This work derives direction and ideas from the Chancellor of Amrita University, Sri Mata Amritanandamayi Devi. This work was partially funded by Grants SR/CSI/49/2010, SR/CSI/60/2011, SR/CSRI/60/2013, SR/CSRI/61/2014 and Indo-Italy POC 2012-2013 from DST and BT/PR5142/MED/30/764/2012 from DBT, Government of India and by Embracing The World.
1. D’Angelo, E., Solinas, S., Garrido, J., et al. (2013) Realistic modeling of neurons and networks: towards brain simulation. Funct. Neurol., 28 (3), 153–66.
2. D’Angelo, E., and Zeeuw, C.I. De (2008) Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci., 32 (1), 30–40.
3. Fatemi, S.H., Halt, A.R., Realmuto, G., et al. (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell. Mol. Neurobiol., 22 (2), 171–175.
4. Tempia, F., Hoxha, E., Negro, G., et al. (2015) Parallel fiber to Purkinje cell synaptic impairment in a mouse model of spinocerebellar ataxia type 27. Front. Cell. Neurosci., 9 (June), 1–10.
5. Narabayashi, H., Maeda, T., and Yokochi, F. (1987) Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. Appl. Neurophysiol., 50 (1–6), 330–7.
6. Renoux, A.J., Carducci, N.M., Ahmady, A.A., and Todd, P.K. (2014) Fragile X mental retardation protein expression in Alzheimer’s disease. Front. Genet., 5, 360.
7. Wu, T., and Hallett, M. (2013) The cerebellum in Parkinson’s disease. Brain, 136 (Pt 3), 696–709.
8. Eccles, J.C., Ito, M., Szentagothai, J., and Szentágothai, J. (1967) The Cerebellum as a Neuronal Machine, Springer-Verlag, Berlin, Heidelberg.
9. Prestori, F., Rossi, P., Bearzatto, B., et al. (2008) Altered Neuron Excitability and Synaptic Plasticity in the Cerebellar Granular Layer of Juvenile Prion Protein Knock-Out Mice with Impaired Motor Control. J. Neurosci., 28 (28), 7091–7103.
10. Goldfarb, M., Schoorlemmer, J., Williams, A., et al. (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron, 55 (3), 449–463.
11. Yücel, Y.H., Zhang, Q., Weinreb, R.N., et al. (2001) Atrophy of Relay Neurons in Magno- and Parvocellular Layers in the Lateral Geniculate Nucleus in Experimental Glaucoma. Invest. Ophthalmol. Vis. Sci., 42 (13), 3216–3222.
12. Solinas, S., Nieus, T., and D’Angelo, E. (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front. Cell. Neurosci., 4, 12.
13. Einevoll, G.T., Kayser, C., Logothetis, N.K., and Panzeri, S. (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci., 14 (11), 770–85.
14. Diwakar, S., Lombardo, P., Solinas, S., et al. (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One, 6 (7), e21928.
15. Logothetis, N.K. (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. (August), 1003–1037.
16. Reimann, M.W., Anastassiou, C.A., Perin, R., et al. (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron, 79 (2), 375–90.
17. Bédard, C., Rodrigues, S., Roy, N., et al. (2010) Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials Intracellular-LFP transfer function. 389–403.