proposed model is provided. For a
detailed description of priors see Gelman et al. (2004).

The class probabilities Pr (Cik = c|Dk = d, x1ik) and Pr(Dk =
d|x2k) depend on the multinomial logit models given in
Equations (5) and (8) and thus depend on the parameters in
θm1 and θm2. For these parameters, uninformative priors are

suggested unless information about heterogeneity is available (see
also Kelava and Nagengast, 2012).

For each precision matrix of the mixture distributions defined
above, that is for �−1

1kcd, �−1
2d for the indicator variables, and for


−1
1kcd, 
−1

2d for the latent variables, a multivariate normal distri-
bution is assumed within each component. Conjugate priors are
then given for c = 1, . . . ,C∗

d, d = 1, . . . ,D∗ as

�−1
1kcd ∼ W(�−1

01kcd, ρ

1kcd )

�−1
2d ∼ W(�−1

02d, ρ

2d )


−1
1kcd ∼ W(
−1

01kcd, ρ
�1kcd )


−1
2d ∼ W(
−1

02d, ρ
�2d ). (14)

The hyperparameters ρ and the (positive definite) matrices
�01kcd,�02d,
01kcd, and 
02d of the Wishart distribution
include parameter information that may stem from previous
studies or knowledge about the parameters. For example, 
02d

includes information about the variances and covariances of the
random coefficients, and about the latent endogenous and exoge-
nous variables on Level 2. This information may refer to estimates
of the (co)variances for the latent exogenous variables retrieved
from a separately estimated confirmatory factor analysis.

The conjugate priors can be modified, for example, if the
residual covariance matrix �2d on Level 2 is assumed to be

diagonal, then each diagonal element 

j
2d (j = 1, . . . , J) can be

assumed to be inverse Gamma distributed, that is (

j
2d)−1 ∼

Gamma(α



j
2d
, β



j
2d

) (with hyperparameters α, β) (Kelava and

Nagengast, 2012). Further information about the selection of
priors for count or ordinal data can be found in Song et al. (2013).

For the other parameters in θM1, θS1, θM2, and θS2, nor-
mally distributed priors are used within each mixture component.
Though, the definition of some priors needs to be formulated
recursively (cf. Kelava and Nagengast, 2012). For example, let

ν
j
1kcd be the j-th element of the vector ν1kcd (which specifies the

intercept of the j-th variable in y∗
ik|Cik = c,Dk = d), and let 


j
1kcd

be the j-th diagonal element in the matrix �1kcd. Then for the

latent classes c = 1, d = 1, the conjugate (normal) prior for ν
j
1k11

is specified as

ν
j
1k11|
j

1k11 ∼ N(ν
j
01k11,


j
1k11H0) (15)

with hyperparameters H0 and ν
j
01k11 that include information

about ν
j
1k11. For all other latent classes, that is c > 1 or d > 1, the

following prior is selected:

ν
j
1k1d|
j

1k1d = ν
j
1k1(d−1)|
j

1k1(d−1) +
νj
1k1(d−1)|
j

1k1d

if c = 1, d > 1 (16)

ν
j
1kc1|
j

1kc1 = ν
j
1k(c−1)1|
j

1k(c−1)1 +
νj
1k(c−1)1|
j

1kc1

if c > 1, d = 1 (17)

ν
j
1kcd|
j

1kcd = ν
j
1k(c−1)(d−1)|
j

1k(c−1)(d−1) +
νj
1k(c−1)(d−1)|
j

1kcd

else, (18)
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with


νj
1kcd|
j

1kcd ∼ N(0,

j
1kcdH0), and

νj
1kcd|
j

1kcd ∈ (0,∞).(19)

If parameters are constrained to be the same across mixture com-
ponents (e.g., ν1kcd = ν1k and �1kcd = �1k), Equations (15) to
(19) simplify to

ν
j
1k|
j

1k ∼ N(ν
j
01k,


j
1kH0). (20)

For the other parameter matrices, that is for �1kcd,K1kcd,

αkcd,B1kcd,�1kcd and so forth on Level 1 and ν2d,�2d,

K2d,μd,B2d,�2d and so forth on Level 2, a specification corre-
sponding to the formulation above given is straightforward when
the appropriate precision matrices are used. In order to avoid the
label-switching problem in a mixture distribution, only one of the
parameter matrices needs to be formulated recursively.

6. EMPIRICAL EXAMPLE
In this section, we will provide an extensive illustration of
the GNM-SEMM with an example that is based on data from
the Program for International Student Assessment 2009 (PISA;
Organisation for Economic Co-Operation and Development,
2010), which is publicly available under http://pisa2009.acer.edu.
au/downloads.php. The sample was a German subsample of N =
1, 474 pupils from 226 schools who took a math test. Additional
covariate information were available on the individual level as
well as on the school level.

As before, we predicted pupil’s math skills (Math) with their
general attitude toward reading (Att) and the teaching strategies
they experienced (Strat). We further expected that pupil’s average
math skills (latent intercept of Math) would vary systematically
across schools3, and that this variation could be (partly) accounted
for by Level-2 predictors with measurement errors, here, struc-
tural problems in school (Prob) and the schools’s social environment
(Soc).

We will report the results for a model that accounted
for different aspects of the general model. The example is
not exhaustive with regard to all potential parameters within
the GNM-SEMM framework, but it provides an indication
of the flexibility of the proposed framework in accommodat-
ing different aspects of the data: A spline model on Level 1
described a semiparametric flexible relationship between Att,
Strat, and Math. A random intercept for Math was explained
by the Level-2 predictors Prob and Soc, and the interaction
effect between them. Furthermore, a mixture model accounted
for the non-normality of the latent predictors on Level 2
(heterogeneity).

6.1. MODEL FORMULATION
In the following, we will provide the specified measurement and
structural equations for the model. For reasons of clarity, we
restricted the subscripts (k, c or d) in the model formulation
to those model parameters that actually depended on the latent

3The ICC was 0.407 for the manifest variable, which was the sum of all Math
items.

classes or the Level-2 model. Figure 6 presents a diagram of the
model and its parameters.

6.1.1. Structural models
The Level-1 structural model [cf. Equation (4)] for the i-th pupil
in school k was given by

η1ik = αk + B1F1(η1ik) + ζ 1ik⎛
⎝ Attik

Stratik

Mathik

⎞
⎠ =

⎛
⎝ α1

α2

α3k

⎞
⎠+

⎛
⎝ 0 0

0 0
β1 β2

⎞
⎠ ·

(
F11(Attik)

F12(Stratik)

)
+
⎛
⎝ζ11ik

ζ12ik

ζ13ik

⎞
⎠

(21)

where F11 and F22 both defined a latent cubic spline model with
two knots at ξ1 = 2, ξ2 = 3 that approximated the (curvilinear)

FIGURE 6 | Structural models and measurement models on the

within-level (Level 1) and between-level (Level 2). On Level 1, the math
skill (Math) of a pupil i is predicted by his/her general attitude toward
reading (Att) and his/her experienced teaching strategies (Strat). The
snake-type arrows indicate a flexible spline approximation of the latent
variable relationship. On Level 2, the average math skills of pupils (latent
intercept α3k ) in school k are explained by a nonlinear interaction between
structural problems in the school (Prob) and the school’s social environment
(Soc). The non-normality of the latent predictors is approximated by a
mixture distribution.
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relationships between the variables (e.g., Hastie et al., 2009):

β1F11(Attik) = β11Attik + β12Att2
ik + β13Att3

ik

+ β14(Attik − ξ1)3+ + β15(Attik − ξ2)3+
β2F12(Stratik) = β21Stratik + β22Strat2

ik + β23Strat3
ik

+ β24(Stratik − ξ1)3+ + β25(Stratik − ξ2)3+.
(22)

Only the latent intercept α3k was assumed to vary across schools.
The Level-2 structural model [cf. Equation (6)] for school k was
given by

η2k|Dk = d = μd + B2F2(η2kd) + ζ 2k⎛
⎝Probk|Dk = d

Sock|Dk = d

α3k

⎞
⎠ =

⎛
⎝μ1d

μ2d

μ3

⎞
⎠+

⎛
⎝ 0 0 0

0 0 0
β3 β4 β5

⎞
⎠

·
⎛
⎝ Probkd

Sockd

Probkd · Sockd

⎞
⎠+

⎛
⎝ζ21k

ζ22k

ζ23k

⎞
⎠ (23)

with η2kd = (Probkd, Sockd, α3k)′ and F2(η2kd) = (Probkd, Sockd,
Probkd · Sockd)′. The product term Probkd · Sockd implemented
the interaction effect of the structural problems in school and the
social environment. Because the non-normal distributions of the
latent predictors were approximated by a mixture distribution,
their expectations μ1d and μ2d were assumed to vary across the
unobserved mixtures (Kelava and Nagengast, 2012).

6.1.2. Measurement models
For each of the latent variables between nine and 13 items
were available; they were aggregated to three indicator variables
for each latent variable (item parcels) for didactic purposes.
It was assumed that the indicator variables were continuously
distributed, resulting in an identity link function in the measure-
ment model (y∗

ik = yik and z∗
k = zk, respectively).

On Level 1, the measurement model for pupil i in the k-th
school [cf. Equation (3)] was given by

yik = ν1 + �1f1(η1ik) + ε1ik (24)

where f1(η1ik) = (Attik, Stratik,Mathik)′.
On Level 2, the measurement model [cf. Equation (7)] was

given by

zk|Dk = d = ν2 + �2f2(η2kd) + ε2k (25)

where f2(η2kd) = (Probkd, Sockd)′. The factor loading matrices
�1 and �2 were formulated with a simple structure (i.e., each
item loaded on only one latent variable). The residual vari-
ables ε1ik and ε2ik were assumed to be mutually uncorrelated
and normally distributed with zero mean vectors and (diagonal)
covariance matrices �1 and �2, respectively.

6.1.3. Parameter constraints and identification
Besides employing the standard identification constraints for
structural equation models, we restricted the measurement model
parameters and the structural model parameters to be the same
across schools except for the latent intercept α3k. Due to the
invariance of the measurement models for the latent predictors on
Levels 1 and 2, in Equations (24) and (25) the non-linear effects
in the polynomial spline model and the interaction effect in
Equations (22) and (23) were identified. For the mixture model,
we fit two latent classes (Dk = 1, 2).

6.2. MODEL ESTIMATION
To keep this example as simple as possible, missing data were
assumed to be missing at random, and this was accounted for
directly in the analysis by applying the Gibbs sampler (Gelman
et al., 2004). The analysis of the latent multilevel model was
implemented by using the R-project software (R Core Team,
2013) and the OpenBugs package (Lunn et al., 2009). Syntax
for the empirical example can be obtained upon request from the
authors.

6.2.1. Starting values and prior selection
Starting values for the measurement model parameters were
based on the prior analyses conducted in Mplus Muthén and
Muthén (1998–2010) for separate parts of the model. Informative
priors were then selected in accordance with recommendations by
Gelman et al. (2004) as well as Kelava and Nagengast (2012).

6.2.2. Bayesian analysis
For the analysis, three chains with 100,000 iterations each
were generated. The first 75,000 iterations (burn in) were
then discarded. As proposed by Gelman (1996), convergence
of the estimation procedure was achieved when all (EPSR
Estimated Potential Scale Reduction; Gelman, 1996) values
were below 1.2, which occurred after about 60,000 iterations
(see the Supplementary Material, Figure S1). Trace plots also
indicated good convergence (see the Supplementary Material,
Figure S2). Means, standard errors, t-values, and percentiles
of the posterior distributions of the parameter estimates
based on the last 25,000 iterations are reported in the next
subsection.

6.3. RESULTS
We will summarize the main results in this subsection. Detailed
results for the estimated multilevel model are presented in
Table 1. In the measurement models, the factor loadings were all
significant and positive, thus indicating that the latent constructs
were measured reliably.

The results for the semiparametric approximation of the true
relationships between the Level-1 latent variables Att, Strat, and
Math are illustrated in Figure 7. The relationship between Math
and Att resembled a cubic relationship; the subjects’ Math scores
slowly increased with increasing Att scores, whereby a stronger
increase was found for Att scores greater than 3 and a slight
decrease for Att scores greater than 4. The relationship between
Strat and Math seemed to be slightly quadratic with the highest
Math scores for medium Strat scores.

Frontiers in Psychology | Quantitative Psychology and Measurement July 2014 | Volume 5 | Article 748 | 10

http://www.frontiersin.org/Quantitative Psychology and Measurement
http://www.frontiersin.org/Quantitative Psychology and Measurement
http://www.frontiersin.org/Quantitative Psychology and Measurement/archive


Kelava and Brandt GNM-SEMM

Table 1 | Mean parameter estimates, standard errors, t-values, and

2.5, 50.0, and 97.5% percentiles.

¯̂
θ SE t-value Percentiles

2.5% 50.0% 97.5%

LEVEL-1 PARAMETERS

Intercepts

ν121 −1.078 0.076 −14.190 −1.229 −1.076 −0.933

ν131 −0.409 0.072 −5.709 −0.557 −0.408 −0.275

ν152 0.411 0.118 3.484 0.173 0.414 0.633

ν162 −0.419 0.175 −2.399 −0.769 −0.411 −0.089

ν183 0.058 0.018 3.317 0.023 0.058 0.092

ν193 0.340 0.016 21.069 0.308 0.340 0.372

Factor loadings

λ121 1.141 0.026 43.986 1.091 1.141 1.192

λ131 0.997 0.024 40.814 0.951 0.996 1.047

λ152 0.687 0.043 15.864 0.605 0.686 0.774

λ162 1.213 0.064 18.849 1.091 1.210 1.343

λ183 0.754 0.030 25.279 0.696 0.754 0.814

λ193 0.553 0.027 20.437 0.501 0.553 0.607

Path coefficients

β11 0.005 0.161 0.031 −0.312 0.004 0.320

β12 0.009 0.117 0.079 −0.221 0.009 0.237

β13 −0.005 0.029 −0.174 −0.061 −0.005 0.052

β14 0.046 0.068 0.678 −0.088 0.046 0.180

β15 −0.164 0.104 −1.580 −0.367 −0.165 0.037

β21 −0.070 0.192 −0.366 −0.453 −0.060 0.287

β22 0.079 0.080 0.992 −0.073 0.077 0.239

β23 −0.017 0.012 −1.449 −0.040 −0.017 0.006

β24 0.007 0.016 0.443 −0.025 0.007 0.039

β25 0.018 0.029 0.620 −0.040 0.018 0.073

Means/intercepts of latent variables

α1 2.856 0.022 129.972 2.813 2.856 2.899

α2 2.700 0.019 143.505 2.663 2.700 2.737

(Co)variances of latent variables

ψ111 0.506 0.025 20.357 0.459 0.506 0.556

ψ121 0.072 0.012 5.866 0.048 0.072 0.097

ψ122 0.250 0.019 13.076 0.215 0.250 0.291

ψ133 0.041 0.003 15.847 0.036 0.041 0.046

Residual variances

θ111 0.147 0.009 16.124 0.129 0.147 0.165

θ122 0.198 0.012 16.607 0.176 0.198 0.222

θ133 0.212 0.011 19.288 0.191 0.212 0.234

θ144 0.212 0.014 14.708 0.184 0.213 0.241

θ155 0.323 0.014 22.999 0.297 0.323 0.352

θ166 0.219 0.019 11.251 0.181 0.219 0.257

θ177 0.066 0.003 19.760 0.059 0.066 0.072

θ188 0.047 0.002 20.197 0.042 0.047 0.052

θ199 0.049 0.002 23.364 0.045 0.049 0.053

(Continued)

Table 1 | Continued

¯̂
θ SE t-value Percentiles

2.5% 50.0% 97.5%

LEVEL-2 PARAMETERS

Latent class probabilities

P (D = 1) 0.532 0.255 2.082 0.069 0.537 0.955
P (D = 2) 0.468 0.255 1.835 0.045 0.463 0.931

Intercepts

ν221 0.759 0.415 1.829 −0.063 0.767 1.550
ν231 0.603 0.277 2.180 0.048 0.603 1.143
ν252 −0.024 0.184 −0.129 −0.391 −0.020 0.331
ν262 0.279 0.179 1.556 −0.077 0.281 0.614

Factor loadings

λ221 1.029 0.206 4.999 0.635 1.027 1.439
λ231 0.700 0.137 5.113 0.434 0.699 0.970
λ252 1.002 0.091 11.071 0.828 1.001 1.180
λ262 0.794 0.088 8.992 0.629 0.793 0.969

Path coefficients

β3 0.558 0.101 5.512 0.381 0.550 0.776
β4 0.442 0.108 4.072 0.261 0.432 0.680
β5 −0.289 0.053 −5.483 −0.405 −0.285 −0.199

Means/intercepts of latent variables

μ11 1.921 0.099 19.408 1.685 1.935 2.076
μ21 1.938 0.081 24.063 1.739 1.950 2.062
μ12 2.107 0.123 17.088 1.931 2.084 2.424
μ22 2.091 0.104 20.076 1.955 2.071 2.367
μ3 −0.365 0.162 −2.248 −0.686 −0.361 −0.059

(Co)variances of latent variables

ψ211 0.291 0.049 5.959 0.207 0.287 0.396
ψ221 0.007 0.024 0.304 −0.038 0.007 0.055
ψ222 0.239 0.030 7.986 0.186 0.237 0.305
ψ233 0.051 0.005 11.169 0.042 0.050 0.060

Residual variances

θ211 0.415 0.059 6.970 0.305 0.413 0.539
θ222 0.723 0.098 7.412 0.543 0.718 0.927
θ233 0.366 0.046 7.898 0.280 0.364 0.461
θ244 0.183 0.022 8.204 0.143 0.182 0.230
θ255 0.130 0.017 7.763 0.100 0.129 0.165
θ266 0.176 0.020 8.940 0.141 0.175 0.217

In order to test the hypotheses on the cubic relationship for
Att and the quadratic relationship for Strat4 , we estimated a
model that changed Equation (22) to β1F(Attik) = β11Attik+

4A direct inference with regard to a parametric relationships, including a
linear relationship, based on the parameter estimates for the spline model
(e.g., β11) is not straightforward (Cox et al., 1988; Cox and Koh, 1989;
Zhang and Lin, 2003; Liu and Wang, 2004). In general, an additional model
that can actually test a parametric hypothesis seems to be a viable procedure
(Azzalini and Bowman, 1993).
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FIGURE 7 | Semiparametric Level-1 relationships between pupils’

math skills (Math) and their general attitude toward reading (Att;

left), and Math and experienced teaching strategies (Strat; right).

The gray crosses indicate the predicted slope with a predicted
school-specific random intercept; the black line indicates the predicted
Math score for the mean random intercept.

Table 2 | Mean parameter estimates, standard errors, t-values, and

2.5, 50.0, and 97.5% percentiles for the parametric model (cubic

relationship for Att and quadratic relationship for Strat) on Level 1.

¯̂
θ SE t-value Percentiles

2.5% 50.0% 97.5%

PATH COEFFICIENTS

β11 −0.045 0.139 −0.324 −0.307 −0.045 0.232

β12 0.005 0.055 0.097 −0.105 0.006 0.112

β13 0.003 0.007 0.354 −0.012 0.003 0.017

β21 0.154 0.082 1.877 0.000 0.157 0.329

β22 −0.034 0.016 −2.086 −0.067 −0.034 −0.003

β12Att2
ik + β13Att3

ik and β2F12(Stratik) = β21Stratik + β22Strat2
ik.

Results for the structural parameters on the within-level can
be found in Table 2. The parametric cubic relationship for Att
was not significant (β̂13 = 0.003, p = 0.745 for the cubic effect
and β̂11 = −0.045, p = 0.723 for the linear effect). The attitude
toward reading did not significantly predict the math ability.
The parametric model for Strat indicated a significant negative
quadratic relationship (β̂22 = −0.034, p = 0.037). This indicated
that pupils’ math skills were highest for those subjects who rated
the experienced teaching strategies as average.

On Level 2, the random intercept factor α3k had a signifi-
cant negative intercept (μ̂3 = −0.365, p = 0.024) and an unex-
plained variance across schools of ψ̂233 = 0.051. The linear effects
of the predictors were significant with β̂3 = 0.558 (p < 0.001)
for school problems (Prob) and β̂4 = 0.442 (p < 0.001) for
social problems (Soc). The interaction effect was significant and

FIGURE 8 | Between-level: Three-dimensional illustration of the

relationship between school problems (Prob), social problems (Soc),

and the random intercept α3k of Math.

negative with β̂5 = −0.289 (p < 0.001). Figure 8 illustrates the
complex non-linear association between Prob, Soc, and the ran-
dom intercept α3k. The expected math level of a school with
an average score on school and social problems was about 0.5
(E[α3|Prob = Prob, Soc = Soc] = 0.461); the expected math level
was higher in schools for which one of the problems was above
average and the other was below average; and the math level
decreased rapidly when both problems increased together.
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FIGURE 9 | Predicted slightly non-normal densities of the Level-2 predictors Prob and Soc obtained from a two-class solution.

Finally, the results of the mixture model for the Level-2 predic-
tors are illustrated in Figure 9. As can be inferred from Figure 9,
the distribution of the latent variables was slightly non-normal.
In this empirical example, the means of the latent variables in the
two classes were marginally different (with means of about μ̂11 ≈
μ̂21 ≈ 1.9 in Class 1 and μ̂12 ≈ μ̂22 ≈ 2.1 in Class 2). Additional
analyses may reveal the necessity to increase or decrease the num-
ber of latent classes (e.g., using the DIC). Here, the DIC was
14,780 for a model including the mixtures and 14,770 for a model
without the mixture distribution. This indicates that a mixture
may not have been necessary in this case.

7. DISCUSSION
In this article, we presented a generalized non-linear multilevel
structural equation mixture model (GNM-SEMM) framework.
A key characteristic its ability to specify non-linear functional
relationships between outcome variables on one side and latent
predictors or manifest covariates on the other side by using
semiparametric regression functions (e.g., splines; Freund and
Hoppe, 2007; Hastie et al., 2009). This feature is given for
both levels, the within and between (cluster) levels of nested
data structures. Given that (multilevel) latent variable modeling
frameworks are typically linear (Bollen, 1989; van der Linden
and Hambleton, 1997; Rabe-Hesketh et al., 2004; Muthén and
Asparouhov, 2011), the relaxation of the linearity assumption
is a step forward toward a more realistic approximation of a
non-linear world. It thus extends the hitherto available multilevel
modeling frameworks.

A second key characteristic is the ability to specify latent mix-
ture distributions on both levels. As in recent semiparametric
latent variables approaches (e.g., Bauer and Curran, 2004; Bauer,
2005; Kelava et al., 2014), this allows for an approximation
of non-normally distributed latent predictor variables for a

thorough introduction with regard to manifest variables, see
McLachlan and Peel (2000). Again, the relaxation of a typical
assumption that can be found in most applications of latent vari-
able modeling allows for a more precise modeling of relationships
for heterogeneous populations or distributions.

A third key characteristic of the proposed approach is that
it is flexible enough to specify a large number of special cases.
For example, it offers the ability to approximate a non-normal
distribution using mixture modeling and provides an easy way
to interpret the parametric functional form of the latent vari-
able relationship. As another example, it is possible to specify
a non-linear latent variable relationship in one subpopulation
but not in the other. The same is true for different levels. If
functional forms of the relationships are unknown, semiparamet-
ric approximations of these relationships are also possible using
mixtures.

Taken together, these properties are desirable. Nevertheless,
the identification and estimation of the models is a general issue.
Additional assumptions have to be introduced as was exem-
plified in the sections before (see Level-1 section on the mea-
surement model). Fortunately, these assumptions are standard
identification assumptions in latent mixture, latent (non)linear,
and (semi)parametric modeling, but researchers should be care-
ful when specifying models. For example, multiple intercepts in
spline models might lead to identification issues. However, the
wide range of specifiable models offers a variety of adaptable
estimators that could be applied from a theoretical standpoint.
Bayesian MCMC, Newton-type algorithms, and adapted EM-
Algorithms are just a few examples.

In this paper, we also used a substantive example from edu-
cational science. A complex model was applied to data from the
large-scale PISA study (Organisation for Economic Co-Operation
and Development, 2010) illustrating several conditions that may
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occur in empirical data. First, an a priori unknown curvilinear
relationship between the latent variables was identified on Level 1
using a semiparametric latent spline model. Second, the proposed
mixture part on Level 2 could be used to control for the potential
non-normality of the latent Level-2 predictors. In this example,
only a slight indication of non-normality was visible. The model
may have also been extended to include a mixture model on
Level 1. Third, on Level 2 a latent random intercept modeled a
school-dependent math skill, which allowed us to account for the
clustering of the data. The random intercept was predicted by a
latent non-linear interaction model. The model may be extended
further, for example, to test the linearity assumption on Level 2 of
the relationship between the latent variables apart from the inter-
action effect. Other random effects could also be included. In any
case, the specification of these effects should be theory-driven.

Finally, we want to mention two important considerations.
The proposed model should be viewed as a general framework
that includes a variety of different possible models. A model that
includes all aspects as presented in the model section would be
highly parameterized and may overfit the data. In each empir-
ical situation, we recommend that the actual applied model be
restricted to a simpler model that allows for an adequate but
parsimonious representation of the data. A decision concerning
the necessity to include different parts of the model depends
on the hypothesized model (e.g., random factor loadings in a
confirmatory factor model or a latent spline to predict a latent
slope in the structural model) and on model comparisons. In
the Bayesian framework, Bayesian indices/information criteria for
model selection (e.g., the deviance information criterion, DIC:
Spiegelhalter et al., 2002; Celeux et al., 2006; or the Bayes fac-
tor, Bernardo and Smith, 1994) are the primary model fit indices,
although they only allow only for a model comparison to be
made, and they are not absolute fit indices. In general, for (both
frequentist and Bayesian) non-linear models there are no absolute
fit indices (Klein and Schermelleh-Engel, 2010). Hence, a top-
down (or bottom-up) strategy using information criteria may be
a viable way to improve the model (i.e., to restrict the model to its
necessary parts). An illustration of such a strategy for multilevel
models in general can be found, for example, in West et al. (2007).

Furthermore, we did not show how to implement the pre-
sented framework with statistical software. In this article, a
Bayesian estimator was applied and implemented in OpenBugs,
thus allowing us to analyze a complete but specific semiparamet-
ric non-linear multilevel model. Future research should improve
this implementation so that it will be feasibly available within
standard statistical latent variable software (e.g., Mplus) that
can be directly applied to different models by the substantive
researcher.
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